知识点139 分式方程的定义选择题
中考数学复习《分式方程》专项提升训练(附答案)
中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
分式方程重点题型
分式易考题型※【典例剖析】例1(分式概念)(1) 当x 时,分式x -13无意义; (2)当x 时,分式392--x x 的值为零. 随堂练习11要使式子33-+x x ÷42-+x x 有意义,x 的取值应为 。
2、当x 时,分式33+-x x 的值为0。
3、使分式1122+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数4、当x = -3时,下列分式中有意义的是( )A 、33-+x xB 、33+-x x C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5、判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义⑴)1)(3(2x x x --+; ⑵2522+-x x ; ⑶2231--+x x .例2(分式的约分) 已知311=-y x ,求yxy x y xy x ---+55的值.随堂练习21、下列变形不正确的是( ) A.2222+-=---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =21 D.2126336-+=-+y x y x 2、若2x =-y ,则分式22y x xy -的值为________. 3、化简求值:(1)222222484y x y xy x -+- 其中x =2,y =3. (2)已知yx =2,求222263y xy x y xy x +++-的值.例3(分式的乘除法)使分式22222)(y x ay ax y a x a y x ++⋅--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-51 随堂练习3计算:(1)(xy -x 2)÷xy y x - (2)24244422223-+-÷+-+-x x x x x x x x例4(分式加减法)例4-1化简求值:当x =21时,求1121122-+-++-x x x x x 的值.例4-262)1(33)1)(1()1(3)1)(1(313)1)(1(313132--=+--=-++--+-=---+-=----x x x x x x x x x x x x x x x x (1)上述计算过程中,从哪一步开始出现错误:(2)从B 到C 是否正确; 。
初二数学网课优选例习题--分式方程
初二数学网课优选例习题--分式方程【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【基础知识】一、分式方程的概念分母中含有未知数的方程叫分式方程.注意:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 注意:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.四、分式方程的应用列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根; (6)写出答案.【考点剖析】 考点一:分式方程的定义例1.(2022·广东肇庆·八年级期末)下列是分式方程的是( )A .413x x x +++ B .5042xx -+=C .()34243x x -= D .1101x +=+ 考点二:解分式方程例2.(2022·河北石家庄·八年级期中)当22x x --的值是1-时,则x 为( )A .任意正数B .任意非负数C .不等于2的正数D .不等于2的非负数考点三:根据分式方程解的情况求值例3.(2022·陕西西安·八年级期末)若关于x 的分式方程21333++=--x a a x x 的解是正数,则a 的取值范围为( ) A .1a >B .1a ≥C .1a ≥且3a ≠D .1a >且3a ≠考点四:分式方程的实际应用例4.截止2022年6月,烟台市累计开通5G 基站10366个,居全省第三.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .500500045x x -= B .5005004510x x -= C .5005004510x x-= D .500050045x x-= 【真题演练】 1.(2022·江苏无锡·中考真题)方程213x x=-的解是( ). A .3x =-B .=1x -C .3x =D .1x =2.(2022·江苏淮安·中考真题)方程3102x -=-的解是______. 3.(2022·江苏盐城·中考真题)分式方程1121x x +=-的解为__________.4.(2022·江苏苏州·中考真题)解方程:311xx x+=+.5.(2022·江苏扬州·中考真题)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【过关检测】一、单选题1.(2022·重庆实验外国语学校八年级月考)下列式子中是分式方程的是()A.2x-B.132xx-=C.102x+=D.210x+=2.如果用换元法解分式方程2214301x xx x+-+=+,并设21xyx+=,那么原方程可化为()A.130yy-+=B.430yy-+=C.430yy++=D.130yy++=3.(2022·重庆·西南大学附中八年级期中)若整数a满足关于x的分式方程2311x ax x++=--的解为非负整数,且使关于y的不等式组223133y ayy-⎧≤⎪⎪⎨+⎪≤-⎪⎩的解集为2y≤,则符合条件的所有整数a的和为()A.5 B.8 C.9 D.124.(2022·广西贵港·八年级期中)若关于x的分式方程25166k xx x--=--有增根,则k的值是()A.2-B.﹣12C.12D.25.某工程队经过招标,中标2500米的人才公园跑道翻修任务,但在实际开工时.……,求实际每天修路多少米?在这个题目中,若设实际每天翻修跑道x米,可得方程250025001050x x-=-.则题目中用“……”表示的条件应是()A.每天比原计划多修50米的跑道,结果延期10天完成B.每天比原计划少修50米的跑道,结果提前10天完成C.每天比原计划少修50米的跑道,结果延期10天完成D.每天比原计划多修50米的跑道,结果提前10天完成二、填空题6.(2022·河南·郑州经开区外国语女子中学八年级期末)请写出一个未知数是x的分式方程,并且当1x=时没有意义______.7.(2022·山东东营·八年级期中)已知关于x 的方程2133x m xx x--=--的解为正数,则m 的取值范围是______. 8.(2022·天津津南·八年级期中)方程1212332x x+=--的最简公分母是 _____. 9.(2022·吉林省八年级月考)若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______. 10.(2022·湖南·临武县第六中学八年级月考)若解分式方程322k k xx x-=---产生增根,则k 的值为________. 三、解答题11.(2022·湖南·临武县第六中学八年级月考)解方程:2236111x x x -=+--. 12.解分式方程:2121x xx x -=+-. 13.(2022·福建省福州第一中学八年级期中)解分式方程:214111x x x +-=-- 14.(2022·四川·南充市顺庆区李家中学八年级期末)解分式方程:11222x x x++=--. 15.(2022·北京密云·八年级期末)解方程:212+2111x x x x +=-+-. 16.(2022·湖南永州·八年级期末)为支援灾区,某学校爱心活动小组准备用筹集的资金购买A B ,两种型号的学习用品共1000件,已知B 型学习用品的单价比A 型学习用品的单价多5元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同. (1)求A B ,两种学习用品的单价各是多少元;(2)若购买这批学习用品的费用不超过13000元,则最多购买B 型学习用品多少件? 17.(2022·北京密云·八年级期末)列方程解应用题学校组织学生去电影院观看红色电影《长津湖》,为践行绿色出行低碳生活理念,小文和小京决定选择步行或骑哈啰单车前往.两人同时从家出发,同时到达电影院.小文从家出发先步行到哈啰单车借车点扫码借车,再骑行6km 到哈啰单车还车点扫码还车,最后步行到电影院,小文步行、扫码借车、扫码还车共用15分钟.小京选择步行方式出行,他从家出发步行4.5km 到达电影院.已知小文骑哈啰单车的平均速度是小京步行平均速度的2倍,求小京步行的平均速度.18.(2022·福建·福州三牧中学八年级期中)核酸检测时采集的样本必须在4小时内送达检测中心,超过时间,样本就会失效,A 、B 两个采样点到检测中心的路程分别为30km 、36km ,A 、B 两个采样点的送检车有如下信息:信息一:B 采样点送检车的平均速度是A 采样点送检车的1.2倍; 信息二:A 、B 两个采样点送检车行驶的时间之和为2小时.设A 采样点送检车的平均速度是km/h x ,若B 采样点从开始采集样本到送检车出发用了2.6小时,请问B 采样点采集的样本会不会失效?19.(2022·贵州·江口县民族中学八年级期中)某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高50%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?20.(2022·山东·泰安市泰山区大津口中学八年级月考)某书店在图书批发中心选购A ,B 两种科普书,A 种科普书每本进价比B 种科普书每本进价多20元,若用2400元购进A 种科普书的数量是用950元购进B 种科普书数量的2倍.(1)求A ,B 两种科普书每本进价各是多少元;(2)该书店计划A 种科普书每本售价为126元,B 种科普书每本售价为86元,购进A 种科普书的数量比购进B 种科普书的数量的13还多4本,若A ,B 两种科普书全部售出,使总获利超过1560元,则至少购进B种科普书多少本? 考点一:分式方程的定义例1.(2022·广东肇庆·八年级期末)下列是分式方程的是( )A .413x x x +++ B .5042xx -+=C .()34243x x -= D .1101x +=+ 【答案】D【分析】根据分母中含有未知数的方程叫做分式方程,对每个选项进行判断,找出是等式,且分母含有未知数方程,即可得解.【详解】解:A 、是一个代数式,不是方程,所以A 不是分式方程; B 、是一元一次方程,是整式方程,所以B 不是分式方程; C 、是一元一次方程,是整式方程,所以C 不是分式方程; D 、分母含有未知数x ,所以D 是分式方程. 