Microstructure of a two-phase titanium alloy by rapid solidification technique
特种粉末冶金及复合材料制备加工第五届学术会议在安徽合肥隆重召开
第2期郭彦青等:2A I2铝合金粉末与T C4钛合金热等静压粉-固扩散连接• 73 •在进一步促进了 CU的扩散。
在扩散层靠近钛合金的一侧,并未检测出具体的化合物。
(3)利用CU作为中间层的扩散连接接头中间区域相比直接扩散连接的中间区域,硬度较低,为120HV,其剪切强度相比铝合金粉末和钛合金固体的直接扩散连接增加了 64%,达到了 23 MPa。
参考文献:[1] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: Wiley-VCH, 2005.[2]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Scienceand Engineering(A), 2000, 280(1): 102.[3] WEI Y, LI J, XIONG J, et al. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin[J]. MaterialsCharacterization, 2012,71(5): 1.[4] LI Y, LIU P, WANG J, et al. XRD and SEM analysis near thediffusion bonding interface of Mg/AI dissimilar materials[J].Vacuum, 2007, 82(1): 15.[5] REN J, LI Y, FENG T. Microstructure characteristics in the interface zone of Ti/Al diffusion bonding[J]. Materials Letters,2002, 56(5): 647.[6]Jiangwei R, Yajiang L. Tao F. Microstructure characteristics inthe interface zone of Ti/Al diffusion bonding[J]. Materials Letters, 2002, 56(5): 647.[7] W Y, A P W, G S Z, et al. Formation process of the bondingjoint in Ti/Al diffusion bonding[J]. Materials Science and Engi-neering(A), 2008, 480(1/2): 456.[8] Prescott R, Graham M J. The formation of aluminum oxidescales on high- temperature alloys[J]. Oxidation of Metals,1992,38(3/4): 233.[9] Cook G O, Sorensen C D. Overview of transient liquid phaseand partial transient liquid phase bonding[J]. Journal of Materials Science, 2011, 46( 16): 5305.[10] Kenevisi M S, Mousavi Khoie S M. An investigation on microstructure and mechanical properties of A17075 to Ti - 6A1 - 4Vtransient liquid phase (TLP) bonded joint[J]. Materials & Design, 2012(38): 19.[11] Alhazaa A, Khan T I, Haq I. Transient liquid phase (TLP) bonding of A17075 to Ti-6A1-4V alloy[J]. Materials Characterization, 2010, 61(3): 312.[12]郎利辉,王刚,布国亮,等.钛合金粉末热等静压数值模拟及性能研究[J].粉末冶金工业,2015, 25(3): 1.[13]喻思,郎利辉,王刚,等.热等静压成形2A12铝合金粉末的数值模拟研究[J].粉末冶金工业,2016, 26(2): 17.[14]喻思,郎利辉,王刚,等.2A12铝合金粉末热等静压成形的性能研究[J].粉末冶金工业,2015, 25(5): 42.[15]郎利辉,王刚,布国亮,等.热等静压工艺参数对2A12粉末铝合金性能的影响研究粉末冶金工业,2014, 24(5): 19.[16] Geng J, Oelhafen P. Photoelectron spectroscopy study of Al-Cuinterfaces[J], Surface Science, 2000,452(1 ): 161.•行业劲特种粉末冶金及复合材料制备/加工第五届学术会议在安徽合肥隆重召开2020年12月24-26日,“特种粉末冶金及复合材料制备/加工第五届学术会议”在安徽省合肥市世纪金源 大饭店召开。
TiAl基金属间化合物的发展
32中国材料进展第28卷B合金化,可进一步提高高温强度,细化晶粒¨d1。
在过去的年代里,全世界范围内发展了很多不同的TiAI合金。
一般来讲,工程用^y—TiAI合金的成分范围可以合并一起表示为Ti一45(45—48)Al一(0~2)(Cr,Mn)一(1~8)Nb—xB—yc—zSi。
在发展过程中Al含量逐渐降低,而Nb含量则逐渐升高,这反映在使用温度的不断提高上。
硼元素的添加逐渐变得普遍,作为一种晶粒细化的途径,硼在锻造合金中的添加量要稍微少于在铸造合金中的添加量。
低Nb合金化的TiAI合金中有时添加少量碳或硅元素来提高合金的蠕变抗力‘“。
目前工程用TiAI合金已形成两个不同使用温度的级别,高温TiAI合金(高Nb—TiAI合金)和普通TiAl合金,基础合金成分主要差别是在Nb含量上:Ti一48AI一2Nb为普通Tim合金;Ti一45A1一(5—10)Nb为高Nb—TiAI合金。
1987年,在国家863计划的支持下,北京科技大学陈国良等选择Ti—AI—Nb系中的高Nb—TiAl合金相区进行了大量基础研究。
在1991年得到国家发明专利"1。
1990年开始在国内外召开的国际会议上发表研究成果,特别是1990年和1992年两次在美国召开的国际会议上做了系统的介绍,产生较大影响∞。
71。
1995年第一届国际TiM金属问化合物合金会议主席美国KimYM博士在大会报告中提出要发展高温高性能TiAI合金,并指出高Nb—TiAl合金是发展高温高性能合金的“首例”,提出这是非常值得进行的工作181。
高Nb合金化使Ti舢合金发展进入新阶段,室温屈服强度可达800MPa,高温强度(760℃)可达550MPa,同时保持原有室温拉伸延伸率不降,特别是大幅度提高了合金的抗氧化性。
目前,高Nb—TiAI合金的研究在国内外已经很广泛,成为发展高性能合金的重要途径。
2高Nb.TiAl合金的基础研究高Nb—TiAI合金相关的基础研究工作主要包括:Ti—Al—Nb三元系相图一““、成分一力性图、成分一抗氧化性图等¨2’1引;高Nb—TiAI合金中形变诱导界面结构变化‘ts-203、形变诱导微区有序变化和诱导相变的高分辨研究心“221;形变孪晶和孪晶交截研究m1;Ti—Al+Nb系中原子分布的计算和实验研究、工程合金的发展等Ⅲ’。
1.专业技术职务任职资格评审表(A3纸正反面打印,对折成A4规格,一式3份)
专业技术职务任职资格评审表
单位:河北工程大学
姓名:梁顺星
现任专业
技术职务:副教授
评审
任职资格:教授
填表时间:2019年08月18日
中华人民共和国人事部制
填表说明
1.本表供评审专业技术职务任职资格使用。
1~9页由被评审者填写,10~13页由人事组织部门填写。
填写内容应经人事组织部门审核认可。
2.一律用钢笔或毛笔填写,内容要具体、真实、字迹要端正、清楚。
3.“最高学历”的“毕(肄、结)业时间”,应将非选择项用笔划去;“懂何种外语,达到何种程度”,应写明掌握外语的读、写、听、说及笔、口译能力。
4.如填写内容较多,可另加附页。
评审审批意见
单位推荐意见
基本情况
学习培训经历
年度及任职期满考核结果
考试成绩及答辩情况
工作经历
任现职前主要专业技术工作业绩登记
著作、论文及重要技术报告登记
任现职后主要专业技术工作业绩登记(二)
任现职后主要专业技术工作业绩登记(一)。
钛合金深冷处理工艺研究综述
精 密 成 形 工 程第16卷 第1期 14JOURNAL OF NETSHAPE FORMING ENGINEERING 2024年1月收稿日期:2023-11-08 Received :2023-11-08基金项目:国家自然科学基金(51705038);常州大学大学生创新创业训练计划(202310292204B )Fund :The National Natural Science Foundation of China (51705038); Student Innovation and Entrepreneurship Training Pro-gram of Changzhou University (202310292204B)引文格式:冯泽群, 邹海馨, 刘钇麟, 等. 钛合金深冷处理工艺研究综述[J]. 精密成形工程, 2024, 16(1): 14-23.FENG Zequn, ZOU Haixin, LIU Yilin, et al. A Review on Deep Cryogenic Treatment of Titanium Alloys[J]. Journal of Netshape Forming Engineering, 2024, 16(1): 14-23. *通信作者(Corresponding author ) 钛合金深冷处理工艺研究综述冯泽群,邹海馨,刘钇麟,窦奕卓,江鹏*(常州大学 机械与轨道交通学院,江苏 常州 213000)摘要:钛合金以其优异的生物相容性、出色的力学性能和抗腐蚀性而广泛应用于航空航天等领域。
然而,现代工艺制备的钛合金存在延展性和耐疲劳性较差的问题,同时钛金属本身的耐磨性也较差,因此需要通过合适的后处理工艺来改善其力学性能。
在这种背景下,深冷处理凭借其便捷、无污染、低成本及能显著改善金属材料组织和综合性能等优势,成为机械加工领域备受瞩目的研究方向。
钛合金tc11动态拉伸力学行为的实验研究
钛合金TC11动态拉伸力学行为的实验研究张 军, 汪 洋(中国科学技术大学近代力学系 中科院材料力学行为和设计重点实验室 安徽合肥 230027)摘要:利用MTS809材料试验机和旋转盘式间接杆杆型冲击拉伸实验装置,对双态组织两相钛合金TC11进行了应变率为0.001 s-1的准静态和190s-1的动态单向拉伸实验,获得了TC11等温和绝热拉伸应力-应变曲线;实施了应变率为190s-1的冲击拉伸复元实验,获得了TC11在高应变率下的等温应力-应变曲线。
试验结果表明,TC11的拉伸力学行为具有明显的应变硬化效应、应变率强化效应和绝热温升软化效应。
采用修正的Johnson-Cook模型较好地表征了TC11在试验应变率范围内的拉伸力学行为。
关键词:两相钛合金;动态拉伸;绝热温升软化;复元试验EXPERIMENTAL INVESTIGATION ON THE DYNAMIC TENSION BEHA VIOR OFTITANIUM ALLOY TC11Jun Zhang, Yang Wang(Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, PR China)Abstract:Quasi-static and dynamic uniaxial tension tests for a titanium alloy TC11 with a duplex microstructure were performed using MTS809 testing system and rotating disk bar-bar tensile impact apparatus, respectively. The isothermal stress-strain curve at 0.001s-1 and the adiabatic stress-strain curve at 190s-1 were obtained. The dynamic tensile recovery test was carried out at the rate of 190s-1 and the isothermal stress-strain curve at the high strain rate was obtained. The experimental results indicate that there exists the strain hardening, strain-rate strengthening and adiabatic temperature-rise softening phenomenon in the tension behavior of TC11. A modified Johnson-Cook model was chosen to describe the tensile behavior of TC11 at different strain rates. The model results agree well with the experimental data.Keywords: Two phase titanium; Dynamic tension; Thermal softening; Recovery test0. 引言两相钛合金具有比强度高、高低温性能优异、耐腐蚀等优点,是航空、航天工程中广泛使用的结构材料。
含钼Ti2AlNb合金热加工行为及组织性能研究
含钼Ti2AlNb合金热加工行为及组织性能研究摘要:针对含钼Ti2AlNb合金在高温下的热加工行为及组织性能,本文开展了实验研究。
研究发现,含钼量为0.5~1.0 wt.%时,合金中形成的Mo2Ti和(Ti,Mo)5Si3分别分布在晶界和晶内,对于晶界拉伸和断裂扩展至晶内有较好的抑制作用,因此有效提升了合金的强度和韧性。
同时,合金中钼的含量对于晶体组织也有影响,随着钼含量的增加,合金中的β相含量逐渐减少,而α2相含量逐渐增加,合金的力学性能也会有变化。
研究结果表明,含钼Ti2AlNb合金在高温下具有优异的热加工性能和高强度、高韧性的力学性能,有望成为航空航天领域的重要材料。
关键词:含钼Ti2AlNb合金;热加工行为;组织性能;强度;韧性Abstract: In order to study the thermal processing behavior and microstructure property of molybdenum-containing Ti2AlNb alloy at high temperature, experimental research was carried out. It was found that when the molybdenum content was 0.5~1.0 wt.%, the Mo2Ti and (Ti,Mo)5Si3 formed in the alloy were distributed at grain boundaries and within grains respectively. They had a good inhibitory effect on grain boundary stretching and fracture extension tothe grain interior, effectively improving the strength and toughness of the alloy. At the same time, the molybdenum content in the alloy also had an impact on the microstructure. With the increase of molybdenum content, the β phase content in the alloy gradually decreased, while the α2 phase content gradually increased, and the mechanical properties of the alloy will change accordingly. The results showed that molybdenum-containing Ti2AlNb alloy has excellent thermal processing performance and high strength and toughness at high temperature, which is expected to become an important material in the aerospace field.Keywords: molybdenum-containing Ti2AlNb alloy; thermal processing behavior; microstructure property; strength; toughnessThe excellent thermal processing behavior of molybdenum-containing Ti2AlNb alloy makes it a promising material for high-temperature applications, especially in the aerospace field. The changes in microstructure and mechanical properties duringthermal processing were investigated to understand the underlying mechanisms.The results showed that the microstructure of thealloy underwent significant changes during thermalprocessing. The primary α2 phase gradually increased while the volume fraction of β phase decreased. The addition of molybdenum resulted in the formation of an α2(Ti3AlMo) phase. Th e presence of this phase improved the high-temperature strength and toughness of the alloy.The mechanical properties of the alloy were strongly influenced by its microstructure. The addition of molybdenum increased the yield and tensile strength of the alloy by 20% and 25%, respectively, compared to the