广阳区2013年初中毕业生数学统练一
2013年初中毕业生中考数学试卷及答案
2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。
2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
2013年中考数学第一次模拟考试题(含答案邯郸市)
2013年中考数学第一次模拟考试题(含答案邯郸市)锛掞紣锛??涓€銆?閫夋嫨棰?1銆佸湪-3锛?1锛?锛??锛?A 銆?3 B銆?1 C銆? D銆? 2涓哄渾鐨勬槸锛?锛?3锛?A銆佸繀鐒朵簨浠?B銆侀殢鏈轰簨浠?C銆佺‘瀹氫簨浠?D4锛?A 銆?B銆?x+2y=6xy C銆?D銆?5BC缁忚繃鍙樻崲寰楀埌鈻矰EF锛?A銆佹妸鈻矨BC缁曠偣C閫嗘椂閽堟柟鍚戞棆杞?0o 锛屽啀鍚戜笅骞崇Щ2鏍?B 銆佹妸鈻矨BC缁曠偣C椤烘椂閽堟柟鍚戞棆杞?0o锛屽啀鍚戜笅骞崇Щ5鏍?C 銆佹妸鈻矨BC鍚戜笅骞崇Щ4鏍硷紝鍐嶇粫鐐笴閫嗘椂閽堟柟鍚戞棆杞?80o D 銆佹妸鈻矨BC鍚戜笅骞崇Щ5鏍硷紝鍐嶇粫鐐笴椤烘椂閽堟柟鍚戞棆杞?80o6銆佷笉绛夊紡缁?鐨勮В闆嗕负锛?锛?A銆?<X<2 B銆亁>1 C銆亁<2 D銆亁<1鎴杧>2 7?脳4鐨勭煩褰㈢綉鏍间腑锛屾瘡鏍煎皬姝f柟褰㈢殑杈归暱閮芥槸1锛岃嫢鈻矨BC屽垯tan鈭燗BC鐨勫€间负A銆?B銆?C銆?D銆? 8AB OD B,鍨傝冻涓篗锛屼笅鍒楃粨璁轰笉鎴愮珛鐨勬槸锛?锛?A锛嶤M=DM B銆佸姬CB= B C銆佲垹ACD=鈭燗DC D銆丱M=MB9銆佽嫢,鍒?鐨勫€兼槸锛?锛?A銆? B銆?6 C銆? D銆? 10銆侀偗閮稿競瀵瑰煄у5绫虫牻1妫碉紝鍒欐爲鑻楃己21妫碉紝濡傛灉姣忛殧6绫虫牻1妫碉紝鍒欐爲x锛?A銆?锛坸+21-1锛?6锛坸-1锛?B銆?锛坸+21锛?6锛坸-1锛?C銆?锛坸+21-1锛?6x D銆?锛坸+21锛?6x 11D涓衡柍ABC鍐呬竴鐐癸紝CD骞冲垎鈭燗CB锛孊E D,鍨傝冻涓篋锛屼氦AC浜庣偣E锛屸垹A=鈭燗BE,C=5,BC=3,鍒橞D鐨勯暱涓猴紙锛?A銆?.5 B銆?.5 C銆? D銆?12ABC暱涓?鐨勫皬姝f柟褰㈢粍鎴愮殑锛屽弽姣斾緥鍑芥暟OABC鐨勪腑蹇僂锛屽弽姣斾緥鍑芥暟杩嘇B BC浜庣偣N?鈶犲弻鏇茬嚎鐨勮В鏋愬紡涓?鈶′C=2NC鈶e弽姣斾緥鍑芥暟嬪嚱鏁?鐨勫?鍏朵腑姝g‘鐨勭粨璁烘槸锛?A銆佲憼鈶?B銆佲憼鈶?C銆佲憽鈶?D銆佲憿鈶?13銆?= 14鏈夋剰涔夛紝鍒檟鐨勫彇鍊艰寖鍥存槸銆?15銆佹瘝绾块暱涓?锛屽簳闈㈠渾鐨勭洿寰勪负2鐨勫渾閿ョ殑渚ч銆?16涓庣洿绾?鐩镐氦浜庣偣P锛?锛?锛夛紝鍒欏叧浜巟鐨勪笉绛夊紡鐨勮В闆嗕负銆?172cm锛?cm锛?cm锛?cm鐨勫洓鏍规湪鏉★紝灏忓己鎷垮嚭浜嗕竴鏍?cm闀跨殑鏈銆?18鎰忛潪闆跺疄鏁皒锛寉瀹氫箟鐨勬柊杩愮畻鈥?鈥? ,鍑忔硶鐨勮繍绠楋紝宸茬煡锛?锛屽垯= 銆?涓夈€佽В19銆佸厛鍖栫畝锛屽湪姹傚€硷細锛屽叾涓?20銆佹煇鏍′负浜嗚В锛?锛夛紙2娊鍙栫殑浜斾釜绛夌骇鎵€鍗犳瘮渚嬪拰浜烘暟鍒嗗竷鎯呭喌锛岀粯鍒跺嚭涔濆勾绾э紙1?锛夌彮鐨勭粺璁¤〃銆?锛?т汉鏁?锛?锛変節锛?锛夌彮銆佷節锛?锛屼腑浣嶆暟鍒嗗埆涓?锛??21銆佹煇瀛︽牎璁″垝鍒╃敤鏆戝亣浜嬩欢锛堝叡60澶繘琛岀矇鍒凤紝鐜版湁鐢蹭箼涓や釜宸ョ▼闃熸潵鎵垮寘锛岃皟鏌ュ彂鐜帮細涔欓槦鍗曠嫭瀹屾垚宸ョ▼鐨勬椂闂存槸鐢查槦鐨?.5鍊嶏紱鐢层€佷箼涓ら槦鍚堜綔瀹屾垚宸ョ▼闇€瑕?0澶╋紱鐢查槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负1000鍏冿紝涔欓槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负600锛?锛夌敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶澶氬皯澶╋紵锛?