故选:D .考点二:解分式方程例2.(2022·河北石家庄·八年级期中)当22x x --的值是1-时,则x 为( )A .任意正数B .任意非负数C .不等于2的正数D .不等于2的非负数【答案】D【分析】根据题意列出关于x 的方程,结合绝对值的性质,即可求解. 【详解】解:∵212x x -=--,∴22x x -=-,且20x -≠,∴x x =,且2x ≠, ∴0x ≥且2x ≠, 故选D考点三:根据分式方程解的情况求值例3.(2022·陕西西安·八年级期末)若关于x 的分式方程21333++=--x a a x x 的解是正数,则a 的取值范围为( ) A .1a > B .1a ≥ C .1a ≥且3a ≠ D .1a >且3a ≠【答案】D【分析】先根据解分式方程的一般步骤求出x 的表达式,然后根据分式方程的解为非负数列不等式求解即可.【详解】解:∵21333++=--x a a x x , ∴()363x a a x +-=-,整理,可得:233x a=﹣, 解得:33=2a x -, ∵关于x 的分式方程21333++=--x a a x x 的解是正数, ∴3302a ->,且3332a -≠, 解得:1a >且3a ≠. 故选:D .考点四:分式方程的实际应用例4.截止2022年6月,烟台市累计开通5G 基站10366个,居全省第三.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .500500045x x -= B .5005004510x x -= C .5005004510x x-= D .500050045x x-= 【答案】B【分析】根据在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒列方程即可. 【详解】解:设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是5005004510x x-=, 故选:B .【真题演练】1.(2022·江苏无锡·中考真题)方程213x x=-的解是( ). A .3x =- B .=1x -C .3x =D .1x =【答案】A【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解. 【详解】解:方程两边都乘(3)x x -,得 23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边.所以,3x =-是原方程的根. 故选:A .2.(2022·江苏淮安·中考真题)方程3102x -=-的解是______. 【答案】5x =【分析】方程两边都乘2x 得出()320x --=,求出方程的解,再进行检验即可.【详解】解:3102x -=-, 方程两边都乘2x ,得()320x --=,解得:5x =,检验:当5x =时,20x -≠, 所以5x =是原方程的解, 即原方程的解是5x =, 故答案为:5x =.3.(2022·江苏盐城·中考真题)分式方程1121x x +=-的解为__________. 【答案】2x =【分析】方程两边同时乘以2x -1,然后求出方程的解,最后验根. 【详解】解:方程两边同乘()21x -得121x x +=- 解得2x =,经检验,2x =是原分式方程的根, 故答案为:2x =.4.(2022·江苏苏州·中考真题)解方程:311x x x+=+.【答案】32x =-【分析】根据解分式方程的步骤求出解,再检验即可.【详解】方程两边同乘以()1x x +,得()()2311x x x x ++=+.解方程,得32x =-.经检验,32x =-是原方程的解.5.(2022·江苏扬州·中考真题)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名? 【答案】每个小组有学生10名.【分析】设每个小组有学生x 名,根据题意列出方程,求出方程的解即可得到结果. 【详解】解:设每个小组有学生x 名, 根据题意,得360360334-=x x, 解这个方程,得x =10, 经检验,x =10是原方程的根, ∴每个小组有学生10名. 【过关检测】 一、单选题1.(2022·重庆实验外国语学校八年级月考)下列式子中是分式方程的是( )A .2x-B .132x x -=C .102x+=D .210x +=【答案】B【分析】根据分式方程的定义,即可求解. 【详解】解:A 、不是方程,故本选项不符合题意; B 、是分式方程,故本选项符合题意; C 、是整式方程,故本选项不符合题意; D 、是整式方程,故本选项不符合题意; 故选:B2.如果用换元法解分式方程2214301x x x x +-+=+,并设21x y x+=,那么原方程可化为( ) A .130y y -+= B .430y y -+= C .430y y++= D .130y y++=【分析】设21x y x +=,则211x y x =+,由此即可求解.【详解】解:根据题意,设21x y x+=,则211x y x =+,∴原式变形为430y y-+=, 故选:B .3.(2022·重庆·西南大学附中八年级期中)若整数a 满足关于x 的分式方程2311x ax x++=--的解为非负整数,且使关于y 的不等式组223133y ay y -⎧≤⎪⎪⎨+⎪≤-⎪⎩的解集为2y ≤,则符合条件的所有整数a 的和为( )A .5B .8C .9D .12【答案】A【分析】解分式方程,根据解是非负整数解,且不是增根,化简一元一次不等式组,根据解集为2y ≤得到a 的取值范围,得到a 的最终范围,这个范围内能使y 是整数的a 确定出来求和即可. 【详解】解:分式方程两边都乘以()1x -得:233x a x +-=-, 解得52ax -=, ∵分式方程有非负整数解,且10x -≠, ∴502a -≥且512a-≠, 解得:5a ≤且3a ≠,223133y ay y -⎧≤⎪⎪⎨+⎪≤-⎪⎩①② 解不等式①得到:62y a ≤+, 解不等式②得到:2y ≤, ∵不等式组的解集为2y ≤, ∴622a +≥, ∴2a ≥-,∴25a -≤≤且3a ≠, ∵52a-为非负整数, ∴符合条件的整数a 的值为:1-,1,5, ∴和为1155-++=.4.(2022·广西贵港·八年级期中)若关于x 的分式方程25166k x x x --=--有增根,则k 的值是() A .2- B .﹣12C .12D .2【答案】B【分析】先令分母0=求增根,在把分式方程化为整式方程,最后把增根代入整式方程求出k . 【详解】解∶分式方程有增根, 60,x ∴-=解得6x =, 原方程化为∶25166k x x x ---=-- 265,k x x --+=-将6x =代入得:26665,k --+=-解得12k =-.故选∶B .5.某工程队经过招标,中标2500米的人才公园跑道翻修任务,但在实际开工时.……,求实际每天修路多少米?在这个题目中,若设实际每天翻修跑道x 米,可得方程250025001050x x-=-.则题目中用“……”表示的条件应是( )A .每天比原计划多修50米的跑道,结果延期10天完成B .每天比原计划少修50米的跑道,结果提前10天完成C .每天比原计划少修50米的跑道,结果延期10天完成D .每天比原计划多修50米的跑道,结果提前10天完成 【答案】D【分析】根据分式方程以及题意,求解即可.【详解】解:由题意可得,实际每天修路x 米,x −50表示计划每天修路的长,则实际每天比原计划多修50米的路,250050x -表示计划工期,2500x 表示实际工期250025001050x x-=-则表示实际工期比计划工期少10天,即结果提前10天完成, 故选:D 二、填空题6.(2022·河南·郑州经开区外国语女子中学八年级期末)请写出一个未知数是x 的分式方程,并且当1x =时没有意义______. 【答案】161x =-(答案不唯一)【分析】根据1x =时没有意义可知,当1x =时,分式的分母为0,根据条件进行构造即可.【详解】解:一个未知数是x 且当1x =时没有意义的分式方程为16(1x =-答案不唯一). 故答案为:161x =-. 7.(2022·山东东营·八年级期中)已知关于x 的方程2133x m x x x--=--的解为正数,则m 的取值范围是__________.【答案】3m >且9m ≠ 【分析】首先去分母化成整式方程,求得x 的值,然后根据方程的解大于0,且30x -≠即可求得m 的范围.【详解】解:去分母,得:()23x m x x ---=-,去括号,得:23x m x x --+=-,移项,得:23x x x m -+=-,合并同类项,得:23x m =-,化系数为1,得:32m x -=, ∵原分式方程得解为正数,且30x -≠,∴30m ->,且332m -≠, 解得:3m >且9m ≠.故答案为:3m >且9m ≠.8.(2022·天津津南·八年级期中)方程1212332x x +=--的最简公分母是 _____. 【答案】23x - 【分析】把方程1212332x x +=--,化为1212323x x +=---,即可得出最简公分母. 【详解】解:∵1212332x x +=--, ∴1212323x x +=--- ∴最简公分母是23x -.故答案为:23x -.9.(2022·吉林省第二实验学校八年级月考)若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______.【答案】2m >且3m ≠-【分析】分式方程去分母转化为整式方程,表示出x ,根据方程有负数解,分式有意义的条件,列出关于m 的不等式,求出不等式的解集即可得到m 的范围.【详解】解:去分母得:2633x x m +=+,解得:63x m =-,根据题意得:630m -<,且633m -≠-,解得:2m >且3m ≠-.故答案为:2m >且3m ≠-.10.(2022·湖南·临武县第六中学八年级月考)若解分式方程322k k x x x-=---产生增根,则k 的值为________. 【答案】1【分析】先解分式方程,再根据分式方程的增根的定义解决此题. 【详解】解:322k k x x x -=---, 去分母,得()32k x k x =---,去括号,得36k x k x =--+,移项,得36x x k k -+=-+-,合并同类项,得262x k =-,x 的系数化为1,得3x k =-, ∵分式方程322k k x x x-=---产生增根, ∴32k -=,∴1k =,故答案为:1.三、解答题11.(2022·湖南·临武县第六中学八年级月考)解方程:2236111x x x -=+--. 【答案】无解.【分析】方程两边都乘()()11x x +-得出整式方程,求出整式方程的解,再进行检验即可.