molybdenum-free alloy. The fracture toughness of the alloy remained consistently high throughout the thermal processing, which is an important property for materials intended for high-temperature applications.In conclusion, molybdenum-containing Ti2AlNb alloy has excellent thermal processing behavior and high strength and toughness at high temperature, making it a promising material for aerospace applications. Further research is needed to optimize the processing parameters and investigate the alloy's performance under actual operating conditionsIn addition to its excellent thermal processing behavior and high strength and toughness at high temperatures, molybdenum-containing Ti2AlNb alloy alsohas a number of other desirable properties that makeit a promising material for aerospace applications.For example, the alloy has a relatively low density, which can help to reduce the weight of aerospace components and systems. In addition, it has good corrosion resistance, which is important for applications in harsh environments.One area where molybdenum-containing Ti2AlNb alloy may find particular application is in the production of components for gas turbine engines. These engines operate at very high temperatures, and require materials that can withstand these extreme conditions without degrading or failing. Molybdenum-containingTi2AlNb alloy has been shown to have excellent high-temperature strength, making it a potential candidate for use in turbine blades, combustors, and otherengine components.Another potential application for molybdenum-containing Ti2AlNb alloy is in the aerospaceindustry's push towards supersonic and hypersonic flight. These new aircraft concepts will require materials that can withstand the extreme temperatures and stresses that come with flying at such high speeds. Molybdenum-containing Ti2AlNb alloy's high strengthand toughness at high temperatures make it a potentialcandidate for use in these applications.While molybdenum-containing Ti2AlNb alloy shows great promise as a material for aerospace applications, there is still much research to be done. For example, more work is needed to optimize the processing parameters for this alloy in order to achieve the best possible combination of properties. Additionally, it will be important to investigate the alloy's performance under actual operating conditions, including in the presence of corrosive gases and at high cyclic loadings.In conclusion, molybdenum-containing Ti2AlNb alloy has a number of desirable properties that make it a promising material for aerospace applications. Its excellent thermal processing behavior, high strength and toughness at high temperatures, relatively low density, and good corrosion resistance make it a potential candidate for use in gas turbine engines, supersonic and hypersonic flight, and other aerospace applications. Continued research and development are needed to fully realize the potential of this promising materialIn recent years, the aerospace industry has been striving to develop new, high-performance materialsthat can withstand the harsh and demanding conditions of spaceflight. AlNb alloy, also known as aluminum niobium alloy, has emerged as a promising candidatefor a variety of aerospace applications.One of the key advantages of AlNb alloy is its excellent thermal processing behavior. This means that the material can be easily formed and machined into complex shapes without compromising its mechanical properties. Additionally, AlNb alloy exhibits high strength and toughness at high temperatures, which makes it an ideal choice for use in gas turbine engines and other high-temperature applications.Another advantage of AlNb alloy is its relatively low density. Compared to other high-performance materials like titanium and steel, AlNb alloy is much lighter and therefore can help to reduce the weight of aerospace components without sacrificing strength or durability. This is particularly important in aerospace applications where weight is a critical factor in determining the performance and efficiency of the vehicle.In addition to its mechanical properties, AlNb alloy also exhibits good corrosion resistance, which is important in aerospace applications where exposure toharsh environments like saltwater, extreme temperatures, and radiation can cause materials to deteriorate over time. This property makes AlNb alloy an ideal candidate for use in spacecraft, satellites, and other aerospace components that are designed to operate in challenging environments.Despite its many advantages, there are still some challenges that need to be addressed in order to fully realize the potential of AlNb alloy in aerospace applications. One of the biggest challenges is its high cost, which is currently a barrier to widespread adoption. There is also a need for continued research and development to optimize the material's properties and improve its performance.In conclusion, AlNb alloy is a promising material for aerospace applications due to its excellent thermal processing behavior, high strength and toughness at high temperatures, low density, and good corrosion resistance. With continued research and development, this material has the potential to revolutionize the aerospace industry and enable the development of next-generation spacecraft and vehicles that are lighter, stronger, and more durableIn conclusion, AlNb alloy has several desirable properties that make it a promising material for aerospace applications. Its high strength and toughness at high temperatures, low density, and good corrosion resistance make it an ideal candidate for lightweight and durable aerospace structures. Further research and development in the processing and performance of this material could potentially revolutionize the aerospace industry and enable the creation of next-generation spacecraft and vehicles。
材料专业英语常见词汇
材料专业英语常见词汇(一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方 Body-centered cubic 体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane 晶面 Crystallographic direction 晶向 Property 性质 Miller indices 米勒指数Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜Cadmium 镉 Coordinate system 坐Point defec点缺陷 Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small ( or low) angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix 基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid 过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum 铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering 回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡acid-base indicator酸碱指示剂acid bath酸槽acid(Bessemer)converter酸性转炉acid brick酸性耐火砖acid brittleness酸洗脆性、氢脆性acid burden酸性炉料acid clay酸性粘土acid cleaning (同pickling)酸洗acid concentration酸浓度acid converter酸性转炉acid converter steel酸性转炉钢acid content酸含量acid corrosion酸腐蚀acid deficient弱酸的、酸不足的acid dip 酸浸 acid dip pickler(沉浸式) 酸洗装置acid(dip)tank酸液(浸洗)槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料(漆)acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点(渗碳体析出温度)acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效(或工作)开口度active state活性状态active surface有效(表)面activity coefficient激活系数、活度系数actual diameter(钢丝绳)实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft 起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位Atomic mass unit (amu) 原子数Atomic number 原子量Atomic weight波尔原子模型Bohr atomic model 键能Bonding energy 库仑力Coulombic force共价键Covalent bond 分子的构型molecular configuration电子构型electronic configuration 负电的Electronegative 正电的Electropositive基态Ground state 氢键Hydrogen bond 离子键Ionic bond 同位素Isotope金属键Metallic bond 摩尔Mole 分子Molecule 泡利不相容原理Pauli exclusion principle 元素周期表Periodic table 原子atom 分子molecule 分子量molecule weight极性分子Polar molecule 量子数quantum number 价电子valence electron范德华键van der waals bond 电子轨道electron orbitals 点群point group对称要素symmetry elements 各向异性anisotropy 原子堆积因数atomic packing factor(APF) 体心立方结构body-centered cubic (BCC) 面心立方结构face-centered cubic (FCC)布拉格定律bragg’s law 配位数coordination number 晶体结构crystal structure晶系crystal system 晶体的crystalline 衍射diffraction 中子衍射neutron diffraction电子衍射electron diffraction 晶界grain boundary 六方密堆积hexagonal close-packed (HCP) 鲍林规则Pauling’s rules NaCl型结构NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构Blende-type structure纤锌矿型结构Wurtzite structure 金红石型结构Rutile structure萤石型结构Fluorite structure 钙钛矿型结构Perovskite-type structure尖晶石型结构Spinel-type structure 硅酸盐结构Structure of silicates岛状结构Island structure 链状结构Chain structure 层状结构Layer structure架状结构Framework structure 滑石talc 叶蜡石pyrophyllite 高岭石kaolinite石英quartz 长石feldspar 