【步步高】2014届高三数学大一轮复习讲义 专题二利用导数研究函数的性质
【步步高】2014届高三数学大一轮复习讲义--专题二利用导数研究函数的性质
专题二 利用导数研究函数的性质1.f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分不必要条件.2.f (x )在(a ,b )上是增函数的充要条件是f ′(x )≥0,且f ′(x )=0在有限个点处取到. 3.对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的必要条件,但并不充分. 4.如果连续函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.1. 已知函数f (x )=ln a +ln xx在[1,+∞)上为减函数,则实数a 的取值范围为__________.答案 [e ,+∞)解析 f ′(x )=1x·x -(ln a +ln x )x 2=1-(ln a +ln x )x 2,因为f (x )在[1,+∞)上为减函数,故f ′(x )≤0在[1,+∞)上恒成立,即ln a ≥1-ln x 在[1,+∞)上恒成立.设φ(x )=1-ln x ,φ(x )max =1,故ln a ≥1,a ≥e.2. 设函数f (x )=ax 3-3x +1 (x ∈R),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 答案 4解析 若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4.当x <0,即x ∈[-1,0)时,同理a ≤3x 2-1x 3.g (x )在区间[-1,0)上单调递增,∴g (x )min =g (-1)=4,从而a ≤4, 综上可知a =4.3. 若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0<a <1)的单调递减区间是__________. 答案 ⎣⎡⎦⎤1,1a 解析 由f ′(x )=-x (x +1)≤0,得x ≤-1或x ≥0,即f (x )的递减区间为(-∞,-1],[0,+∞),则f (x )的递增区间为[-1,0]. ∵0<a <1,∴y =log a x 在(0,+∞)上为减函数, 由复合函数单调性可知当-1≤log a x ≤0, 即1≤x ≤1a 时,g (x )为减函数,∴g (x )的单调递减区间为⎣⎡⎦⎤1,1a . 4. 已知函数f (x )=a sin 2x -13sin 3x (a 为常数)在x =π3处取得极值,则a 的值为( )A .1B .0 C.12 D .-12答案 A解析 ∵f ′(x )=2a cos 2x -cos 3x , ∴f ′⎝⎛⎭⎫π3=2a cos 23π-cos π=0, ∴a =1,经验证适合题意.5. 对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)答案 D解析 当x ≥1时,f ′(x )≥0,f (x )为增函数,∴f (2)>f (1), 当x ≤1时,f ′(x )≤0,f (x )为减函数,∴f (0)>f (1), ∴f (0)+f (2)>2f (1).题型一 利用导数求函数的单调区间例1 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1, 解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c .则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是(-∞,-13)和(1,+∞);f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x , 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 探究提高 利用导数研究函数单调性的一般步骤: (1)确定函数的定义域; (2)求导数f ′(x );(3)①若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x ≥0时,f (x )≥0,求a 的取值范围. 解 (1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 故f (x )的单调递增区间为(-∞,-1),(0,+∞),单调递减区间为(-1,0).(2)f (x )=x (e x -1-ax ),令g (x )=e x -1-ax ,g ′(x )=e x -a .若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x ≥0时,g (x )≥0,即f (x )≥0. 若a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数, 而g (0)=0,从而当x ∈(0,ln a )时,g (x )<0,即f (x )<0. 综合得a 的取值范围为(-∞,1]. 题型二 已知单调区间求参数范围例2 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x , 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0, 所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是[-2,2]. (2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. 因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32.即a ≥32.因此a 的取值范围为a ≥32.探究提高 (1)根据函数的单调性确定参数范围是高考的一个热点题型,其根据是函数在某区间上单调递增(减)时,函数的导数在这个区间上大(小)于或者等于零恒成立,转化为不等式恒成立问题解决.(2)在形式上的二次函数问题中,极易忘却的就是二次项系数可能等于零的情况,这样的问题在导数单调性的讨论中是经常遇到的,值得特别注意.已知函数f (x )=axx 2+b在x =1处取得极值2.(1)求函数f (x )的表达式;(2)当m 满足什么条件时,函数f (x )在区间(m,2m +1)上单调递增? 解 (1)因为f ′(x )=a (x 2+b )-ax (2x )(x 2+b )2,而函数f (x )=axx 2+b在x =1处取得极值2,所以⎩⎪⎨⎪⎧f ′(1)=0,f (1)=2,即⎩⎨⎧a (1+b )-2a =0,a1+b=2,得⎩⎪⎨⎪⎧a =4b =1,所以f (x )=4x1+x 2即为所求.(2)由(1)知f ′(x )=4(x 2+1)-8x 2(x 2+1)2=-4(x -1)(x +1)(1+x 2)2.令f ′(x )=0得x 1=-1,x 2=1, 则f (x )的增减性如下表:可知,f (x )的单调增区间是[-1,1], 所以⎩⎪⎨⎪⎧m ≥-12m +1≤1⇒-1<m ≤0m <2m +1,所以当m ∈(-1,0]时,函数f (x )在区间(m,2m +1)上单调递增. 题型三 函数的极值、最值应用问题例3 设函数f (x )=x 4+ax 3+2x 2+b (x ∈R),其中a ,b ∈R.(1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围;(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,求b 的取值范围. 思维启迪:f (x )≤1在[-1,0]上恒成立,转化为f (x )在[-1,0]上的最大值f (x )max ≤1. 解 (1)f ′(x )=4x 3+3ax 2+4x =x (4x 2+3ax +4).当a =-103时,f ′(x )=x (4x 2-10x +4)=2x (2x -1)(x -2).令f ′(x )=0,得x 1=0,x 2=12,x 3=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在⎝⎭⎫0,12和(2,+∞)上是增函数,在(-∞,0)和⎝⎛⎭12,2上是减函数. (2)f ′(x )=x (4x 2+3ax +4),显然x =0不是方程4x 2+3ax +4=0的根. 由于f (x )仅在x =0处有极值,则方程4x 2+3ax +4=0有两个相等的实根或无实根, Δ=9a 2-4×16≤0,解此不等式,得-83≤a ≤83.这时,f (0)=b 是唯一极值.因此满足条件的a 的取值范围是⎣⎡⎦⎤-83,83. (3)由(2)知,当a ∈[-2,2]时,4x 2+3ax +4>0恒成立. ∴当x <0时,f ′(x )<0,f (x )在区间(-∞,0]上是减函数. 因此函数f (x )在[-1,0]上的最大值是f (-1).又∵对任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,∴f (-1)≤1,即3-a +b ≤1. 于是b ≤a -2在a ∈[-2,2]上恒成立. ∴b ≤-2-2,即b ≤-4.因此满足条件的b 的取值范围是(-∞,-4].探究提高 (1)对含参函数的极值,要进行讨论,注意f ′(x 0)=0只是f (x )在x 0处取到极值的必要条件.(2)利用函数的极值、最值,可以解决一些不等式的证明、函数零点个数、恒成立问题等.已知f (x )=ax 2 (a ∈R),g (x )=2ln x .(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围. 解 (1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),∴F ′(x )=2ax -2x =2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a. 由ax 2-1<0,得0<x <1a. 故当a >0时,F (x )在区间⎝⎛⎭⎫1a ,+∞上单调递增, 在区间⎝⎛⎭⎫0,1a 上单调递减. ②当a ≤0时,F ′(x )<0 (x >0)恒成立. 故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于方程a =2ln xx 2=φ(x )在区间[2,e]上有两个不等解.∵φ′(x )=2x (1-2ln x )x 4在(2,e)上为增函数,在(e ,e)上为减函数,则φ(x )max =φ(e)=1e ,而φ(e)=2e 2<φ(2)=2ln 24=ln 22=φ(2). ∴φ(x )min =φ(e), 如图当f (x )=g (x )在[2,e]上有两个不等解时有φ(x )min =ln 22, a 的取值范围为ln 22≤a <1e .导数与函数单调性关系不清致误典例:(12分)已知f (x )=x 3-ax 2-3x .(1)若f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )在[1,a ]上的最小值和最大值.易错分析 求函数的单调递增区间就是解导数大于零的不等式,受此影响,容易认为函数f (x )的导数在区间[2,+∞)上大于零,忽视了函数的导数在[2,+∞)上个别的点处可以等于零,这样的点不影响函数的单调性. 规范解答解 (1)由题意,知f ′(x )=3x 2-2ax -3, 令f ′(x )≥0 (x ≥2),得a ≤32⎝⎛⎭⎫x -1x .[2分] 记t (x )=32⎝⎛⎭⎫x -1x ,当x ≥2时,t (x )是增函数, 所以t (x )min =32×⎝⎛⎭⎫2-12=94, 所以a ∈⎝⎛⎦⎤-∞,94.[5分] (2)由题意,得f ′(3)=0,即27-6a -3=0,所以a =4.[6分] 所以f (x )=x 3-4x 2-3x ,f ′(x )=3x 2-8x -3. 令f ′(x )=0,得x 1=-13,x 2=3.[7分]又因为x ∈[1,4],所以x =-13(舍去),故x =3.当x ∈(1,3)时,f ′(x )<0,[8分] 所以f (x )在[1,3]上为减函数; 当x ∈(3,4)时,f ′(x )>0, 所以f (x )在[3,4]上为增函数.[9分] 所以x =3时,f (x )有极小值.[10分] 于是,当x ∈[1,4]时,f (x )min =f (3)=-18,而f (1)=-6,f (4)=-12,所以f (x )max =f (1)=-6.[12分]温馨提醒 (1)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,其逆命题不成立,因为f ′(x )≥0包括f ′(x )>0或f ′(x )=0,当f ′(x )>0时函数y =f (x )在区间(a ,b )上单调递增,当f ′(x )=0时f (x )在这个区间内为常数函数;同理,若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,其逆命题不成立.(2)使f ′(x )=0的离散的点不影响函数的单调性.方法与技巧1. 利用导数证明不等式,就是把不等式恒成立的问题,通过构造函数,转化为利用导数求函数最值的问题.应用这种方法的难点是如何根据不等式的结构特点或者根据题目证明目标的要求,构造出相应的函数关系式.2. 在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用. 失误与防范1.研究函数的有关性质,首先要求出函数的定义域. 2.利用单调性求最值时不要忽视f ′(x )=0的情况. 3.“f ′(x 0)=0”是“函数f (x )在x 0取到极值”的必要条件.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. 函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)答案 A解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0),∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数, 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数. 2. 函数f (x )=x 3+3x 2+4x -a 的极值点的个数是( )A .2B .1C .0D .由a 确定 答案 C解析 f ′(x )=3x 2+6x +4=3(x +1)2+1>0,则f (x )在R 上是增函数,故不存在极值点.故选C.3. 若函数f (x )=x 3-6bx +3b 在(0,1)内有最小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D.⎝⎛⎭⎫0,12 答案 D解析 f (x )在(0,1)内有最小值,即f (x )在(0,1)内有极小值,f ′(x )=3x 2-6b ,由题意,得函数f ′(x )的草图如图,∴⎩⎪⎨⎪⎧ f ′(0)<0,f ′(1)>0, 即⎩⎪⎨⎪⎧-6b <0,3-6b >0,解得0<b <12.故选D.4. 已知函数f (x )=x 3-3x 2-9x +3,若函数g (x )=f (x )-m 在x ∈[-2,5]上有3个零点,则m的取值范围为( )A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)答案 D解析 f ′(x )=3x 2-6x -9=3(x 2-2x -3)=3(x +1)(x -3),令f ′(x )=0,得x =-1或x =3.当x ∈[-2,-1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-1,3)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(3,5]时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的极小值为f (3)=-24,极大值为f (-1)=8.而f (-2)=1,f (5)=8,函数图象大致如图所示.故要使方程g (x )=f (x )-m 在x ∈[-2,5]上有3个零点,只需函数f (x )在[-2,5]内的函数图象与直线y =m 有3个交点,故⎩⎪⎨⎪⎧m <8,m ≥1,即m ∈[1,8).二、填空题(每小题5分,共15分)5.(2012·广东)曲线y=x3-x+3在点(1,3)处的切线方程为________.答案2x-y+1=0解析∵y′=3x2-1,∴y′|x=1=3×12-1=2.∴该切线方程为y-3=2(x-1),即2x-y+1=0.6.已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是__________.答案[-2,-1]解析由题意知,点(-1,2)在函数f(x)的图象上,故-m+n=2.①又f′(x)=3mx2+2nx,则f′(-1)=-3,故3m-2n=-3.②联立①②解得:m=1,n=3,即f(x)=x3+3x2,令f′(x)=3x2+6x≤0,解得-2≤x≤0,则[t,t+1]⊆[-2,0],故t≥-2且t+1≤0,所以t∈[-2,-1].7.函数f(x)=x(x-m)2在x=1处取得极小值,则实数m=________.答案 1解析f(x)=x3-2mx2+m2x,f′(x)=3x2-4mx+m2,由已知f′(1)=0,即3-4m+m2=0,解得m=1或m=3.当m=1时,f′(x)=3x2-4x+1=(3x-1)(x-1),当m=3时,f′(x)=3x2-12x+9=3(x-1)(x-3),则m=3应舍去.三、解答题(共22分)8.(10分)设函数f(x)=x3-92x2+6x-a.