【详解】解:方程两边都乘()()11x x +-,得()()21316x x -++=,解得:1x =,检验:当1x =时,()()110x x +-=,所以1x =是原分式方程的增解,即原方程无解.12解分式方程:2121x x x x -=+-. 【答案】25x = 【分析】两边都乘以(2)(1)x x +-化为整式方程求解,然后验根即可.【详解】方程两边同乘最简公分母(2)(1)x x +- ,得:2(1)(2)(2)(1)x x x x x x --+=+- 解得:25x =, 检验:当25x =时, (2)(1)0x x +-≠. 所以25x =是原方程的解 13.(2022·福建省福州第一中学八年级期中)解分式方程:214111x x x +-=-- 【答案】无解【分析】先去分母,将分式方程转化为整式方程,再按照整式的解法步骤解方程,注意结果要检验.【详解】解:去分母,得()22141x x +-=-,去括号,得222141x x x ++-=-,移项、合并同类项,得22x =,系数化为1,得1x =,检验:当1x =时,10x -=,210x ,∴1x =是分式方程的增根,即原分式方程无解.14.(2022·四川·南充市顺庆区李家中学八年级期末)解分式方程:11222x x x ++=--. 【答案】23x = 【分析】去分母后移项、合并同类项得出32x =,进而求解,检验是否是原方程的解即可. 【详解】解:11222x x x++=--, 12(2)(1)x x +-=-+,1241x x +-=--,2114x x +=--+,32x =,23x =, 检验:把23x =代入4x 23-=-, ∴原方程的解为23x =. 15.(2022·北京密云·八年级期末)解方程:212+2111x x x x +=-+-. 【答案】32x = 【分析】先找到最简公分母,方程的左右两边同时乘以最简公分母,将其转化为整式方程,再解一元一次方程即可,最后检验. 【详解】解:212+2111x x x x +=-+- 方程两边同时乘以最简公分母()()11x x +-,得,()1212x x x ++-=+1222x x x ++-=+23x = 解得:32x =, 当32x =时,()()515110224x x +-=⨯=≠,则32x =是原方程的解. 16.(2022·湖南永州·八年级期末)为支援灾区,某学校爱心活动小组准备用筹集的资金购买A B ,两种型号的学习用品共1000件,已知B 型学习用品的单价比A 型学习用品的单价多5元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A B ,两种学习用品的单价各是多少元;(2)若购买这批学习用品的费用不超过13000元,则最多购买B 型学习用品多少件?【答案】(1)A 型学习用品的单价为10元,B 型学习用品的单价为15元(2)600件【分析】(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(5)x +元,根据题意列出分式方程解方程即可求解;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000)y -件,根据题意列出一元一次不等式,解不等式即可求解.【详解】(1)解:设A 型学习用品的单价为x 元,则B 型学习用品的单价为(5)x +元,由题意得, 1801205x x=+, 解得10x =,经检验10x =是原分式方程的根,且符合实际,则515x +=,答:A 型学习用品的单价为10元,B 型学习用品的单价为15元.(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000)y -件,由题意得1010001513000()y y -+≤,解得600y ≤,答:最多购买B 型学习用品600件.17.(2022·北京密云·八年级期末)列方程解应用题学校组织学生去电影院观看红色电影《长津湖》,为践行绿色出行低碳生活理念,小文和小京决定选择步行或骑哈啰单车前往.两人同时从家出发,同时到达电影院.小文从家出发先步行到哈啰单车借车点扫码借车,再骑行6km 到哈啰单车还车点扫码还车,最后步行到电影院,小文步行、扫码借车、扫码还车共用15分钟.小京选择步行方式出行,他从家出发步行4.5km 到达电影院.已知小文骑哈啰单车的平均速度是小京步行平均速度的2倍,求小京步行的平均速度.【答案】小京步行的平均速度为6km /h【分析】设小京步行的平均速度为km /h x ,则小文骑哈啰单车的平均速度是2km /h x ,根据题意列出分式方程,解方程即可求解.【详解】解:设小京步行的平均速度为km /h x ,则小文骑哈啰单车的平均速度是2km /h x ,根据题意得, 4.5156602x x=+ 解得:6x =,经检验,6x =是原方程的解,答:小京步行的平均速度为6km /h .18.(2022·福建·福州三牧中学八年级期中)核酸检测时采集的样本必须在4小时内送达检测中心,超过时间,样本就会失效,A 、B 两个采样点到检测中心的路程分别为30km 、36km ,A 、B 两个采样点的送检车有如下信息:信息一:B 采样点送检车的平均速度是A 采样点送检车的1.2倍;信息二:A 、B 两个采样点送检车行驶的时间之和为2小时.设A 采样点送检车的平均速度是km/h x ,若B 采样点从开始采集样本到送检车出发用了2.6小时,请问B 采样点采集的样本会不会失效?【答案】B 采样点采集的样本不会失效【分析】设A 采样点送检车的平均速度是km/h x ,根据“A 、B 两个采样点送检车行驶的时间之和为2小时”列分式方程,解方程,然后求出B 采样点送检车行驶时间,再进行比较即可.【详解】设A 采样点送检车的平均速度是km/h x ,则B 采样点送检车的平均速度为1.2km/h x , 根据题意,得303621.2x x+=, 解得:30x =,经检验,30x =是分式方程的根,∴B 采样点送检车的平均速度为()30 1.236km/h ⨯=,∴B 采样点送检车的行驶时间为()36361h ÷=,∵2.61 3.64+=<,∴B 采样点采集的样本不会失效.19.(2022·贵州·江口县民族中学八年级期中)某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高50%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?【答案】(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利4700元.【分析】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据单价=总价÷数量结合甲种款型每件的进价比乙种款型每件的进价少30元,即可得出关于x 的分式方程,解之经检验即可得出结论;(2)首先求出甲、乙两种款型T 恤衫的进价,再根据利润=销售收入−成本,即可求出答案.【详解】(1)解:设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件, 根据题意得:78006400301.5x x+=, 解得:40x =,经检验,40x =是原方程的解,且符合题意,∴1.560x =,答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)解:乙种款型的进价为:640040160÷=(元),则甲种款型的进价为:16030130-=(元),∴()()()11130150%60160150%40160150%50%4078006400470022⨯+⨯+⨯+⨯⨯+⨯+⨯⨯⨯--=(元). 答:售完这批T 恤衫商店共获利4700元.20.(2022·山东·泰安市泰山区大津口中学八年级月考)某书店在图书批发中心选购A ,B 两种科普书,A 种科普书每本进价比B 种科普书每本进价多20元,若用2400元购进A 种科普书的数量是用950元购进B 种科普书数量的2倍.(1)求A ,B 两种科普书每本进价各是多少元;(2)该书店计划A 种科普书每本售价为126元,B 种科普书每本售价为86元,购进A 种科普书的数量比购进B 种科普书的数量的13还多4本,若A ,B 两种科普书全部售出,使总获利超过1560元,则至少购进B 种科普书多少本?【答案】(1)A 种科普书每本的进价为96元,B 种科普书每本的进价为76元;(2)至少购进B 种科普书75本【分析】(1)设B 种科普书的进价为x 元/本,则A 种的进价为()20x +元/本,根据用2400元购进A 种科普书的数量是用950元购进B 种科普书数量的2倍列分式方程解答;(2)设购进B 种科普书m 本,则购进A 种科普书143m ⎛⎫+ ⎪⎝⎭本,根据总获利超过1560元列不等式解答. 【详解】(1)解:设B 种科普书的进价为x 元/本,则A 种的进价为()20x +元/本, 根据题意得:2400950220x x=⨯+, 解得:76x =,经检验:76x =是所列分式方程的解,且符合题意,∴2096x +=,答:A 种科普书每本的进价为96元,B 种科普书每本的进价为76元;(2)设购进B 种科普书m 本,则购进A 种科普书143m ⎛⎫+ ⎪⎝⎭本, 根据题意得:()()1126964867615603m m ⎛⎫-++-> ⎪⎝⎭, 解得:72m >,∵m 为正整数,且143m +为正整数, ∴m 为3的倍数,∴m 的最小值为75,答:至少购进B 种科普书75本.。
(完整)第十五章--分式方程(知识点+题型分类练习),推荐文档
.
2x a
6.(2013•牡丹江)若关于 x 的分式方程 x 1 =1 的解为正数,那么字母 a 的取值范围是
.
x 3a
7.(2013•齐齐哈尔)若关于 x 的分式方程 x 1 2x 2 -2 有非负数解,则 a 的取值范围是
.
8.若分式方程 x 2 a 有增根,则 a 的值为
x4
x4
()
(m≠0)
3、 约分:根据
把一个分式分子和分母的
约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的
,约分的结果必须是
分式。
4、通分:根据
把几个异分母的分式化为
分母分式的过程叫做分式的通分,通分的
关键是确定各分母的
提醒:①最简分式是指
② 约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的
1
0
的根.
2.(2012•遵义)先化简
(
x
x 1
x
x2
) 1
x2
x2
x 2x
1
,并从-1≤x≤3
中选一个你认为合适的整数
x
代入求
值.
3.先化简,再求值:
2
4 x
x2 x
4
,其中
x=﹣4.
4 x2
x
x
22
4.先化简,再求值: x 1
,其中 x=
7.
第 5 页 共 10 页
5.先化简,再求值:
.
x 1 m
16.(2013•威海)若关于 x 的方程 x 5 10 2x 无解,则 m=
.