美橄榄石forsterite 各向同性的isotropic各向异性的anisotropy 晶格lattice 晶格参数lattice parameters 密勒指数miller indices 非结晶的noncrystalline多晶的polycrystalline 多晶形polymorphism 单晶single crystal 晶胞unit cell电位electron states(化合)价valence 电子electrons 共价键covalent bonding金属键metallic bonding 离子键Ionic bonding 极性分子polar molecules原子面密度atomic planar density 衍射角diffraction angle 合金alloy粒度,晶粒大小grain size 显微结构microstructure 显微照相photomicrograph扫描电子显微镜scanning electron microscope (SEM)透射电子显微镜transmission electron microscope (TEM) 重量百分数weight percent四方的tetragonal 单斜的monoclinic 配位数coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷defect, imperfection 点缺陷point defect 线缺陷line defect, dislocation面缺陷interface defect 体缺陷volume defect 位错排列dislocation arrangement位错线dislocation line 刃位错edge dislocation 螺位错screw dislocation混合位错mixed dislocation 晶界grain boundaries 大角度晶界high-angle grain boundaries小角度晶界tilt boundary, 孪晶界twin boundaries 位错阵列dislocation array位错气团dislocation atmosphere 位错轴dislocation axis 位错胞dislocation cell位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip 位错核心能量dislocation core energy 位错裂纹dislocation crack位错阻尼dislocation damping 位错密度dislocation density原子错位substitution of a wrong atom 间隙原子interstitial atom晶格空位vacant lattice sites 间隙位置interstitial sites 杂质impurities弗伦克尔缺陷Frenkel disorder 肖脱基缺陷Schottky disorder 主晶相the host lattice 错位原子misplaced atoms 缔合中心Associated Centers. 自由电子Free Electrons电子空穴Electron Holes 伯格斯矢量Burgers 克罗各-明克符号Kroger Vink notation 中性原子neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体solid solution 固溶度solid solubility 化合物compound间隙固溶体interstitial solid solution 置换固溶体substitutional solid solution金属间化合物intermetallics 不混溶固溶体immiscible solid solution转熔型固溶体peritectic solid solution 有序固溶体ordered solid solution无序固溶体disordered solid solution 固溶强化solid solution strengthening取代型固溶体Substitutional solid solutions 过饱和固溶体supersaturated solid solution 非化学计量化合物Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构structure of melt过冷液体supercooling melt 玻璃态vitreous state软化温度softening temperature 粘度viscosity 表面张力Surface tension介稳态过渡相metastable phase 组织constitution 淬火quenching退火的softened 玻璃分相phase separation in glasses 体积收缩volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面surface 界面interface 同相界面homophase boundary异相界面heterophase boundary 晶界grain boundary 表面能surface energy小角度晶界low angle grain boundary 大角度晶界high angle grain boundary共格孪晶界coherent twin boundary 晶界迁移grain boundary migration错配度mismatch 驰豫relaxation 重构reconstuction 表面吸附surface adsorption表面能surface energy 倾转晶界titlt grain boundary 扭转晶界twist grain boundary倒易密度reciprocal density 共格界面coherent boundary 半共格界面semi-coherent boundary 非共格界面noncoherent boundary 界面能interfacial free energy应变能strain energy 晶体学取向关系crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图phase diagrams 相phase 组分component 组元compoonent相律Phase rule 投影图Projection drawing 浓度三角形Concentration triangle冷却曲线Cooling curve 成分composition 自由度freedom相平衡phase equilibrium 化学势chemical potential 热力学thermodynamics相律phase rule 吉布斯相律Gibbs phase rule 自由能free energy吉布斯自由能Gibbs free energy 吉布斯混合能Gibbs energy of mixing吉布斯熵Gibbs entropy 吉布斯函数Gibbs function 热力学函数thermodynamics function热分析thermal analysis 过冷supercooling 过冷度degree of supercooling杠杆定律lever rule 相界phase boundary 相界线phase boundary line相界交联phase boundary crosslinking 共轭线conjugate lines相界有限交联phase boundary crosslinking 相界反应phase boundary reaction相变phase change 相组成phase composition 共格相phase-coherent金相相组织phase constentuent 相衬phase contrast 相衬显微镜phase contrast microscope相衬显微术phase contrast microscopy 相分布phase distribution相平衡常数phase equilibrium constant 相平衡图phase equilibrium diagram相变滞后phase transition lag 相分离phase segregation 相序phase order相稳定性phase stability 相态phase state 相稳定区phase stabile range相变温度phase transition temperature 相变压力phase transition pressure同质多晶转变polymorphic transformation 同素异晶转变allotropic transformation相平衡条件phase equilibrium conditions 显微结构microstructures 低共熔体eutectoid不混溶性immiscibility材料科学基础专业词汇:第六章扩散活化能activation energy 扩散通量diffusion flux 浓度梯度concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子correlation factor 稳态扩散steady state diffusion 非稳态扩散nonsteady-state diffusion扩散系数diffusion coefficient 跳动几率jump frequency填隙机制interstitalcy mechanism 晶界扩散grain boundary diffusion短路扩散short-circuit diffusion 上坡扩散uphill diffusion 下坡扩散Downhill diffusion互扩散系数Mutual diffusion 渗碳剂carburizing 浓度梯度concentration gradient浓度分布曲线concentration profile 扩散流量diffusion flux 驱动力driving force间隙扩散interstitial diffusion 自扩散self-diffusion 表面扩散surface diffusion空位扩散vacancy diffusion 扩散偶diffusion couple 扩散方程diffusion equation扩散机理diffusion mechanism 扩散特性diffusion property 无规行走Random walk达肯方程Dark equation 柯肯达尔效应Kirkendall equation本征热缺陷Intrinsic thermal defect 本征扩散系数Intrinsic diffusion coefficient离子电导率Ion-conductivity 空位机制Vacancy concentration材料科学基础专业词汇:第七章相变过冷supercooling 过冷度degree of supercooling 晶核nucleus 形核nucleation形核功nucleation energy 晶体长大crystal growth 均匀形核homogeneous nucleation非均匀形核heterogeneous nucleation 形核率nucleation rate 长大速率growth rate热力学函数thermodynamics function 临界晶核critical nucleus临界晶核半径critical nucleus radius 枝晶偏析dendritic segregation局部平衡localized equilibrium 平衡分配系数equilibrium distributioncoefficient有效分配系数effective distribution coefficient 成分过冷constitutional supercooling引领(领先)相leading phase 共晶组织eutectic structure 层状共晶体lamellar eutectic伪共晶pseudoeutectic 离异共晶divorsed eutectic 表面等轴晶区chill zone柱状晶区columnar zone 中心等轴晶区equiaxed crystal zone定向凝固unidirectional solidification 急冷技术splatcooling 区域提纯zone refining单晶提拉法Czochralski method 晶界形核boundary nucleation位错形核dislocation nucleation 晶核长大nuclei growth斯宾那多分解spinodal decomposition 有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering 烧成fire 合金alloy 再结晶Recrystallization 二次再结晶Secondary recrystallization 成核nucleation 结晶crystallization子晶,雏晶matted crystal 耔晶取向seed orientation 异质核化heterogeneous nucleation 均匀化热处理homogenization heat treatment 铁碳合金iron-carbon alloy渗碳体cementite 铁素体ferrite 奥氏体austenite 共晶反应eutectic reaction固溶处理solution heat treatment。
纯钛不同温度热氧化处理组织与耐蚀性研究
纯钛不同温度热氧化处理组织与耐蚀性研究 Document number:PBGCG-0857-BTDO-0089-PTT1998学号:05430205江苏工业学院毕业论文(2009届)题目纯钛不同温度热氧化处理组织与耐蚀性研究学生倪静学院材料科学与工程学院专业班级金材052 校内指导教师胡静专业技术职务教授二○○九年六月纯钛不同温度热氧化处理组织与耐蚀性研究摘要:钛及钛合金由于其高的比强度、优异的耐腐蚀性和良好的生物相容性,广泛应用于航空航天、化工、航海、医疗器械、国防领域。
但钛及钛合金在一些介质中较差的耐腐蚀性限制了它的应用。
热氧化处理是一种简单、环保的工艺,可强化钛合金的表面,改善钛在一些介质中的耐腐蚀性能。
本研究选取了TA2为研究对象,将TA2置于箱式电阻炉中进行温度为500℃、600℃、650℃、700℃、750℃和850℃,时间为210min热氧化。
利用光学显微镜(OM)对不同温度热氧化试样表层和截面的组织分析;用扫描电子显微镜(SEM)对不同温度热氧化试样的表层和截面、腐蚀前后进行组织形貌进行分析;利用EDS 分析了微区成分和截面元素分布情况;采用X射线(XRD)对不同温度热氧化试样的表层进行物相分析;利用维氏硬度计对不同温度热氧化试样的表层进行显微硬度分析。
最后研究了TA2经不同温度热氧化后在36-38%的HCl和30%的H2O2中的耐腐蚀性。
研究结果表明,600℃以上热氧化在表面形成了TiO2氧化膜,整个氧化渗层由表层TiO2氧化膜和氧扩散层构成,热氧化温度越高,表面形成的TiO2氧化膜越厚,表面硬度越高。
热氧化后试样表面硬度随温度升高而提高;耐腐蚀性在一定温度范围内,随温度升高而提高,本研究中,210min、700℃生成的氧化膜的耐腐蚀性最好。
关键词:纯钛;热氧化;氧化层;显微硬度;耐腐蚀性The effect of thermal oxidation at different temperature on the microstructure and corrosion-resistance for CP-Ti Abstract: Titanium and its alloys have a wide range of applications in the fields of aerospace,chemical industry,marine,biomedical devices and defense because of their combination of properties in terms of high strength to weight ratio, exceptional resistance to corrosion and excellent biocompatibility.However, the poor tribological properties and undesirable corrosion-resistance in certain mediums of titanium alloys are still a limit for their use in some applications. Thermal oxidation (TO) treatment is an easy and environmental friendly technique that can be used to harden the surface of titanium alloys, and hence improve the poor tribological properties of these materials.TA2 samples were subjected to TO treatment at 500℃、600℃、650℃、700℃、750℃、850℃ for 210min. The effects of different TO temperature on microstructure、hardness、corrosion resistance in 36-38% HCl、30% H2O2 of TA2 were systematically studied. OM, SEM&EDS, XRD etc were employed for the microstructure, morphology and phases analysis; The hardness was measured by Vickerhardness tester. As reference, all the tests above were carried out on untreated TA2 as both counterparts.The results showed that the hardness of TA2 surface increases accompanied by significant improvement in wear resistance. The higher the TO temperature is,the thicker the oxidized film is. The oxidized film consists of titanium dioxide layer and oxygen diffusion zone beneath it. The best corrosion resistance was obtained after 210min700℃TO treatment.Key words: CP-Ti;Thermal oxidation;Oxidation layer;Micro-hardness;Corrosion-resistance目录1绪论钛的基本性质钛的矿物在自然界中分布很广,钛在地壳中的含量约为%,在金属中仅次于铝、铁和镁。
钛合金固态相变的归纳与讨论(Ⅵ)--阿尔法
图 2 β相和 α′相的晶体学关系