(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.解(1)f′(x)=3x2-9x+6=3(x-1)(x-2),因为x ∈(-∞,+∞),f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立,所以Δ=81-12(6-m )≤0,解得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ;当x =2时,f (x )取极小值,f (2)=2-a , 故当f (2)>0或f (1)<0时,f (x )=0仅有一个实根. 解得a <2或a >52.9. (12分)已知函数f (x )=x 3-32ax 2+b (a ,b 为实数,且a >1)在区间[-1,1]上的最大值为1,最小值为-2.(1)求f (x )的解析式;(2)若函数g (x )=f (x )-mx 在区间[-2,2]上为减函数,求实数m 的取值范围. 解 (1)f ′(x )=3x 2-3ax ,令f ′(x )=0,得x 1=0,x 2=a ,∵a >1, ∴f (x )在[-1,0]上为增函数,在[0,1]上为减函数. ∴f (0)=b =1,∵f (-1)=-32a ,f (1)=2-32a ,∴f (-1)<f (1),∴f (-1)=-32a =-2,a =43.∴f (x )=x 3-2x 2+1.(2)g (x )=x 3-2x 2-mx +1,g ′(x )=3x 2-4x -m .由g (x )在[-2,2]上为减函数,知g ′(x )≤0在x ∈[-2,2]上恒成立.∴⎩⎨⎧g ′(-2)≤0g ′(2)≤0,即⎩⎪⎨⎪⎧20-m ≤04-m ≤0∴m ≥20. ∴实数m 的取值范围是m ≥20.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 设f (x )=13x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围为( )A .[-5,+∞)B .(-∞,-3]C .(-∞,-3]∪[-5,+∞)D .[-5,5] 答案 C解析 f ′(x )=x 2+2ax +5,当f (x )在[1,3]上单调递减时,由⎩⎨⎧f ′(1)≤0,f ′(3)≤0得a ≤-3;当f (x )在[1,3]上单调递增时,f ′(x )≥0恒成立,则有Δ=4a 2-4×5≤0或⎩⎨⎧Δ>0,-a <1f ′(1)≥0或⎩⎪⎨⎪⎧Δ>0,-a >3,f ′(3)≥0,得a ∈[-5,+∞).综上a 的取值范围为(-∞,-3]∪[-5,+∞),故选C. 2. 若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有( )A .0个根B .1个根C .2个根D .3个根答案 B解析 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ),因为a >2,所以2a >4,所以当x ∈(0,2)时,f ′(x )<0,则f (x )在(0,2)上为减函数,又f (0)f (2)=1×⎝⎛⎭⎫83-4a +1=113-4a <0,所以f (x )=0在(0,2)上恰好有1个根,故选B.3. (2011·湖南)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为 ( )A .1 B.12 C.52 D.22答案 D解析 由题意画出函数图象如图所示,由图可以看出|MN |=y =t 2-ln t (t >0).y ′=2t -1t =2t 2-1t =2(t +22)(t -22)t.当0<t <22时,y ′<0,可知y 在此区间内单调递减; 当t >22时,y ′>0,可知y 在此区间内单调递增. 故当t =22时,|MN |有最小值. 二、填空题(每小题5分,共15分)4. 关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是__________.答案 (-4,0)解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2,当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0-4-a <0,解得-4<a <0.5. 如果在⎣⎡⎦⎤12,2上,函数f (x )=x 2+px +q 与g (x )=3x 2+32x在同一点处取得相同的最小值,那么f (x )在⎣⎡⎦⎤12,2上的最大值是________. 答案 4解析 ∵g (x )=3x 2+32x 且x ∈⎣⎡⎦⎤12,2,则g (x )≥3, 当且仅当x =1时,g (x )=3.又f ′(x )=2x +p , ∴f ′(1)=0,即2+p =0,得p =-2, ∴f (x )=x 2-2x +q ,又f (x )min =f (1)=3, ∴1-2+q =3,∴q =4,∴f (x )=x 2-2x +4=(x -1)2+3,x ∈⎣⎡⎦⎤12,2, ∴f (x )max =f (2)=4.6. 已知函数f (x )的导数f ′(x )=2x -9,且f (0)的值为整数,当x ∈(n ,n +1] (n ∈N *)时,f (x )的值为整数的个数有且只有1个,则n =________. 答案 4解析 ∵f ′(x )=2x -9,∴f (x )=x 2-9x +c ,∵f (0)=c 为整数,∴c ∈Z ,又f (1)=-8+c ,f (2)=-14+c ,f (2)-f (1)=-6,可见在f (1)到f (2)之间并非有且只有一个整数;同样在f (2)到f (3)之间、f (3)到f (4)之间也并非有且只 有一个整数;而f (4)=-20+c ,f (5)=-20+c ,故在f (4)到f (5)之间有且只有一个整数.因 为x ∈(n ,n +1] (n ∈N *),x ≠n ,所以在x =5时取得的整数为f (5)=-20+c ,故n =4. 三、解答题7. (13分)(2012·安徽)设函数f (x )=a e x +1a ex +b (a >0).(1)求f (x )在[0,+∞)内的最小值;(2)设曲线y =f (x )在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值.解 (1)f ′(x )=a e x -1a ex ,当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上递减. ①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上递减,在(-ln a ,+∞)上递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b ;②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上递增, 从而f (x )在[0,+∞)上的最小值为f (0)=a +1a +b .(2)依题意f ′(2)=a e 2-1a e 2=32,解得a e 2=2或a e 2=-12(舍去),所以a =2e 2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =12.。
【步步高】2014届高三数学大一轮复习讲义--函数图象与性质的综合应用
专题一 函数图象与性质的综合应用1.函数的三要素是对应关系、定义域、值域;其中函数的核心是对应关系. 2.函数的性质主要包括:单调性、周期性、对称性、最值等.3.求函数值域的方法有配方法、换元法、不等式法、函数单调性法、图象法等. 4.作图一般有两种方法:描点法作图、图象变换法作图. 5.图象的三种变换:平移变换、伸缩变换和对称变换.1. (2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )A .-3B .-1C .1D .3 答案 A解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x , ∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.2. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为 ( )A.13B.23 C .1 D .2 答案 B解析 令f (x )=0,解得x =1;令f (x )=1,解得x =13或3.因为函数f (x )在(0,1)上为减函数,在(1,+∞)上为增函数.故b -a 的最小值为1-13=23.3. (2011·辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤11-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 答案 D解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).4. (2011·湖北)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于 ( ) A .2 B.154 C.174 D .a 2答案 B解析 ∵f (x )是奇函数,g (x )是偶函数, ∴由f (x )+g (x )=a x -a -x +2,① 得-f (x )+g (x )=a -x -a x +2,②①+②,得g (x )=2,①-②,得f (x )=a x -a -x . 又g (2)=a ,∴a =2,∴f (x )=2x -2-x , ∴f (2)=22-2-2=154.5. 已知y =f (x )的图象如图,则y =f (1-x )的图象为下列四图中的 ( )答案 A解析 将y =f (1-x )变形为y =f [-(x -1)]①作y =f (-x )图象,将y =f (x )关于y 轴对称即可; ②将f (-x )的图象沿x 轴正方向平移1个单位, 得y =f [-(x -1)]=f (1-x )的图象.题型一 函数求值问题例1 (2012·苏州模拟)设f (x )=⎩⎪⎨⎪⎧log 3(x 2+t ),x <0,2×(t +1)x ,x ≥0 且f (1)=6,则f (f (-2))的值为________.思维启迪:首先根据f (1)=6求出t 的取值,从而确定函数解析式,然后由里到外逐层求解f (f (-2))的值,并利用指数与对数的运算规律求出函数值. 答案 12解析 ∵1>0,∴f (1)=2×(t +1)=6, 即t +1=3,解得t =2.故f (x )=⎩⎪⎨⎪⎧log 3(x 2+2),x <0,2×3x , x ≥0,所以f (-2)=log 3[(-2)2+2]=log 36>0. f (f (-2))=f (log 36)=2×3log 36=2×6=12.探究提高 本题的难点有两个,一是准确理解分段函数的定义,自变量在不同取值范围 内对应着不同的函数解析式;二是对数与指数的综合运算问题.解决此类问题的关键是 要根据分段函数的定义,求解函数值时要先判断自变量的取值区间,然后再代入相应的 函数解析式求值,在求值过程中灵活运用对数恒等式进行化简求值.(2012·广东六校联考)已知f (x )=⎩⎪⎨⎪⎧-cos (πx ), x >0,f (x +1)+1, x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于 ( )A .-2B .1C .2D .3 答案 D解析 f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 题型二 函数性质的应用例2 设奇函数f (x )在(0,+∞)上为单调递增函数,且f (2)=0,则不等式f (-x )-f (x )x≥0的解集为 ( ) A .[-2,0]∪[2,+∞) B .(-∞,-2]∪(0,2] C .(-∞,-2]∪[2,+∞) D .[-2,0)∪(0,2] 思维启迪:转化成f (m )<f (n )的形式,利用单调性求解. 答案 D解析 因为f (x )为奇函数,所以f (-x )=-f (x ),不等式可化为-f (x )-f (x )x ≥0,即-f (x )x ≥0.当x >0时,则有f (x )≤0=f (2),由f (x )在(0,+∞)上单调递增可得x ≤2;当x <0时,则有f (x )≥0=-f (2)=f (-2),由函数f (x )为奇函数可得f (x )在(-∞,0)上单调递增,所以x ≥-2.所以不等式的解集为[-2,0)∪(0,2].探究提高 解决抽象函数问题的关键是灵活利用抽象函数的性质,利用函数的单调性去 掉函数符号是解决问题的关键,由函数为奇函数可知,不等式的解集关于原点对称,所 以只需求解x >0时的解集即可.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2(-x ),x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案 C解析 f (-x )=⎩⎪⎨⎪⎧ log 12(-x ),-x >0log 2x ,-x <0=⎩⎪⎨⎪⎧log 12(-x ),x <0,log 2x ,x >0.当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞). 题型三 函数图象及应用例3 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是_____________.思维启迪:可以先画出函数f (x )的图象,通过图象的特征观察a 、b 、c 的关系. 答案 (10,12)解析 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<abc <12.探究提高 通过图形可以发现a ,b ,c 所在的区间,再把绝对值符号去掉,就能发现ab =1,这样利用数形结合就可把问题化难为易了.已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解由x 2-log a x <0, 得x 2<log a x .设f (x )=x 2,g (x )=log a x .由题意知,当x ∈⎝⎛⎭⎫0,12时,函数f (x )的图象在函数g (x )的图象的下方, 如图,可知⎩⎪⎨⎪⎧ 0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,即⎩⎪⎨⎪⎧0<a <1,⎝⎛⎭⎫122≤log a 12, 解得116≤a <1.∴实数a 的取值范围是⎣⎡⎭⎫116,1. 题型四 函数的值域与不等式恒成立问题例4 (2012·天津滨海新区五所重点学校联考)定义在R 上的增函数y =f (x )对任意x ,y ∈R都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.思维启迪:(1)赋值法是解决抽象函数问题的常用方法,第(1)(2)两问可用赋值法解决. (2)将恒成立问题转化成函数最值问题. (1)解 令x =y =0,得f (0+0)=f (0)+f (0), 即f (0)=0.(2)证明 令y =-x ,得f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)解 方法一 因为f (x )在R 上是增函数, 又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2.综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立.方法二 由k ·3x <-3x +9x +2,得k <3x +23x -1.u =3x +23x -1≥22-1,3x =2时,取“=”,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立,只要使k <22-1.探究提高 对于恒成立问题,若能转化为a >f (x ) (或a <f (x ))恒成立,则a 必须大于f (x )的最大值(或小于f (x )的最小值).因此恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解.若不能分离参数,可以将参数看成常数直接求解.定义在R 上的奇函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,对于任意的θ∈⎣⎡⎦⎤0,π2,均有f (cos 2θ-3)+f (4m -2m cos θ)>0,试求实数m 的取值范围. 解 因为f (x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f (x )是增函数,则f (x )在(-∞,0]上也是增函数,所以f (x )在R 上是增函数,且f (0)=0, ∵f (cos 2θ-3)+f (4m -2m cos θ)>0, ∴f (cos 2θ-3)>f (2m cos θ-4m ), 于是cos 2θ-3>2m cos θ-4m ,① 即cos 2θ-m cos θ+2m -2>0. 得m >cos 2θ-2cos θ-2,设h (θ)=cos 2θ-2cos θ-2,则h (θ)=4-⎣⎡⎦⎤(2-cos θ)+22-cos θ≤4-22,即h (θ)max =4-22,只须m >4-2 2.故实数m 的取值范围是(4-22,+∞). 2.高考中的函数零点问题典例:(2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.考点分析 本题考查对数函数、函数单调性、函数零点等知识,体现了函数知识的综合.求解策略 解答本题可先确定函数f (x )在(0,+∞)上的单调性,然后根据a ,b 满足的条件及对数的运算性质探究出f (x )零点所在的区间,从而对照x 0∈(n ,n +1),n ∈N *确定出n 的值. 