考点二、解分式方程
1.解下列分式方程
《分式方程复习》课件
在金融和经济领域,分式方程可以用来描述和预测市场行为、投资回报和成本效益分析等。在交通领 域,分式方程可以用来解决交通流量和路线规划问题。在工程领域,分式方程可以用来描述机械运动 、热传导和电路等问题。
04 分式方程的解题 技巧
转化思想
总结词
转化思想是将复杂问题转化为简单问 题,将未知问题转化为已知问题的一 种解题策略。
详细描述
分式方程与整式方程的主要区别在于分母中是否含有未知数。分式方程的分母中 含有未知数,而整式方程的分母中不含有未知数。此外,分式方程的解法通常需 要更多的技巧和注意事项,例如需要处理分母为零的情法
01
02
03
04
直接求解法
通过对方程进行化简,直接求 出方程的解。
详细描述
在解分式方程时,通过对方程进行适 当的变形和转化,可以将分式方程转 化为整式方程或更容易解决的形式, 从而简化解题过程。
整体思想
总结词
整体思想是从整体角度出发,将 问题看作一个整体,从而简化问 题的一种解题策略。
详细描述
在解分式方程时,可以将方程中 的某些项看作一个整体,通过对 方程进行整体变形和运算,从而 简化解题过程。
代数方法
总结词
代数方法是利用代数性质和定理,对方 程进行变形和求解的一种解题策略。
VS
详细描述
在解分式方程时,可以利用代数性质和定 理,如乘法分配律、合并同类项等,对方 程进行变形和简化,从而找到方程的解。
05 分式方程的易错 点分析
概念理解不清
总结词
概念理解不清晰
详细描述
分式方程的基本概念和定义是解题的基础,如果对分式方程的概念理解不清晰,会导致 解题思路出现偏差,甚至无法正确列出方程。
分式方程知识总结
分式方程知识总结一、分式方程的定义:分母中含有未知数的方程,叫做分式方程。
例如15x =,3233x x x =+--,523x x +=-都是分式方程。
分式方程和整式方程的最大区别就在于分母中是否含有未知数(不是一般的字母系数),分母中不含有未知数的方程叫做整式方程。
练习:下列方程都是关于x 的方程,其中是分式方程的有 。
(只填序号) ①52x =;②313x =-;③152x x =-;④2x n x m m n +--=;⑤2m n m n x m -+-= 答案:②、③、⑤。
二、分式方程的解法解分式方程的基本思想是:把分式方程转化为整式方程,然后通过求整式方程,将整式方程的解代入最简公分母中,如果最简公分母的值不为0,则整式方程的解就是分式方程的根,否则这个解就不是原分式方程的根,原分式方程无解。
例题1、解方程32222x x x x-=--- 方程两边同时乘以2x -,约去分母得322(2)x x x -=---解这个整式方程得1x =检验:当1x =时,20x -≠。
所以1x =是原方程的解。
三、增根将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,约去分母,有时就可能产生不适合原分式方程的解(或根),这种根通常被称为增根。
所以解分式方程一定要进行检验。
①增根产生的原因:对原分式方程的根来说,它必须使分式方程中各个分式分母的值不能为0,当所得到的整式方程的解使原分式方程中至少一个分式的分母为0(这个分母实际上是去分母时最简公分母的一个因式),那么最简公分母的值为0,即相当于在分式方程两边都乘以了0,不符合等式性质的要求,所以这个整式方程的解不适合原来的分式方程,它就是增根。
②分式方程验根的方法:分式方程验根的方法有两种:一是将整式方程的解代入到去分母时方程两边所乘以的最简公分母中,如果这个最简公分母的值为0,它就是原分式方程的增根,舍去,反之就是原分式方程的根;二是将整式方程的解代入到原分式方程左右两边,看看两边的值是否相等。
分式方程和二次根式试题和答案
分式方程和二次根式专项讲解一.知识框架二.知识概念1、分式:形如BA,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
分式方程的意义:分母中含有未知数的方程叫做分式方程.二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。
当a >0时,√a 表示a 的算数平方根,其中√0=0 2、分式有意义的条件:分母不等于03、分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C 为整式,且C≠0) 5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、分式的四则运算:①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加 减.用字母表示为:cba cbc a ±=± ②异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbcad d c b a ±=± ③分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdacd c b a =* ④分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bc ad d c b a =÷(2).除以一个分式,等于乘以这个分式的倒数: cd b a d c b a *=÷ 7、 理解并掌握下列结论: (1)()0≥a a 是非负数; (2)()()02≥=a a a ; (3)()02≥=a a a ;三、知识讲解【例1】(2009年黔东南州)当x_____时,11+x 有意义.(1-≠x )★直通中考:1、(2009年漳州)若分式12x -无意义,则实数x 的值是 x=2 . 2、(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 x=2 .3、(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是( B ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 4、已知有意义,则在平面直角坐标系中,点P (m ,n )位于第 __四__ 象限.【例2】(2009年成都)分式方程2131x x =+的解是 x=2 ★直通中考:1、(2009年潍坊)方程3123x x =+的解是 .(x=9) 2、(2009宁夏)解分式方程:1233x x x +=--.(37=x ) 【例3】(2009 年佛山市)化简:2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭ (y 2)★直通中考:1、(2009年湖南长沙)分式111(1)a a a +++的计算结果是( C ) A .11a + B .1a a +C .1aD .1a a+ 2、(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= (1+a a) 3、(2009年成都)化简:22221369x y x y x y x xy y +--÷--+=_______ (yx y -2) 4、(2010广东广州)若a <1,化简2(1)1a --=( D )A .a ﹣2B .2﹣aC .aD .﹣a5、已知2<x <5,化简2(2)x -+2(5)x -=________.(3) 【例4】(2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.(528) ★直通中考:1、(2009烟台市)设0a b >>,2260a b ab +-=,则a bb a+-的值等于.(2) 2、(2009年枣庄市)已知a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P = Q (填“>”、“<”或“=”).3、(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1的值为________.(81)4、(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m2=________.(53)5、(2010四川广安)若|2|20x y y -++=,则xy 的值为( A ) A .8 B . 2 C .5 D .6-6、已知522+-+-=x x y ,则x y =________.(52) 【例5】(2009年河北)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.解:化简后1++b a ,代入可得2112=+-★直通中考:1、(2009年莆田)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.解:化简后x -,代入可得-12、(2009年衡阳市)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a .解:化简后13-a ,代入可得01313=-⨯3、(2011年中考)已知x 是一元二次方程0132=-+x x 的实数根,求代数式⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.解:化简后)3(31+x x ,因为0132=-+x x 可化为1)3(=+x x ,故原式可得314、(2009湖北省荆门市)已知x =2+3,y =2-3,计算代数式2211()()x y x y x y x y x y+----+的值.解:化简后xy 4-,代入可得()()34-32324-=-+5、如图,点A 的坐标为(﹣,0),点B 在直线y=x 上运动,当线段AB 最短时点B 的坐为( A )A .(﹣,﹣)B .(﹣,﹣)C .(,)D . (0,0)6、如图所示,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为__4_______.【例6】(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下: 依据上列图表,回答下列问题:(1) 其中观看足球比赛的门票有_50__张;观看乒乓球比赛的门票占全部门票的_20_%;(2) 公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是 ;(103)(3) 若购买乒乓球门票的总款数占全部门票总款数的61,求每张乒乓球门票的价格。
分式和分式方程知识点总结材料及练习
分式和分式方程知识点总结一、分式的根本概念 1、分式的定义 一般地,我们把形如BA的代数式叫做分式,其中 A ,B 都是整式,且B 含有字母。
A 叫做分式的分子,B 叫做分式的分母。
分式也可以看做两个整式相除〔除式中含有字母〕的商。
分式的分子和分母同乘〔或除以〕一个不为0的整式,分式的值不变。
MB M A M B M A B A ÷÷=⨯⨯=。
其中,M 是不等于0的整式。
把分式中分子和分母的公因式约去,叫做分式的约分。
分子和分母没有公因式的分式叫做最简分式。
利用分式的根本性质可以对分式进展化简 二、分式的运算 1、分式的乘除 分式的乘法法如此分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
DB C A D C B A ••=• 分式的除法法如此分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。
C BD A C D B A D C B A ••=•=÷2、分式的加减同分母的分式加减法法如此同分母的两个分式相加〔减〕,分母不变,把分子相加〔减〕。
BCA B C B A ±=± 异分母的分式加减法法如此异分母的两个分式相加〔减〕,先通分,化为同分母的分式,再加〔减〕。
分式的通分把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个一样的分母叫做这几个分式的公分母。
几个分式的公分母不止一个,通分时一般选取最简公分母BDBCAD BD BC BD AD D C B A ±=±=± 分式的混合运算分式的混合运算,与数的混合运算类似。
先算乘除,再算加减;如果有括号,要先算括号里面的。
三、分式方程 1、分式方程的定义分母中含有未知数的方程叫做分式方程。
2、分式方程的解使得分式方程等号两端相等的未知数的值叫做分式方程的解〔也叫做分式方程的根〕。
3、解分式方程的步骤1.通过去分母将分式方程转化为整式方程,3.将整式方程的根代入分式方程〔或公分母〕中检验。
(完整版)分式方程知识点归纳
分式方程知识点归纳1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
C B C A B A ⋅⋅=C B C A B A ÷÷=411=+b a bb a b ab a a 7223-++-例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。
中考复习——分式的有关概念(解析版)
中考复习——分式的有关概念一、选择题 1、分式13x -可变形为( ).A. 13x +B. -13x+C.13x - D. -13x - 答案:D 解答:分式13x -可变形为:-13x -.选D.2、当x =1时,下列分式没有意义的是( ).A.1x x+ B.1x x - C.1x x- D.1x x + 答案:B解答:当x =1时,x -1=0, 故分式1xx -没有意义, 其余分式都有意义. 选B. 3、若分式12x -有意义,则x 的取值范围是( ).A. x >2B. x ≠2C. x ≠0D. x ≠-2答案:B解答:分式分母不为0, 所以x -2≠0,即x ≠2. 选B.4、下列式子中正确的是( ). A. a 2-a 3=a 5 B. (-a )-1=aC. (-3a )2=3a 2D. a 3+2a 3=3a 3答案:D解答:A 选项:a 2和a 3不是同类项,不能合并,选项错误; B 选项:(-a )-1=-1a,选项错误; C 选项:(-3a )2=9a 2,选项错误;D选项:a3+2a3=3a3,选项正确.选D.5、下列运算中正确的是().A. (a2)3=a5B. (12)-1=-2C. (0=1D. a3·a3=2a6答案:C解答:A选项:(a2)3=a6,故A错误;B选项:(12)-1=2,故B错误;C选项:(0=1,正确;D选项:a3·a3=a6,故D错误.选C.6、如果分式11x+在实数范围内有意义,则x的取值范围().A. x≠-1B. x>-1C. 全体实数D. x=-1答案:A解答:由题意可知:x+1≠0,x≠-1.选A.7、函数y=1x-中自变量x的取值范围是().A. x≥-2且x≠1B. x≥-2C. x≠1D. -2≤x<1答案:A解答:根据二次根式有意义,分式有意义得:x+2≥0且x-1≠0,解得:x≥-2且x≠1.选A.8、下列运算正确的是().A. B. (12)-1=-2C. (-3a)3=-9a3D. a6÷a3=a3(a≠0)答案:D解答:A,故A错误;B选项:(12)-1=2,故B错误;C选项:(-3a)3=-27a3,故C错误;D选项:a6÷a3=a6-3=a3(a≠0),故D正确.选D.9、分式52xx+-的值是零,则x的值为().A. 2B. 5C. -2D. -5答案:D解答:52xx+-=0,即(x+5)(x-2)=0,x1=-5,x2=2,经检验x=2不是原方程的解,x=-5是原方程的解,故x=-5.选D.10有意义的x的取值范围是().A. x≥4B. x>4C. x≤4D. x<4答案:D解答:有意义,则:4-x>0,解得:x<4,即x的取值范围是:x<4.选D.11、分式211xx-+=0,则x的值是().A. 1B. -1C. ±1D. 0答案:A解答:∵分式211x x -+=0,∴x 2-1=0且x +1≠0, 解得:x =1. 