直角三角形(中考数学一轮师生共用学案)
中考数学一轮复习 解直角三角形教案
解直角三角形教案【课标要求】1.掌握直角三角形的判定、性质.2.能用面积法求直角三角形斜边上的高.3.掌握勾股定理及其逆定理,能用勾股定理解决简单的实际问题.4.理解锐角三角函数定义(正弦、余弦、正切、余切),知道四个三角函数间的关系.5.能根据已知条件求锐角三角函数值.6.掌握并能灵活使用特殊角的三角函数值.7.能用三角函数、勾股定理解决直角三角形中的边与角的问题.8.能用三角函数、勾股定理解决直角三角形有关的实际问题.【课时分布】解直角三角形部分在第一轮复习时大约需要5课时,其中包括单元测试,下表为课时安排解直角三角形的应用【12.基础知识直角三角形的特征⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶直角三角形中30°所对的直角边等于斜边的一半;在Rt △ABC 中,若∠C =90°,则a 2+b 2=c 2;则这个三角形是直角三角形,即:在△ABC 中,若a 2+b 2=c 2⑹射影定理:AC 2=AD AB ,BC 2=BD AB ,CD 2=DA DB .锐角三角函数的定义: 如图,在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a,b,c ,则sinA =a c ,cosA =b c ,tanA =a b ,cotA =ba1 解直角三角形(Rt △ABC ,∠C =90°)⑴三边之间的关系:a 2+b 2=c 2.⑵两锐角之间的关系:∠A +∠B =90°.. ⑶边角之间的关系:sinA =A a c ∠的对边=斜边,cosA = A bc ∠的邻边=斜边.tanA =A a A b ∠∠的对边=的邻边,cotA = A bA a∠∠的邻边=的对边.⑷解直角三角形中常见类型:①已知一边一锐角. ②已知两边.③解直角三角形的应用. 2.能力要求例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A . 在Rt △ABC 中,由勾股定理得,AB10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35 ,tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,教师应强调转化的思想,即本题中角的转换.(或可利用射影定理,求出BD 、DC ,从而利用三角函数定义直接求出)例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪离AB 为1.5米,求拉线CE 的长.(结果保留根号)【分析】求CE 的长,此时就要借助于另一个直角三角形,故过点A 作AG ⊥CD ,垂足为G ,在Rt △ACG 中,可求出CG ,从而求得CD ,在Rt △CED 中,即可求出CE 的长. 【解】 过点A 作AG ⊥CD ,垂足为点G ,在Rt △ACG 中,∵∠CAG =30°,BD =6,∴tan 30°=CG AG ,∴CG =6×33 =2 3∴CD =2 3 +1.5,在Rt △CED 中,sin 60°=CDEC,∴EC =CD sin60°=4+ 3 .答:拉线CE 的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键.老师在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM 的面积,在此问题中,主要抓住坡度不变,即MA 与AB 的坡度均为1∶0.5. 【解】 ⑴∵i =tanB ,即tanB =10.5=2,∴∠B =63.43⑵过点M 、N 分别作ME ⊥AD ,NF ⊥AD , 垂足分别为E 、F . 由题意可知:ME =NF =5,∴ME AE =10.5, ∴AE=DF =2.5,∵AD =4, ∴MN =EF =1.5,∴S 梯形ADNM =12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m 3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离 =坡角的正切值,虽然2007年中考时计算器不能带进考场,但学生应会使用计算器,所以建议老师还是要复习一下计算器的使用方法.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600) 【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可.【解】过点C 作CD ⊥AB ,垂足为D . 由题知:∠α=45°,∠β=32°.在Rt △BDC 中,sin 32°=BDBC,∴BD =100sin 32°≈52.99cos32°=CDBC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80. ∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,引导学生画图是本题的难点,找到两个直角三角形的公共边是解题的关键,教师在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形. 例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参1.41 1.73≈). 【分析】⑴由题意易知. ⑵先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得141OH =≈(千米),设经过t 小时时,台风中心从P 移动到H ,则20PH t ==得t =,此时,受台风侵袭地区的圆的半径为:6010130.5+⨯(千米)<141(千米).B∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.例6 如图所示:如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60° ,沿山坡向上走到P 处再测得点C 的仰角为45° ,已知OA =100米,山坡坡度为 12 ,(即tan ∠PAB = 12)且O 、A 、B 在同一条直线上。
直角三角形复习教案中考数学
直角三角形复习教案中考数学(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直角三角形复习教案中考数学这是一篇由网络搜集整理的关于直角三角形复习教案中考数学的文档,希望对你能有帮助。
2.利用锐角三角函数和直角三角形,体会数形结合、转化的重要数学思想在解题中的应用。
3.掌握综合性较强的题型融会贯通地运用数学的各部分知识,提高分析解决问题的能力。
教学重点灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,提高把实际问题转化为解直角三角形问题的能力;教学难点体会数形结合、转化的重要数学思想在解题中的应用。
教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1. 直角三角形边角关系.(1)三边关系:勾股定理:(2)三角关系:B+C=180,B =C=90.(3)边角关系tanA= ,sinA= ,cosA= ,2.解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决(二):【课前练习】1.如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为山则重叠部分的面积为( )2.如上图,铁路路基横断面为一个等腰梯形,若腰的坡度为2:3,顶宽为3米,路基高为4米,则路基的下底宽是( )米米米米3.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45,若他的双眼离地面米,则旗杆高度为_________米。
4.太阳光线与地面成60角,一棵倾斜的大树与地面成30角,这时,测得大树在地面上的影长为10米,则大树的高为_________米.5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米处的C点(ACBA)测得A=50,则A、B间的距离应为( )米二:【经典考题剖析】1.如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得ABC=45,ACB=30,问此公路是否会穿过森林公园?请通过计算进行说明.2. 雄伟壮观的千年塔屹立在海口市西海岸带状公园的热带海洋世界.在一次数学实践活动中,为了测量这座千年塔的高度,雯雯在离塔底139米的C处(C与塔底B在同一水平线上),用高米的测角仪CD测得塔项A的仰角=43(如图),求这座千年塔的高度AB(结果精确到米).(参考数据:tan43 ,3.在一次实践活动中,某课题学习小且用测倾器、皮尺测量旗杆的高度,他们设计如下方案如图①所示;(1)在测点A处安置测倾器,测得旗杆顶部M的角MCE=(2)量出测点A到旗杆底部N的水平距离A N=m;(3)量出测倾器的高度AC=h,根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请你仿照上述过程,设计一个测量某小山高度①在图②中,画出你测量小山高度MN的示意图(标上适当的字母);②写出你的设计方案.4.已知如图,某同学站在自家的楼顶A处估测一底部不能直接到达的宝塔的高度(楼底与宝塔底部在同一水平线上),他在A处测得宝塔底部的俯角为30,测得宝塔顶部的仰角为45,测得点A到地面的距离为 18米,请你根据所测的数据求出宝塔的高.(精确到米)5.如图,一艘军舰以30海里 /时的速度由南向北航行,在A处看灯塔S在军舰的北偏东30○方向,半小时后航行到B处,看见灯塔S在军舰的东北方向,求灯塔S和B的距离.三:【课后训练】1.某地夏季中午,当太阳移到屋顶上方偏东时,光线与地面成角,房屋朝南的窗子高AB=h米,要在窗子外面上方安装一个水平挡光板AC,使午间光线不能直接射人室内如图,那么挡光板AC的宽度为=__________.2.如图,河对岸有一滩AB,小敏在C处测得塔顶A的仰角为,向塔前进s米到达D,在D处测得A的仰角为,则塔高为____米.3.初三(1)班研究性学习小组为了测量学校旗杆的高度如图,他们离旗杆底部E点30米的D处,用测角仪测得旗杆的仰角为30,已知测角仪器高AD=米,则旗杆BE的高为_______米(精确到米).4.