答案 2解析 ∵2<a <3,∴f (x )=log a x +x -b 为定义域上的单调递增函数.f (2)=log a 2+2-b , f (3)=log a 3+3-b .∵2<a <3<b ,∴0<lg 2<lg a <lg 3,∴lg 2lg 3<lg 2lg a <1.又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg 3lg a <lg 3lg 2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0,即f (2)·f (3)<0. 由x 0∈(n ,n +1),n ∈N *知,n =2.解后反思 (1)本题考查函数零点,与函数的单调性相结合;(2)解决函数的有关问题,要综合利用函数的图象,函数的单调性、对称性、周期性、值域等.方法与技巧1. 利用复合函数求函数值是一类重要问题,解题关键是利用已知的函数值,通过解析式的变化特点进行代入求值,有时也可以利用周期性来解题.2. 抽象函数奇偶性的判断关键在于构造f (-x ),使之与f (x )产生等量关系,即比较f (-x )与±f (x )是否相等,此时赋值比较多的是-1、1、0等.3. 作图、识图和用图是函数图象中的基本问题.作图的基本途径:求出函数的定义域;尽量求出值域;变换(化简、平移、对称、伸缩等)出图象的形状;描点作图.识图就是从 图形中发现或捕捉所需信息,从而使问题得到解决.用图就是根据需要,作出函数的图 形,使问题求解得到依据,使函数、方程、不等式中的许多问题化归为函数图象问题. 失误与防范1. 函数求值问题一定要关注自变量的取值范围,尤其是分段函数,以防代错解析式. 2. 对于由抽象函数不等式向具体不等式转化的过程中,一定要注意单调区间,需将自变量转化到同一个单调区间上去.3. 识图要抓住性质特征,关键点;作图要规范,一般从基本图形通过平移、对称等变换来作图.(时间:60分钟) A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2011·重庆)下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是 ( )A .(-∞,1]B .[-1,43]C .[0,32) D .[1,2)答案 D解析 方法一 当2-x ≥1,即x ≤1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(- ∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函 数f (x )在[1,2)上单调递增,故选D. 方法二 f (x )=|ln(2-x )|的图象如图所示.由图象可得,函数f (x )在区间[1,2)上为增函数,故选D.2. (2011·北京)如果log 12x <log 12y <0,那么 ( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x 答案 D解析 不等式转化为⎩⎨⎧log 12x <log 12y ,log 12y <0⇒1<y <x .3. (2012·浙江改编)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32等于 ( ) A.32 B .-14 C.14 D.12 答案 A解析 当x ∈[-1,0]时,-x ∈[0,1], ∵f (x )为偶函数,∴f (x )=f (-x )=-x +1. ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12=-⎝⎛⎭⎫-12+1=32. 4. (2012·江西)如图所示,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图象大致是( )答案 A解析 对t 进行分段,确定函数y =S (t )的解析式.由题意知,当0<t ≤1时,甲从O 向B 移动,乙从O 向A 移动,则t 时刻,|OB |=t ,|OA | =2t ,此时S (t )=12·|OB |·|OA |sin π6=12t 2,此段图象为抛物线;当t >1时,设圆弧半径为r ,甲从B 沿圆弧移动到C 后停止,乙在A 点不动,则此时S (t )=12×1×2·sin π6+12·r ·3(t -1)=3r 2t +1-3r2,此段图象为直线,当甲移动至C 点后,甲、乙均不再移动,面积不再增加,选项B 中开始一段函数图象不对,选项C 中后两段图象不对,选项D 中前两段 函数图象不对,故选A. 二、填空题(每小题5分,共15分)5. 设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,则不等式log a (x -1)>0的解集为______. 答案 (2,+∞)解析 ∵x 2-2x +3>0,即(x -1)2+2>0的解集为R , ∴函数f (x )=log a (x 2-2x +3)的定义域为R . 又∵函数y =x 2-2x +3有最小值2,无最大值. 据题意有a >1.∴log a (x -1)>0=log a 1等价于⎩⎪⎨⎪⎧x -1>0,x -1>1,解得x >2,即不等式log a (x -1)>0的解集为(2,+∞). 6. 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是__________. 答案 [-94,0]∪(2,+∞)解析 由x <g (x )得x <x 2-2,∴x <-1或x >2;由x ≥g (x )得x ≥x 2-2,∴-1≤x ≤2.∴f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎨⎧(x +12)2+74,x <-1或x >2,(x -12)2-94,-1≤x ≤2.当x <-1时,f (x )>2;当x >2时,f (x )>8.∴当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞). 当-1≤x ≤2时,-94≤y ≤0.∴当x ∈[-1,2]时,函数的值域为[-94,0].综上可知,f (x )的值域为[-94,0]∪(2,+∞).7. 已知函数f (x )=⎩⎪⎨⎪⎧a x -5 (x >6),⎝⎛⎭⎫4-a 2x +4 (x ≤6),在R 上是单调递增函数,则实数a 的取值范围为________.答案 [7,8)解析 由题意知,实数a 应满足⎩⎪⎨⎪⎧a >14-a 2>0⎝⎛⎭⎫4-a 2×6+4≤a 6-5,即⎩⎪⎨⎪⎧a >1a <8a ≥7,解得7≤a <8. 三、解答题(共25分)8. (12分)若直线y =2a 与函数y =|a x -1| (a >0且a ≠1)的图象有两个交点,求a 的取值范围.解 ①当a >1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点, 则有0<2a <1,∴0<a <12(舍去).②当0<a <1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点,则有0<2a <1,∴0<a <12. 综上所述,a 的取值范围是⎝⎛⎭⎫0,12. 9. (13分)已知a >0,且a ≠1,f (log a x )=a a 2-1⎝⎛⎭⎫x -1x . (1)求f (x );(2)判断f (x )的单调性;(3)求f (x 2-3x +2)<0的解集.解 (1)令t =log a x (t ∈R ),则x =a t ,且f (t )=a a 2-1⎝⎛⎭⎫a t -1a t .∴f (x )=a a 2-1(a x -a -x ) (x ∈R ). (2)当a >1时,a x -a -x 为增函数, 又a a 2-1>0,∴f (x )为增函数; 当0<a <1时,a x -a -x 为减函数, 又aa 2-1<0,∴f (x )为增函数. ∴函数f (x )在R 上为增函数.(3)∵f (0)=a a 2-1(a 0-a 0)=0,∴f (x 2-3x +2)<0=f (0). 由(2)知:x 2-3x +2<0,∴1<x <2.∴不等式的解集为{x |1<x <2}.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 已知函数f (x )=||lg x ,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( )A .(22,+∞) B.[ 22,+∞)C .(3,+∞) D.[ 3,+∞)答案 C解析 由已知条件0<a <1<b 和f (a )=f (b )得,-lg a =lg b ,则lg a +lg b =0,ab =1,因此a +2b =a +2a ,由对勾函数知y =x +2x在(0,1)单调递减,得a +2b >3,即a +2b 的取值范围是(3,+∞).2.设函数f (x )是定义在R 上周期为3的奇函数,若f (1)<1,f (2)=2a -1a +1,则 ( )A .a <12且a ≠-1 B .-1<a <0 C .a <-1或a >0 D .-1<a <2答案 C解析 ∵函数f (x )为奇函数,∴f (1)=-f (-1)<1,∴f (-1)>-1.又∵函数f (x )的周期为3,∴f (-1)=f (2)=2a -1a +1>-1,∴3a a +1>0, 解得a >0或a <-1.3. 设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x -1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0 (a >1)恰有3个不同的实数根,则a 的取值范围是 ( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)答案 D解析由f (x -2)=f (x +2),知f (x )是以4为周期的周期函数,于是可得f (x )在(-2,6]上的大致图象如图中实线所示,令g (x )=log a (x +2) (a >1),则g (x )的大致图象如图所示,结合图象可知,要使得方程f (x )-log a (x+2)=0 (a >1)在区间(-2,6]内恰有3个不同的实数根,则只需⎩⎪⎨⎪⎧ g (2)<3g (6)>3,即⎩⎨⎧log a 4<3log a 8>3,解得34<a <2. 二、填空题(每小题4分,共12分)4. 函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是__________.答案 [-8,-6]解析 设g (x )=3x 2-ax +5,由已知⎩⎪⎨⎪⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.5. 已知f (x )=a sin x +b 3x +4 (a ,b ∈R ),且f [lg(log 210)]=5,则f [lg(lg 2)]=________.答案 3解析 lg(log 210)=-lg(lg 2),f (-x )=a sin(-x )+b 3-x +4=-(a sin x +b 3x )+4.又f [lg(log 210)]=5,∴f [lg(lg 2)]=4-5+4=3.6. 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a的取值范围是__________.答案 (-2,1)解析∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x ,作出f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,即-2<a <1.三、解答题(13分)7. 设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么?解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c 3a,由条件a >c >0, 得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛 物线开口向上,故f (x )在[1,+∞)内是增函数.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a , 得c 2-c <0,所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点.②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a. 而f ⎝⎛⎭⎫a +c 3a =-a 2+c 2-ac 3a <0,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1) 内有两个零点.。
高三数学二轮复习教学案一体化:利用导数研究函数的性质
专题二——利用导数研究函数的性质高考趋势导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。
试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。
考点展示1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 .3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45° 4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 15.设R a ∈,若函数ax e y x+=,R x ∈有大于零的极值点,则a 的取值范围1-<a6.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 2 . 7.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3x y =的切线,则切线方程为_ 12x-y-16=0或3x-y+2=0 样题剖析例1、设函数323()(1)1,32a f x x x a x a =-+++其中为实数。
(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。
2014届高考数学一轮复习讲义:3[1].2-导数在研究函数中的应用
主页
[难点正本 疑点清源] 1.可导函数的极值表示函数在一点附近的情况,是在局部对函
数值的比较;函数的最值是表示函数在一个区间上的情况, 是对函数在整个区间上的函数值的比较. 2.可导函数的极值点导数为零,但导数为零的点未必是极值点, 如函数 y=x3 在 x=0 处导数为零,但 x=0 不是极值点. 3.函数的极值不一定是最值,需对极值和区间端点的函数值进 行比较,或者考查函数在区间内的单调性.
主页
①若-3+32c=1,即 c=-3,f′(x)=3(x-1)2≥0. f(x)在(-∞,+∞)上递增不合题意,c=-3 应舍去. ②若-3+32c<1,即 c>-3 时, f(x)的递减区间为-3+32c,1; ③若-3+32c>1,即 c<-3 时, f(x)的递减区间为1,-3+32c.
主页
综上,当 m>0 时,函数 f(x)的单调增区间是(-∞,0)和(2, +∞); 当 m<0 时,函数 f(x)的单调增区间是(0,2).
主页
探究提高
利用导数求函数 f(x)的单调区间的一般步骤: (1)确定函数 f(x)的定义域; (2)求导数 f′(x); (3)在函数 f(x)的定义域内解不等式 f′(x)>0 和 f′(x)<0; (4)根据(3)的结果确定函数 f(x)的单调区间.
主页
变式训练 1
已知函数 f(x)=x3+ax2+bx+c 在 x=1 处取得极值-2. (1)试用 c 表示 a,b; (2)求 f(x)的单调递减区间.
解 (1)f′(x)=3x2+2ax+b, 由已知条件ff′(1)(=1)=-02 ,即31++2aa++bb+=c=0 -2 , 解得 a=c,b=-3-2c. (2)f′(x)=3x2+2cx-3-2c =(3x+3+2c)(x-1) =3x+3+32c(x-1)
【苏教版】【步步高】2014届高考数学一轮复习备考课件3.2.1常见函数的导数
本 专 题 栏 目 开 关
x+Δx- x Δy fx+Δx-fx 解 = = Δx Δx Δx
x+Δx- x x+Δx+ x = Δx· x+Δx+ x Δx = Δx· x+Δx+ x
本 专 题 栏 目 开 关
1 = . x+Δx+ x
Δy 1 从而,当Δx→0时, → . Δx 2 x 1 ∴f′(x)= . 2 x
答案 ①③④
练一练· 当堂检测、目标达成落实处
本 专 题 栏 目 开 关
3 2.函数f(x)= x,则f′(3)等于________ . 6 1 解析 ∵f′(x)=( x)′= , 2 x
3 ∴f′(3)= =6. 2 3 1
练一练· 当堂检测、目标达成落实处
本 专 题 栏 目 开 关
3.设正弦曲线y=sin x上一点P,以点P为切点的切线为直 π 3π [0, ]∪[ ,π) 4 4 线l,则直线l的倾斜角的范围是__________________ .
x a ln a a>0,且 a≠ 1) f′(x)= ______( x e f′(x)= ________ 1 f′(x)= ________( xln a a>0且 a≠ 1)
α-1
本 专 题 栏 目 开 关
x
f(x)= logax f(x)= ln x
1 f′(x)= ________ x
研一研· 问题探究、课堂更高效
π ∴f′3=-sin
π 3 3=- 2 .
研一研· 问题探究、课堂更高效
本 专 题 栏 目 开 关
小结
函数f(x)在点x0处的导数等于f′(x)在点x=x0处的函
数值.在求函数在某点处的导数时可以先利用导数公式求 出导函数,再将x0代入导函数求解,不能先代入后求导.