选A.12在实数范围内有意义,则x 的取值范围是( ). A. x ≥1且x ≠2 B. x ≤1C. x >1且x ≠2D. x <1答案:A解答:依题意,得x -1≥0且x ≠2, 解得x ≥1且x ≠2, 选A.13、函数y =13x -的自变量x 的取值范围是( ). A. x ≥2,且x ≠3 B. x ≥2C. x ≠3D. x >2,且x ≠3答案:A解答:依题意可得x -3≠0,x -2≥0, 解得x ≥2,且x ≠3. 选A.14、函数y 的自变量x 的取值范围是( ). A. x ≠5 B. x >2且x ≠5C. x ≥2D. x ≥2且x ≠5答案:D解答:由题意得:2050x x -≥⎧⎨-≠⎩, 解得:x ≥2且x ≠5.故答案选D.15、若代数式13xx+-有意义,则实数x的取值范围是().A. x=-1B. x=3C. x≠-1D. x≠3答案:D解答:13xx+-有意义,分母不为0,x-3≠0,x≠3.选D.二、填空题16、若分式1xx-的值为0,则x的值等于______.答案:1解答:分式1xx-的值为0,即分子为0且x≠0,x-1=0,x=1.故x=1.17、要使51x+有意义,则x的取值范围是______.答案:x≠-1解答:分式有意义,则分母不为零,所以x+1≠0,x≠-1,故x的取值范围为x≠-1.18、若式子1-11x-在实数范围内有意义,则x的取值范围是______.答案:x≠1解答:分式有意义,则x-1≠0,解得x≠1.故答案为:x≠1.19、若代数式17x-有意义,则实数x的取值范围是______.答案:x≠7解答:若17x-有意义,x≠7,故实数x的取值范围为x≠7,故答案为:x≠7.20、函数y=16x-中,自变量x的取值范围是______.答案:x≠6解答:由题意得,x-6≠0,解得x≠6.故答案为:x≠6.21、计算:(14)-1=______.答案:4解答:(14)-1=114=4,故答案为:4.22、要使分式21xx+-有意义,则x应满足条件______.答案:x≠1解答:由分式有意义的条件,得x≠1.23、若分式22x xx-的值为0,则x的值是______.答案:2解答:∵分式22x xx-的值为0∴x2-2x=0,且x≠0,解得:x=2.故答案为:2.24、若分式11x+的值不存在,则x=______.答案:-1解答:∵分式11x+的值不存在,解得:x=-1,故答案为:-1.25在实数范围内有意义,则x的取值范围是______.答案:x>3解答:由题意得:2x-6>0,解得:x>3,故答案为:x>3.26、函数y的自变量x取值范围是______.答案:x≥1且x≠3解答:根据题意得:1030xx-≥⎧⎨-≠⎩.,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.27、若分式121x-有意义,则x的取值范围是______.答案:x≠1 2解答:根据题意得,2x-1≠0,解得x≠12.28有意义,则x的取值范围是______.答案:x>2解答:由题意得,x-2>0,解得x>2.故答案为:x>2.29、函数y______.答案:x>3解答:得x ≥3, 由分母不为0得x -3≠0,x ≠3, 综上x >3. 30、分式22xx -与282x x-的最简公分母是______,方程22822x x x x ---=1的解是______.答案:x (x -2);x =-4 解答:∵x 2-2x =x (x -2),∴分式22xx -与282x x -的最简公分母是x (x -2), 方程22822x x x x---=1, 去分母得:2x 2-8=x (x -2), 去括号得:2x 2-8=x 2-2x ,移项合并得:x 2+2x -8=0,变形得:(x -2)(x +4)=0, 解得:x =2或-4,检验:∵当x =2时,x (x -2)=0,当x =-4时,x (x -2)≠0, ∴x =2是增根,x =-4是方程的根, ∴方程的解为:x =-4. 故答案为:x (x -2);x =-4.。
新人教版八年级数学上册《分式》知识点归纳
分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
人教版2023中考数学专题复习:分式方程精讲精练
分式方程精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.4.分式方程的应用(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.针对训练一、单选题1.下列方程中是分式方程的是( )A .212x x -=B .223x x =-C .122x =-D .312x π+=2.分式方程61222x x x -=---的解是( ) A .3x =- B .2x =- C .0x = D .3x =3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.若关于x 的方程221m x x =+无解,则m 的值为( ) A .0 B .4或6 C .4 D .0或45.已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥- B .4m ≥-且3m ≠- C .4m >-D .4m >-且3m ≠- 6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x =-+B .72072054848x -=+C .72072054848x -=-D .72072054848x -=- 7.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .900900231x x =⨯+-B .900900231x x =⨯-+C .900900213x x =⨯-+D .900900213x x =⨯+- 8.某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x =-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量D .篮球的数量 9.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 10.若关于x 的不等式组52111322x a x x +≤⎧⎪⎨⎛⎫-<+ ⎪⎪⎝⎭⎩有且仅有四个整数解,关于y 的分式方程26121ay y y -=+--有整数解,则符合条件的所有整数a 的和是( )A .2B .5C .10D .12二、填空题11.解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 12.分式方程522x x=+的解为_______. 13.若关于x 的分式方程25k x x =+的解为10x =-,则k =_______. 14.代数式32x +与代数式21x -的值相等,则x =______. 15.设m ,n 为实数,定义如下一种新运算:39n m n m =-☆,若关于x 的方程()(12)1a x x x =+☆☆无解,则a 的值是______.16.若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是____________. 17.对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x 的值为 _____. 18.若关于x 的分式方程3211x m x x+=--的解为正数,则m 的取值范围是 ______. 19.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h .若甲、乙两船在静水中的速度相同,则可求得两船在静水中的速度为___________km /h .20.开学之际,学校需采购部分课桌,现有A ,B 两个商家供货,A 商家每张课桌的售价比B 商家优惠20元,若该校花费1500元在A 商家购买课桌的数量与花费2500元在B 商家购买课桌的数量一样多,设A 商家每张课桌的售价为x 元,则可列方程为________.三、解答题21.解下列方程:(1)2131x x=+-(2)11222xx x-=---(3)2134412142xx x x+=--+-22.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?23.我县教育局新建了一栋办公楼,需要内装修,甲工程队单独施工需要80天完工,由甲乙两工程队同时施工,那么16天完成了总工程的13 25.(1)如果乙工程队单独施工,则需要多少天完成?(2)如果甲工程队单独施工一天的工钱是5000元,乙工程队单独施工一天的工钱是8100元,为了节约工钱,应选用哪个工程队单独施工比较划算?24.某商场用5000元购进了一批服装,由于销路好,商场又用18600元购进了第二批这种服装,所购数量是第一批同进量的3倍,但单价贵了24元,商场在出售该服装时统一按照每件200元的标价出售,卖了部分后,对剩余的40件,商场按标价的6折进行了清仓处理并全部售完.求:(1)商场两次共购进了多少件服装?(2)两笔生意中商场共盈利多少元?25.小明的爸爸出差回家后,小明发现爸爸的通信大数据行程卡上显示爸爸去过西安、成都、重庆.已知西安到成都的路程为770公里,比西安到重庆的路程少230公里,小明爸爸驾车从西安到重庆的平均车速和西安到成都的平均车速比为8:7,从西安到重庆的时间比从西安到成都的时间多1.5 小时.(1)求小明爸爸从西安到重庆的平均车速;(2)从西安到成都时,若小明的爸爸比之前到达的时间至少要提前1小时,则平均车速应满足什么条件?26.金师傅近期准备换车,看中了价格相同的两款国产车.(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)。
分式章节题型全梳理
专题一 分式的意义及性质的4种题型题型1:分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m 中,不是分式的式子有( )A .1个B .2个C .3个D .4个解析:4x -25,2m ,x 2π+1不是分式.选C2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 解析:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,∴共可构成6个分式.题型2:分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4解析:D4.当x =________时,分式x -1x 2-1无意义. 解析:±15.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.解析:x 2-6x +m =(x -3)2+(m -9). ∵(x -3)2≥0,∴当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.题型3:分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是解析:x 2-2x +1=(x -1)2,∵分式的值为正数,∴x +2>0且x -1≠0.解得x >-2且x ≠17.已知分式a -1a 2-b2的值为0,求a 的值及b 的取值范围.解析:∵分式a -1a 2-b2的值为0,∴a -1=0且a 2-b 2≠0,解得a =1且b ≠±1.题型4:分式的基本性质及其应用 8.下列各式正确的是( ) A.a b =a 2b 2B.a b =ab a +bC.a b =a +c b +cD.a b =abb2 解析:选D9.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2B .x =-2C .x <-2D .x ≠-2解析:选B10.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.解析:设x 4=y 6=z7=k (k ≠0),则x =4k ,y =6k ,z =7∴x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =372211.已知x +y +z =0,xyz ≠0,求x |y +z|+y |z +x|+z|x +y|的值解析:由x +y +z =0,xyz ≠0可知,x ,y ,z 必为两正一负或两负一正当x ,y ,z 为两正一负时,设x >0,y >0,z <0,原式=x |-x|+y |-y|+z|-z|=1+1-1=1当x ,y ,z 为两负一正时,设x >0,y <0,z <0,原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1专题二 分式8种运算技巧技巧1:约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.解析:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 小结:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.技巧2:整体通分法 2.计算:a -2+4a +2.解析:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2.小结:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.技巧3:顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.解析:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1) =8x 7x 8-1. 小结:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.技巧4:换元通分法4.计算:(3m -2n )+(3m -2n )33m -2n +1-(3m -2n )2+2n -3m3m -2n -1.解析:设3m -2n =x , 则原式=x +x 3x +1-x 2-xx -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1) =4n -6m(3m -2n +1)(3m -2n -1).技巧5:裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).解析:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100) 技巧6:整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.解析:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc ≠0,所以abc ab +bc +ac =11c +1a +1b =18031.技巧7:倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.解析:由xx 2-3x +1=-1,知x ≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x=2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7.所以x 2x 4-9x 2+1=-17. 