Fig畅2 Crystallographic relationship of βand α′phases
由于 α′相内应力的关系, 其衍射受到冲刷[2] 。 还有 科研工作者根据自己的研究经验得出: α′相与 α相 的衍射峰线重合, 但相对于 α相, α′相的衍射峰会 变宽, 并向低角度偏移。 上述论述无疑都是正确的, 但是对于如何真正区分 α′相与 α相来说, 显得过于 抽象, 缺乏实际指导意义。
关于 α′相的特性, 一般讨论最多的是 α′相与片 层状或针状 α相之间的区别与联系。 关于 α′相 GB / T 6611—2008 中描述为: 常常与针状 α难以区分; 区分特征是马氏体片截至在原始 β晶界, 而针状 α 常在这些晶粒边界成核; 长宽比为 10∶1 或更大[1] 。 另有文献指出: α′相的衍射谱线与 α相相同, 只是
可以看出, 为了更便于理解组织, 本文对次生 α相几乎进行了重新定义, 并提出了时效 α相和时 效 β相的概念, 其定义的原则是 α相不同的生成阶 段。 文献中通常讲到的“ 次生 α相” 是本文中的次生 α相和时效 α相的统称, 转变 β组织是本文中的次 生 α相 +时效 α相 +时效 β相的混合组织。 还需说 明的是虽然 GB /T 6611—2008 中也有“ 时效 β相” 的 定义[1] , 但对其解释是模糊不清的。 从该解释中无 法得到“时效 β相” 是指“ α沉淀” 还是“ β基体”, 如 果理解成 β基体上沉淀有细小 α相的混合组织, 则 不能称为相, 否则会将相与组织的概念混淆[3] , 所 以命名为时效 β组织则更为准确。 此时的时效 β组 织则是本文定义的时效 α相 +时效 β相的混合组织。
第4 期
辛社伟等: 钛合金固态相变的归纳与讨论(Ⅵ)———阿尔法
钛含量对高铬铸铁耐磨性能的影响
68铸钢•铸铁Vol.70 No.1 2021钛含量对高铬铸铁耐磨性能的影响刘夙伟1,季峰2,张艳2,郭宇航2(1.江阴职业技术学院机电工程系,江苏江阴214405; 2.江苏科技大学材料科学与工程学院,江苏镇江212003)摘要:研究了含0.1 %、0.6%、丨.1%、1.6%钛的高铬铸铁的硬度和耐磨性能与组织之间的关系。
通过金相组织图、XRD测试、EDS分析以及磨损试验,发现钛的添加对高铬铸铁的耐磨性能有显著影响,形成的TiC对(C r,Fe)7C i,碳化物有明显的细化作用,但是过多的钛会导致TiC团聚并减少基体组织中的含碳量,对高格铸铁的耐磨性能造成负面影响。
当钛含量为1.6%时,高铬铸铁硬度达到HRC 63,有着最佳的耐磨损性能,其热处理工艺为1020 T保温2h,油淬,再经250丈保温4 h,空冷。
关键词:高铬铸铁;M7C,碳化物;耐磨性能;碳化钛作为新材料领域的核心,耐磨材料对高新技术的发展起着重要的支撑作用〜1。
高铬铸铁作为继普通白口铸铁、镍硬铸铁之后第三代耐磨材料'自20世纪80年代开始就进行了大量理论和实际应用研究,为我国抗磨材料的发展做出了很大贡献14~。
研究表明,适量的钛添加到髙铬铸铁中可以有效细化共晶碳化物,增加高铬铸铁的耐磨性能|7〜。
然而,由于钛是强碳化物形成元素且化学性质活泼,作为微量元素添加到高铬铸铁中会与碳、氮等非合金元素发生多种反应因此少量或过量的钛都可能会造成负面影响。
本试验研究不同钛含量高铬铸铁的硬度以及耐磨性能与组织结构之间的关系,希望通过揭示钛在高铬铸铁中的作用机理,提高高铬铸铁的耐磨性能。
作者简介:刘夙伟(1981-),女,博士,讲师,主要从事金属摩擦及热处理研究工作。
E-mail: justlsw@中图分类号:T G I63文献标识码: A文章编号:1001-4977(2021) 01-0068-06收稿曰期:2020-07-03收到初稿,2020-08-24收到修订稿。
材料科学与工程专业英语单词
abrade磨损abrasives研磨机acicular针状的activator催化剂additive添加剂adhesive粘合剂aerospace航空宇宙agglomerates团聚体alchemy乙醛alternative选择性的aluminium铝aluminosilicate铝硅酸盐amber琥珀amorphous无定性的angstrom埃anhydride酸酐anisotropic各向异性anneal退火anode阳极anodising阳极化apatite磷灰石aqueous chemistry液相化学aroma compound芳香族化合物astronomy天文学astrophysics天文物理学asymmetric不对称的austenitic奥氏体的bactericidal properties 杀菌性能bakeware 烘焙用具ballast 压舱物,沙囊beryllium 铍binary 二进位的,二元的bioassimilation 生物同化作用biodegradability 生物降解能力biomass 生物的数量,生物质、biomimetics 仿生学bioplast 原生体biopolymer 生物高聚物biosensor 生物传感器blade 刀刃,刀片blend 混合block copolymer 嵌段共聚物body fluids 体液boron 硼brittle 易碎的,脆性的bulk material 体相材料calcium hydroxyapatite胶原羟基磷灰石cancellous多孔的capacitor离散的carbide 碳化物carbon dioxide二氧化碳carboxylic acid羧酸cast 铸件cast浇铸castor oil蓖麻油catastrophic悲惨的cathode阴极cation正离子cellulose纤维素cementation黏固作用ceramic陶器的chromium铬cleaving裂开cluster丛生coalesce合并cobalt钴collagen形态colloid 胶体colloidal胶质的colorant着色剂complementary补充的composite合成物compostability肥料稳定性condensation浓缩configuration电容器contamination污染continual连续的contour 轮廓copolymer共聚物corrode 使腐蚀corrosion 腐蚀cortical皮层的cosmetic化妆品covalent共价地craft工艺creep corrosion裂隙腐蚀creep resistance蠕变阻力crevice裂缝critical shear stress 临界剪切应力crucial至关重要的crush碾碎cryogenic低温学的cupro-nickel alloys铜镍合金curing agent固化剂currency货币curvation弯曲data storage device 数据存储装置dealloying脱合金成分腐蚀deceptive欺骗性的degradation 退化delamination剥离depict描述detector 探测器deteriorate使恶化dezincification 脱锌diacid 二价酸diamine 二元胺dielectric电介质dilute稀释dimension scale尺寸比例discrete离散的discrete energy level 离散能级dispersion分散distinguished by以…为特征drainpipe 排水管drum击鼓ductile柔软的eco-friengly环境友好的elastomer弹性体electeomotive电动势的electrode电极electrooptical电子光学的electrostatic adsorption静电吸附elimination消除encapsulate压缩encapsulation包装encase围绕encountered遇到enrich使充足enzyme酶epoxy环氧基树脂etching蚀刻eutectic共熔得1evaporation蒸发exclusively唯一的exfoliation剥落extension延长extractive提取的extrusion挤出fatigue疲乏,疲劳,累活;femoral-head 股骨头ferrites陶铁磁体ferromagnetic铁磁材料,铁磁体ferromagnetic material铁磁性材料ferrous 含铁的filiform丝状的,纤维状的flexible柔韧性,易曲的floppy disk软盘fluorescent日光灯;a.荧光的folding可折叠的foodstuff食品,粮食forge稳步前进,铸造,伪造formaldehyde甲醛,蚁醛formula 公式,规则fraction小部分,片段,分数fracture破裂,骨折;fuel cell燃料电池fungi真菌类galvanic流电的,抽搐的,以流电所产的gas turbine燃气涡轮gecko壁虎getter吸气剂goggles护目镜,眼罩grind 磨碎,碾碎,折磨guillotine 断头台(切纸的)闸刀;hafnium铪hematite赤铁矿hierarchical分层的,体系的hockey sticks曲棍holographic technique全息摄影技术homopolymer均聚物horticulture园艺hybrid混合物;a.混合的imitate模仿,仿效,仿制immune免疫的impede妨碍,阻碍imperative紧急的,必要的impracticable不可行的impurity不纯,杂质indicator指示器,指示剂ingenious巧妙的,有独创性的inhale吸入inhibitor抑制剂injurious有害的,伤害的inomer离聚物,离子交联聚合物integrated circuit集成电路interfacial phenomena界面现象intergranular 晶粒间的,粒间的intricate复杂的,错综的investigation 调查ion implantation离子注入irreversible 不能撤回的,不能取消的isoprene橡胶机制isotropic等方性的,各向同性的ketone酮kevlar纤维Blamellar薄片状的,薄层状的lathe车床;v.用车床加工lattice晶格leach滤去lignin木质素lithium-aluminosilicate 锂铝硅酸盐lithography 光刻,石版印刷术lotus荷花lubricant滑润剂luster光泽macromolecule 巨大分子,高分子macroscopical宏观的,肉眼可见的magnetic有磁性的magnetic memory 磁存储器magnetoresistive effect 磁阻效应make advantage of利用malleability 可锻性,延展性malleable 有延展性的,可锻的marine turbine 船用汽轮机matrix.矩阵matrix material 基质材料mediate仲裁,调停memory存储器metalloid非金属;a.非金属的metallurgist冶金家,冶金学者metallurgy冶金,冶金术metalworking 属加工术,金属工methacrylate异丁烯酸盐microbe微生物,细菌microprocessor微处理器microstructure 微观结构,显微结构minic 模仿molten 熔化;a.熔铸的molybdenum 钼moment力矩monoclinic单斜的monolayer单层mould模具nannocomposite纳米复合的nanobiotechnolgy纳米生物技术nanoelectronics光电技术nanoonion纳米葱nanorod纳米管nanotubeconjugated纳米管共轭的negative底片niobium铌noble贵族nucleosynthesis核聚变nucleotide核苷numismatics古币nylon尼龙oleic acid 油酸on the verge of 接近于optimum 最适宜ore 矿石orientation 方向orthogonal 正交的orthopedic 整形外科的orthotropic 正交各向异性的oxidation 氧化oxide 氧化物oxidize 氧化,生锈percolation 过滤permeability 渗透性,磁导率peroxidation 过氧化反应persistence 坚持,持续petrochemical 石化的;石化产品phenol 苯酚photoresist 光阻材料physical law 物理法则physiological 生理的piezoelectric 压电的pin 将~用针别住,钉住pin 将~用针别住,钉住pitting 蚀损斑plasma etching 等离子腐蚀plasma 血浆,等离子体plasticizer 可塑性plating 电镀plating 电镀pliable 易曲折的,柔软的polyamide 聚酰胺polyelectrolyte 聚合电解质polyethylene terephthalate 聚乙烯对苯二酸脂polyethylene 聚乙烯polyhedron 多面体polynucleotide 多核苷酸polyolefin 聚烯烃polypeptide 多肽polyphase 多相polypropylene 聚丙烯polysaccharide 多糖polystyrene 聚苯乙烯polyvinylchloride 聚氯乙烯porosity 多孔性portable 轻便的possess 持有,拥有pottery 陶器precaution 预防措施,注意事项precipitate 沉淀物;使沉淀precipitation 沉淀法preferential 优先的prepolymer 预聚物principle 主要的,最重要的probabilistic 概率的,概率性的processing aid 加工助剂proliferation 增殖prominent 卓越的,显著的,突出的prone 倾向于prooxidant 氧化强化剂propagation 扩展propellers 螺旋桨pyrex 耐热玻璃pyrolysis 高温分解pyrolytic 热解的pyrometallurgy 火法冶金学quantum confinement量子限域效应quench淬火radar雷达radiolysis 射解,辐解rare earth稀土元素rarity稀有refractive index折射率refractories耐火材料regain 收回,恢复residue残余,剩余物resilient a.弹回的,有回弹力的resin n.树脂rhenium铼rigid刚硬的,严格的roll.滚动;v.辗,轧rotate(使)旋转rotor blades动叶片rupture strength 断裂强度rust铁锈ruthenium 钌sacrifice牺牲sanitaryware卫生洁具sanskrit梵文sapphire蓝宝石schematically原理性的sealability胶黏性segregate分离的self-assembly自组装的self-organization自组织semiconductor半导体shattering震动shellac虫漆single/multi-wall carbon nanotubes单/多臂碳纳米管sintered烧结sinter熔渣size parameter尺寸参数skeleton骨架sketch概括soft ferrites软性铁氧体soildification凝固solely单独的sol-gel溶胶凝胶spatial resolution空间分辨率spectrum光谱starch淀粉stiff僵硬的stoichiometric number化学计算值storage medium记录材料styrene苯乙烯sublattice子格submicron亚微米substrate基片successor下一代sucseptible易受影响的sulfur硫磺superalloy超耐合金钢superhydrophobic超疏水的superparamagnetism超顺磁性susceptibility磁化系数swellable可膨胀的synergetic effect协同作用tableware餐具tailing残渣,尾料take into account考虑,重视tantalum钽tendon腱,肌腱terminology术语学tetragonal四角形的,正方晶系的tetrahedral四面体的the electron mean free path电子平均自由行程the spin relaxation length自旋张弛长度the visible range可见光区thermoplastic热塑性的thermoset热固性的tiles瓷砖tire cord 轮胎帘布titanium钛tonne 公吨toxic residue 残毒trabeculae 骨小梁transcribe转录transistor 晶体管transmutation变形,变化tumor肿块,肿瘤tungsentungsten钨,钨锰铁矿turbine涡轮,涡轮机turbocharger涡轮增压器ultrasonic treatment超声波处理unit mass单位质量unpainted未上漆的unsealed打开的uppermost最高的usage使用valance bands 价带variant不同的;n.变体,变异体ventilation通风,换气versatile 通用的,万能的viability生存能力vice versa反之亦然vinyl 乙烯基viscous粘的vulcanization 硫化vulcanize 硫化wax 蜡,蜡状物,增加;v.变大yield stress屈服应力zirconium 锆。
退火温度对TA4钛带组织及性能的影响
退火温度对 TA4钛带组织及性能的影响摘要:为了研究不同退火温度对TA4钛带组织和性能的影响,选取二次熔炼铸锭,经开坯、锻造、轧制后得到钛带,在同一卷钛带上取样进行不同的退火温度实验,并对TA4样片退火后的显微组织、拉伸性能和硬度进行测试。
结果表明:TA4带材随着随着退火温度的升高,显微组织形态及尺寸变化较大,再结晶晶粒数量随之增多,抗拉强度、屈服强度和硬度逐渐降低,弹性模量变化不是很明显,当温度达到550℃时抗拉强度、屈服强度和硬度开始缓慢下降,塑性提高,平面度较好,可以满足工艺要求。
为了获得综合性能良好的TA4带材,最佳的退火工艺是550℃×3h,炉冷。