如图,在山坡上种树,已知A=30,AC=3米,则相邻两株树的坡面距离AB 等于( )米 B. 米米米5.如图,已知AB是⊙O的`直径,CD是弦,且CDAB,BC=6,AC=8.则sinABD的值是( )6.如图所示,将矩形ABCD沿着对角线BD折叠,使点C落在C 处,BC交AD 于E,下列结论不一定成立的是( )== C.△ABE∽△CBD;=7.某月松花江哈尔滨段水位不断下降,一条船在松花江某水段自西向东沿直线航行,在A处测得航标C在北偏东60方向上,前进100m到达B处,又测得航标C在北偏东45方向,如图,以航标C为圆心,120m长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?8.身高相同的甲、乙、丙三位同学星期天到野外去比赛放风筝,看谁放得高(第一名得100分,第二名得80分,第三名得60分),甲、乙、丙放出的线长分别为300m,250m,200m;线与地平面的夹角分别为30 ,45,60,假设风筝线是拉直的)请你给三位同学打一下分数?9.某校的教室A位于工地O的正西方向、,且 OA=200米,一部拖拉机从O点出发,以每秒6米的速度沿北偏西53方向行驶,设拖拉机的噪声污染半径为130米,试问教室A是否在拖拉机噪声污染范围内若不在,请说明理由;若在,求出教室A受污染的时间有几秒(已知:,,10.在一次暖气管道的铺设工作中,工程由A点出发沿正西方向进行,在A点的南偏西60方向上有一所学校B,如图,占地是以 B为中心方圆 100m 的圆形,当工程进行了200m后到达C处,此时B在C南偏西30的方向上,请根据题中所提供的信息计算并分析一下,工程若继续进行下去是否会穿越学校.。
中考数学第一轮复习解直角三角形的应用学案
课题:解直角三角形的应用班级: 姓名:【考点目标】1、 会根据题意把实际问题转化为数学问题,然后利用解直角三角形的知识解决实际问题.2、 发散思维 尝试用不同的方法解决问题。
3、 提高观察问题、分析问题的能力。
【考点目标】提升学生对直角三角形有关知识的应用能力,利于学生实际能力的培养和提高。
【课前练习】1.如上图,铁路路基横断面为一个等腰梯形,若腰的坡度为2:3,顶宽为3米,路基高为4米,则路基的下底宽是( )A .15米B .12米C .9米D .7米2.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45°,若他的双眼离地面1.3米,则旗杆高度为_________米。
3.太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时,测得大树在地面上的影长为10米,则大树的高为_________米.4.如图,为测一河两岸相对两电线杆A 、B 间的距离,在距A 点15米处的C 点(AC ⊥BA )测得∠A =50°,则A 、B 间的距离应为( )A .15sin50°米;B.15cos50°米;C.15tan50°米;D.015tan 50米【例题精讲】例1、1.如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC =45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明.例2、一渔船上的渔民在A处看见灯塔在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时到B处.在B处看见灯塔M在北偏东15°方向,求此时灯塔M与渔船的距离?例3、我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC削进到E 处,问BE 至少是多少米(结果保留根号)?【课堂检测】1.如图,在山坡上种树,已知∠A=30°,AC=3米,则相邻两株树的坡面距离AB 等于()A.6米 B.3米 C.23米 D.22米2.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8.则sin∠ABD的值是()4334A....3455B C D3.如图所示,将矩形ABCD沿着对角线BD折叠,使点C落在C 处,BC′交AD于E,下列结论不一定成立的是()A.AD=BC′;B.∠EBD= ∠EDB;C.△ABE∽△CBD;D.sin∠ABE=AEED4、如图,四边形ABCD中,AD⊥CD,AB=13, BC=12,CD=3,AD=4,求sinB,S四边形ABCD。
初三数学一轮复习直角三角形综合教案(含练习)
Presented by Csuzzy,All Rights Reserved.8直角三角形存在§8-1直角作法已知两个定点A 、B 连成的线段AB ,要找到第三点C ,使得△ABC 为直角三角形,且C 为直角顶点,应该如何确定C 点位置?此时要想到圆的知识,想到三角形的外接圆,想到三角形斜边上的中点等于斜边一半这条定理。
所以,以线段AB 为直角三角形的斜边,要确定直角顶点C ,只需以AB 中点O 为圆心,AB 一半长为半径画圆,圆上的任意一点都可以满足△ABC 成为直角三角形。
如图,一次函数1y k x b =+的图象经过()0,2A -,()1,0B 两点,与反比例函数2k y x =的图象在第一象限内的交点为M ,若OBM △的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM MP ⊥?若存在,求出点P 的坐标;若不存在,说明理由.1直角作法A B C 1C 2C 3C 4O ·Presented by Csuzzy ,All Rights Reserved.如图,已知点()8,0A -、()2,0B ,点C 在直线344y x =-+上,则使ABC △是直角三角形的点C 的个数为A.1B.2C.3D.4如图,已知抛物线()20y ax bx c a =++≠的对称轴为直线1x =-,且抛物线经过()1,0A ,()0,3C 两点,与x 轴交于点B .(1)若直线y mx n =+经过B ,C 两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴直线1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴直线1x =-上的一个动点,求使BPC △为直角三角形的点P 的坐标.2直线上动在平面直角坐标系中,抛物线()21y x k x k =+--与直线1y kx =+交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当1k =时,直接写出A ,B两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出ABP △面积的最大值及此时点P 的坐标;(3)如图2,抛物线()21y x k x k =+--(0k >)与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线1y kx =+上是否存在唯一一点Q ,使得90OQC ∠= ?若存在,请求出此时k的值;若不存在,请说明理由.3Presented by Csuzzy,All Rights Reserved.(2018成都)如图,在平面直角坐标系中,以直线对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为是抛物线上位于对称轴右侧的一点,若,且与面积相等,求点的坐标;(3)若在轴上有且仅有一点,使,求的值.如图,在平面直角坐标系中,已知抛物线2y x bx c =++过A ,B ,C 三点,点A 的坐标是()3,0,点C 的坐标是()0,3-,动点P 在抛物线上.(1)b =,c =,点B 的坐标为;(直接填写结果)(2)是否存在点P ,使得ACP △是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.抛物线上动4Presented by Csuzzy ,All Rights Reserved.如图,抛物线213222y x x =-++与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上一动点,设点P 的坐标为(),0m ,过点P 作x 轴的垂线l 交抛物线于点Q .(1)求直线BD 的解析式.(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时四边形CQMD 是平行四边形.(3)点P 在运动过程中,是否存在点Q ,使BDQ △是以BD 为直角边的直角三角形?若存在,求出点Q 坐标;若不存在,说明理由.§8-2直角综合一定两动的情形一般是等腰直角三角形存在问题,不仅要求直角,还要求有相等线段。
2019-2020学年中考数学一轮复习 直角三角形导学案.doc
2019-2020学年中考数学一轮复习直角三角形导学案通过观察、操作、归纳等活动,掌握直角三角形的性质和判定.
组向展讲人声音宏亮,语言流畅,运用彩笔分析图形,板书必要的步骤。
及展讲的问题,回扣目标,反思你有哪些
.同伴之间互相讲述自己的个性目标,并互相补充、监督使目标更明确。
时要分层差、中、好各有一个能将本节课的目标补充完整)
教师行为:①对小组交流进行指导督促(最好督促学科长在组内展讲一次)
引领。
鼓励每个学生都能发表自己的见解,使自己小组的方案更完备,提醒学生要有集体
展讲指导
相似三角形有哪些判定方法?涉及到的图形有哪些?请你画下来
1.68
C=8,对
合作评价1.任务:认真完成训练单中的测试题
2.要求:合上课本,独立完成,认真书写,规范答题
3.巡视、批阅各组数学学科长的训练单,并用红笔作出评价。
2022数学一轮复习导学案直角三角形(学生版)