技巧8:消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz ≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.解析:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z . 因为xyz ≠0,所以z ≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.小结:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专题三 分式方程解求字母的值或范围4大技巧技巧1:利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.解析:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解.将x =3代入2x +4=m x ,得27=m 3.解得m =67.∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.技巧2:利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.解析:去分母并整理,得x +m -4=0.解得x =4-m .∵分式方程有解,∴x =4-m 不能为增根.∴4-m ≠3.解得m ≠1. ∴当m ≠1时,原分式方程有解.技巧3:利用分式方程有增根求字母的值3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2C .4D .-4解析:D4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.解析:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0, 所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3,解得m =12.综上所述,原方程的增根是x =3或x =-3.当x =3时,m =6;当x =-3时,m =12. 技巧4: 利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.解析:1或-16.已知关于x 的方程x -4x -3-m -4=m3-x无解,求m 的值.解析:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形: (1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程根是原方程增根,4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3解综上所述,m 的值为-3或1. 7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值; (3)若方程无解,求a 的值.解析:原方程去分母并整理,得(3-a )x =10.(1)因为原方程的增根为x =2,所以(3-a )×2=10.解得a =-2. (2)因为原分式方程有增根,所以x (x -2)=0.解得x =0或x =2. 因为x =0不可能是整式方程(3-a )x =10的解, 所以原分式方程的增根为x =2.所以(3-a )×2=10. 解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a )x =10无解,则原分式方程也无解;②当3-a ≠0时,要使原方程无解,则由(2)知,a =-2. 综上所述,a 的值为3或-2.小结:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.专题四 5种分式求值方法方法1: 直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.解析:原式=[2a +1+a +2(a +1)(a -1)]·a -1a =2(a -1)+(a +2)(a +1)(a -1)·a -1a =3a +1.当a =5时,3a +1=35+1=12.方法2:活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.解析:由x 2-5x +1=0得x ≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527. 3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.解析:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xy xy (x +y ).因为x +y =12,xy =9,所以(x +y )2+xy xy (x +y )=122+99×12=1712.方法3:整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z ≠0,求x 2y +z +y 2z +x +z 2x +y 的值.解析:因为x +y +z ≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z .所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z .所以x 2y +z +y 2z +x +z 2x +y =0.方法4:巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.解析:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1.∴2x +12x =1+11=2.方法5:设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.解析:设x 2=y 3=z4=k ≠0,则x =2k ,y =3k ,z =4k .所以x 2-y 2+2z 2xy +yz +xz =(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726.专题五 热门考点整合应用考点1:三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .式子AB 一定是分式(A ,B 为整式)解析:B2.若式子1x 2-2x +m 不论x 取任何数总有意义,则m 的取值范围是( )A .m ≥1B .m >1C .m ≤1D .m <1解析:∵x 2-2x +m =x 2-2x +1+m -1=(x -1)2+m -1, ∴当m -1>0,即m >1时,式子1x 2-2x +m总有意义,选B概念2 分式方程34.某服装店用10 000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14 700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( ) A.10 000x -10=14 700(1+40%)xB.10 000x +10=14 700(1+40%)xC.10 000(1-40%)x -10=14 700xD.10 000(1-40%)x+10=14 700x解析:B4.下列关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4;⑥x a =35-x ,其中分式方程有 .(填序号)解析:②④⑤ 概念3 增根5.若关于x 的方程x -4x -5-3=ax -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =3解析:B6.已知关于x 的方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.解析:方程两边同乘x 2-1,得2(x -1)+k (x +1)=6.整理得(2+k )x +k -8=0. ∵原分式方程有增根x =1,∴2+k +k -8=0.解得k =3. 7.若关于x 的分式方程2m +x x -3-1=2x 无解,求m 的值.解析:方程两边都乘x (x -3),得(2m +x )x -x (x -3)=2(x -3),即(2m +1)x =-6.①(1)当2m +1=0时,此方程无解,∴原分式方程也无解.此时m =-0.5; (2)当2m +1≠0时,要使关于x 的分式方程2m +x x -3-1=2x 无解,则x =0或x -3=0,即x =0或x =3.把x =0代入①,m 的值不存在; 把x =3代入①,得3(2m +1)=-6,解得m =-1.5. ∴m 的值是-0.5或-1.5.考点2:一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y . 解析:(1)原式=12x -30y 15x +40y ;(2)原式=5x +15y25x -y .考点3:一种运算——分式的运算9.先化简,再求值:⎝⎛⎭⎫2ab 2a +b 3÷⎝⎛⎭⎫ab 3a 2-b 22·⎣⎡⎦⎤12(a -b )2,其中a =-12,b =23. 解析:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2=2a a +b .当a =-12,b =23时,2aa +b=2×⎝⎛⎭⎫-12-12+23=-6.考点4:一个解法——分式方程的解法10.小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解析:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥解析:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解析:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3,解得x =32.经检验x =32是原分式方程的解. 考点5:一个应用——分式方程的应用11.近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A ,B 两种设备.每台B 种设备价格比每台A 种设备价格多0.7万元,花3万元购买A 种设备和花7.2万元购买B 种设备的数量相同.(1)求A 种、B 种设备每台各多少万元?(2)根据单位实际情况,需购进A ,B 两种设备共20台,总费用不高于15万元,求A 种设备至少要购买多少台?解析:(1)设每台A 种设备x 万元,则每台B 种设备(x +0.7)万元,根据题意,得3x =7.2x +0.7.解得x =0.5. 经检验,x =0.5是原方程的解且符合题意.∴x +0.7=1.2.答:每台A 种设备0.5万元,每台B 种设备1.2万元.(2)设购买A 种设备m 台,则购买B 种设备(20-m )台,根据题意,得0.5m +1.2(20-m )≤15.解得m ≥907. ∵m 为整数,∴m ≥13.答:A 种设备至少要购买13台.考点6:四种思想思想1 数形结合思想12.如图,点A ,B 在数轴上,它们所表示的数分别是-4,2x +23x -5,且点A ,B 到原点的距离相等,求x 的值.(第12题)解析:由题意,得2x +23x -5=4. 去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.思想2 整体思想13.已知实数a 满足a 2+4a -8=0,求1a +1-a +3a 2-1·a 2-2a +1a 2+6a +9的值.解析:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3. 由a 2+4a -8=0得a 2+4a =8,故4a 2+4a +3=411. 思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z ≠0,求x 2+y 2+z 22x 2+y 2-z 2的值. 解析:由2x -3y +z =0,3x -2y -6z =0,z ≠0,得到⎩⎪⎨⎪⎧2x -3y =-z ,3x -2y =6z.解得⎩⎪⎨⎪⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z 22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320. 思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b. 解析:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b=2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b。
分式方程的概念及解法
分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。
要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。
要点二:分式方程的解法1. 解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。
2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
(2)解这个整式方程。
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。
当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________.举一反三:【变式】在中,哪个是分式方程的解,为什么?类型三:分式方程的解法3、解方程举一反三:【变式】解方程:(1)=; (2)+=2.类型四:增根的应用4、当m为何值时,方程会产生增根( )A. 2B. -1C. 3D.-3举一反三:【变式】.若方程=无解,则m=。
分式与分式方程
分式方程一、同步知识梳理1.分式方程的定义:分母中含有未知数的方程叫做分式方程。