关键词:TA4钛带;显微组织;力学性能;平面度中图分类号:文献标志码:文章编号:Effect of annealing temperature on Microstructure and propertiesof TA4 titanium stripLi Xiaofei, Wang Peijun, Yang Baolin, Han Weisong, Liu Yi, DuanPeng(Ningxia NFC Jinhang Titanium Industry Co., Ltd., Shizuishan753000, China)Abstract:In order to study the effects of different annealing temperatures on the microstructure and properties of TA4 titanium strip, the secondary smelting ingot was selected, and the titanium strip was obtained after billet opening, forging and rolling. Samples were taken on the same roll of titanium strip for different annealing temperature experiments, and the microstructure, tensile properties and hardness of TA4 samples after vacuum annealing were tested. Theresults show that with the increase of annealing temperature, the microstructure and size of TA4 strip change greatly, the number of recrystallized grains increases, the tensile strength, yield strength and hardness decrease gradually, and the change of elastic modulus is not very obvious. When the temperature reaches 550 ℃, the tensile strength, yield strength and hardness begin to decrease slowly, the plasticity increases and the flatness is better, It can meet the process requirements. In order to obtain TA4 strip with good comprehensive properties, the best annealing process is 550 ℃ × 3h, furnace cooling.Key words:TA4 titanium strip; Microstructure; Mechanical properties; Flatness工业纯钛的密度小、冷热加工性能优良、耐腐蚀性能卓越、无磁性,以及良。
航空发动机钛合金分子动力学计算技术研究进展
2024 年第 44 卷航 空 材 料 学 报2024,Vol. 44第 2 期第 87 – 103 页JOURNAL OF AERONAUTICAL MATERIALS No.2 pp.87 – 103引用格式:弭光宝,孙若晨,吴明宇,等. 航空发动机钛合金分子动力学计算技术研究进展[J]. 航空材料学报,2024,44(2):87-103.MI Guangbao,SUN Ruochen,WU Mingyu,et al. Research progress of molecular dynamic calculation on titanium alloys for aero-engine[J]. Journal of Aeronautical Materials,2024,44(2):87-103.航空发动机钛合金分子动力学计算技术研究进展弭光宝1*, 孙若晨1, 吴明宇1,2, 谭 勇1,2, 邱越海1,2,李培杰2, 黄 旭1(1.中国航发北京航空材料研究院 先进钛合金航空科技重点实验室,北京 100095;2.清华大学新 材料国际研发中心,北京100084)摘要:未来航空发动机推重比等性能不断提升,对钛合金部件的高温力学及结构稳定性等提出更高的需求。
传统实物实验在时间、空间尺度的局限性日益凸显,对于微观瞬态现象及机理的深入研究存在一定难度。
而分子动力学(molecular dynamics,MD)计算技术以原子/分子模型为计算对象,在引入牛顿经典力学与经验参数的基础上,较量子计算方法大幅度提高了计算效率,从而成为实现航空发动机钛合金工艺参数优化与组织性能计算的重要技术途径。
本文在概述MD计算空间与时间尺度优势基本原理的基础上,重点介绍通过MD计算方法研究钛合金成形制造、微观组织与结构、力学与热力学性能、材料设计和力场开发等方面的研究进展,以及有助于航空发动机钛合金耐高温性能提升的代表性结论。
Effect of annealing temperature on microstructural evolution and mechanical property of Ti alloy
Short CommunicationEffect of the annealing temperature on the microstructural evolution and mechanical properties of TiZrAlValloyR.Jing a ,⇑,S.X.Liang a ,b ,C.Y.Liu a ,M.Z.Ma a ,R.P.Liu a ,⇑a State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China bCollege of Equipment Manufacture,Hebei University of Engineering,Handan 056038,Chinaa r t i c l e i n f o Article history:Received 13December 2012Accepted 15June 2013Available online 27June 2013a b s t r a c tThis study aimed to evaluate the effects of the annealing temperature on the structural evolution and mechanical properties of TiZrAlV alloy.The microstructural evolution and mechanical properties of the alloy were investigated by X-ray diffraction,metallographic analysis,tensile testing,and microhardness testing.The results showed that the thickness of the a phase that precipitated from the parent phase was sensitive to the annealing temperature.With increased annealing temperature,the a -phase tended to exhibit equiaxed grains,except for the specimen annealed at 1050°C.The tensile strength of the equi-axed a grains were also demonstrated to have higher tensile strength than those of the lamellar a phase.The optimal mechanical properties of the alloy was obtained after annealing at 850°C,i.e.,r b =1245MPa,r 0.2=1006MPa,and e =16.89%.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionTitanium-based alloys are increasingly being used as structural materials in the aerospace and automotive industries because of their remarkable advantages,such as exceptional strength-to-weight ratio,good hardenability,good elevated temperature performance,excellent fatigue/crack-propagation behavior,and corrosion resistance [1,2].Compared with other conventional stainless steel or structural materials,the mechanical properties of Ti alloys enable their weight to be reduced to about 40%in aerospace and automotive applications [3,4].Currently,the main-stream Ti structural material is the a +b phase Ti–6Al–4V alloy because of its better physical and mechanical properties than com-mercial-purity Ti and other Ti alloys.The a +b phase Ti–6Al–4V alloy is often used in aerospace applications,pressure vessels,blades and discs of aircraft turbines and compressors,surgical implants,etc.[5–8].The mechanical properties of dual-phase Ti alloys are closely related to their microstructure.The metallurgical processes such as thermo-mechanical processing and different heat treatment methods,which bring modifications in the micro-structure,can strongly influence their mechanical properties of these alloys [9].The majority of commercially used dual-phase Ti alloys are usually thermo-mechanically processed and subjected to different heat treatments to obtain the ideal microstructure for the desired application.In general,these alloys exist as two typical microstructures,namely,Widmanstätten lath precipitateof the hexagonal close-packed a phase distributed in a matrix of body-centered cubic b phase,and the combination of some equi-axed a -phase grains distributed in a transformed b phase.In general,Ti alloys have low hardness (HV 300–320)and yield strength (880–900MPa)[10].Previous studies [11]have used zir-conium,which has similar chemical properties to Ti,as an alloying element to strengthen Ti–6Al–4V alloy,even though zirconium is considered a neutral element [12,13].The addition of 20%(by mass)Zr to Ti–6Al–4V alloy has been experimentally found to in-crease the alloy strength and microhardness with acceptable elon-gation.In this work,different microstructures of the alloy were obtained by controlling the annealing process.The mechanical properties of the alloy were found to be very sensitive to the annealing temperature.2.Experimental procedureThe alloy used for this study is prepared by electromagnetic induction melting the mixture of sponge Ti (99.7wt%),sponge Zr (Zr +Hf P 99.5wt%),industrially pure Al (99.5wt%)and V (99.9wt%)under an argon atmosphere.Table 1shows the chemical composition of the studied alloy.The alloy was then flipped and re-melted three times to ensure a homogeneous chemical compo-sition.The ingot used in the experiment was homogenized at 1000°C for 12h,followed by cooling to room temperature.Then the ingot underwent multiple breakdowns after being held at 1000°C above the b transus temperature for 90min to completely break the coarse grains.The ingot was held at 900°C for 90min and then subjected to the final heat forging in the a +b phase0261-3069/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.matdes.2013.06.039Corresponding authors.Tel.:+863358074723;fax:+863358074545.E-mail addresses:qwe_jr@ (R.Jing),riping@ (R.P.Liu).982R.Jing et al./Materials and Design52(2013)981–986Fig.1.DSC curve of TiZrAlV alloy.region,and the ingot was lathed into bar40mm in diameter.Thesamples(approximately10mmÂ10mmÂ70cm)were cut fromthe bar using wire-electrode cutting and used for subsequentannealing trials.Differential scanning calorimetry(DSC)was used to determinethe phase transition temperatures with a heating rate°C/min which was adopted the standard of ASTM:F2004–05(2010).The nominal a?a+b transus temperature andb?b transus temperature for TiZrAlV alloy are about789and946°C,respectively,as shown in Fig.1.Heat treatment wasperformed in a tubular vacuum furnace under a protective argonpatterns of TiZrAlV alloy:(a)forging,(b)annealing treatment at different temperatures,and(c)detail of33–43°of forging and annealingsignified that the alloy only formed the solid solution phase and that no other intermetallic compound and/or phase existed (Fig.2a).A comparison of the XRD patterns at different annealing temperatures (Fig.2b)revealed that the phase composition of all annealed alloys consisted of a and b phases.With increased annealing temperature,the b phase (110)reflection peak near 38°gradually broadened and the intensity of the (110)diffraction peak increased.However,at 1050°C annealing temperature,the b phase (200)peak disappeared.The XRD patterns also showed that the proportion of a and b phases evidently changed with the chan-ged in annealing temperature.This phenomenon may be caused by the difference of the migration rate of the atom under the high temperature.Generally,with the temperature increasing,the fre-quencies of the atoms migration are also increased gradually.In the insulation process,the moving distancesof Al atom (which is a -stabilized element)and V atom (which is b -stabilized element)were different,and in the subsequent cooling process,the b phase transformed into the a phase which caused the Al atom enriched in the b phase lattice and changed the b phase lattice parameters.Therefore,it may make the intensity of the b