2014《步步高》高考数学第一轮复习02函数及其表示
§2.1 函数及其表示2014高考会这样考 1.考查函数的定义域、值域、解析式的求法;2.考查分段函数的简单应用;3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.复习备考要这样做 1.在研究函数问题时,要树立“定义域优先”的观点;2.掌握求函数解析式的基本方法;3.结合分段函数深刻理解函数的概念.1.函数的基本概念(1)函数的定义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、对应关系和值域.(4)函数的表示法表示函数的常用方法有解析法、图象法、列表法.2.映射的概念设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.3.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 4. 常见函数定义域的求法(1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x a的定义域为{x |x ∈R 且x ≠0}. [难点正本 疑点清源] 1. 函数的三要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定 的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等. 2. 函数与映射(1)函数是特殊的映射,其特殊性在于,集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函 数. 3. 函数的定义域(1)解决函数问题,函数的定义域必经优先考虑; (2)求复合函数y =f (t ),t =q (x )的定义域的方法:①若y =f (x )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域.1. (2011·浙江)设函数f (x )=41-x,若f (a )=2,则实数a =________.答案 -1 解析 ∵f (x )=41-x ,∴f (a )=41-a=2,∴a =-1. 2. (课本改编题)给出四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x∈N )的图象是一条直线;④f (x )=x 2x与g (x )=x 是同一个函数.其中正确命题的序号有________. 答案 ①②解析 对于①函数是映射,但映射不一定是函数; 对于②f (x )是定义域为{2},值域为{0}的函数. 对于③函数y =2x (x ∈N )的图象不是一条直线;对于④由于这两个函数的定义域不同,所以它们不是同一个函数.3. 函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5] 4. (2012·江西)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin x B .y =ln x xC .y =x e xD .y =sin x x答案 D 解析 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0},故选D. 5. (2012·福建)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为 ( )A .1B .0C .-1D .π 答案 B解析 根据题设条件,∵π是无理数,∴g (π)=0, ∴f (g (π))=f (0)=0.题型一 函数的概念 例1 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.思维启迪:可从函数的定义、定义域和值域等方面对所给结论进行逐一分析判断. 答案 (2)(3)解析 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y=f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x=1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3).探究提高 函数的三要素:定义域、值域、对应关系.这三要素不是独立的,值域可由 定义域和对应关系唯一确定;因此当且仅当定义域和对应关系都相同的函数才是同一函 数.特别值得说明的是,对应关系是就效果而言的(判断两个函数的对应关系是否相同, 只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函 数值是否相同)不是指形式上的.即对应关系是否相同,不能只看外形,要看本质;若是用解析式表示的,要看化简后的形式才能正确判断.下列各组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 答案 A解析 A 中,g (x )=|x |,∴f (x )=g (x ). B 中,f (x )=|x |,g (x )=x (x ≥0), ∴两函数的定义域不同.C 中,f (x )=x +1 (x ≠1),g (x )=x +1, ∴两函数的定义域不同.D 中,f (x )=x +1·x -1(x +1≥0且x -1≥0),f (x )的定义域为{x |x ≥1};g (x )=x 2-1(x 2-1≥0),g (x )的定义域为{x |x ≥1或x ≤-1}.∴两函数的定义域不同.故选A. 题型二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式;(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.思维启迪:求函数的解析式,要在理解函数概念的基础上,寻求变量之间的关系. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1. (2)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.(3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).探究提高 函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)消去法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(2012·武汉模拟)给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +3. 题型三 函数的定义域 【例3】 (1)函数y =lnx +1-x 2-3x +4的定义域为______________. (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2xx -1的定义域是 ( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)思维启迪:函数的定义域是使解析式有意义的自变量的取值集合;抽象函数的定义域要 注意自变量的取值和各个字母的位置.答案 (1)(-1,1) (2)B解析 (1)由⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,得-1<x <1.(2)依已知有⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解之得0≤x <1,定义域为[0,1).故选B.探究提高 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].(1)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________.答案 ⎣⎢⎡⎭⎪⎫0,34解析 f (x )的定义域为R ,即mx 2+4mx +3≠0恒成立. ①当m =0时,符合条件.②当m ≠0时,Δ=(4m )2-4×m ×3<0, 即m (4m -3)<0,∴0<m <34.综上所述,m 的取值范围是⎣⎢⎡⎭⎪⎫0,34. (2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________. 答案 [1,3]解析 由⎩⎪⎨⎪⎧0≤x +1≤40≤x -1≤4,得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 题型四 分段函数【例4】 )定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 21-x , x ≤0,f x -1-f x -2, x >0,则f (2014)的值为________.思维启迪:注意到2 014较大,较难代入计算求出值,所以可通过x 取较小数值探究函 数f (x )值的规律性,再求f (2 014).也可以先用推理的方法得出f (x )的规律性,再求f (2 014).答案 1解析 方法一 由已知得f (-1)=log 22=1,f (0)=log 21=0,f (1)=f (0)-f (-1)=-1,f (2)=f (1)-f (0)=-1, f (3)=f (2)-f (1)=0,f (4)=f (3)-f (2)=1, f (5)=f (4)-f (3)=1,f (6)=f (5)-f (4)=0, f (7)=f (6)-f (5)=-1,f (8)=f (7)-f (6)=-1,…,所以f (x )的值以6为周期重复出现, 因此,f (2 014)=f (4)=1.方法二 ∵x >0时,f (x )=f (x -1)-f (x -2), ∴f (x +1)=f (x )-f (x -1). 两式相加得f (x +1)=-f (x -2),∴f (x +3)=-f (x ),f (x +6)=-f (x +3)=f (x ), ∴f (x )的周期为6.因此,f (2 014)=f (6×335+4)=f (4)=1.探究提高 求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.若给出函数值求自变量的值,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤2,log 81x ,x >2,则满足f (x )=14的x 值为( )A .2B .3C .2或3D .-2 答案 C解析 当x ≤2时,由f (x )=14,得2-x=14.解得x =2.当x >2时,由f (x )=14,得log 81x =14,解得x =3.3.忽视函数的定义域 典例:求函数y =log 13(x 2-3x )的单调区间.易错分析 忽视函数的定义域,认为x 的范围是全体实数,导致错误.解 设t =x 2-3x ,由t >0,得x <0或x >3,即函数的定义域为(-∞,0)∪(3,+∞).函 数t 的对称轴为直线x =32,故t 在(-∞,0)上单调递减,在(3,+∞)上单调递增.而函数y =log 13t 为单调递减函数,由复合函数的单调性可知,函数y =log 13(x 2-3x )的单调递增区间是(-∞,0),单调递减区间是(3,+∞).温馨提醒 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先 求出函数的定义域.如果是复合函数,应该根据复合函数单调性的判断方法,首先判断 两个简单函数的单调性,根据同增异减的法则求解函数的单调区间.由于思维定势的原 因,容易忽视定义域,导致错误. 4.分段函数意义理解不清典例:设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +cx ≤02 x >0,若f (-2)=f (0),f (-1)=-3,求关于x 的方程f (x )=x 的解.易错分析 (1)条件中f (-2),f (0),f (-1)所适合的解析式是f (x )=x 2+bx +c .所以可构建方程组求出b ,c 的值.(2)在方程f (x )=x 中,f (x )用哪个解析式,要进行分类讨论,不能忽视自变量的限制条件. 规范解答解 当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,∴⎩⎪⎨⎪⎧-22-2b +c =c-12-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2,[4分]∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2x ≤0,2 x >0.[6分]当x ≤0时,由f (x )=x 得,x 2+2x -2=x , 得x =-2或x =1.由x =1>0,所以舍去.[8分] 当x >0时,由f (x )=x 得x =2,[10分] 所以方程f (x )=x 的解为-2、2.[12分]温馨提醒 (1)对于分段函数问题,是高考的热点.在解决分段函数问题时,要注意自变量的限制条件.(2)就本题而言,当x ≤0时,由f (x )=x 得出两个x 值,但其中的x =1不符合要求,上述解法中没有舍去此值,因而导致了增解.分段函数问题分段求解,但一定注意各段的限制条件.方法与技巧1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域相同;二是对应关系相同. 2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数的解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 失误与防范求分段函数应注意的问题:在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.(时间:60分钟) A 组 专项基础训练一、选择题(每小题5分,共20分) 1.(2012·山东)函数f (x )=1lnx +1+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2] 答案 B解析 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=139,∴f (f (3))=f ⎝ ⎛⎭⎪⎫23=139.3. 设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( )A .-2x +1B .2x -1C .2x -3D .2x +7 答案 D解析 由g (x )=2x +3,知f (x )=g (x +2)=2(x +2)+3=2x +7.4. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案. 二、填空题(每小题5分,共15分)5. 已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.答案 6解析 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧12+p +q =022+2p +q =0,∴⎩⎪⎨⎪⎧p =-3q =2,∴f (x )=x 2-3x +2.∴f (-1)=(-1)2+3+2=6.6. 已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为____________. 答案 f (x )=2x1+x2解析 令t =1-x 1+x ,由此得x =1-t 1+t ,所以f (t )=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t 1+t 2,从而f (x )的解析式为f (x )=2x 1+x2. 7. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 三、解答题(共25分)8. (12分)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx . 又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎪⎨⎪⎧a =12b =12.∴f (x )=12x 2+12x .9. (13分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N .解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32,N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或x <1}; (2)M ∩N ={x |x ≥3},M ∪N ={x |x <1或x >32}.B 组 专项能力提升一、选择题(每小题5分,共15分) 1. 设f (x )=lg2+x2-x,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为 ( )A .(-4,0)∪(0,4)B .(-4,-1)∪(1,4)C .(-2,-1)∪(1,2)D .(-4,-2)∪(2,4) 答案 B解析 ∵2+x2-x>0,∴-2<x <2.∴-2<x 2<2且-2<2x<2,取x =1,则2x=2不合题意(舍去),故排除A ,取x =2,满足题意,排除C 、D ,故选B.2. (2011·福建)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3 答案 A解析 由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a+2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3.3. 设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞) 答案 C解析 f (x )的图象如图.g (x )是二次函数,且f (g (x ))的值域是[0,+∞),∴g (x )的值域是[0,+∞).二、填空题(每小题4分,共12分)4. (2012·江苏)函数f (x )=1-2log 6x 的定义域为________.答案 (0,6]解析 要使函数f (x )=1-2log 6x 有意义,则⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0.解得0<x ≤ 6.5. 对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=log12(3x -2)*log 2x 的值域为________. 答案 (-∞,0]解析 f (x )=log 213x -2*log 2x=⎩⎪⎨⎪⎧log 213x -2x ≥1log 2x23<x <1.∴当x ≥1时,13x -2≤1,f (x )≤0;当23<x <1时,log 223<f (x )<0. ∴f (x )的值域为(-∞,0].6. (2011·江苏)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为______. 答案 -34解析 当a <0时,1-a >1,1+a <1, 所以f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =3a +2.因为f (1-a )=f (1+a ),所以-1-a =3a +2, 所以a =-34.当a >0时,1-a <1,1+a >1, 所以f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-3a -1.因为f (1-a )=f (1+a ),所以2-a =-3a -1,所以a =-32(舍去).综上,满足条件的a 的值为-34.三、解答题(13分)7. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >02-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解 (1)∵g (2)=1,∴f (g (2))=f (1)=0, ∵f (2)=3,∴g (f (2))=g (3)=2. (2)f (g (x ))=(g (x ))2-1=⎩⎪⎨⎪⎧x -12-1, x >02-x2-1, x <0.∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0x 2-4x +3,x <0.g (f (x ))=⎩⎪⎨⎪⎧f x-1,f x >02-f x ,f x <0.=⎩⎪⎨⎪⎧x 2-1-1,x 2-1>02-x 2-1,x 2-1<0.∴g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-13-x 2,-1< x <1.。
版《步步高》高考数学大二轮总复习 专题二 函数与导数第 讲