2022数学一轮复习导学案直角三角形(学生版)4、直角三角形一、预习案知识点:直角三角形的判定与性质(1)两锐角互余.即∠A+∠B=90°;(2)30°角所对的直角边等于斜边的一AcbD5.直1aCB半.即若∠B=30°则AC=AB;角2(3)斜边上的中线长等于斜边长的一半.即若CD是中线,三1角则CD=AB.2形(4)勾股定理:两直角边a、b的平方和等于斜边c的平的方.即a2+b2=c2.性质(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.A(2)已知两边,利(1)有一个角是直角的三角形是直角三角cD用勾股定理求长度,形.即若∠C=90°,则△ABC是Rt△;b6.直a应分B若斜边不明确,(2)如果三角形一条边的中线等于这条边的C角一半,那么这个三角形是直角三角形.即若AD=BD类讨论.三(3)在折叠问题中,=CD,则△ABC是Rt△角往往需要结(3)勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt求长度,形合勾股定理来列方△.的程解决.判定二、课中实施——【考点训练】考点一:直角三角形的性质、判定常规问题例1、(2022宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为.变式训练:1、如图,CD是Rt△ABC斜边上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°2.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.考点二:关注直角三角形中的互余角、相等角例2.如图,BD、CE是△ABC的高,BD和CE相交于点O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由.(3)若∠4=55°,∠ACB=65°,求∠3,∠5的度数.考点三:母子直角三角形中的互余角(双垂直图形)利用面积求斜边高问题例3、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,(1)图中存在哪些相等角?(2)已知AC=3BC=4如何求斜边上的高CD2变式训练1.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.考点四:面积问题,同高面积比等于底之比,同底面积比等于高之比例4.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE 的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.0.25cm2D.0.5cm2变式训练1.如图,在△ABC中,点D在BC上,点O在AD上,如果S△AOB=3,S△BOD=2,S△ACO=1,那么S△COD等于()A.B.C.D.例41题考点五:斜边上的中线长等于斜边长的一半例5.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)若EF=4,BC=10,求△EFM的周长;(2)若∠ABC=50°,∠ACB=60°,求∠FME的度数.3三、训练案1.(2022泰安)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A.1:2B.1:3C.1:2D.2:31题3题2.(2022泰安)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°4题3、(2022泰安)22、如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.4.(2022泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6B.7C.8D.104。
九年级中考一轮复习导学案:29课时直角三角形的应用
第29课时解直角三角形及其应用【基础知识梳理】一、解直角三角形1、在直角三角形中,由已知元素求_____________的过程叫解直角三角形。
直角三角形中,除直角外有5个元素,即3条边和2个锐角,已知元素中,至少有一个是__________的条件,才叫解直角三角形。
2、解直角三角形的基本类型①已知斜边和一个锐角②已知一直角边和一个锐角③已知斜边和一直角边④已知两直角边二、解直角三角形的应用1.仰角与俯角:在进行测量时①仰角:(如图)从下往上看,视线与________的夹角。
②俯角:(如图)从上往下看,视线与________的夹角。
2、坡脚与坡度①斜坡与水平面的夹角叫做__________②坡度(坡比)==坡角的.3、方位角:一正南正北为基准,描述物体运动方向的角叫做___________,如北偏东30°,特别的东北方向为_____________西南方向为___________________。
4、.应用直角三角形的边角关系来解决实际问题时,要注意:(1)在解直角三角形时,是用三角函数知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合的一种形式,所以在分析问题时,一般先根据已知条件作出它的平面或截面示意图,按照图中________之间的关系进行计算,这样可以帮助我们思考,防止出错.(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些________三角形和矩形,从而转化为_________三角形的问题来解决.(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”,并要按照题目中已知数据的精确到进行近似计算.(4)应用的基本思路:能从实际问题中抽象出数学模型或通过添加辅助线构建直角三角形;利用三角函数、勾股定理、方程等知识解决问题.【基础诊断】1、(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()米2、(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()+13、(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()50D米4、(2014•襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为多少?(结果保留根号)【精典例题】例1(2014年山东烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.。
中考数学第一轮复习解直角三角形的实际应用学案
解直角三角形的实际应用【学习目标】1.理解直角三角形的概念及仰角和俯角、坡度和坡角、方向角和方位角的概念。
2.灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,考查学生运用直角三角形知识建立数学模型的能力。
【学习重难点】运用解直角三角形的知识,结合实际问题示意图,正确选择边角关系,解决实际问题。
【教学过程】预习导航:1.在正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A .55B .255C .12D .22..如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( ) A .53 B .54 C .34 D .43 3.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( )A.533()32m B.3(53)2m C.m 335 D.4m 典型例题1. 仰角、俯角问题例1.(2020张家界中考)如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B ,C 在同一条直线上,小明在地面D 处观测旗杆顶端B 的仰角为30°,然后他正对建筑物的方向前进了20 m 到达地面的E 处,又测得旗杆顶端B 的仰角为60°,已知建筑物的高度AC =12 m ,求旗杆AB 的高度.(结果精确到0.1 m ,参考数据:3≈1.73,2≈1.41)AA BqhOB2.方位角问题例2.(2020临沂中考)一艘轮船位于灯塔P的南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处?(参考数据:3≈1.732,结果精确到0.1)3.坡度、坡比问题例3.(2020巴中中考)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6 m,坝高20 m,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1m,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比【课堂检测】1(2020随州中考)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1 620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.2.(2020乐山中考)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.3.(2020石家庄二十八中二模)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60 2 m,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.(下面两个小题结果都保留根号)(1)若修建的斜坡BE的坡比为3∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33 m远(即AG=33 m),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG,建筑物GH高为多少米?【课后巩固】.1(2020济宁中考)如图,斜面AC的坡度(CD与AD的比)为1∶2,AC=3 5 m,坡顶有旗杆BC,旗杆顶端B 点与A点有一条彩带相连.若AB=10 m,则旗杆BC的高度为( )A.5 m B.6 mC.8 m D.(3+5)m2.(2020长沙中考)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为( A ) A.160 3 m B.120 3 m C.300 m D.160 2 m3.(2020钦州中考)如图,在电线杆CD上的C处引拉线CE,CF固定电线杆,拉线CE和地面所成的角∠CED =60°,在离电线杆6 m的B处安置高为1.5 m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)4.(2020绍兴中考)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果精确到1m,备用数据:3≈1.7,2≈1.4)5.. 