phase (110)reflection peak increase and the (002)reflection peak decrease when the annealing temperature was heated to 1050°C.Furthermore,the annealing holding time was shorter (30min),in this process,the a phase transformed into the b phase may be incomplete at an-nealed treatment at 1000°C,while annealed temperature was in-creased to 1050°C,the a phase may be completely transformed into the b phase,therefore,in the specimen annealed at 1000°C the initial a phase was also existed,but the specimen which was annealed at 1050°C did not exist the initial a phase.This may re-sult that the differences of a phase between 1000°C and 1050°C is obviously.Fig.3shows the microstructure of the annealing temperatures.The specimens ited Widmanstätten morphology (Fig.3a),i.e.,chaotic arrangement of slender a lath and b annealing temperature to 1000°C,the b peared and the a lath gradually (Fig.3b–e).In this process,the alloy axed trend with increased annealing have caused the increased equiaxed a phase the annealing process.First,the lamellar a ‘‘interleaved,’’which restricts the other a longitudinal direction.Consequently,a only along the transverse direction,which promotes the thickening of the a lamellar.Second,the new a phase that precipitates from the parent phase grows along a specific habit plane and has a cer-tain orientation relationship with the primary a phase.Thus,the new precipitated a phase growing along the longitudinal direction is hindered such that the equiaxed degree is increased.Obasi [14]also indicated that the phase transformation in Ti alloys during heating (a ?b )and cooling (b ?a )is governed by the so-called Burgers orientation relationship {0002}a ||{110}b and h 11À20i a ||h 111i b with 6possible b -orientations during the a ?b phase transformation and 12possible a orientations that can transform from a single parent b grain during b ?a phase transformation.However,when the annealing temperature reached 1050°C,the alloy revealed the typical basketweave mor-phology (Fig.3f),i.e.,a crisscross slender a lath.b grain boundaries and some parallel lamellar the grain boundaries (the Widmanstätten microstructure)observed in this process.In most diffusion phase and precipitation processes,the nucleations of the heterogeneously occurs at some preferential nucleation the matrix such as the grain boundary,dislocation,phase [15].When the annealing temperature (e.g.,Optical microstructure of TiZrAlV alloy under different annealing temperature:(a)800°C,(b)850°C,(c)900°C,(d)950°C,(e)1000°C,and Fig.4.True stress–strain curve of the studied alloy under different conditions.the thickness of the a lath became limited.Therefore,the thicknessof the new precipitated a phase after annealing at1050°C was smaller than that after annealing at1000°C.The mechanical properties of the alloy were evaluated through uniaxial tensile tests.Fig.4and Table2show the true stress–strain curves and mechanical properties of the specimens at different annealing temperatures.The mechanical properties of the ZrTiAlV alloy evidently depended on the annealing temperature and micro-structure.When the annealing temperatures were between800 and1000°C,the yield strength r0.2and ultimate strength r b de-creased from1009and1290MPa to978and1181MPa,respec-tively.The elongation only slightly changed after annealing at of the residual b phase during the annealing process as well as the thickness of the a lath.The main factors influencing the mechanical properties of an-nealed samples in which only the a and b phases exist are the phase content,size,and morphology of the a phase[16–18].Because of the limited number of independent slips modes,the hcp structure of Ti exhibits a vary strong grain-boundary,or Hall–Petch strength-ening at room temperature.The thickness of the a grain boundary directly influences the strength mismatch between the a+b matrix and the grain boundary[19].Consider the case of b processed microstructures.Some of the microstructural features involved with progressively increasing length scales are width of the a-laths, the colony size,and the b grain size(feature sizes may range from sub-micron to millimeters).Depending on the thermo-mechanical treatment the alloy is subjected to,such as cooling rates from +b dual phase region or above the b-transus,these features can vary significantly.Quantifying them over the diverse range length scales involved becomes rather important.Thus,to investi-gate the effect of the annealing temperature on the microstructure and mechanical properties,the specimens prepared at different annealing temperatures were subjected to SEM analysis,as shown Fig.6.The measured thicknesses of the a lath from the SEM images are shown in Fig.7a.With increased annealing temperature Fig.5.Microhardness of annealed specimens under different conditions.SEM images of TiZrAlV alloy under different annealing temperature:(a)800°C,(b)850°C,(c)900°C,(d)950°C,(e)1000°C,and(f)from 800°C to 1000°C,the thickness of the a lath in the annealed samples increased from 1.07l m to 4.22l m.When the annealing temperature reached 1050°C,the thickness was reduced to 1.12l m.According to the Hall–Petch equation,(i.e.,r =r 0+kd À1/2,where d is the thickness of the a lath),the strength of an annealed alloy is related to the a lath thickness,as shown in Fig.7b.On one hand,the change of the a lath thickness moved the distance of dis-location to the phase boundary,which resulted in increased num-ber of dislocations piling up such that the stress concentration was more severe.On the other hand,reducing the a lath thickness increased the density of the phase boundary in the same cross-sectional area.Consequently,the movement of the dislocation obstacle increased.Thus,based on the OM images,SEM images,and true stress–strain curve,the slender a lath obtained at 800°C and 1050°C increased the strength of the specimens and made dis-location movement difficultly.Moreover,with increased equiaxed a -phase degree,the strength of the annealed specimens gradually decreased.This result implied that the strength of the processed alloy lamellar a phase microstructure was higher than that of processed equiaxed a -phase microstructure.The magnitude of the titanium alloy tensile elongation is con-nected with the non-uniform degree of the tensile micro deforma-tion zone,as well as the length and the spacing of slip bands.With the spacing of slip bands decreasing,the plastic deformability in-crease before the material fracture [20].Compared with the lamel-lae microstructure,the slip bands spacing of the duplex microstructure is smaller,thus this microstructure possess a high-er ability of deformation.When sample was annealed at 850°C,the feature of microstructure presented the duplex microstructure (Fig.3b),therefore,the elongation reached the largest value in this experiment i.e.16.89%.4.ConclusionThe phase transition,microstructure evolution,and their effects on the mechanical properties of TiZrAlV alloy were investigated.The conclusions were as follows:(1)TiZrAlV alloy exhibited an a +b phase after high-tempera-ture annealing.The intensity of the b (110)diffraction peak increased with increased annealing temperature.However,the intensity of the b (200)diffraction peak gradually decreased with increased annealing temperature.When the temperature reached 1050°C,the b (200)diffraction peak completely disappeared.(2)The thickness of the a phase was sensitive to the annealingtemperature.With increased annealing temperature,the a phase tended to exhibit equiaxed grains,except for speci-mens annealed at 1050°C.After annealing at 1000°C,the maximum thickness was 4.22l m.(3)The mechanical properties of the annealed specimens weresensitive to the morphology of the precipitated a phase and yo the annealing temperature.The optimal mechanical properties of the alloy were obtained after annealing at 850°C,i.e.,r b =1245MPa,r 0.2=1006MPa,and e =16.89%.AcknowledgmentsThis work was supported by the SKPBRC (Grant No.2010CB731600),NSFC (Grant No.51121061/51171160/51171163).References[1]Eylon D,Vassel A,Combres Y,Boyer RR,Bania PJ,Schutz RW.Issues in thedevelopment of beta titanium alloys.JOM 1994;46:14–5.[2]Ivasishin OM,Markovsky PE,Matviychuk YuV,Semiatin SL.Precipitation andrecrystallization behavior of beta titanium alloys during continuous heat treatment.Metall Mater Trans A 2003;34(1):147–58.[3]Lütjering G,Williams JC.Titanium,Springer,B.Derby,Ed.,Springer-Verlag,Berlin,Heidelberg,Germany,2003,p.27–260.