第3讲导数及其应用1.(2015·课标全国Ⅱ改编)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是___________________________.2.(2014·课标全国Ⅱ改编)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是________.3.(2014·辽宁改编)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是________.4.(2014·课标全国Ⅰ改编)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是________.①(2,+∞);②(-∞,-2);③(1,+∞);④(-∞,-1).1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值?最值?是高考的常见题型.热点一导数的几何意义1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同.例1 (1)(2015·课标全国Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=____________.(2)(2015·徐州市质量诊断)设函数f(x)=ax3+3x,其图象在点(1,f(1))处的切线l与直线x-6y-7=0垂直,则直线l与坐标轴围成的三角形的面积为________.思维升华(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 在平面直角坐标系xOy中,设A是曲线C1:y=ax3+1(a>0)与曲线C2:x2+y2=52的一个公共点,若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是________.热点二利用导数研究函数的单调性1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.例2 (2015·重庆)设函数f(x)=3x2+axe x(a∈R).(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在[3,+∞)上为减函数,求a的取值范围.思维升华利用导数研究函数单调性的一般步骤:(1)确定函数的定义域.(2)求导函数f′(x).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)<0;②若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.跟踪演练2 (1)函数f(x)=12x2-ln x的单调递减区间为________.(2)若函数f(x)=-13x3+12x2+2ax在[23,+∞)上存在单调递增区间,则a的取值范围是________.热点三利用导数求函数的极值、最值1.若在x0附近左侧f′(x)>0,右侧f′(x)<0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f′(x)<0,右侧f′(x)>0,则f(x0)为函数f(x)的极小值.2.设函数y=f(x)在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有最大值和最小值且在极值点或端点处取得.例3 设函数f(x)=px-px-2ln x,g(x)=2ex,其中p>0.(1)若f(x)在其定义域内是单调增函数,求实数p的取值范围;(2)若在[1,e]上存在点x0,使得f(x0)>g(x0)成立,求实数p的取值范围;(3)若在[1,e]上存在点x1,x2,使得f(x1)>g(x2)成立,求实数p的取值范围.思维升华(1)求函数f(x)的极值,则先求方程f′(x)=0的根,再检查f′(x)在方程根的左右函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况来求解.(3)求函数f(x)在闭区间[a,b]的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.跟踪演练3 已知函数f(x)=ln x+ax-a2x2(a≥0).(1)若x=1是函数y=f(x)的极值点,求a的值;(2)若f(x)<0在定义域内恒成立,求实数a的取值范围.1.已知曲线y=ln x的切线过原点,则此切线的斜率为________.2.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a b 的值为________.3.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x 在(1,2)上为增函数,则a的值等于________.4.已知函数f(x)=x-1x+1,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是__________.提醒:完成作业专题二第3讲二轮专题强化练第3讲导数及其应用A组专题通关1.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为________.2.(2015·江苏第一次检测)函数f(x)=ln x-2xx的图象在点(1,-2)处的切线方程为________________________________________________________________ ________.3.设f(x)=13x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为________________________________________________________________ ________.4.(2015·苏州调研)已知函数f(x)=12x3+ax+4,则“a>0”是“f(x)在R上单调递增”的________条件.5.已知a≤1-xx+ln x对任意x∈[12,2]恒成立,则a的最大值为________.6.(2015·陕西)函数y=x e x在其极值点处的切线方程为________.7.若函数f(x)=ax+1x+2在x∈(2,+∞)上单调递减,则实数a的取值范围是________.8.已知函数f(x)=4ln x+ax2-6x+b(a,b为常数),且x=2为f(x)的一个极值点,则a的值为________.9.(2015·重庆)已知函数f(x)=ax3+x2(a∈R)在x=-43处取得极值.(1)确定a的值;(2)若g(x)=f(x)e x,讨论g(x)的单调性.10.已知函数f(x)=x28-ln x,x∈[1,3].(1)求f(x)的最大值与最小值;(2)若f(x)<4-at对任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围;B组能力提高11.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是________.12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围为________.13.设函数f(x)=a e x(x+1)(其中,e=28…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(1)求函数f(x),g(x)的解析式;(2)求函数f(x)在[t,t+1](t>-3)上的最小值;(3)若对?x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.学生用书答案精析第3讲 导数及其应用 高考真题体验1.(-∞,-1)∪(0,1)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f ?x ?x,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝ ⎛⎭⎪⎫f ?x ?x ′=xf ′?x ?-f ?x ?x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0?f ?x ?x>0?f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0?f ?x ?x<0?f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1). 2.[1,+∞)解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)单调递增?f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞). 3.[-6,-2]解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立, 即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=?2x -4?x 3-?x 2-4x -3?3x 2x 6=-x 2-8x -9x 4=-?x -9??x +1?x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-?x -9??x +1?x 4.当x ∈[-2,-1)时,φ′(x )<0, 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2. 4.②解析 f ′(x )=3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2), 则当x ∈(-∞,0)时,f ′(x )>0;x ∈(0,23)时,f ′(x )<0;x ∈(23,+∞)时,f ′(x )>0,注意f (0)=1,f (23)=59>0,则 f (x )的大致图象如图1所示.不符合题意,排除①③.图1当a =-43时,f ′(x )=-4x 2-6x =-2x (2x +3),则当x ∈(-∞,-32)时,f ′(x )<0,x ∈(-32,0)时,f ′(x )>0,x ∈(0,+∞)时,f ′(x )<0,注意f (0)=1,f (-32)=-54,则f (x )的大致图象如图2所示.图2不符合题意,排除④.热点分类突破例1 (1)1 (2)3解析(1)f′(x)=3ax2+1,f′(1)=1+3a,f(1)=a+2.(1,f(1))处的切线方程为y-(a+2)=(1+3a)(x-1).将(2,7)代入切线方程,得7-(a+2)=(1+3a),解得a=1.(2)f′(x)=3ax2+3,由题设得f′(1)=-6,所以3a+3=-6,a=-3.所以f(x)=-3x3+3x,f(1)=0,切线l的方程为y-0=-6(x-1),即y =-6x+6.所以直线l 与坐标轴围成的三角形的面积为S =12×1×6=3.跟踪演练1 4解析 设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0,又C 1在A 处的切线与C 2在A 处的切线互相垂直,所以(-x 0y 0)·3ax 20=-1,即y 0=3ax 30,又ax 30=y 0-1,所以y 0=32, 代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.例2 解 (1)对f (x )求导得f ′(x )=?6x +a ?e x -?3x 2+ax ?e x?e x ?2=-3x 2+?6-a ?x +a e x,因为f (x )在x =0处取得极值,所以f′(0)=0,即a=0.当a=0时,f(x)=3x2e x,f′(x)=-3x2+6xe x,故f(1)=3e,f′(1)=3e,从而f(x)在点(1,f(1))处的切线方程为y-3e=3e(x-1),化简得3x-e y=0.(2)由(1)知f′(x)=-3x2+?6-a?x+ae x.令g(x)=-3x2+(6-a)x+a,由g(x)=0,解得x1=6-a-a2+366,x2=6-a+a2+366.当x<x1时,g(x)<0,即f′(x)<0,故f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,故f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,故f(x)为减函数.由f(x)在[3,+∞)上为减函数,知x2=6-a+a2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.跟踪演练2 (1)(0,1] (2)(-19,+∞)解析 (1)由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x≤0,解得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].(2)对f (x )求导, 得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a .当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞).例3 解 (1)f (x )的定义域为(0,+∞),f ′(x )=p +p x 2-2x =px 2-2x +px 2.由条件知f ′(x )≥0在(0,+∞)内恒成立, 即p ≥2xx 2+1恒成立.而2x x 2+1≤2x 2·x ·1=1,当x =1时等号成立,即2x x 2+1的最大值为1, 所以p ≥1,即实数p 的取值范围是[1,+∞). (2)设h (x )=f (x )-g (x ),则已知等价于h (x )>0在[1,e]上有解,即等价于h (x )在[1,e]上的最大值大于0.因为h ′(x )=p +p x2-2x+2e x2=px 2+p +2?e -x ?x 2>0,所以h (x )在[1,e]上是增函数,所以h (x )max =h (e)=p e -pe-4>0,解得p>4ee2-1.所以实数p的取值范围是(4ee2-1,+∞).(3)已知条件等价于f(x)max>g(x)min.当p≥1时,由(1)知f(x)在[1,e]上是增函数,所以f(x)max=f(e)=p e-pe-2.当0<p<1时,令f′(x)=0,得x=1±1-p2p,可知f(x)在(1,1+1-p2p)上是减函数,在(1+1-p2p,e)上是增函数.若f(x)max=f(1)=0,由于g(x)min=2,所以此时无解.所以f(x)max=f(e)=p e-pe-2>0.综上可知,应用p e-pe-2>2,解得p>4ee2-1.所以实数p的取值范围是(4ee2-1,+∞).跟踪演练3 解(1)函数的定义域为(0,+∞),f′(x)=-2a2x2+ax+1x.因为x=1是函数y=f(x)的极值点,所以f′(1)=1+a-2a2=0,解得a=-12(舍去)或a=1.经检验,当a=1时,x=1是函数y=f(x)的极值点,所以a=1.(2)当a=0时,f(x)=ln x,显然在定义域内不满足f(x)<0;当a>0时,令f′(x)=?2ax+1??-ax+1?x=0,得x1=-12a(舍去),x2=1a,所以f′(x),f(x)的变化情况如下表:所以f (x )max =f (1a )=ln 1a<0,所以a >1.综上可得a 的取值范围是(1,+∞). 高考押题精练解析 y =f (x )=ln x 的定义域为(0,+∞),设切点为(x 0,y 0),则切线斜率k =f ′(x 0)=1x 0.∴切线方程为y -y 0=1x 0(x -x 0),又切线过点(0,0),代入切线方程得y 0=1,则x 0=e ,∴k =1x 0=1e .2.-23解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23. 3.2解析 ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2. 又∵g ′(x )=2x -ax,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a在x ∈(1,2)上恒成立,有a ≤2,∴a =2.解析 由于f ′(x )=1+1?x +1?2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x2+52x能成立,令h(x)=x2+52x,则要使a≥h(x)在x∈[1,2]能成立,只需使a≥h(x)min,又函数h(x)=x2+52x在x∈[1,2]上单调递减,所以h(x)min=h(2)=94,故只需a≥94.二轮专题强化练答案精析第3讲 导数及其应用 1.③解析 根据f ′(x )的符号,f (x )图象应该是先下降后上升,最后下降,①④错误;从适合f ′(x )=0的点知②错;③正确. 2.x -y -3=0解析 f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.3.(-∞,-3]∪[-5,+∞)解析 f ′(x )=x 2+2ax +5,当f (x )在[1,3]上单调递减时,由⎩⎨⎧f ′?1?≤0,f ′?3?≤0得a ≤-3;当f (x )在[1,3]上单调递增时,f ′(x )≥0恒成立,则有Δ=4a 2-4×5≤0或⎩⎪⎨⎪⎧Δ>0,-a <1f ′?1?≥0或⎩⎪⎨⎪⎧Δ>0,-a >3,f ′?3?≥0,得a ∈[-5,+∞).综上a 的取值范围为(-∞,-3]∪[-5,+∞).4.充分不必要解析f′(x)=32x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.5.0解析令f(x)=1-xx+ln x,则f′(x)=x-1x2,当x∈[12,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)在[12,1]上单调递减,在[1,2]上单调递增,∴[f(x)]min=f(1)=0,∴a≤0.6.y=-1 e解析设y=f(x)=x e x,令y′=e x+x e x=e x(1+x)=0,得x=-1.当x<-1时,y′<0;当x>-1时,y′>0,故x=-1为函数f(x)的极值点,切线斜率为0,又f(-1)=-e-1=-1e,故切点坐标为⎝⎛⎭⎪⎫-1,-1e,切线方程为y+1e=0(x+1),即y=-1 e .7.a≤1 2解析 f ′(x )=?ax +1?′?x +2?-?x +2?′?ax +1??x +2?2=a ?x +2?-?ax +1??x +2?2=2a -1?x +2?2,令f ′(x )≤0,即2a -1≤0,解得a ≤12.8.1解析 由题意知,函数f (x )的定义域为(0,+∞), ∵f ′(x )=4x+2ax -6,∴f ′(2)=2+4a -6=0,即a =1.9.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x .令g ′(x )=0,解得x =0,x =-1或x =-4.当x<-4时,g′(x)<0,故g(x)为减函数;当-4<x<-1时,g′(x)>0,故g(x)为增函数;当-1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数.综上知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.10.解(1)∵函数f(x)=x28-ln x,∴f′(x)=x4-1x,令f′(x)=0得x=±2,∵x∈[1,3],当1<x<2时,f′(x)<0;当2<x<3时,f′(x)>0;∴f(x)在(1,2)上是单调减函数,在(2,3)上是单调增函数,∴f(x)在x=2处取得极小值f(2)=12-ln 2;又f (1)=18,f (3)=98-ln 3, ∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0, ∴f (1)>f (3),∴x =1时f (x )的最大值为18,x =2时函数取得最小值为12-ln 2. (2)由(1)知当x ∈[1,3]时,f (x )≤18, 故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2].∴⎩⎨⎧g ?0?<318,g ?2?<318,解得a <3116, ∴实数a 的取值范围是(-∞,3116). 11.20解析 因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,可知-1,1为函数的极值点.又f (-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,所以在区间[-3,2]上f(x)max=1,f(x)min=-19.由题设知在区间[-3,2]上f(x)max-f(x)min≤t,从而t≥20,所以t的最小值是20.12.(0,1 2 )解析f′(x)=ln x+1-2ax(a>0),问题转化为a=ln x+12x在(0,+∞)上有两个实数解.设g(x)=ln x+12x,则g′(x)=-ln x2x2.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,g(x)在x=1处取得极大值也是最大值,即g(x)max=g(1)=1 2 .注意g(1e)=0,当x>1时,g(x)>0,则g(x)的大致图象如图所示.由图象易知0<a<12时,a=ln x+12x在(0,+∞)上有两个实数解.13.解(1)f′(x)=a e x(x+2),g′(x)=2x+b.由题意,得两函数在x=0处有相同的切线.∴f′(0)=2a,g′(0)=b,∴2a=b,f(0)=a,g(0)=2,∴a=2,b=4,∴f(x)=2e x(x+1),g(x)=x2+4x+2. (2)由(1)知f′(x)=2e x(x+2),由f′(x)>0得x>-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]单调递减,在[-2,t +1]单调递增,∴f (x )min =f (-2)=-2e -2.②当t ≥-2时,f (x )在[t ,t +1]单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎨⎧ -2e -2?-3<t <-2?,2e t ?t +1??t ≥-2?.(3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵?x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F′(x)=2k e x(x+1)+2k e x-2x-4=2(x+2)(k e x-1),∵x≥-2,由F′(x)>0得e x>1k ,∴x>ln 1k ;由F′(x)<0得x<ln 1k,∴F(x)在(-∞,ln1k)单调递减,在[ln1k,+∞)单调递增.①当ln 1k<-2,即k>e2时,F(x)在[-2,+∞)单调递增,F(x)min=F(-2)=-2k e-2+2=2e2(e2-k)<0,不满足F(x)min≥0.②当ln 1k=-2,即k=e2时,由①知,F(x)min=F(-2)=2e2(e2-k)=0,满足F(x)min≥0.③当ln 1k>-2,即1≤k<e2时,F(x)在[-2,ln1k)单调递减,在[ln1k,+∞)单调递增.F(x)min=F(ln 1k)=ln k(2-ln k)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].。
【步步高】高三数学大一轮复习 3
∴f ′(1)=-3+2a+b=-3,即2a+b=0, 又f (1)=-1+a+b+c=-2,得a+b+c=-1, 又函数g(x)=-x3+bx+c+3是奇函数,g(0)=0,∴c=-3.
∴a=-2,b=4,c=-3,∴ f (x)=-x3-2x2+4x-3. (2) f ' (x)=-3x2-4x+4=-(3x-2)(x+2),
区间为(0, 2),单调递减区间为( 2,2). (2)当 x∈(0,1]时,f′(x)=x22--2xx+a>0,即 f(x)在(0,1]
上单调递增,故 f(x)在(0,1]上的最大值为 f(1)=a,因 此 a=21.
题型三 恒成立及求参数范围问题
例 3 已知函数 f (x)=ln x-ax. (1)若 a>0,试判断 f (x)在定义域内的单调性; (2)若 f (x)在[1,e]上的最小值为32,求 a 的值; (3)若 f (x)<x2 在(1,+∞)上恒成立,求 a 的取值范围.
其中最大的一个是最大值,最小的一个是最小值.
4.利用导数解决实际生活中的优化问题 (1)分析实际问题中各变量之间的关系,建立实际问
题的数学模型,写出相应的函数关系式y= f (x); (2)求导数 f ' (x),解方程 f ' (x)=0; (3)判断使 f ' (x)=0的点是极大值点还是极小值点;
∴f (-x)=-f (x),
∴-ax3+bx2-cx+d=-ax3-bx2-cx-d,
∴bx2+d=0恒成立,
∴b=0,d=0.∴ f (x)=ax3+cx,
∴f ′(x)=3ax2+c.