如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).(2题图)中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330 D .(1+10%)x =330【答案】D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x=1.故选D . 2.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( ) A .方程有两个相等的实数根 B .方程有两个不相等的实数根 C .没有实数根 D .无法确定 【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式. 3.设a ,b 是常数,不等式10x a b+>的解集为15x <,则关于x 的不等式0bx a ->的解集是( )A .15x >B .15x <-C .15x >-D .15x <【答案】C【解析】根据不等式10x a b+>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0【详解】解不等式10x a b+>, 移项得:1-x a b>∵解集为x<15∴1-5a b = ,且a<0∴b=-5a>0,15 15a b=-解不等式0bx a ->,移项得:bx >a 两边同时除以b 得:x >a b, 即x >-15故选C 【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键4.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1 B .0C .1或﹣1D .2或0【答案】A【解析】把x =﹣1代入方程计算即可求出k 的值. 【详解】解:把x =﹣1代入方程得:1+2k+k 2=0, 解得:k =﹣1, 故选:A . 【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 6.如果解关于x 的分式方程2122m xx x-=--时出现增根,那么m 的值为 A .-2 B .2 C .4D .-4【答案】D 【解析】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1. 当x=1时,m+4=1﹣1,m=﹣4, 故选D .7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5 {152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5152x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DEF ABFS S425∆∆=::,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2【答案】B【解析】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴()2DEF ABFS S DE AB∆∆=::∵DEF ABFS S425∆∆=::,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<- B .32b -<≤-C .32b -≤≤-D .-3<b<-2【答案】A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-20x b -> x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长【答案】B【解析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:22221244;22b a a b a a x x -++==∵90,2aC BC AC b ∠=︒==,, ∴224a ABb =+,∴2222442a a b a aAD b +-=+=AD 的长就是方程的正根. 故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键. 二、填空题(本题包括8个小题)11.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.【答案】1.【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.12.如图,已知函数y=x+2的图象与函数y=kx(k≠0)的图象交于A、B两点,连接BO并延长交函数y=kx(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.【答案】3【解析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=12S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y 轴交于点D ,则D (0,2), 设A (a ,a+2),B (b ,b+2),则C (-b ,-b-2), ∴S △OAB =12×2×(a-b )=2, ∴a-b=2 ①.过A 点作AM ⊥x 轴于点M ,过C 点作CN ⊥x 轴于点N , 则S △OAM =S △OCN =12k , ∴S △OAC =S △OAM +S 梯形AMNC -S △OCN =S 梯形AMNC =2, ∴12(-b-2+a+2)(-b-a )=2, 将①代入,得 ∴-a-b=2 ②,①+②,得-2b=6,b=-3, ①-②,得2a=2,a=1, ∴A (1,3), ∴k=1×3=3. 故答案为3. 【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC 是解题的突破口.13.如图,直线y =k 1x +b 与双曲线2k y=x 交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2kx+b 的解集是 ▲ .【答案】-2<x <-1或x >1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k 1x <2k x +b 的解集即k 1x -b <2kx的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2ky=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2ky=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 14.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32- 1- 12- 012 132 …y (54)-2-94-2- 54- 074…则2ax bx c 0++=的解为________. 【答案】x 2=-或1【解析】由二次函数y=ax 2+bx+c (a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x 轴的另一个交点.继而求得答案. 【详解】解:∵二次函数y=ax 2+bx+c (a≠0)过点(-1,-2),(0,-2), ∴此抛物线的对称轴为:直线x=-12, ∵此抛物线过点(1,0),∴此抛物线与x 轴的另一个交点为:(-2,0), ∴ax 2+bx+c=0的解为:x=-2或1. 故答案为x=-2或1. 【点睛】此题考查了抛物线与x 轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键. 15.一元二次方程x 2=3x 的解是:________. 【答案】x 1=0,x 2=1【解析】先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解16.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.【答案】3:2;【解析】由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【详解】假设:AF=3x,BF=5x ,∵△AFG与△BFD相似∴AG=3y,BD=5y由题意BC:CD=3:2则CD=2y∵△AEG与△CED相似∴AE:EC=AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.17.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【答案】20【解析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.18.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.【答案】6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:60r=2 180ππ,解得:r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.三、解答题(本题包括8个小题)19.从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【答案】(1)520千米;(2)300千米/时.【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时依题意有:5204002.5x x-=3 解得:x=120经检验:x=120分式方程的解且符合题意高铁平均速度:2.5×120=300千米/时答:高铁平均速度为2.5×120=300千米/时.考点:分式方程的应用.20.如图,已知函数kyx=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x 轴的负半轴交于点E .若AC=32OD ,求a 、b 的值;若BC ∥AE ,求BC 的长. 