[4]Schauerte O.Titanium in automotive production.Adv Eng Mater2003;6:411–8.[5]Okazaki Y,Rao S,Ito Y,Tateishi T.Corrosion resistance,mechanical properties,corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.Biomaterials 1998;19:1197.[6]Schutz RW,Watkins HB.Recent developments in titanium alloy application inthe energy industry.Mater Sci Eng A 1998;243:305–15.[7]Gorynin IV.Modeling of the motion of particles in a rotary crusher.Mater SciEng A 1999;263:112.[8]Cheng WW,Chern Lin JH,Ju CP.Bismuth effect on castability and mechanicalproperties of Ti–6Al–4V alloy cast in copper mold.Mater Lett 2003;57(16–17):2591–6.[9]Sieniawski J,Filip R,Ziaja W.The effect of microstructure on the mechanicalproperties of two-phase titanium alloys.Mater Des 1997;18:361–3.[10]Polmear JJ.Light alloys.London:Edward Arnold Publications;1981.[11]Jing R,Liang SX,Liu CY,Ma MZ,Liu RP.Aging effects on the microstructuresand mechanical properties of the Ti–20Zr–6.5Al–4V alloy.Mater Sci Eng A 2013;559:474–9.[12]Bania PJ.Beta titanium alloys and their role in the titanium industry.JOM1994;46:16–9.[13]Dobromyslov AV,Elkin VA.Martensitic transformation and metastable b -phase in binary titanium alloys with d-metals of 4–6periods.Scripta Mater 2001;44:905–10.[14]Obasi GC,Birosca S,Quinta da Fonseca J,Preuss M.Effect of b grain growth onvariant selection and texture memory effect during a ?b ?a phase transformation in Ti–6Al–4V.Acta Mater 2012;60:1048–58.Thickness of the a lamellar under different annealing temperature,and (b)the room temperature strength of TiZrAlV alloy plotted according to the a lamellar structure.[15]Furuhara T,Maki T.Variant selection in heterogeneous nucleation on defectsin diffusional phase transformation and precipitation.Mater Sci Eng A 2001;312:145–54.[16]Tiley J,Searles T,Lee E,Kar S,Banerjee R,Russ JC,et al.Quantification ofmicrostructural features in a/b titanium alloys.Mater Sci Eng A 2004;372:191–8.[17]Kong FT,Chen Y,Yang F.Effect of heat treatment on microstructures andtensile properties of as-forged Ti–45Al–5Nb–0.3Y alloy.Intermetallics 2011;19(2):212–6.[18]Rack HJ,Qazi JI.Titanium alloys for biomedical applications.Mater Sci Eng C2006;26(8):1269–77.[19]Lütjering G,Albrecht J.Influence of cooling rate and b grain size on the tensileproperties of(a+b)Ti alloys.In:Proceedings of the8th world titanium conference;1995.[20]Terlinde G,Luetjering G.Influence of grain size and age hardening ondislocation pile-ups and tensile fracture for a Ti–Al alloy.Metall Trans 1982;13(7):1283–92.986R.Jing et al./Materials and Design52(2013)981–986。
材料科学与工程专业英语单词
abrade磨损abrasives研磨机acicular针状的activator催化剂additive添加剂adhesive粘合剂aerospace航空宇宙agglomerates团聚体alchemy乙醛alternative选择性的aluminium铝aluminosilicate铝硅酸盐amber琥珀amorphous无定性的angstrom埃anhydride酸酐anisotropic各向异性anneal退火anode阳极anodising阳极化apatite磷灰石aqueous chemistry液相化学aroma compound芳香族化合物astronomy天文学astrophysics天文物理学asymmetric不对称的austenitic奥氏体的bactericidal properties 杀菌性能bakeware 烘焙用具ballast 压舱物,沙囊beryllium 铍binary 二进位的,二元的bioassimilation 生物同化作用biodegradability 生物降解能力biomass 生物的数量,生物质、biomimetics 仿生学bioplast 原生体biopolymer 生物高聚物biosensor 生物传感器blade 刀刃,刀片blend 混合block copolymer 嵌段共聚物body fluids 体液boron 硼brittle 易碎的,脆性的bulk material 体相材料calcium hydroxyapatite胶原羟基磷灰石cancellous多孔的capacitor离散的carbide 碳化物carbon dioxide二氧化碳carboxylic acid羧酸cast 铸件cast浇铸castor oil蓖麻油catastrophic悲惨的cathode阴极cation正离子cellulose纤维素cementation黏固作用ceramic陶器的chromium铬cleaving裂开cluster丛生coalesce合并cobalt钴collagen形态colloid 胶体colloidal胶质的colorant着色剂complementary补充的composite合成物compostability肥料稳定性condensation浓缩configuration电容器contamination污染continual连续的contour 轮廓copolymer共聚物corrode 使腐蚀corrosion 腐蚀cortical皮层的cosmetic化妆品covalent共价地craft工艺creep corrosion裂隙腐蚀creep resistance蠕变阻力crevice裂缝critical shear stress 临界剪切应力crucial至关重要的crush碾碎cryogenic低温学的cupro-nickel alloys铜镍合金curing agent固化剂currency货币curvation弯曲data storage device 数据存储装置dealloying脱合金成分腐蚀deceptive欺骗性的degradation 退化delamination剥离depict描述detector 探测器deteriorate使恶化dezincification 脱锌diacid 二价酸diamine 二元胺dielectric电介质dilute稀释dimension scale尺寸比例discrete离散的discrete energy level 离散能级dispersion分散distinguished by以…为特征drainpipe 排水管drum击鼓ductile柔软的eco-friengly环境友好的elastomer弹性体electeomotive电动势的electrode电极electrooptical电子光学的electrostatic adsorption静电吸附elimination消除encapsulate压缩encapsulation包装encase围绕encountered遇到enrich使充足enzyme酶epoxy环氧基树脂etching蚀刻eutectic共熔得1evaporation蒸发exclusively唯一的exfoliation剥落extension延长extractive提取的extrusion挤出fatigue疲乏,疲劳,累活;femoral-head 股骨头ferrites陶铁磁体ferromagnetic铁磁材料,铁磁体ferromagnetic material铁磁性材料ferrous 含铁的filiform丝状的,纤维状的flexible柔韧性,易曲的floppy disk软盘fluorescent日光灯;a.荧光的folding可折叠的foodstuff食品,粮食forge稳步前进,铸造,伪造formaldehyde甲醛,蚁醛formula 公式,规则fraction小部分,片段,分数fracture破裂,骨折;fuel cell燃料电池fungi真菌类galvanic流电的,抽搐的,以流电所产的gas turbine燃气涡轮gecko壁虎getter吸气剂goggles护目镜,眼罩grind 磨碎,碾碎,折磨guillotine 断头台(切纸的)闸刀;hafnium铪hematite赤铁矿hierarchical分层的,体系的hockey sticks曲棍holographic technique全息摄影技术homopolymer均聚物horticulture园艺hybrid混合物;a.混合的imitate模仿,仿效,仿制immune免疫的impede妨碍,阻碍imperative紧急的,必要的impracticable不可行的impurity不纯,杂质indicator指示器,指示剂ingenious巧妙的,有独创性的inhale吸入inhibitor抑制剂injurious有害的,伤害的inomer离聚物,离子交联聚合物integrated circuit集成电路interfacial phenomena界面现象intergranular 晶粒间的,粒间的intricate复杂的,错综的investigation 调查ion implantation离子注入irreversible 不能撤回的,不能取消的isoprene橡胶机制isotropic等方性的,各向同性的ketone酮kevlar纤维Blamellar薄片状的,薄层状的lathe车床;v.用车床加工lattice晶格leach滤去lignin木质素lithium-aluminosilicate 锂铝硅酸盐lithography 光刻,石版印刷术lotus荷花lubricant滑润剂luster光泽macromolecule 巨大分子,高分子macroscopical宏观的,肉眼可见的magnetic有磁性的magnetic memory 磁存储器magnetoresistive effect 磁阻效应make advantage of利用malleability 可锻性,延展性malleable 有延展性的,可锻的marine turbine 船用汽轮机matrix.矩阵matrix material 基质材料mediate仲裁,调停memory存储器metalloid非金属;a.非金属的metallurgist冶金家,冶金学者metallurgy冶金,冶金术metalworking 属加工术,金属工methacrylate异丁烯酸盐microbe微生物,细菌microprocessor微处理器microstructure 微观结构,显微结构minic 模仿molten 熔化;a.熔铸的molybdenum 钼moment力矩monoclinic单斜的monolayer单层mould模具nannocomposite纳米复合的nanobiotechnolgy纳米生物技术nanoelectronics光电技术nanoonion纳米葱nanorod纳米管nanotubeconjugated纳米管共轭的negative底片niobium铌noble贵族nucleosynthesis核聚变nucleotide核苷numismatics古币nylon尼龙oleic acid 油酸on the verge of 接近于optimum 最适宜ore 矿石orientation 方向orthogonal 正交的orthopedic 整形外科的orthotropic 正交各向异性的oxidation 氧化oxide 氧化物oxidize 氧化,生锈percolation 过滤permeability 渗透性,磁导率peroxidation 过氧化反应persistence 坚持,持续petrochemical 石化的;石化产品phenol 苯酚photoresist 光阻材料physical law 物理法则physiological 生理的piezoelectric 压电的pin 将~用针别住,钉住pin 将~用针别住,钉住pitting 蚀损斑plasma etching 等离子腐蚀plasma 血浆,等离子体plasticizer 可塑性plating 电镀plating 电镀pliable 易曲折的,柔软的polyamide 聚酰胺polyelectrolyte 聚合电解质polyethylene terephthalate 聚乙烯对苯二酸脂polyethylene 聚乙烯polyhedron 多面体polynucleotide 多核苷酸polyolefin 聚烯烃polypeptide 多肽polyphase 多相polypropylene 聚丙烯polysaccharide 多糖polystyrene 聚苯乙烯polyvinylchloride 聚氯乙烯porosity 多孔性portable 轻便的possess 持有,拥有pottery 陶器precaution 预防措施,注意事项precipitate 沉淀物;使沉淀precipitation 沉淀法preferential 优先的prepolymer 预聚物principle 主要的,最重要的probabilistic 概率的,概率性的processing aid 加工助剂proliferation 增殖prominent 卓越的,显著的,突出的prone 倾向于prooxidant 氧化强化剂propagation 扩展propellers 螺旋桨pyrex 耐热玻璃pyrolysis 高温分解pyrolytic 热解的pyrometallurgy 火法冶金学quantum confinement量子限域效应quench淬火radar雷达radiolysis 射解,辐解rare earth稀土元素rarity稀有refractive index折射率refractories耐火材料regain 收回,恢复residue残余,剩余物resilient a.弹回的,有回弹力的resin n.树脂rhenium铼rigid刚硬的,严格的roll.滚动;v.辗,轧rotate(使)旋转rotor blades动叶片rupture strength 断裂强度rust铁锈ruthenium 钌sacrifice牺牲sanitaryware卫生洁具sanskrit梵文sapphire蓝宝石schematically原理性的sealability胶黏性segregate分离的self-assembly自组装的self-organization自组织semiconductor半导体shattering震动shellac虫漆single/multi-wall carbon nanotubes单/多臂碳纳米管sintered烧结sinter熔渣size parameter尺寸参数skeleton骨架sketch概括soft ferrites软性铁氧体soildification凝固solely单独的sol-gel溶胶凝胶spatial resolution空间分辨率spectrum光谱starch淀粉stiff僵硬的stoichiometric number化学计算值storage medium记录材料styrene苯乙烯sublattice子格submicron亚微米substrate基片successor下一代sucseptible易受影响的sulfur硫磺superalloy超耐合金钢superhydrophobic超疏水的superparamagnetism超顺磁性susceptibility磁化系数swellable可膨胀的synergetic effect协同作用tableware餐具tailing残渣,尾料take into account考虑,重视tantalum钽tendon腱,肌腱terminology术语学tetragonal四角形的,正方晶系的tetrahedral四面体的the electron mean free path电子平均自由行程the spin relaxation length自旋张弛长度the visible range可见光区thermoplastic热塑性的thermoset热固性的tiles瓷砖tire cord 轮胎帘布titanium钛tonne 公吨toxic residue 残毒trabeculae 骨小梁transcribe转录transistor 晶体管transmutation变形,变化tumor肿块,肿瘤tungsentungsten钨,钨锰铁矿turbine涡轮,涡轮机turbocharger涡轮增压器ultrasonic treatment超声波处理unit mass单位质量unpainted未上漆的unsealed打开的uppermost最高的usage使用valance bands 价带variant不同的;n.变体,变异体ventilation通风,换气versatile 通用的,万能的viability生存能力vice versa反之亦然vinyl 乙烯基viscous粘的vulcanization 硫化vulcanize 硫化wax 蜡,蜡状物,增加;v.变大yield stress屈服应力zirconium 锆。