高三数学一轮复习精品教案1:利用导数研究函数的性质教学设计
3.2利用导数研究函数的性质『典例』 (2013·福建高考节选)已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.『解析』 (1)由f (x )=x -1+a e x ,得f ′(x )=1-ae x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a . x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.『备课札记』『解析』由f ′(x )=1-a x =x -ax,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 『类题通法』求函数f (x )极值的步骤(1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0,求出函数定义域内的所有根;(4)列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.『针对训练』设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图像关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.『解析』(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )关于直线x =-a6对称.从而由题设条件知-a 6=-12,即a =3.又由于f ′(1)=0,即6+2a +b =0, 得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0,即6(x -1)(x +2)=0, 解得x =-2或x =1, 当x ∈(-∞,-2)时,f ′(x )>0, 即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0,即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞)时,f ′(x )>0, 即f (x )在(1,+∞)上单调递增.从而函数f (x )在x =-2处取得极大值f (-2)=21, 在x =1处取得极小值f (1)=-6.『典例』 (2013·苏锡常镇调研(二))已知a 为正常数,函数f (x )=|ax -x 2|+ln x . (1)若a =2,求函数f (x )的单调增区间;(2)设g (x )=f xx ,求函数g (x )在区间『1,e 』上的最小值.『解析』 (1)由a =2得f (x )=|2x -x 2|+ln x (x >0), 当0<x <2时,f (x )=2x -x 2+ln x , f ′(x )=2-2x +1x =-2x 2+2x +1x .由f ′(x )=0得-2x 2+2x +1=0, 解得x =1+32或x =1-32(舍去).当0<x <1+32时,f ′(x )>0;当1+32<x <2时,f ′(x )<0. 所以函数f (x )的单调增区间为⎝⎛⎭⎪⎫0,1+32;当x >2时,f (x )=x 2-2x +ln x , f ′(x )=2x -2+1x =2x 2-2x +1x >0.所以f (x )在(2,+∞)上为增函数.所以函数f (x )的单调增区间为⎝⎛⎭⎪⎫0,1+32,(2,+∞).(2)g (x )=f x x =|x -a |+ln x x ,x ∈『1,e 』.①若a ≤1,则g (x )=x -a +ln xx ,故g ′(x )=1+1-ln x x 2=x 2+1-ln xx 2.因为x ∈『1,e 』,所以0≤ln x ≤1,所以1-ln x ≥0, x 2+1-ln x >0,所以g ′(x )>0.所以g (x )在『1,e 』上为增函数,所以g (x )的最小值为g (1)=1-a ; ②若a ≥e ,则g (x )=a -x +ln xx ,则g ′(x )=-1+1-ln x x 2=-x 2+1-ln xx 2,令h (x )=-x 2+1-ln x ,则h ′(x )=-2x -1x <0.所以h (x )在『1,e 』上为减函数,则h (x )≤h (1)=0. 所以g (x )在『1,e 』上为减函数,所以g (x )的最小值为 g (e)=a -e +1e .③当1<a <e 时,g (x )=⎩⎨⎧x -a +ln xx,x ∈a ,e],a -x +ln xx,x ∈[1,a ],由①②知g (x )在『1,a 』上为减函数,在『a ,e 』上为增函数,所以g (x )的最小值为g (a )=ln aa. 综上,g (x )的最小值为g (a )=⎩⎪⎨⎪⎧1-a , a ≤1,ln a a, 1<a <e ,a -e +1e,a ≥e.『备课札记』 『类题通法』求函数f (x )在『a ,b 』上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.『针对训练』设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值. 『解析』(1)f ′(x )=ax-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧ f ′1=a -2b=0,f 1=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12. (2)f (x )=ln x -12x 2,f ′(x )=1x -x =1-x 2x ,∵当1e ≤x ≤e 时,令f ′(x )>0得1e≤x <1;令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎡⎦⎤1e ,1上单调递增,在『1,e 』上单调递减,∴f (x )max =f (1)=-12.『典例』 已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间『-5,+∞)上的最大值. 『解析』 (1)f ′(x )=2ax +b e x -ax 2+bx +c e xe x 2=-ax 2+2a -b x +b -c e x ,令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有 ⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g 0=b -c =0,g -3=-9a -32a -b +b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x.因为f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间『-5,+∞)上的最大值取f (-5)和f (0)中的最大者.而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间『-5,+∞)上的最大值是5e 5.『备课札记』 『类题通法』求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值.『针对训练』已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值. (1)求a ,b ,c 的值;(2)求y =f (x )在『-3,1』上的最大值和最小值.『解析』(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0,②由①②,解得a =2,b =-4.由于切点的横坐标为1, 所以f (1)=4.所以1+a +b +c =4.所以c =5.(2)由(1),可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解之,得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在『-3,1』上的最大值为13,最小值为9527.『课堂练通考点』1.函数f (x )=x 33+x 2-3x -4在『0,2』上的最小值是________.『解析』f ′(x )=x 2+2x -3, 令f ′(x )=0得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在『0,2』上的最小值是f (1)=-173.『答案』-1732.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于________. 『解析』∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10, ∴f (1)=10,且f ′(1)=0,即⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0, 解得⎩⎪⎨⎪⎧ a =-3,b =3,或⎩⎪⎨⎪⎧a =4,b =-11.而当⎩⎪⎨⎪⎧a =-3,b =3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18. 『答案』183.(2014·苏北四市统考)已知t 为常数,函数f (x )=|x 3-3x -t +1|在区间『-2,1』上的最大值为2,则实数t =________.『解析』由题意知-2≤x 3-3x -t +1≤2在x ∈『-2,1』上恒成立,不等式左右两边分别分离变量,可得x 3-3x -1≤t ≤x 3-3x +3在x ∈『-2,1』上恒成立,得1≤t ≤1,所以t =1.本题还可以通过数形结合的方法讨论解决.『答案』14.(2013·镇江12月统考)已知函数f (x )=xln x (x >0,x ≠1).(1)求函数f (x )的极值;(2)若不等式e xa >x 对任意实数x 恒成立,求实数a 的取值范围.『解析』(1)函数f (x )=xln x 的定义域为(0,1)∪(1,+∞),f ′(x )=ln x -1ln 2x. 令f ′(x )=0,解得x =e.当x 变化时,f ′(x ),f (x )的变化情况如下表:由表得函数f (x )的单调减区间为(0,1)和(1,e),单调增区间为(e ,+∞). 所以存在极小值为f (e)=e ,无极大值. (2)当x ≤0时,对任意a ≠0,不等式恒成立. 当x >0时,在不等式e xa >x 两边同时取自然对数,得xa>ln x .(*) ①当0<x ≤1时,ln x ≤0, 当a >0,不等式恒成立;如果a <0,ln x <0,a ln x >0,不等式(*)等价于a <xln x ,由(1)得,此时xln x∈(-∞,0),不等式(*)不恒成立.②当x >1时,ln x >0,则a >0,不等式(*)等价于a <x ln x ,由(1)得,此时xln x 的最小值为e ,得0<a <e.综上所述,a 的取值范围是(0,e).5.(2014·南通一模)设a 为实数,已知函数f (x )=13x 3-ax 2+(a 2-1)x .(1)当a =1时,求函数f (x )的极值;(2)若方程f (x )=0有三个不等实数根,求实数a 的取值范围. 『解析』(1)依题有f (x )=13x 3-x 2,故f ′(x )=x 2-2x =x (x -2).当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表得f (x )在x =0时取得极大值f (0)=0,f (x )在x =2时取得极小值f (2)=-43.(2)因为f ′(x )=x 2-2ax +(a 2-1)=『x -(a -1)』『x -(a +1)』,所以方程f ′(x )=0的两根为a -1和a +1,显然,函数f (x )在x =a -1取得极大值,在x =a +1是取得极小值.因为方程f (x )=0有三个不等实根,所以⎩⎪⎨⎪⎧f a -1>0,fa +1<0,即⎩⎨⎧13a +2a -12>0,13a -2a +12<0,解得-2<a <2且a ≠±1.故实数a 的取值范围是(-2,-1)∪(-1,1)∪(1,2).。
步步高2014届高三北师大版数学一轮课件 3.3 导数的应用(二)课件
题型分类·深度剖析
题型一
运用导数证明不等式问题
【例 1】设 a 为实数,函数 f(x)=ex-2x +2a,x∈R. (1)求 f(x)的单调区间与极值;
思维启迪
解析
探究提高
证明不等式时要构造函数,
(2)求证:当 a>ln 2-1 且 x>0 时,ex>x2 利用函数的单调性来解题.
-2ax+1.
不必再与端点的函数
值比较.
基础知识
题型分类
思想方法
练出高分 第二页,编辑于星期日:十三点 二十九分。
基础知识·自主学习
要点梳理
难点正本 疑点清源
2.不等式问题 (1)证明不等式时,可构造函数,将问题 转化为函数的极值或最值问题. (2)求解不等式恒成立问题时,可以考虑 将参数分离出来,将参数范围问题转化 为研究新函数的值域问题.
而 g(0)=0,从而对任意 x∈(0,+∞),g(x)>0.
即 ex-x2+2ax-1>0,故 ex>x2-2ax+1.
基础知识
题型分类
思想方法
练出高分 第十三页,编辑于星期日:十三点 二十九分。
题型分类·深度剖析
题型一
运用导数证明不等式问题
【例 1】设 a 为实数,函数 f(x)=ex-2x +2a,x∈R. (1)求 f(x)的单调区间与极值; (2)求证:当 a>ln 2-1 且 x>0 时,ex>x2
(3)若 f(x)<x2 在(1,+∞)上恒成立,
求 a 的取值范围.
基础知识
题型分类
思想方法
练出高分 第十六页,编辑于星期日:十三点 二十九分。
题型分类·深度剖析
【苏教版】【步步高】2014届高考数学一轮复习备考练习3.3.3复习课导数在研究函数中的应用
习题课 导数在研究函数中的应用一、基础过关1.函数f (x )=12e x (sin x +cos x )在区间⎣⎡⎦⎤0,π2上的值域为________. 2.函数y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是________.(填序号)3.使y =sin x +ax 在R 上是增函数的a 的取值范围为__________.4.已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5在 (-∞,+∞)内单调递减,则实数m 等于________.5.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m =________.6.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上单调递增,则a 的最大值为________. 二、能力提升7.如果函数f (x )=x 3+ax 2+bx +c (a 、b 、c ∈R )在R 上不单调,那么a 、b 、c 的关系为________.8.直线y =a 与函数f (x )=x 3-3x 的图象有三个相异的交点,则a 的取值范围是________. 9.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.10.已知函数f (x )=x 3-ax 2+3x +6,若x =3是f (x )的一个极值点,求f (x )在[0,a ]上的最值.11.设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值; (2)证明:f (x )≤2x -2. 三、探究与拓展12.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ).(1)当a =2时,求函数f (x )的单调区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.答案1.⎣⎡⎦⎤12,12e π2 2.④ 3.[1,+∞) 4.-2 5.2 6.37.a 2>3b ,c ∈R 8.(-2,2) 9.⎝⎛⎭⎫-2,23 10.解 f ′(x )=3x 2-2ax +3,由已知得f ′(3)=0, ∴3×9-6a +3=0.∴a =5, ∴f (x )=x 3-5x 2+3x +6. 令f ′(x )=3x 2-10x +3=0, 得x 1=13,x 2=3.则x ,f ′(x ),f (x )的变化关系如下表.11.(1)解 f ′(x )=1+2ax +bx.由已知条件得⎩⎪⎨⎪⎧f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2. 解得⎩⎪⎨⎪⎧a =-1,b =3.(2)证明 因为f (x )的定义域为(0,+∞), 由(1)知f (x )=x -x 2+3ln x .设g (x )=f (x )-(2x -2) =2-x -x 2+3ln x , 则g ′(x )=-1-2x +3x=-(x -1)(2x +3)x.当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0.所以g (x )在(0,1)内单调递增,在(1,+∞)内单调递减. 而g (1)=0,故当x >0时,g (x )≤0, 即f (x )≤2x -2.12.解 当a =2时,f (x )=(-x 2+2x )e x ,f ′(x )=(-x 2+2)e x .当f ′(x )>0时,(-x 2+2)e x >0,注意到e x >0, 所以-x 2+2>0,解得-2<x < 2.所以,函数f (x )的单调递增区间为(-2,2).同理可得,函数f (x )的单调递减区间为(-∞,-2)和(2,+∞). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0在(-1,1)上恒成立. 又f ′(x )=[-x 2+(a -2)x +a ]e x , 即[-x 2+(a -2)x +a ]e x ≥0,注意到e x >0, 因此-x 2+(a -2)x +a ≥0在(-1,1)上恒成立, 也就是a ≥x 2+2x x +1=x +1-1x +1在(-1,1)上恒成立.设y =x +1-1x +1,则y ′=1+1(x +1)2>0,即y =x +1-1x +1在(-1,1)上单调递增,则y <1+1-11+1=32,故a ≥32.。
2014届步步高大一轮复习讲义二29