【答案】(1)a=34,b=2;(2)5 【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k 的值,再得出A 、D 点坐标,进而求出a ,b 的值;(2)设A 点的坐标为:(m ,4m),则C 点的坐标为:(m ,0),得出tan ∠ADF=42AF m DF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=kx(x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x的图象上,∴A 点的坐标为:(43,3),∵一次函数y=ax+b 的图象经过点A 、D ,∴43{32a b b +==,解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形, ∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF m DF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =,∴42m m -=42m ,解得:m=1,∴C 点的坐标为:(1,0),则BC=5. 考点:反比例函数与一次函数的交点问题.21.为上标保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;求出最低费用,并说明费用最低时的调配方案.【答案】(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.【解析】试题分析:(1)设从甲仓库运x 吨往A 港口,根据题意得从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,再由等量关系:总运费=甲仓库运往A 港口的费用+甲仓库运往B 港口的费用+乙仓库运往A 港口的费用+乙仓库运往B 港口的费用列式并化简,即可得总运费y (元)与x (吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x 的取值;(2)因为所得的函数为一次函数,由增减性可知:y 随x 增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有(1﹣x )吨, 从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨, 所以y=14x+20+10(1﹣x )+8(x ﹣30)=﹣8x+2560, x 的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=1时总运费最小, 当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.考点:一次函数的应用.22.吴京同学根据学习函数的经验,对一个新函数y =2545x x --+的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x 的取值范围是 .列表: x … ﹣2﹣10 123 4 56…y…517-m ﹣152-﹣5n﹣112-517-…表中m = ,n = .描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点(其中x 为横坐标,y 为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质:① ; ② .【答案】(1)一切实数(2)-12,-52(3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x =2对称【解析】(1)分式的分母不等于零; (2)把自变量的值代入即可求解; (3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质. 【详解】(1)由y =2545x x --+知,x 2﹣4x+5≠0,所以变量x 的取值范围是一切实数. 故答案为:一切实数; (2)m =251(1)452-=--++,n =25531252-=--+,故答案为:-12,-52; (3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x =2对称.故答案为:该函数有最小值没有最大值;该函数图象关于直线x =2对称 【点睛】本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.23.已知△ABC 在平面直角坐标系中的位置如图所示.分别写出图中点A 和点C 的坐标;画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B′C′;求点A 旋转到点A′所经过的路线长(结果保留π).【答案】(1)()04A ,、()31C ,(2)见解析(3)322【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长. 试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:AC=32,则9032321801802n r l πππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.24.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .【答案】证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE = 试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴= 考点:三角形全等的判定.25.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 【答案】大和尚有25人,小和尚有75人.【解析】设大和尚有x 人,小和尚有y 人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 【详解】解:设大和尚有x 人,小和尚有y 人,依题意,得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 解得:{x 25y 75==.答:大和尚有25人,小和尚有75人. 【点睛】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.已知△OAB 在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O 逆时针旋转90°得△OA 1B1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2;直接写出点A 1的坐标,点A 2的坐标.【答案】 (1)见解析;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6). 【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案; (2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA 1B 1,△OA 2B 2,即为所求;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6). 【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.4【答案】B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
中考数学一轮复习导学案直角三角形
20.直角三角形➢ 题组练习一(问题习题化)1.如图,在Rt △ABC 中,∠C=90°, CD 是斜边BC 上的中线,CE 是斜边BC 上的高线.(1)如果∠A=30°,∠B=______;AC :AB :BC=________.(2)如果AC=6,BC=8,则①AB=______;CE=______;CE=_______;②△ABC 外接圆的半径=_________;③△ABC 内切圆的半径=________;(3)△ABC ~_______~________;2. 已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.◆ 知识梳理 内 容知识技能要求 直角三角形的有关概念;了解直角三角形的性质与判定;勾股定理以及勾股定理的逆定理 掌握A C BE D题组练习二(知识网络化)3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 米(结果精确到0.1米,参考数据:=1.41,=1.73).4.如图,在矩形ABCD 中,AB=5,BC=7,点E 为BC 上一动点,把∠ABE 沿A E 折叠,当点B 的对应点B′落在∠ADC 的角平分线上时,则点B′到BC 的距离为( )A .1或2B .2或3C .3或4D .4或55.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°, A=45°,∠D=30°,,斜边AB=6,D C=7,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A.B. C. 4 D.6.如图,CD 是∠ABC 的中线,点E 是AF 的中点,CF∠AB .(1)求证:CF=AD ;(2)若∠ACB=90°,试判断四边形BFCD 的形状,并说明理由.D C AEB A D O E BC 图甲 图乙➢题组练习三(中考考点链接)7.如图,在Rt∠ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE∠AC于点E.若DE=a,则∠ABC的周长用含a的代数式表示为_________________.8.问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.[探究发现]小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌______,得EH=ED.在Rt△HBE中,由___________ 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是______________.[实践运用](1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.答案:1.略;2.3.5; 3.2.9;4.A;5.B;6.(1)证明∠AE是DC边上的中线,∠AE=FE,∠CF∠AB,∠∠ADE=∠CFE,∠DAE=∠CFE.在∠ADE和∠FCE中,,∠∠ADE∠∠FCE(AAS),∠CF=DA.(2)∠CD是∠ABC的中线,∠D是AB的中点,∠AD=BD,∠∠ADE∠∠FCE,∠AD=CF,∠BD=CF,∠AB∠CF,∠BD∠CF,∠四边形BFCD是平行四边形,∠∠ACB=90°,∠∠ACB是直角三角形,∠CD=AB,∠BD=AB,∠BD=CD,∠四边形BFCD是菱形.7.(6+2)a8. 解:∠CDE;勾股;AD2+EB2=DE2;(1)在Rt∠ABE和Rt∠AGE中,,∠Rt∠ABE∠Rt∠AGE(HL),∠∠BAE=∠GAE,同理,Rt∠ADF∠Rt∠AGF,∠∠GAF=∠DAF,∠四边形ABCD是正方形,∠∠BAD=90°,∠∠EAF=∠BAD=45°;(2)由(1)知,Rt∠ABE∠Rt∠AGE,Rt∠ADF∠Rt∠AGF,∠BE=EG=2,DF=FG=3,则EF=5,设AG=x,则CE=x﹣2,CF=x﹣3,∠CE2+CF2=EF2,∠(x﹣2)2+(x﹣3)2=52,解这个方程,得x1=6,x2=﹣1(舍去),∠AG=6,∠BD=,∠AB=6,∠MN2=MB2+ND2设MN=a,则,所以a=,即MN=.。
