直角三角形存在性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形的存在性问题代数法
1.写出三边的平方
2.分类列方程
3.解方程
几何法
1.分类
2.画图——“两线一圆”
3.计算
例1.如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
例 2.如图,在直角坐标系中,R t△O A B的直角顶点A在x轴上,O A=4,A B=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O 移动;同时点N从点O出发,以每秒 1.25个单位长度的速度,沿O B 向终点B移动.当两个动点运动了x秒(0 解答下列问题: (1)求点N的坐标(用含x的代数式表示); (2)设△O M N的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少? (3)在两个动点运动过程中,是否存在某一时刻,使△O M N是直角三角形?若存在,求出x的值;若不存在,请说明理由. 例 3.(2015·益阳中考)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′. (1)求m的值及抛物线E2所表示的二次函数的表达式. (2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由. (3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接O P并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.