§2.9函数的应用2014高考会这样考 1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.复习备考要这样做 1.讨论函数的性质一定要先考虑定义域;2.充分搜集、应用题目信息,正确建立函数模型;3.注重函数与不等式、数列、导数等知识的综合.1.几类函数模型及其增长差异(1)几类函数模型2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:[难点正本疑点清源]1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.答案78℃解析T(3)=33-3×3+60=78(℃).2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案 2 500解析L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500当Q=300时,L(Q)的最大值为2 500万元.3.(2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M02-t30,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率...是-10ln 2(太贝克/年),则M(60)等于()A.5太贝克B.75ln 2太贝克C.150ln 2太贝克D.150太贝克答案 D解析∵M′(t)=-130M02-t30·ln 2,∴M′(30)=-130×12M0ln 2=-10ln 2,∴M0=600.∴M(t)=600×2-t30,∴M(60)=600×2-2=150(太贝克).4.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是() A.x>22%B.x<22%C.x=22%D.x的大小由第一年的产量确定答案 B解析设第一年的产量为a,则a(1+x)2=a(1+44%),∴x=20%.5.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站 ( )A .5千米处B .4千米处C .3千米处D .2千米处答案 A解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号,故选A.题型一 二次函数模型例1 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?思维启迪:(1)根据函数模型,建立函数解析式.(2)求函数最值. 解 (1)每吨平均成本为yx (万元).则y x =x 5+8 000x-48≥2x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低,最低为32万元. (2)设可获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680 (0≤x ≤210).∵R (x )在[0,210]上是增函数,∴x =210时, R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.探究提高 二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2 (0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台答案 C解析 设利润为f (x )万元,则 f (x )=25x -(3 000+20x -0.1x 2) =0.1x 2+5x -3 000 (0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,∴生产者不亏本时的最低产量是150台. 题型二 指数函数模型例2 诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f (x )表示第x (x ∈N *)年诺贝尔奖发放后的基金总额(1999年记为f (1),2000年记为f (2),…,依次类推).(1)用f (1)表示f (2)与f (3),并根据所求结果归纳出函数f (x )的表达式;(2)试根据f (x )的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)思维启迪:从所给信息中找出关键词,增长率问题可以建立指数函数模型. 解 (1)由题意知,f (2)=f (1)(1+6.24%)-12f (1)·6.24%=f (1)(1+3.12%),f (3)=f (2)(1+6.24%)-12f (2)·6.24%=f (2)(1+3.12%)=f (1)(1+3.12%)2, ∴f (x )=19 800(1+3.12%)x -1 (x ∈N *). (2)2008年诺贝尔奖发放后基金总额为 f (10)=19 800(1+3.12%)9=26 136,故2009年度诺贝尔奖各项奖金为16·12f (10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.探究提高 此类增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x (其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n (其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t +21-t (t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立. 令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 题型三 分段函数模型例3 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎨⎧13x 3-80x 2+5 040x ,x ∈[120,144),12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?思维启迪:题目中月处理成本与月处理量的关系为分段函数关系,项目获利和月处理量的关系也是分段函数关系.解 (1)当x ∈[200,300]时,设该项目获利为S , 则S =200x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. (2)由题意,可知二氧化碳的每吨处理成本为y x =⎩⎨⎧13x 2-80x +5 040,x ∈[120,144).12x +80 000x-200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240, 所以当x =120时,yx 取得最小值240.②当x ∈[144,500]时,y x =12x +80 000x -200≥212x ×80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,yx取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低. 探究提高 本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是 ( )A .75,25B .75,16C .60,25D .60,16 答案 D解析 由函数解析式可以看出,组装第A 件产品所需时间为cA=15,故组装第4件产品所需时间为c 4=30,解得c =60,将c =60代入cA=15,得A =16.函数建模问题典例:(12分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元. (1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?审题视角 (1)认真阅读题干内容,理清数量关系.(2)分析图形提供的信息,从图形可看出函数是分段的.(3)建立函数模型,确定解决模型的方法. 规范解答解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,①由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 (14≤P ≤20),-32P +40 (20<P ≤26),[2分]代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝⎛⎭⎫-32P +40(P -14)×100-5 600 (20<P ≤26),[4分](1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.[8分] (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.[12分]解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量 关系;第二步:建模——将文字语言转化成数学语言,用数学知 识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论; 第四步:还原——将用数学方法得到的结论还原为实际 问题的意义.第五步:反思回顾——对于数学模型得到的数学结果, 必须验证这个数学解对实际问题的合理性.温馨提醒(1)本题经过了三次建模:①根据月销量图建立Q与P的函数关系;②建立利润余额函数;③建立脱贫不等式.(2)本题的函数模型是分段的一次函数和二次函数,在实际问题中,由于在不同的背景下解决的问题发生了变化,因此在不同范围中,建立函数模型也不一样,所以现实生活中分段函数的应用非常广泛.(3)在构造分段函数时,分段不合理、不准确,是易出现的错误.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础;2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.失误与防范1.函数模型应用不当是常见的解题错误.所以,正确理解题意,选择适当的函数模型是正确解决这类问题的前提和基础.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 有一批材料可以围成200 m长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为() A.1 000 m2B.2 000 m2C.2 500 m2D.3 000 m2答案 C解析 设围成的场地宽为x m ,面积为y m 2,则y =3x (200-4x )×13=-4x 2+200x (0<x <50).当x =25时,y max =25×100=2 500.∴围成的矩形场地的最大面积为2 500 m 2.2. (2011·湖北改编)里氏震级M 的计算公式:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.( ) A .6 1 000B .4 1 000C .6 10 000D .4 10 000 答案 C解析 由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=3-(-3)=6,∴此次地震的震级为 6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1- lg A 0)-(lg A 2-lg A 0)=9-5=4.∴A 1A 2=104=10 000,∴9级地震的最大振幅是5级地震最大振幅的10 000倍.3. 将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt ,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶中的水只有a 8升,则m 的值为 ( )A .8B .10C .12D .15答案 B 解析 由已知条件可得a e 5n =a 2,e 5n =12. 由a e nt =a 8,得e nt =18,所以t =15,m =15-5=10.4. 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的平均利润最大 ( )A .3B .4C .5D .6答案 C 解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x =-x -25x+12, ∵x ∈N *,∴y x ≤-2x ·25x+12=2, 当且仅当x =25x,即x =5时取“=”. ∴x =5时营运的平均利润最大.二、填空题(每小题5分,共15分)5. 某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2, ∴y =e 2t ln 2,当t =5时,∴y =e 10ln 2=210=1 024.6. 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.答案 9解析 设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧ 9,0<x ≤38+2.15(x -3)+1,3<x ≤88+2.15×5+2.85(x -8)+1,x >8由y =22.6,解得x =9.7. 2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1)答案 2037解析 由已知条件:14(1+1.25%)x -2 008>20,x -2 008>lg 107lg 8180=1-lg 74lg 3-3lg 2-1=28.7, 则x >2 036.7,即x =2 037.三、解答题(共22分)8. (10分)某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p =2(1-kt )(x -b )2,其中k ,b 均为常数.当关税税率t =75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k ,b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2-x ,当p =q 时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.解 (1)由已知⎩⎪⎨⎪⎧ 1=2(1-0.75k )(5-b )22=2(1-0.75k )(7-b )2, ⇒⎩⎪⎨⎪⎧(1-0.75k )(5-b )2=0(1-0.75k )(7-b )2=1. 解得b =5,k =1.(2)当p =q 时,2(1-t )(x -5)2=2-x ,∴(1-t )(x -5)2=-x ⇒t =1+x(x -5)2=1+1x +25x -10 而f (x )=x +25x在(0,4]上单调递减, ∴当x =4时,f (x )有最小值414, 故当x =4时,关税税率的最大值为500%.9.(12分)如图所示,在矩形ABCD 中,已知AB =a ,BC =b (a >b ).在AB 、AD 、CD 、CB 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形EFGH 的面积最大?求出这个最大面积.解 设四边形EFGH 的面积为S ,由题意得S △AEH =S △CFG =12x 2, S △BEF =S △DHG =12(a -x )·(b -x ). 由此得S =ab -2⎣⎡⎦⎤12x 2+12(a -x )(b -x )=-2x 2+(a +b )x =-2⎝⎛⎭⎪⎫x -a +b 42+(a +b )28. 函数的定义域为{x |0<x ≤b },因为a >b >0,所以0<b <a +b 2. 若a +b 4≤b ,即a ≤3b ,x =a +b 4时面积S 取得最大值(a +b )28; 若a +b 4>b ,即a >3b 时,函数S =-2⎝ ⎛⎭⎪⎫x -a +b 42+(a +b )28在(0,b ]上是增函数,因此,当x =b 时,面积S 取得最大值ab -b 2.综上可知,若a ≤3b ,当x =a +b 4时,四边形EFGH 的面积取得最大值(a +b )28;若a >3b ,当x =b 时,四边形EFGH 的面积取得最大值ab -b 2.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1. 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( ) A .45.606万元B .45.6万元C .45.56万元D .45.51万元答案 B 解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30 (x ≥0).∴当x =10时,S max =45.6(万元).2. 某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ), ∴S =xy =-54(y -12)2+180, ∴当y =12时,S 有最大值,此时x =15.3. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是 ( )答案 A解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图像上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.二、填空题(每小题5分,共15分)4. 如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为____________.答案 30 cm 、20 cm解析 设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486.5. 某商人购货,进价已按原价a 扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为______________.答案 y =a 4x (x ∈N *) 解析 设新价为b ,依题意,有b (1-20%)-a (1-25%)=b (1-20%)·25%,化简得b = 54a .∴y =b ·20%·x =54a ·20%·x ,即y =a 4x (x ∈N *). 6. 某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N 个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M 人.假定挂号的速度是每个窗口每分钟K 个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个.答案 4解析 设要同时开放x 个窗口才能满足要求,则⎩⎪⎨⎪⎧ N +40M =40K , ①N +15M =15K ×2, ②N +8M ≤8Kx . ③由①②,得⎩⎪⎨⎪⎧K =2.5M ,N =60M , 代入③,得60M +8M ≤8×2.5Mx ,解得x ≥3.4.故至少同时开放4个窗口才能满足要求.三、解答题7. (13分)(2011·湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解 (1)由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧ 200a +b =0,20a +b =60, 解得⎩⎨⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x ≤20,13(200-x ), 20<x ≤200.(2)依题意并由(1)可得 f (x )=⎩⎪⎨⎪⎧60x , 0≤x ≤20,13x (200-x ), 20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x ) ≤13⎣⎢⎡⎦⎥⎤x +(200-x )22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.。
高中数学二轮复习专题二—利用导数研究函数的性质
专题二——利用导数研究函数的性质2020-2-24高考趋势导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。
试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。
考点展示1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 .3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45°4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 15.设R a ∈,若函数ax e y x+=,R x ∈有大于零的极值点,则a 的取值范围1-<a 6.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 2 . 7.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3x y =的切线,则切线方程为_ 12x-y-16=0或3x-y+2=0 样题剖析例1、设函数323()(1)1,32a f x x x a x a =-+++其中为实数。