2.解分式方程的一般步聚是:(1)去分母,把分式方程化为整式方程;(2)解这个整式方程;(3)验根;(4)结论.二、同步题型分析题型一分式方程的概念例1下列关于x的方程中,是分式方程的是()A.23356x x++-=B.137xxa-=-+C.x a b xa b a b-=-D.2(1)11xx-=-题型二分式方程的解例2若分式方程2()2(1)5x aa x-=--的解为3x=,则a的值为__________.题型三分式方程的解法例3若11x-与11x+互为相反数,则可得方程___________,解得x=_________例4解方程:(1)512552xx x+=--;(2)2236111x x x+=+--.三、课堂达标检测1.分式方程13122xx x--=--的解为.2.要使分式15xx++的值为13,则x的值为____________.3.如果424x x --的值与54x x --的值相等,则x =___________. 4.若分式方程2()2(1)5x a a x -=--的解为3x =,则a 的值为__________. 5.若关于x 的方程2233x m x x -=+--无解,则m 的值为___________. 6.下列方程中是分式方程的是 ( )A .(0)xax a x =≠ B .111235x y -= C .32x x x =+π D .11132x x +--=-7.解分式方程13132x x x +-=,去分母后所得的方程是 () A .12(31)3x -+= B .12(31)2x x -+= C .12(31)6x x -+= D .1626x x -+=8.化分式方程2213404411x x x --=---为整式方程时,方程两边必须同乘 () A .22(44)(1)(1)x x x --- B .24(1)(1)x x --C .24(1)(1)x x --D .4(1)(1)x x +-9.下列说法中,错误的是 () A .分式方程的解等于0,就说明这个分式方程无解B .解分式方程的基本思路是把分式方程转化为整式方程C .检验是解分式方程必不可少的步骤D .能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解10.解方程:(1)231x x =+; (2)12x -+ 3 =12xx --.11.解方程:(1)1121-=---x xx x ; (2)2236111x x x +=+--.12.若方程2122=---x k x x 的一个解为2x =-,求代数式1k k -+的值.13.已知关于x 的方程2122x m x x-=--的解为正数,求m 的取值范围.分式方程的应用一、 同步知识梳理1、常用的等量关系(1)行程问题,基本的关系式是:(2)工程问题,基本的关系式是:(3)顺水逆水问题,基本的关系式是:(4)简单的商业价格问题(5)数字问题2、列分式方程解应用题的步骤(1)审:审清题意,弄清已知量和未知量以及量与量之间的关系(2)设:设未知数,一般情况下是问什么就设什么(3)列:列出分式方程(4)解:解这个分式方程(5)验:验根,看解出的解是否满足分式方程,同时是否符合实际意义(6)答:写出答案,注意单位二、 同步题型分析例1 某工厂计划x 天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为( )A .12012022x x -=- B .12012032x x =-+ C .12012032x x =-+ D . 12012032x x =-- 例2 为改善居住环境,柳村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程____ __ __.例3 甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?例4 为了使贫困同学能顺利读完九年义务教育,丰华中学组织了捐款活动.小华对八年级(1)班和八年级(2)班两班捐款的情况进行了统计,得到如下三条信息:信息一:八年级(1)班共捐款300元,八年级(2)班共捐款232元.信息二:八年级(2)班平均每人捐款钱数是八年级(1)班平均每人捐款钱数的54.信息三:八年级(1)班比八年级(2)班多2人.请你根据以上三条信息,求出八年级(1)班平均每人捐款多少元.例5 “要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?三、课堂达标检测1. 某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走.怎样调配劳动力才使挖出来的土能及时运走且不窝工(停工等待).为解决此问题,可设派x 人挖土,其他人运土.列方程为 ①14413x x -=;②1443x x -=;③3144x x +=;④3144x x=-.上述所列方程,正确的有 ( )A .1个B .2个C .3个D .4个2. “五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x 人,则所列方程为 ( )A .18018032x x -=-B .18018032x x -=+C .18018032x x -=+D .18018032x x-=-3.某化肥厂原计划每天生产化肥x吨,由于采取了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.1201803x x=+B.1201803x x=-C.1201803x x=+D.1201803x x=-4.某中学组织学生到离学校15千米的某景区旅游,活动组织人员和学生队伍同时出发,行进速度是学生队伍的1.2倍,以便提前半小时到达目的地做好准备工作.求组织人员和学生队伍的速度各是多少?设学生队伍的速度为x千米/小时,根据题意可列方程.5.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的________倍.()A.abB.baC.a bb a+-D.b aa b-+6.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,求江水的流速为多少?7.A、B两地相距100公里,甲骑电瓶车由A往B出发,1小时30分钟后,乙开着小汽车也由A往B.已知乙的车速为甲的车速的2.5倍,且乙比甲提前1小时到达,求两人的速度各是多少?8.某市从今年元月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水的价格.分式整章知识点回顾一、同步知识梳理一、本章知识结构图.000A A B B ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪><⎪⎪⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎪⎨⎪⎩⎨⎧⎨⎩⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎪⎩分式的定义分式有意义的条件分式的定义分式值为的条件分式(或)的条件基本性质分式的性质约分通分加减分式的运算乘除分式零指数幂整数指数幂负整数指数幂科学记数法:定义定义解分式方程的步骤增根的定义分式方程增根解分式方程产生增根的原因检验方法解分式方程的方法列分式方程解应用题的一般步骤⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩二、重要知识与规律总结(一)概念1、分式:A B(A 、B 为整式,B ≠0) 2、最简公分母:各分母所有因式的最高次幂的积。
初中数学方程与不等式之分式方程技巧及练习题
初中数学方程与不等式之分式方程技巧及练习题一.选择题2 31.关于x的分式方程一 + ——=0解为兀=4,则常数。
的值为()x x-aA. a = l B・a = 2C・ a = 4 D・ «= 10【答案】D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.【详解】2 3解:把x=4代入方程一 +——=0,得x x-a2 3 n4 4-a解得a=10.经检验,a<L0是原方程的解故选D.点睛:此题考查了分式方程的解,分式方程注意分母不能为0.1 —Y 12.解分式方程—+2 = —的结果是()x-2 2-xA. x=''2"B. x=,,3"C. x="4"D.无解【答案】D【解析】【分析】【详解】解:去分母得:1 - x+2x - 4= - 1,解得:x=2,经检验x=2是增根,分式方程无解.故选D.考点:解分式方程.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨2,小丽家去年12月份3的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多5〃『・求该市今年居民用水的价格.设去年居民用水价格为X元/〃F,根据题意列方程,正确的是()【答案】A 【解析】 【分析】利用总水费+单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5n?得 出方程即可. 【详解】解:设去年居民用水价格为X 元/卅,3015 _ _根据题意得:3丿故选:A. 【点睛】此题主要考查了由实际问题抽彖出分式方程,正确表示出用水量是解题关键・4・某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元 钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的 进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【详解】解:设第一批购进X 件衬衫,则所列方程为:10000 1470°卜故选B ・ 【点睛】A.30 15 _ - - -------- =5xB.30 15 v - - -------- =Jx ( )100001470° '• = "(l + 40%)x 1°°°°14700:• (1-40%)厂血=【答案】B 【解析】 【分析】10000 14700丁皿(1 + 40%)兀1°°°° 14700 (l-40%)x +10=—T"此题主要考查了由实际问题抽彖出分式方程,正确找出等量关系是解题关键.110 100A. ---------- =——x+2 x【答案】A 【解析】设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2) T •米/时,根据 题意可得等量关系:甲骑110 T-米所用时间二乙骑100 T-米所用时间,根据等量关系可列 出方程即可. 解:设乙骑自行车的平均速度为x T •米/时,由题意得:110 二100故选A.6•若关于X 的分式方程二=_二有增根,则加的值是()x-3 x —3A. -1B. 1C. 2D. 3【答案】B 【解析】 【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可. 【详解】 去分母得:x-2=m,/. x=2+ma•・•分式方程 二•=£■有增根,x-3x-3Ax-3=0, ••• x= 3, A2+m=3,所以m=l, 故选:B. 【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=O 是解此题 的关键,题目比较典型,难度不大.5.甲、乙两人同时分别从A, B 两地沿同一条公路骑自行车到C 地.己知A, C 两地间的 距离为110千米,B, C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/ 时.结果两人同时到达C 地.求两人的平均速度,为解决此问题, 度为x 千米/时.由题意列出方程.其中正确的是( ) 110 100C. ---------x-2设乙骑自行车的平均速110 100 B.——= ----------- x+2 110 100D.——= -----------x x-22x 2x — 1 丄7.方程——=的解是()A-1X+11111A. x=—B. x=-C ・ x=—D ・ x=-2 544【答案】B 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方 程的解. 【详解】解:去分母得:2x 2+2x = 2x 2-3x+l, 解得:x=£,经检验x=Z 是分式方程的解,5故选B. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.&风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增 加两名同学,结果每人比原来少摊了 3元钱车费, 方程为()180 180 °A. ------------------- = 3x x+2 180 180 °C ・ ---------------- =3x x-2【答案】D 【解析】 【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊 了 3元钱车费列出方程即可. 【详解】1QQ 1QQ 解:设前去观看开幕式的同学共x 人,根据题意,得: 一-—— =3. x-2 x故选:D. 【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错 增加前后的人数.9・某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6 天,现由两工程队合做4天后,余卞的由乙工程队独做,正好如期完成,若设工程期限为 x 天,则下面所列方程正确的是()4 x 4 x设前去观看开幕式的同学共X 人,则所列180 180 °-------------- =5x+2 x 180 180 ° -------------- =5 x-2B. D.A.——+ ------------ = 1B.——= -------------x+l x-6 x-l x+64 x 4 xC. ---------- 卜---- =1D. + ----------------- = 1x-l x-6 x-l x+6【答案】D【解析】【分析】首先根据工程期限为x天,结合题意得出甲每天完成总工程的亠,而乙每天完成总工程X-1的亠,据此根据题意最终如期完成了工程进一步列出方程即可.x+ 6【详解】•・•工程期限为x天,・••甲每天完成总工程的厶,乙每天完成总工程的厶,x-l x+6•・•由两工程队合做4天后,余卞的由乙工程队独做,正好如期完成,4 x•••可列方程为:一+—- = bx-l x+6故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10・某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了X 本资料,列方程正确的是( )240 120 , 240 120 ,x-20 x x+20 x120 240 ”120 240 ’x x-20 x x+20【答案】D【解析】【分析】设第一次买了x本资料,则第二次买了(x+20)本资料,由等量关系第二次比第一次优惠了4列出方程即可解答.【详解】解:设第一次买了X本资料,则第二次买了(x+20)本资料,根据题意可得:120 240 , --------------- =4 x x+20故选:D 【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,设出未知数,找到等量关系是解 题的关键・11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与 乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是()用的时间相等即可列出一元一次方程. 【详解】解:•••甲每小时做x 个零件,•••乙每小时做(x+8)个零件, •・•甲做120个所用的时间与乙做150个所用的时间相等,・••型=丄百x x+8故选D. 【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12・在阳明山国家森林公园举行中国•阳明山”和〃文化旅游节亶杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分 摊了 3元车费•设参加游览的学生共有X 人,则可列方程为()【答案】D 【解析】 【分析】1 QQ设参加游览的同学共X 人,则原有的几名同学每人分担的车费为:口元,出发时每名1 QQ同学分担的车费为: ——元,根据每个同学比原来少摊了 3元钱车费即可得到等量关系. 【详解】设参加游览的同学共X 人,根据题意得:120 1〉0A. 一 = ---------x x-8【答案】D 【解析】【分析】120 150B. ------- =——x+8 x 120 1)0C. ------- = 一x-8 x120 150D.——= ----------x x + S首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所A.竺+型=3x-2 xB.型一竺=3C.型+竺=3 x x-2 x x-2D.180 180x-2 x180 180 ---------------- =3.x-2 x故选:D. 