中考一轮复习导学案:28课时+直角三角形
第28课时 直角三角形【基础知识梳理】1、直角三角形的性质①角的关系:直角三角形,两锐角_____________。
②边的关系(勾股定理):直角三角形中两直角边的____ __等于____ _____③直角三角形中30°所对的直角边等于______ __。
④直角三角形中,斜边的中线等于_____________。
⑤直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于________。
⑥面积 2ch ab s ==; 2、直角三角形的判别① 有一个角是_______的三角形是直角三角形。
②有两角___________的三角形是__________________。
③勾股定理的逆定理:如果一个三角形中有两边的平方和等于第三边的_______,那么这个三角形是直角三角形。
④如果三角形一边上的________等于这边的一半,那么这个三角形是直角三角形。
3、锐角三角函数:在Rt △ABC 中,∠C=90°,①∠A 的正弦=A a sin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边(注:三角函数值是一个比值.)②三角函数的关系a 、互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A b 、 同角的三角函数关系.平方关系:sin 2 A+cos 2A=l 倒数关系:tanA •tanB=1 【1、在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.365 B. 1225 C. 94 D. 42、(2014•山东枣庄,第3题3分)如图,AB∥CD,AE 交CD 于C ,∠A=34°,∠DEC=90°,则∠D 的度数为( )3、(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧,,4、把Rt△ABC的三边都扩大十倍,关于锐角A的正弦值:甲同学说扩大十倍;乙同学说不变;丙同学说缩小十倍.那么你认为正确的说法应是()A. 甲B. 乙C. 丙D. 都不正确5、(2014年四川巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.2)7、(2014•福建泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.8、(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.【精典例题】例1、(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.例2、(2014•山东枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为 cm.例3、(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()【自测训练】A—基础训练一、选择题(每小题有四个选项,只有一个选项是正确的.)1、(2014•滨州)下列四组线段中,可以构成直角三角形的是(),2、如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A、(2,0)B、1,0)C、)D、)3、R t △ABC,∠C=900,AB=6,cosB=23,则BC 的长为( )(A )4 (B)2 5 (C) 18 1313 (D) 1213134、(2014•湖南张家界)如图,在Rt △ABC 中,∠ACB=60°,DE 是斜边AC 的中垂线,分别交AB 、AC 于D 、E 两点.若BD=2,则AC 的长是( )二、填空题5、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_________________6、(2014•四川凉山州,第16题,4分)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .7、错误!未找到引用源。
中考数学一轮复习第18课直角三角形(勾股定理)导学案
中考数学一轮复习第18课直角三角形(勾股定理)导学案【考点梳理】:1. 直角三角形的定义;2. 直角三角形的性质和判定;3.特殊角度的直角三角形的性质.4.勾股定理:a2+b2=c2【思想方法】1. 常用解题方法——数形结合2. 常用基本图形——直角三角形【考点一】:直角三角形的性质【例题赏析】(2015•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B.2 C.3 D.+2考点:含30度角的直角三角形.分析:根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.解答:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.点评:本题考查了角的平分线的性质以及直角三角形的性质,斜边的一半,理解性质定理是关键.【考点二】:勾股定理【例题赏析】(2015•青海西宁第17题2分)如图,Rt△ABC中,∠B=90°,AB=4,BC=3 AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.考点:线段垂直平分线的性质;勾股定理..分析:先根据线段垂直平分线的性质得出CD=AD,故AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中根据勾股定理求出x的值即可.解答:解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键【考点三】:勾股定理的逆定理【例题赏析】(2015•桂林)(第8题)下列各组线段能构成直角三角形的一组是()A. 30,40,50 B. 7,12,13 C. 5,9,12 D. 3,4,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:A、∵302+402=502正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,作出判断.【考点四】:用勾股定理解展开与折叠问题【例题赏析】(2015•山东泰安,第20题3分)如图,矩形ABCD中,E是ADABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为([中^国教育出版&#网~@]A.2 B. 4 C. D. 2考点:翻折变换(折叠问题)..分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.解答:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,解得x=4.故选:B.点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,熟记性质,找出三角形全等的条件EF=EC是解题的关键.【考点五】:勾股定理的综合运用【例题赏析】(2015•甘肃庆阳,第20题,3分)在底面直径为2cm,高为3cm上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)考点:平面展开-最短路径问题.分析:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.解答:解:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.【真题专练】1.(2015•毕节市)(第19题)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= .2.(2015•枣庄,第15题4分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.3.(2015•江苏宿迁,第14题3分)如图,在Rt△ABC中,∠ACB=90°,点D,E,F为AB,AC,BC的中点.若CD=5,则EF的长为.4.(2015•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,45.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B. 3 C. 4 D. 56.(2015•铜仁市)(第17题)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.7.(2015•昆明第16题,3分)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.8.