(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 利用导数研究函数的性质1.f′(x)>0在(a,b)上成立是f(x)在(a,b)上单调递增的充分不必要条件.2.f(x)在(a,b)上是增函数的充要条件是f′(x)≥0,且f′(x)=0在有限个点处取到.3.对于可导函数f(x),f′(x0)=0并不是f(x)在x=x0处有极值的充分条件对于可导函数f(x),x=x0是f(x)的极值点,必须具备①f′(x0)=0,②在x0两侧,f′(x)的符号为异号.所以f′(x0)=0只是f(x)在x0处有极值的必要条件,但并不充分.4.如果连续函数f(x)在区间(a,b)内只有一个极值点,那么这个极值点就是最值点.1.已知函数f(x)=在[1,+∞)上为减函数,则实数a的取值范围为__________.答案 [e,+∞)解析 f′(x)==,因为f(x)在[1,+∞)上为减函数,故f′(x)≤0在[1,+∞)上恒成立,即ln a≥1-ln x在[1,+∞)上恒成立.设φ(x)=1-ln x,φ(x)max=1,故ln a≥1,a≥e.2.设函数f(x)=ax3-3x+1 (x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为________.答案 4解析 若x=0,则不论a取何值,f(x)≥0显然成立;当x>0,即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥-.设g(x)=-,则g′(x)=,所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)max=g=4,从而a≥4.当x<0,即x∈[-1,0)时,同理a≤-.g(x)在区间[-1,0)上单调递增,∴g(x)min=g(-1)=4,从而a≤4,综上可知a=4.3.若函数f(x)的导函数为f′(x)=-x(x+1),则函数g(x)=f(log a x)(0<a<1)的单调递减区间是__________.答案 解析 由f′(x)=-x(x+1)≤0,得x≤-1或x≥0,即f(x)的递减区间为(-∞,-1],[0,+∞),则f(x)的递增区间为[-1,0].∵0<a<1,∴y=log a x在(0,+∞)上为减函数,由复合函数单调性可知当-1≤log a x≤0,即1≤x≤时,g(x)为减函数,∴g(x)的单调递减区间为.4.已知函数f(x)=a sin 2x-sin 3x(a为常数)在x=处取得极值,则a的值为( )A.1 B.0 C. D.-答案 A解析 ∵f′(x)=2a cos 2x-cos 3x,∴f′=2a cos π-cos π=0,∴a=1,经验证适合题意.5.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有 ( )A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1)答案 D解析 当x≥1时,f′(x)≥0,f(x)为增函数,∴f(2)>f(1),当x≤1时,f′(x)≤0,f(x)为减函数,∴f(0)>f(1),∴f(0)+f(2)>2f(1).题型一 利用导数求函数的单调区间例1 已知函数f(x)=x3+ax2-x+c,且a=f′.(1)求a的值;(2)求函数f(x)的单调区间;(3)设函数g(x)=(f(x)-x3)·e x,若函数g(x)在x∈[-3,2]上单调递增,求实数c的取值范围.解 (1)由f(x)=x3+ax2-x+c,得f′(x)=3x2+2ax-1.当x=时,得a=f′=3×2+2a×-1,解之,得a=-1.(2)由(1)可知f(x)=x3-x2-x+c.则f′(x)=3x2-2x-1=3(x-1),列表如下:x(-∞,-)-(-,1)1(1,+∞)f′(x)+0-0+f(x)极大值极小值所以f(x)的单调递增区间是(-∞,-)和(1,+∞);f(x)的单调递减区间是.(3)函数g(x)=(f(x)-x3)·e x=(-x2-x+c)·e x,有g′(x)=(-2x-1)e x+(-x2-x+c)e x=(-x2-3x+c-1)e x,因为函数g(x)在x∈[-3,2]上单调递增,所以h(x)=-x2-3x+c-1≥0在x∈[-3,2]上恒成立.只要h(2)≥0,解得c≥11,所以c的取值范围是[11,+∞).探究提高 利用导数研究函数单调性的一般步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.设函数f(x)=x(e x-1)-ax2.(1)若a=,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0,求a的取值范围.解 (1)a=时,f(x)=x(e x-1)-x2,f′(x)=e x-1+x e x-x=(e x-1)(x+1).当x∈(-∞,-1)时,f′(x)>0;当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)的单调递增区间为(-∞,-1),(0,+∞),单调递减区间为(-1,0).(2)f(x)=x(e x-1-ax),令g(x)=e x-1-ax,g′(x)=e x-a.若a≤1,则当x∈(0,+∞)时,g′(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时,g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,ln a)时,g′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,ln a)时,g(x)<0,即f(x)<0.综合得a的取值范围为(-∞,1].题型二 已知单调区间求参数范围例2 已知a∈R,函数f(x)=(-x2+ax)e x (x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.解 (1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-<x<.所以函数f(x)的单调递增区间是[-,].(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立.因为f′(x)=(-2x+a)e x+(-x2+ax)e x=[-x2+(a-2)x+a]e x,所以[-x2+(a-2)x+a]e x≥0对x∈(-1,1)都成立.因为e x>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥==(x+1)-对x∈(-1,1)都成立.令y=(x+1)-,则y′=1+>0.所以y=(x+1)-在(-1,1)上单调递增,所以y<(1+1)-=.即a≥.因此a的取值范围为a≥.探究提高 (1)根据函数的单调性确定参数范围是高考的一个热点题型,其根据是函数在某区间上单调递增(减)时,函数的导数在这个区间上大(小)于或者等于零恒成立,转化为不等式恒成立问题解决.(2)在形式上的二次函数问题中,极易忘却的就是二次项系数可能等于零的情况,这样的问题在导数单调性的讨论中是经常遇到的,值得特别注意.已知函数f(x)=在x=1处取得极值2.(1)求函数f(x)的表达式;(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?解 (1)因为f′(x)=,而函数f(x)=在x=1处取得极值2,所以即得,所以f(x)=即为所求.(2)由(1)知f′(x)==.令f′(x)=0得x1=-1,x2=1,则f(x)的增减性如下表:x(-∞,-1)(-1,1)(1,+∞)f′(x)-+-f(x)可知,f(x)的单调增区间是[-1,1],所以,所以当m∈(-1,0]时,函数f(x)在区间(m,2m+1)上单调递增.题型三 函数的极值、最值应用问题例3 设函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(1)当a=-时,讨论函数f(x)的单调性;(2)若函数f(x)仅在x=0处有极值,求a的取值范围;(3)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b 的取值范围.思维启迪:f(x)≤1在[-1,0]上恒成立,转化为f(x)在[-1,0]上的最大值f(x)max≤1.解 (1)f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).当a=-时,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).令f′(x)=0,得x1=0,x2=,x3=2.当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,0)02(2,+∞)f′(x)-0+0-0+f(x)单调递减极小值单调递增极大值单调递减极小值单调递增所以f(x)在和(2,+∞)上是增函数,在(-∞,0)和上是减函数.(2)f′(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根.由于f(x)仅在x=0处有极值,则方程4x2+3ax+4=0有两个相等的实根或无实根,Δ=9a2-4×16≤0,解此不等式,得-≤a≤.这时,f(0)=b是唯一极值.因此满足条件的a的取值范围是.(3)由(2)知,当a∈[-2,2]时,4x2+3ax+4>0恒成立.∴当x<0时,f′(x)<0,f(x)在区间(-∞,0]上是减函数.因此函数f(x)在[-1,0]上的最大值是f(-1).又∵对任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,∴f(-1)≤1,即3-a+b≤1.于是b≤a-2在a∈[-2,2]上恒成立.∴b≤-2-2,即b≤-4.因此满足条件的b的取值范围是(-∞,-4].探究提高 (1)对含参函数的极值,要进行讨论,注意f′(x0)=0只是f(x)在x0处取到极值的必要条件.(2)利用函数的极值、最值,可以解决一些不等式的证明、函数零点个数、恒成立问题等.已知f(x)=ax2 (a∈R),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[,e]上有两个不等解,求a的取值范围.解 (1)F(x)=ax2-2ln x,其定义域为(0,+∞),∴F′(x)=2ax-= (x>0).①当a>0时,由ax2-1>0,得x>.由ax2-1<0,得0<x<.故当a>0时,F(x)在区间上单调递增,在区间上单调递减.②当a≤0时,F′(x)<0 (x>0)恒成立.故当a≤0时,F(x)在(0,+∞)上单调递减.(2)原式等价于方程a==φ(x)在区间[,e]上有两个不等解.∵φ′(x)=在(,)上为增函数,在(,e)上为减函数,则φ(x)max=φ()=,而φ(e)=<φ(2)===φ().∴φ(x)min=φ(e),如图当f(x)=g(x)在[,e]上有两个不等解时有φ(x)min=,a的取值范围为≤a<.导数与函数单调性关系不清致误典例:(12分)已知f(x)=x3-ax2-3x.(1)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)在[1,a]上的最小值和最大值.易错分析 求函数的单调递增区间就是解导数大于零的不等式,受此影响,容易认为函数f(x)的导数在区间[2,+∞)上大于零,忽视了函数的导数在[2,+∞)上个别的点处可以等于零,这样的点不影响函数的单调性.规范解答解 (1)由题意,知f′(x)=3x2-2ax-3,令f′(x)≥0 (x≥2),得a≤.[2分]记t(x)=,当x≥2时,t(x)是增函数,所以t(x)min=×=,所以a∈.[5分](2)由题意,得f′(3)=0,即27-6a-3=0,所以a=4.[6分]所以f(x)=x3-4x2-3x,f′(x)=3x2-8x-3.令f′(x)=0,得x1=-,x2=3.[7分]又因为x∈[1,4],所以x=-(舍去),故x=3.当x∈(1,3)时,f′(x)<0,[8分]所以f(x)在[1,3]上为减函数;当x∈(3,4)时,f′(x)>0,所以f(x)在[3,4]上为增函数.[9分]所以x=3时,f(x)有极小值.[10分]于是,当x∈[1,4]时,f(x)min=f(3)=-18,而f(1)=-6,f(4)=-12,所以f(x)max=f(1)=-6.[12分]温馨提醒 (1)若函数y=f(x)在区间(a,b)上单调递增,则f′(x)≥0,其逆命题不成立,因为f′(x)≥0包括f′(x)>0或f′(x)=0,当f′(x)>0时函数y=f(x)在区间(a,b)上单调递增,当f′(x)=0时f(x)在这个区间内为常数函数;同理,若函数y=f(x)在区间(a,b)上单调递减,则f ′(x)≤0,其逆命题不成立.(2)使f′(x)=0的离散的点不影响函数的单调性.方法与技巧1.利用导数证明不等式,就是把不等式恒成立的问题,通过构造函数,转化为利用导数求函数最值的问题.应用这种方法的难点是如何根据不等式的结构特点或者根据题目证明目标的要求,构造出相应的函数关系式.2.在讨论方程的根的个数、研究函数图象与x轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.失误与防范1.研究函数的有关性质,首先要求出函数的定义域.2.利用单调性求最值时不要忽视f′(x)=0的情况.3.“f′(x0)=0”是“函数f(x)在x0取到极值”的必要条件.A组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.函数f(x)=x2-2ln x的单调递减区间是 ( ) A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)答案 A解析 ∵f′(x)=2x-= (x>0),∴当x∈(0,1)时,f′(x)<0,f(x)为减函数,当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.2.函数f(x)=x3+3x2+4x-a的极值点的个数是( )A.2 B.1 C.0 D.由a确定答案 C解析 f′(x)=3x2+6x+4=3(x+1)2+1>0,则f(x)在R上是增函数,故不存在极值点.故选C.3.若函数f(x)=x3-6bx+3b在(0,1)内有最小值,则实数b的取值范围是( )A.(0,1) B.(-∞,1)C.(0,+∞) D.答案 D解析 f(x)在(0,1)内有最小值,即f(x)在(0,1)内有极小值,f′(x)=3x2-6b,由题意,得函数f′(x)的草图如图,∴ 即解得0<b<.故选D.4.已知函数f(x)=x3-3x2-9x+3,若函数g(x)=f(x)-m在x∈[-2,5]上有3个零点,则m的取值范围为 ( )A.(-24,8) B.(-24,1]C.[1,8] D.[1,8)答案 D解析 f′(x)=3x2-6x-9=3(x2-2x-3)=3(x+1)(x-3),令f′(x)=0,得x=-1或x=3.当x∈[-2,-1)时,f′(x)>0,函数f(x)单调递增;当x∈(-1,3)时,f′(x)<0,函数f(x)单调递减;当x∈(3,5]时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的极小值为f(3)=-24,极大值为f(-1)=8.而f(-2)=1,f(5)=8,函数图象大致如图所示.故要使方程g(x)=f(x)-m在x∈[-2,5]上有3个零点,只需函数f(x)在[-2,5]内的函数图象与直线y=m有3个交点,故即m∈[1,8).二、填空题(每小题5分,共15分)5. (2012·广东)曲线y=x3-x+3在点(1,3)处的切线方程为________.答案 2x-y+1=0解析 ∵y′=3x2-1,∴y′|x=1=3×12-1=2.∴该切线方程为y-3=2(x-1),即2x-y+1=0.6.已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y =0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f(x)的图象上,故-m+n=2.①又f′(x)=3mx2+2nx,则f′(-1)=-3,故3m-2n=-3.②联立①②解得:m=1,n=3,即f(x)=x3+3x2,令f′(x)=3x2+6x≤0,解得-2≤x≤0,则[t,t+1]⊆[-2,0],故t≥-2且t+1≤0,所以t∈[-2,-1].7.函数f(x)=x(x-m)2在x=1处取得极小值,则实数m=________.答案 1解析 f(x)=x3-2mx2+m2x,f′(x)=3x2-4mx+m2,由已知f′(1)=0,即3-4m+m2=0,解得m=1或m=3.当m=1时,f′(x)=3x2-4x+1=(3x-1)(x-1),当m=3时,f′(x)=3x2-12x+9=3(x-1)(x-3),则m=3应舍去.三、解答题(共22分)8. (10分)设函数f(x)=x3-x2+6x-a.(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.解 (1)f′(x)=3x2-9x+6=3(x-1)(x-2),因为x∈(-∞,+∞),f′(x)≥m,即3x2-9x+(6-m)≥0恒成立,所以Δ=81-12(6-m)≤0,解得m≤-,即m的最大值为-.(2)因为当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以当x=1时,f(x)取极大值f(1)=-a;当x=2时,f(x)取极小值,f(2)=2-a,故当f(2)>0或f(1)<0时,f(x)=0仅有一个实根.解得a<2或a>.9.(12分)已知函数f(x)=x3-ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2.(1)求f(x)的解析式;(2)若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围.解 (1)f′(x)=3x2-3ax,令f′(x)=0,得x1=0,x2=a,∵a>1,∴f(x)在[-1,0]上为增函数,在[0,1]上为减函数.∴f(0)=b=1,∵f(-1)=-a,f(1)=2-a,∴f(-1)<f(1),∴f(-1)=-a=-2,a=.∴f(x)=x3-2x2+1.(2)g(x)=x3-2x2-mx+1,g′(x)=3x2-4x-m.由g(x)在[-2,2]上为减函数,知g′(x)≤0在x∈[-2,2]上恒成立.∴,即∴m≥20.∴实数m的取值范围是m≥20.B组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为( )A.[-,+∞)B.(-∞,-3]C.(-∞,-3]∪[-,+∞)D.[-,]答案 C解析 f′(x)=x2+2ax+5,当f(x)在[1,3]上单调递减时,由得a≤-3;当f(x)在[1,3]上单调递增时,f′(x)≥0恒成立,则有Δ=4a2-4×5≤0或或得a∈[-,+∞).综上a的取值范围为(-∞,-3]∪[-,+∞),故选C.2.若a>2,则方程x3-ax2+1=0在(0,2)上恰好有( )A.0个根 B.1个根C.2个根 D.3个根答案 B解析 设f(x)=x3-ax2+1,则f′(x)=x2-2ax=x(x-2a),因为a>2,所以2a>4,所以当x∈(0,2)时,f′(x)<0,则f(x)在(0,2)上为减函数,又f(0)f(2)=1×=-4a<0,所以f(x)=0在(0,2)上恰好有1个根,故选B. 3.(2011·湖南)设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小时t的值为 ( )A.1 B. C. D.答案 D解析 由题意画出函数图象如图所示,由图可以看出|MN|=y=t2-ln t(t>0).y′=2t-==.当0<t<时,y′<0,可知y在此区间内单调递减;当t>时,y′>0,可知y在此区间内单调递增.故当t=时,|MN|有最小值.二、填空题(每小题5分,共15分)4.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是__________.答案 (-4,0)解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0,得x1=0,x2=2,当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以解得-4<a<0.5.如果在上,函数f(x)=x2+px+q与g(x)=+在同一点处取得相同的最小值,那么f(x)在上的最大值是________.答案 4解析 ∵g(x)=+且x∈,则g(x)≥3,当且仅当x=1时,g(x)=3.又f′(x)=2x+p,∴f′(1)=0,即2+p=0,得p=-2,∴f(x)=x2-2x+q,又f(x)min=f(1)=3,∴1-2+q=3,∴q=4,∴f(x)=x2-2x+4=(x-1)2+3,x∈,∴f(x)max=f(2)=4.6.已知函数f(x)的导数f′(x)=2x-9,且f(0)的值为整数,当x∈(n,n+1] (n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=________.答案 4解析 ∵f′(x)=2x-9,∴f(x)=x2-9x+c,∵f(0)=c为整数,∴c∈Z,又f(1)=-8+c,f(2)=-14+c,f(2)-f(1)=-6,可见在f(1) 到f(2)之间并非有且只有一个整数;同样在f(2)到f(3)之间、f(3)到f(4)之间也并非有且只有一个整数;而f(4)=-20+c,f(5)=-20+c,故在f(4)到f(5)之间有且只有一个整数.因为x∈(n,n+1] (n∈N*),x≠n,所以在x=5时取得的整数为f(5)=-20+c,故n=4.三、解答题7. (13分)(2012·安徽)设函数f(x)=a e x++b(a>0).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=x,求a,b的值.解 (1)f′(x)=a e x-,当f′(x)>0,即x>-ln a时,f(x)在(-ln a,+∞)上递增;当f′(x)<0,即x<-ln a时,f(x)在(-∞,-ln a)上递减.①当0<a<1时,-ln a>0,f(x)在(0,-ln a)上递减,在(-ln a,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(-lna)=2+b;②当a≥1时,-ln a≤0,f(x)在[0,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(0)=a++b.(2)依题意f′(2)=a e2-=,解得a e2=2或a e2=-(舍去),所以a=,代入原函数可得2++b=3,即b=,故a=,b=.。