【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的 等量关系;易错点是得到出发前后的人数.1 413.解分式方程一 -3 = -一时,去分母得()x-2 2-xA. l-3(x-2) = 4B. l-3(x-2) = -4 c. -l-3(x-2) = -4 D . 1-3(2-X ) = 4【答案】B 【解析】 【分析】根据等式性质计算即可. 【详解】在方程的两边同时乘以x-2,得1一3(兀一2) = -4, 故选:B. 【点睛】此题考查解分式方程,等式的性质,正确计算是解题的关键,此题中容易出现错误的地方 是原方程中的分母是互为相反数,注意符号不要弄错.14-若关和的方程汙+总之的解为正数,则口的取值范围是()9 3m< —且 mH —2 29 C. m> ---------4【答案】B 【解析】 【分析】 【详解】解:去分母得:x+m - 3m=3x - 9,9整理得:2X —+9,解得:“弓二a已知关于X 的方程岂+总毛的解为正数,9所以-2m+9>0,解得mV —,9A. m< — 2B. D. 9 M 3 m> ------- 且 mH ------44当x=3时,刀〃+ 9与.解得:m= A t2 29 3所以m的取值范|制是:mV —且mH —・2 2故答案选B.15.已知关于X的分式方程仝N = 1的解是非正数,则加的取值范围是()x-3A. /H <3 B・m < 3 C. m > -3 D・m > -3 【答案】A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范|韦|即可【详解】2x-m ,方程两边同乘以X—3,得2x-m =移项及合并同类项,得x = rn-3^丁分式方程4^ = 1的解是非正数,x—3H0,x-3(m-3 <0](〃7_3)_3工0解得,m<3,故选:A.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m的值1 216.解分式方程——= 一时,去分母化为一元一次方程,正确的是()x—1 x— 1A. x+l = 2 (x- 1)B. x- 1 = 2 (x+1)C. x- 1 = 2D. x+l = 2【答案】D【解析】【分析】先确定分式方程的最简公分母,然后左右两边同乘即可确定答案;【详解】解:由题意可得最简公分母为(x+1)(x-1)去分母得:X+1 = 2,故答案为D ・ 【点睛】本题考查了分式方程的解法,解答的关键在于最简公分母的确定.17. 《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城 市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知 快马的速度是慢马的2倍,求规定时间.设规定时间为X 天,则可列方程为()900 900 900 900 , x+l x-3 x + l x-3 900 900 900 900 x-lx+3x-i x+3【答案】A 【解析】 【分析】设规定时间为X 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度 关系即可列出方程. 【详解】解:设规定时间为X 天,则慢马需要的时间为(X+1)天,快马的时间为(X-3)天, •・•快马的速度是慢马的2倍900 900 ••• ---- x2 = ------- x+l x-3故选A. 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.18・甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的 速度均为xkm/h,则求两船在静水中的速度可列方程为( )180 120A. ---------- = -------x + 6 x — 6180 120 D.——= -----------x x-6【答案】A 【解析】分析:直接利用两船的行驶距离除以速度二时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:180 _ 120 x+6 x-6 故选A.180 120B. --------- = -------x-6 x+6180 120 C. --------- = 一x+6 x点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题 关键.19.初二18班为课外体育活动购买了实心球和跳绳.己知跳绳的单价比实心球的单价贵 40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳 绳的数量多8个,求实心球的单价•设实心球单价为X 元,所列方程正确的是()1650 1610 o A. -------- 一 ---------------= 8x + 40 x1610 1650 °C. ------- 一 -----------------= 8x x + 40【答案】C 【解析】【分析】 设实心球单价为X 元,则跳绳单价为(X+40)元,根据“购买实心球的数量比跳绳的数量多 8个"即可得到方程. 【详解】解:设实心球单价为X 元,则跳绳单价为(x+40)元,根据题意得,1610 1650 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(共26小题)1.下列关于x的方程中,是分式方程的是()A.B.C.D.考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、方程分母中不含未知数,故不是分式方程;B、方程分母含字母a,但它不是表示未知数,也不是分式方程;C、方程的分母中不含表示未知数的字母,不是分式方程;D、方程分母中含未知数x,是分式方程.故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.下列各式中,不是分式方程的是()A.B.C.D.考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、B、C方程中分母中都含有字母,都是分式方程,D、方程分母中不含未知数,故不是分式方程.故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).3.下列方程是分式方程的是()A.B.C.D.考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、方程分母中含未知数x,故是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中不含未知数,故不是分式方程;D、方程分母中不含未知数,故不是分式方程.故选A.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).4.下列式子不属于分式方程的是()A.B.C.D.考点:分式方程的定义。
分析:根据分式方程的定义:分母中含有未知数的方程叫做分式方程判断.解答:解:C项中的方程分母中不含未知数,故不是分式方程.故选C.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.5.下列关于x的方程,是分式方程的是()A.B.C.D.=1﹣考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答:解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中不含表示未知数的字母,π是常数;D、方程分母中含未知数x,故是分式方程.故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6.下列方程:(1)=5,其中是分式方程的有()A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(3)(4)考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:(1)的方程分母中不含未知数,故不是分式方程;(2)(3)(4)的方程分母中含未知数x,所以是分式方程.故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).7.下列式子中是分式方程的是()A.B.C.=1 D.+x=考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、不是等式,故不是分式方程;B、分母中不含未知数,也不是分式方程;C、方程分母中含未知数x,是分式方程;D、分母中不含未知数,也不是分式方程;故选C.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.8.下列方程不是分式方程的是()A.B.C.D.考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、B、C项中的方程分母中都含未知数,是分式方程;D项不含未知数,不是分式方程,故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.9.下列关于x的方程中,是分式方程的是()A.3x=B.=2 C.=D.3x﹣2y=1考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、C、D项中的方程分母中不含未知数,故不是分式方程;B、方程分母中含未知数x,故是分式方程,故选B.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.10.下列方程中是分式方程的是()A.B.C.D.考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有未知数的方程叫做分式方程判断.解答:解:A、方程分母中含未知数x,故是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母是无理数π,不是未知数,故不是分式方程;D、方程分母中不含未知数,故不是分式方程;故选A.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.11.下列式子,是分式方程的是()A.B.C.D.=1考点:分式方程的定义。
分析:根据分式方程的定义﹣﹣﹣﹣﹣分母里含有字母的方程叫做分式方程判断.解答:解:A、不是等式,故不是分式方程;B、方程分母不含未知数,不是分式方程;C、方程分母不含未知数,不是分式方程;D、方程分母中含未知数x,是分式方程.故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).12.观察下列方程:(1);(2);(3);(4)其中是关于x的分式方程的有()A.(1)B.(2)C.(2)(3)D.(2)(4)考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:(1)(4)中的方程分母中不含未知数,故不是分式方程;而(2)(3)的方程分母中含未知数x,所以是分式方程.故选C.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).13.在方程,,,(a,b为已知数)中,分式方程有()A.1个B.2个C.3个D.4个考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:第(3)、(4)个方程中的分母中不含表示未知数的字母,故不是分式方程;而(1)(2)的方程分母中含未知数x,所以是分式方程.故选B.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).14.下列式子中()是关于x的分式方程.A.x+B.=1 C.D.=1.6考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、x+不是等式,故不是分式方程;B、方程分母中不含表示未知数,也不是分式方程;C、分母中含的未知数不是x,也不是分式方程;D、方程分母中含未知数x,是分式方程;故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).15.下列关于x的方程中,不是分式方程的是()A.B.+1 C.=5 D.﹣x考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、B、C项分母中都含未知数,是分式方程,D项中的方程分母中不含未知数,故不是分式方程.故选D.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).16.下列各方程是关于x的分式方程的是()A.x2+2x﹣3=0 B.C.=﹣3D.ax2+bx+c=0考点:分式方程的定义。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、方程不含分母,故不是分式方程;B、方程分母含字母a,但它不是表示未知数,也不是分式方程;C、方程分母中含未知数x,是分式方程,D、方程不含分母,故不是分式方程;故选C.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).17.下列方程不是分式方程的是()A.B.C.D.考点:分式方程的定义。
专题:方程思想。
分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答:解:A、方程分母中含未知数,所以它是分式方程;故本选项错误;B、方程分母中含未知数,所以它是分式方程;故本选项错误;C、方程分母中含未知数,所以它是分式方程;故本选项错误;D、方程分母中含不有表示未知数的字母,所以它不是分式方程;故本选项正确;故选D.点评:本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).18.下列方程中,是分式方程的为()A.B.C.D.考点:分式方程的定义。
专题:方程思想。
分析:先将分式化为最简形式后,再根据分式方程的定义进行一一判断,并作出选择.解答:解:A、,分母中含有未知数的字母,所以它是分式方程;故本选项正确;B、由得,=2,是无理方程,不是分式方程;故本选项错误;C、,分母中不含有未知数的字母,所以它不是分式方程;故本选项错误;D、由原方程,得(x﹣1)=2,分母中不含有未知数的字母,所以它不是分式方程;故本选项错误;故选A.点评:本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).19.下列方程中是分式方程的是()A.B.C.(a、b为常数)D.考点:分式方程的定义。
专题:存在型。
分析:根据分式方程的定义对各选项进行逐一分析即可.解答:解:A、符合分式方程的定义,故本选项正确;B、C、D各方程中的分母不含有未知数,故是整式方程.故选A.点评:本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.20.下列方程不是整式方程的是()A.B.0.2x2﹣0.4x3=0 C.D.考点:分式方程的定义。
分析:找到分母中或根号下含有未知数的方程即可.解答:解:A、B、C的分母中或根号下均不含未知数,是整式方程;D、分母中含有未知数,不是整式方程,故选D.点评:方程可分为整式方程,分式方程,无理方程三类;分式方程是分母中含有未知数的方程,无理方程是根号下含有未知数的方程.21.下列是分式方程的是()A.B.C.D.6x2+4x+1=0考点:分式方程的定义。