(2015•山东泰安,第23题3分))如图,在矩形ABCD中,M、N分别是边AD、BCE、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.9.(2015•东营,第17题4分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.10.(2015·湖北省咸宁市,第23题10有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【真题演练参考答案】1.(2015•毕节市)(第19题)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 .思考与收获考点:含30度角的直角三角形;角平分线的性质..分析:根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.解答:解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.点评:本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.2.(2015•枣庄,第15题4分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .考点:勾股定理;直角三角形斜边上的中线.专题:计算题.分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.解答:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一3.(2015•江苏宿迁,第14题3分)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为 5 .考点:三角形中位线定理;直角三角形斜边上的中线..分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,[中国%&*教育^出版网~]∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.点评:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.4.(2015•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,4考点:勾股定理的逆定理..分析:知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.解答:解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B. 3 C. 4 D. 5考点:等腰直角三角形;点到直线的距离.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.解答:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=2,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=2•sin45°=2•=2>,所以在AB和AD边上有符合P到BD的距离为的点2个,故选A.点评:本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD 的最大距离比较得出答案.6.(2015•铜仁市)(第17题)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8 .考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.7.(2015•昆明第16题,3分)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为(6+2)a .考点:含30度角的直角三角形;等边三角形的判定与性质;勾股定理..分析:先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.解答:解:∵∠C=30°,∠BAC=90°,DE⊥AC,∴BC=2AB,CD=2DE=2a.∵AB=AD,∴点D是斜边BC的中点,∴BC=2CD=4a,AB=BC=2a,∴AC===2a,∴△ABC的周长=AB+BC+AC=2a+4a+2a=(6+2)a.故答案为:(6+2)a.点评:本题考查的是含30°的直角三角形,熟知在直角三角形中,30°角所对的直角边等于斜边的一半是解答此题的关键.8.(2015•山东泰安,第23题3分))如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为20 .考点:三角形中位线定理;勾股定理;矩形的性质..分析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F 分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.解答:解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.点评:本题考查了三角形的中位线,勾股定理以及矩形的性质,是中考常见的题型,难度不大,比较容易理解.9.(2015•东营,第17题4分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.考点:平面展开-最短路径问题.专题:计算题.分析:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC的长即可.解答:解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.点评:此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出CN的长是解本题的关键.10.(2015·湖北省咸宁市,第23题10分)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.考点:四边形综合题..分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.。
教育最新K12中考数学一轮复习第21讲直角三角形与勾股定理教案
第20讲:直角三角形与勾股定理一、复习目标(1)掌握判定直角三角形全等的条件和直角三角形的性质。
(2)掌握角平分线性质的逆定理。
(3)掌握勾股定理及其逆定理。
二、课时安排1课时三、复习重难点直角三角形的性质和判定,勾股定理及其逆定理,直角三角形全等的判定及其应用。
四、教学过程(一)知识梳理直角三角形的概念、性质与判定b,外接圆半径勾股定理及逆定理互逆命题如果两个命题的题设和结论正好相反,我们把这样的两命题、定义、定理、公理述,作出________(二)题型、技巧归纳考点一:利用勾股定理求线段的长度技巧归纳:勾股定理的作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求另两边的关系;(3)用于证明平方关系的问题.考点2实际问题中勾股定理的应用技巧归纳:利用勾股定理求最短线路问题的方法:将起点和终点所在的面展开成为一个平面,进而利用勾股定理求最短长度.考点3勾股定理逆定理的应用技巧归纳:判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.考点4定义、命题、定理、反证法技巧归纳:只有对一件事情做出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.(三)典例精讲例1 将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图21-1,则三角板的最大边的长为( )A、3CMB、6CMC、、[解析] 如图所示,过点A作AD⊥BD,垂足为D,所以AB=2AD=2×3=6 (cm),△ABC是等腰直角三角形,AC=2AB=62(cm).例2 一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.解:(1)如图,木柜的表面展开图是两个矩形和.蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC1.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长是l1=42+(4+5)2=97. 蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是l2=(4+4)2+52=89.l1>l2,最短路径的长是l2=89.(3)作B1E⊥AC1于E,则B1E=B1C1AC1·AA1=489·5=208989例3 已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A.② B.①② C.①③ D.②③[解析] 根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意;③∵12+(√3)2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意.故构成直角三角形的有②③.故选D.例4 下列命题为假命题的是( )A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形两边的平方和等于第三边的平方D .三角形的面积等于一条边的长与该边上的高的乘积的一半[解析] 选项A 和B 中的命题分别为三角形的内角和定理与三角形三边关系定理,均为真命题;对于选项C ,只有直角三角形中两直角边的平方和等于斜边的平方,而其他三角形的三边都不具有这一关系,因此是假命题;选项D 中的命题是三角形的面积计算公式,也是真命题,故应选C.(四)归纳小结本部分内容要求熟练掌握判定直角三角形全等的条件和直角三角形的性质、掌握角平分线性质的逆定理、掌握勾股定理及其逆定理。
中考数学一轮复习几何部分导学案专题4:直角三角形、勾股定理、面积(学生用)
中考数学一轮复习几何部分专题4:直角三角形、勾股定理、面积必考知识点:了解直角三角形的判定与性质,理解直角三角形的边角关系,掌握用勾股定理解某些简单的实际问题。