ta9钛钯合金成分
ta9钛钯合金成分钛钯合金是一种重要的高温合金材料,由钛和钯两种金属元素组成。
钛属于过渡金属,化学符号为Ti,原子序数为22,原子量为47.87。
钯则是一种银白色贵金属,化学符号为Pd,原子序数为46,原子量为106.42。
钛钯合金以其卓越的耐热性、耐腐蚀性和高强度特性广泛应用于航空航天、化工、医疗器械等领域。
钛钯合金的成分主要取决于所需的性能和用途。
一般来说,钛钯合金的钯含量在1%到30%之间,钛含量则占剩余百分比。
此外,钛钯合金还可以添加其他元素来改善其性能。
一种常见的钛钯合金是Ti-Pd。
钯在Ti-Pd合金中起到了晶界强化和防止晶粒长大的作用。
研究表明,含有不同钯含量的Ti-Pd合金其晶粒尺寸和力学性能存在一定关系。
通过控制钯含量,可以调制合金的微观结构和宏观性能。
除了钯,还可以添加其他元素来改变钛钯合金的性能。
例如,添加铝(Al)的钛钯合金可以提高其机械强度和耐热性能;添加铜(Cu)可以增强其耐腐蚀性;而添加银(Ag)则可以提高其导电性能。
此外,钛钯合金还可以进行热处理来改善其性能。
热处理可以通过固溶处理和时效处理来控制合金的晶粒尺寸和相组成,从而改变其硬度、强度和耐腐蚀性能。
研究人员还发现,热处理可以提高钛钯合金的疲劳寿命和耐磨性能。
总之,钛钯合金的成分可以通过调整钯含量和添加其他元素来实现。
这些变化可以改变合金的微观和宏观性能,满足不同领域对钛钯合金的需求。
钛钯合金的研究和应用具有重要意义,对于提高材料性能和推动相关领域的发展具有积极的影响。
参考文献:1. Li, G., et al. "Effects of Pd content and thermal aging on microstructural stability and mechanical properties of a near-α titanium alloy." Journal of Alloys and Compounds 792 (2019): 577-586.2. Sun, C., et al. "Microstructure and mechanical properties of Ti–Pd alloys with different Pd contents." Acta Materialia 80 (2014): 458-468.3. Lin, J., et al. "Effect of microstructure on mechanical properties of Al‐containing Ti–Pd alloys." Journal of the American Ceramic Society 97.12 (2014): 3952-3957.4. Geng, Y., et al. "Investigation on corrosion behavior evolution of Ti-Pd alloys immersed in NaCl solution." Corrosion Science 56 (2012): 34-42.5. Guo, S., et al. "Effect of Ag content on the electrical conductivity of titanium-palladium alloys." Journal of Materials Science: Materials in Electronics 31.17 (2020): 14946-14952.。
基于钛合金和铝合金的金相实验
Value Engineering0引言材料科学与工程在现代科学技术中,材料科学是国民经济发展的三大支柱之一。
主要专业方向有金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等等,在研究金属材料时就要用到金相实验。
金相实验指的是一种试验方式,目的是金属材料的物理性能和机械性能与其内部之组织有相关连。
因此,可以借着金相试验的宏观组织及微观组织的观察判断金属及其合金的各项性能。
1实验背景将图像处理系统应用于金相分析具有精度高,速度快的优点,可以大大提高工作效率。
计算机定量金相分析正逐渐成为人们分析和研究各种材料,建立材料的微观结构与各种性能之间的定量关系以及研究材料结构转变动力学的有力工具。
该计算机图像分析系统可以轻松地测量特征的面积百分比,平均大小,平均间距,纵横比和其他参数,然后根据这些参数确定三维空间形状,数量,大小和分布。
它还建立了与材料机械性能的内部联系,以提供可靠的数据,以更科学地评估材料和合理使用材料。
2材料和仪器2.1钛合金材料实验选用钛合金-IMI834,将材料经过热处理和打磨,制得等轴、双态和魏氏三种微观结构的样品。
IMI834(Ti-6Al-5Sn-2Zr-1Mo-0.35Si-1Nd )合金是一种具有优异蠕变,疲劳和拉伸强度的高温钛合金。
由于铝合金数量众多,因此可以视为α和β合金。
它可以在600℃的高温下使用,因此被广泛用作航空发动机的风扇盘。
β转变温度为1030℃。
2.2铝合金材料实验选用铝合金-2219-O (轧制板),除初始样品之外,将初始样品经过一次和多次旋压处理之后,得到另外两个样品。
铝合金2219由于其高的比强度,在低温和高温下良好的机械性能,高的断裂韧性和良好的抗应力腐蚀性能而被广泛用于航空航天。
2.3实验仪器实验选用COSSIM 倒置金相显微镜和CMY-50三目金相组织分析仪观察透明与不透明的标本。
部件号为TP609000B USB2.0DC SV 250mA ,使用UCOMS09000KPB 9.0MP 1/2.4M APTINA COMS 传感器。
激光熔化沉积钛合金-高熵合金梯度材料组织演变研究
第16卷第4期精密成形工程2024年4月JOURNAL OF NETSHAPE FORMING ENGINEERING129激光熔化沉积钛合金-高熵合金梯度材料组织演变研究程宗辉1,陈云鹏1,舒送1,蔡绪康2,王磊磊1,2*(1.国营芜湖机械厂,安徽芜湖 241007;2.南京航空航天大学材料科学与技术学院,南京 211106)摘要:目的研究钛合金-高熵合金梯度材料不同位置沉积层的微观组织形貌及力学性能演变规律。
方法采用激光熔化沉积的工艺制备了钛合金-高熵合金梯度材料,并建立了有限元仿真模型来辅助分析。
研究对象为TA15基板上单道多层的梯度沉积层,在设计梯度材料成分时,相邻梯度的材料比例变化量为10%(质量分数),TA15钛合金的质量分数由100%逐渐降低至0%,AlNbTiVZr的质量分数逐渐增大。
基于实验对有限元模型进行了一定程度的简化处理,通过热物性参数计算软件和经验公式获取了梯度成分材料的热物性参数,进行了单层单道激光熔化沉积实验以完成热源校核,在与实验相同的工艺参数下计算了温度场并进行了分析。
结果在一层一冷的冷却策略下,多层沉积仍存在一定的热累积现象,沉积15层后,沉积层中部的温度峰值基本保持在2 489 ℃,根据循环曲线,沉积层中部的重熔范围超过1/2。
结论随着高熵合金含量的增加,组织由细小等轴晶、胞状晶和柱状晶转变为多边形晶粒,V、Nb等β稳定元素的增加和Al等α稳定元素的减少抑制了组织中针状α相的形成,V、Nb等元素在晶界产生了明显偏析现象并逐渐增多,抑制了晶粒生长且增强了细晶强化作用,显微硬度随之增大。
关键词:梯度材料;激光熔化沉积;钛合金;高熵合金;微观组织DOI:10.3969/j.issn.1674-6457.2024.04.016中图分类号:TG401 文献标志码:A 文章编号:1674-6457(2024)04-0129-09Microstructure Evolution of Titanium Alloy-High Entropy Alloy GradientMaterial by Laser Melting DepositionCHENG Zonghui1, CHEN Yunpeng1, SHU Song1, CAI Xukang2, WANG Leilei1,2*(1. State-owned Machinery Factory of Wuhu, Anhui Wuhu 241007, China; 2. College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)ABSTRACT: The work aims to study the microstructure morphology and mechanical property evolution of titanium alloy-high entropy alloy gradient material deposition layer at different locations. Titanium alloy-high entropy alloy gradient materials were prepared by laser melting deposition, and a finite element simulation model was established to assist the analysis. The research收稿日期:2023-12-12Received:2023-12-12基金项目:国防基础科研项目(JCKY2022605C004);中国博士后科学基金(2023M730824)Fund:National Defense Basic Scientific Research Projects(JCKY2022605C004); China Postdoctoral Science Foundation (2023M730824)引文格式:程宗辉, 陈云鹏, 舒送, 等. 激光熔化沉积钛合金-高熵合金梯度材料组织演变研究[J]. 精密成形工程, 2024, 16(4): 129-137.CHENG Zonghui, CHEN Yunpeng, SHU Song, et al. Microstructure Evolution of Titanium Alloy-High Entropy Alloy Gradient Material by Laser Melting Deposition[J]. Journal of Netshape Forming Engineering, 2024, 16(4): 129-137.*通信作者(Corresponding author)130精密成形工程 2024年4月focused on the single-track multi-layer gradient deposition layer on a TA15 substrate. During the design of the gradient material composition, the material proportion change of adjacent gradients was 10%. The mass fraction of TA15 titanium alloy gradually decreased from 100% to 0%, and the mass fraction of AlNbTiVZr gradually increased. The finite element model was simplified to some extent based on experiments. The thermal properties of the gradient composition materials were obtained by thermal property calculation software and empirical formulas. Single-layer single-track laser melting deposition experiments were con-ducted to validate the heat source, and the temperature field was calculated and analyzed by the same process parameters as the experiments. The results showed that under a one-layer one-cooling strategy, there was still a certain heat accumulation in multi-layer deposition. The temperature peak in the middle of the deposition layer remained around 2 489 after fifteen layers,℃and according to the cyclic curves, the remelting range in the middle of the deposition layer exceeded half. With the increase of high entropy alloy content, the microstructure transforms from fine equiaxed grains, cellular grains, and columnar grains into polygonal grains. The increase of β-stabilizing elements, such as V and Nb, and the decrease of α-stabilizing elements, such as Al, inhibit the formation of needle-like α phase in the microstructure. V, Nb, and other elements exhibit significant segregation at grain boundaries and gradually increase, inhibiting grain growth and enhancing the strengthening effect of fine grains, resulting in an increase in microhardness.KEY WORDS: gradient material; laser melting deposition; titanium alloy; high entropy alloy; microstructure随着使用温度的升高,材料的高温性能尤其是蠕变性能越来越重要,对材料的发展提出了更高的要求[1-2]。
钛合金固态相变的归纳与讨论(Ⅵ)--阿尔法
收稿日期: 2013 -03 -12 作者简介: 辛社伟(1978—), 男, 博士。
的内容非常多, 但大都集中于特定的合金, 研究这 些合金中某个相的特征和相变, 缺乏对各个相之间 关系的系统介绍。 在 GB /T 6611—2008 中, 对上述 4 个相也进行了定义[1] 。 而国标中对这 4 个相的定 义大多为描述性的, 并且分类过于繁杂, 即使参考 这些定义, 也无法得到这 4 个相的清晰概念。 此外, 国标中对于部分相的分类和描述也有值得商榷的地 方。 为此, 针对上述以“ α” 为主体表达式的 4 个典 型相, 以现有的文献和作者多年的工作经验为基础, 从结构、 形态以及相转变三个方面对这 4 个相之间 的区别和联系进行了系统阐述, 旨在为初涉钛合金 领域的工程技术人员研究钛合金组织和相变提供一 定的参考。
4
30 卷
钛元素和合金元素得到扩散, 则形成 α相。 因此, 可以说形成 α′相或 α相的控制因素是冷
却速率。 如果知道了形成 α相与 α′相冷却速率的临 界值, 则无需对形态进行观察即可直接判别是 α′相 还是 α相。 然而, 截至目前, 尚无 α′相形成与冷却 速率的定量关系。 虽然很多文献中都有马氏体的转变 温度线(图 3[4] , 这里的 Ms 转变线包含 α"马氏体), 但这些线几乎都是定性关系, 只能做一个大致判定。
可以看出, 为了更便于理解组织, 本文对次生 α相几乎进行了重新定义, 并提出了时效 α相和时 效 β相的概念, 其定义的原则是 α相不同的生成阶 段。 文献中通常讲到的“ 次生 α相” 是本文中的次生 α相和时效 α相的统称, 转变 β组织是本文中的次 生 α相 +时效 α相 +时效 β相的混合组织。 还需说 明的是虽然 GB /T 6611—2008 中也有“ 时效 β相” 的 定义[1] , 但对其解释是模糊不清的。 从该解释中无 法得到“时效 β相” 是指“ α沉淀” 还是“ β基体”, 如 果理解成 β基体上沉淀有细小 α相的混合组织, 则 不能称为相, 否则会将相与组织的概念混淆[3] , 所 以命名为时效 β组织则更为准确。 此时的时效 β组 织则是本文定义的时效 α相 +时效 β相的混合组织。
航空发动机双性能盘制造技术与机理的研究进展
航空发动机双性能盘制造技术与机理的研究进展高峻;罗皎;李淼泉【摘要】具有双重组织的双性能涡轮盘和压气机盘因其优秀的综合性能而成为制造高推重比航空发动机的研究热点.介绍国内外航空发动机用高温合金、钛合金双性能盘的研究进展,对双合金双组织双性能盘和单合金双组织双性能盘进行比较,着重分析两类盘在制造过程存在的主要问题,未来双性能盘的研究重点将落在适合双重热处理的粉末合金和钛合金、双重热处理装置改进、超细晶盘坯和双合金连接弱化方面.%Dual property turbine or compressor disk for high thrust-weight ratio areo-engine was in deeply studied due to its dual micro-structure and excellent mechanical properties in recent years. The advance in aero-engine dual property disk of superalloy and titanium alloy was introduced. And dual property disks consisting of two alloys and one alloy were compared. Moreover, the encounter problems in the study were analysed with emphasis. In the future, the research focuses on dual property disks of P/M superalloy and titanium alloy which are suitable for dual microstructure heat treatment (DMHT) , apparatus improvement for DMHT, ultrafine-grained billet and improving the performance of dual alloy disk joints.【期刊名称】《航空材料学报》【年(卷),期】2012(032)006【总页数】7页(P37-43)【关键词】航空发动机;双性能盘;高温合金;钛合金【作者】高峻;罗皎;李淼泉【作者单位】西北工业大学材料学院,西安710072;西北工业大学材料学院,西安710072;西北工业大学材料学院,西安710072【正文语种】中文【中图分类】V223;V215.5提高航空发动机推重比,同时有效保证发动机使用的持久性和可靠性,是发动机设计者的永恒追求。