它的有关性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系及与面积有关的问题等方面。
必考例题:【例1】 如图,在四边形ABCD 中,∠A =600,∠B =∠D =900,BC =2,CD =3,则AB =?【例2】如图,P 为△ABC 边BC 上一点,PC =2PB ,已知∠ABC =450,∠APC =600,求∠ACB 的度数。
探索与创新:【问题一】如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =300,点A 处有一所中学,AP =160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN 上沿PN 方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米/小时,那么学校受影响的时间为多少秒?例1图32ED CBA例2图QP CB A问题一图 F E DA Q PN M【问题二】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图12,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东300方向往C移动,且台风中心风力不变。
若城市所受风力达到或超过四级,则称为受台风影响。
(1)该城市是否会受到这次台风的影响? 请说明理由。
(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?12 CBA问题二图跟踪训练:一、填空题:1、如果直角三角形的边长分别是6、8、x ,则x 的取值范围是 。
2、如图,D 为△ABC 的边BC 上的一点,已知AB =13,AD =12,,BD =5,AC =BC ,则BC = 。
中考数学一轮复习第19讲《直角三角形》讲学案
中考数学一轮复习第19讲《直角三角形》【考点解析】知识点一:直角三角形的性质【例题】(·青海西宁·2分)如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= 2 .【考点】角平分线的性质;含30度角的直角三角形.【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【解答】解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.【变式】(·泰安,23,3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.【解析】含30度角的直角三角形;线段垂直平分线的性质.根据同角的余角相等、等腰△ABE 的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.【点评】本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.知识点二:直角三角形的判定【例题】(·潍坊,9,3分)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B 的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为()A.海里/小时 B. 30海里/小时C.海里/小时 D.海里/小时答案:D考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC是直角三角形是解决本题的关键.【变式】(3分)(•桂林)(第8题)下列各组线段能构成直角三角形的一组是()A. 30,40,50 B. 7,12,13 C. 5,9,12 D. 3,4,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.知识点三勾股定理及其逆定理的应用【例题】(·山东省东营市·3分)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或10【解析】勾股定理、分类讨论思想,在图①中,由勾股定理,得BD=AB2-AD2=102-62=8;CD=AC2-AD2=(210)2-62=2;∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得BD=AB2-AD2=102-62=8;CD=AC2-AD2=(210)2-62=2;∴BC=BD―CD=8―2=6.故选择C.【点拨】本题考查分类思想和勾股定理,要分两种情况考虑,分别在两个图形中利用勾股定理求出BD和CD,从而可求出BC的长.【变式】(·陕西·3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.知识点四:直角三角形的综合应用【例题】(·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(四川巴中,29,10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【解析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵▱ABCD ,∴CD=AB=8. 由(1)知△ADF ∽△DEC , ∴,∴DE===12.在Rt △ADE 中,由勾股定理得:AE===6.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错. 【典例解析】【例题1】(·四川内江)已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ) ABC .32D .不能确定[答案]B[考点]勾股定理,三角形面积公式,应用数学知识解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.如图,A、C是∠MON的OM边上两点,AB⊥ON于B,CD⊥ON于D,
延长线与AB的延长线交于点F,求证:BF=BD
2.如图,在ΔABC中,∠B=40°,∠C=20°, AD⊥CA于A,交BC于D,
求证:CD=2AB
3.如图,AB⊥a于B,DC⊥a于C,∠BMA=75°,∠DMC=45°,AM=DM,
求证:AB=CB
4.如图,在四边形ABCD中,BC=DC,AC平分∠BAD,CE⊥AB,
2.如图,RtΔABC中,∠BCA=90°,∠A=30°CD⊥AB于D,DE⊥BC于E,则AB:BE的值为( )
(A) 8(B) 4(C)(D) 3.5
3.等腰三角形一腰上的高与底边所成的角等于( )
(A)顶角的2倍(B)顶角的一半(C)顶角(D)底角的一半
4.在直角三角形中,两锐角的平分线相交成钝角的度数是.
(3)在△ABC中,如果∠A-∠B=90°,那么△ABC是()
(A)直角三角形(B)锐角三角形(C)钝角三角形(D)锐角三角形或钝角三角形
〖预习练习〗
1.直角三角形的两个锐角的平分线所交成的角的度数是()
(A)45°(B)135°(C)45°或135°(D)以上答案都不对
2.如图Rt△ABC,∠C=90°,CD⊥AB,CE是AB上的中线,
CF⊥AD,E、F为垂足,若AB=21,AD=9,BC=DC=10,求AC的长.
独立训练:
1.如图,在ΔABC中,AD是∠BAC的平分线,DM⊥AB于M,DN⊥AC于N,
连接MN,则图中等腰三角形有个,直角三角形有个
2.如图,在RTΔABC中,∠B=90°,AD;EC2AE2
6.AD是Rt△ABC斜边上的高,已知AB=5cm,BD=3cm,那么BC=cm
7.如图,△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14cm, BC=5cm,求AB的长。
考点训练:
1.如果三角形中有一条边是另一条边是2倍,并且有一个角是30°,那么这个三角形是()(A)直角三角形(B)锐角三角形(C)钝角三角形(D)图形不能确定
8.如图,在RTΔABC中,斜边AB的中垂线DE交BC于D,连结AD,
若∠1:∠2=2:5,求∠B、∠BAC的度数.
9.如图,在ΔABC中,∠BCA=90°,且AC=BC,
直线L过C点,AE⊥L于E,BF⊥L于F.求证:EF=AE+BF
解题指导
1.如图,在ΔABC中,∠ABC=2∠C,AD⊥BC于D,E是AC中点,ED的
3.已知:如图,AD∥BC,F是AB中点,DF交CB延长线于点E,CE=CD,
则图中与∠ADE相等的角有,
与∠ADE互余的角有.
4.已知:如图,在四边形ABCD中,M、N分别是CB、CD中点,且AM⊥BC于M,AN⊥CD于N,∠MAN=80°,则∠B+∠D的度数是
5.如图,在ΔABC中,∠B=2∠C,AD⊥BC于D,M为AB边中点,ME∥AC交BC于E,则AB是DE的倍.
5.直角三角形中,一条直角边比斜边上的中线长1厘米,如果斜边长是10厘米,则两直角边长是.
6.已知:如图,在ΔABC中,AB>AC, D点在AB上, AD=AC,AM⊥CD于M,E为BC的中点,若AB=16,AC=10,则EM的长为
7.有一个角为30°的等腰三角形,若腰长为4,则腰上的高是,面积是.
∠ACD:∠BCD=3:1,若CD=4cm,则ED是()C
(A)2cm(B)4cm(C)3cm(D)5cmAEDB
3.等腰直角三角形中,若斜边和斜边上的高的和是6cm,则斜边长是cm
4.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是cm
5.如图,△ABC中,AB=AC,∠BAC=120度,AD⊥AC,DC=5,则BD=
第21课直角三角形
〖知识点〗
直角三角形的性质和判定、逆命题和逆定理、勾股定理及逆定理、角平分线的性质、线段的中垂线及其性质
〖大纲要求〗
了解逆命题和逆定理的概念;掌握直角三角形中两锐角互余、斜边上的中线等于斜边的一半及30°角所对的直角边等于斜边的一半等性质,掌握勾股定理及其逆定理,并能运用它们进行简单的论证和计算;掌握角平分线的性质定理及其逆定理,线段中垂线性质定理及其逆定理。
〖考查重点与常见题型〗
直角三角形性质及其判定的应用,角平分线性质定理及其逆定理,线段中垂线的性质定理及其逆定理的应用,逆命题的概念,中考题中多为选择题或填空题,有时也考查中档的解答题,如:
(1)在直角三角形中,已知一条直角边的长为6,斜边上的中线长为5,则另一条直角边的长为
(2)命题“平行四边形的对角线互相平分”的逆命题是