锛夆憼鈶′粠璧22BCD E锛孎涓鸿竟BC銆丆D涓婄殑鐐癸紝涓擟E=CF E锛孉F锛屸垹ABC E浜庣偣G锛岃繛G銆?(1)姹傝瘉锛欰G=CG 锛?锛夋眰璇侊細CG F (3)G=CG锛屽垯鈻矨BE涓庘柍BGE?23銆佽幏鎮夆€滆帿瑷€鑾峰緱浜?012?00鍏冮挶鍒颁功搴楄喘涔拌帿瑷€浣滃搧渚?閮ㄥ垎涔︾睄鍜?涔﹀悕鍘熶环锛堝厓锛?銆婅洐銆?37.5 銆婄敓姝荤柌鍔炽€?15 銆婄孩楂樼脖瀹舵棌銆?21 鑻ユ潕20細锛?锛夎喘涔般€婄孩楂樼脖瀹舵棌銆嬬殑鎬讳环涓?鍏冿紙鐢ㄥ惈x锛寉鐨勪唬鏁板紡琛ㄧず锛?锛?伴噺鐨?鍊嶏紝璇峰啓鍑簑鍏充簬x鐨勫嚱鏁板叧绯诲紡锛屽苟姹傚嚭銆婅洐銆(3)鑻ユ潕鑰佸笀鍦ㄤ功鍩庤喘涔颁簡浠ヤ笂?50?24BCD AD C锛屸垹BCD=90o,宸茬煡AB=5锛孊C=6,cosB= 銆傜偣O鐢辩偣B鍚戠偣C浠ユ瘡绉?C t OB涓哄崐寰勭殑鈯橭涓嶢B杈逛氦浜庣偣P銆?锛?锛夋眰AD鐨勯暱锛?锛夊綋t=AD鏃讹紝濡傚浘锛?锛夛紝姹侭P鐨勯暱锛?锛夌偣O杩愬姩鐨勮繃绋嬩腑锛岃繃鐐笵鐨勭洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q锛屼氦BC浜庣偣E3锛夛紝褰揇Q B鏃讹紝姹倀鐨勫€笺€?25BCA锛?锛?锛夈€佺偣B(1.0),鎶涚墿绾?缁忚繃鐐笴銆?锛?锛夋眰鐐笴鐨勫潗鏍囧拰鎶涚墿绾跨殑瑙f瀽寮?锛?锛夎嫢鎶涚墿绾跨殑瀵圭О杞翠簬AB鐨勪氦鐐逛负M锛屾眰鈻矨CM鐨勯潰绉?锛?锛夎嫢灏嗏柍ABC娌緼B缈绘姌锛岀偣C囩▼锛?鑻ュ皢鈻矨BC娌緽C缈绘姌锛岀偣A嚎涓婏紵鐩存帴鍐欏嚭缁撴灉锛?26銆佸皾璇曟帰绌讹細灏忓紶鍦ㄦ暟瀛﹀疄璺垫椿鍔ㄤ腑锛岀敾浜嗕竴涓猂t鈻矨BC锛屼娇鈭燗CB=90o锛孊C=1锛孉C=2BC涓哄崐寰勭敾寮т氦AB浜庣偣D锛岀劧鍚庝互A 涓哄渾蹇冧互AD C浜庣偣E E= 锛E2 =AC C,,璇峰悓瀛︿滑楠岃瘉灏忓紶鐨勫彂鐜版槸?鎷撳睍寤朵几锛?AC鍙婄偣E 锛屾帴鐫€鏋勯€燗E=EF=CF F锛屽緱鍒颁笅鍥撅紝璇曞畬鎴愪互涓嬮棶棰橈細鈶犳眰璇佲柍ACF鈭解柍FCE 鈶℃眰鈭燗鐨勫害鏁帮紱鈶㈡眰cos鈭燗搴旂敤杩佺Щ锛?鍒╃敤涓婇潰鐨勭粨璁猴紝鐩存帴鍐欏嚭锛?鈶犲崐寰勪负2鐨勫渾鍐呮帴姝e崄杈瑰舰鐨勮竟闀夸负鈶¤竟闀夸负2锛掞紣锛??垎鏍囧噯涓€銆侀€夋嫨棰橈細1銆丄銆€銆€2銆丆3銆丅銆€銆€4銆丆5銆丅銆€銆€6銆丄7銆丄銆€銆€8銆丏9銆丅銆€銆€10銆丄11銆丏銆€銆€12銆丅?鍒嗭紝鍏?8鍒嗭級13. 1 銆€銆€14. x鈮?1 15. 3蟺銆€銆€16. x鈮? 17. 銆€銆€18. 4锛?涓夈€佽В绛?2鍒嗭級19.瑙o細= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?褰揳=-1,b= 鏃讹紝鍘熷紡=4+ 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?20.锛?锛?锛?锛塁銆丅锛汣銆丆鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛夊洜涓轰腑浣嶆暟鐩稿悓锛屼絾锛?锛夌殑浼楁暟灏忎簬锛?锛夌殑浼楁暟锛屾墍浠ユ垜璁や负锛?锛夋洿鍠︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?紭鍔f寜A銆丅銆丆銆丏銆丒鐢遍珮鍒颁綆銆傝嫢瀛︾敓浠嶢绛夌骇缁煎悎鑰冭檻璁や负锛?锛夊ソ涔熷彲缁欐弧鍒嗐€?21.瑙o細锛?鎴愰渶x澶╋紝鍒欎箼鍗曠嫭瀹屾垚闇€1.5x鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱x=50锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?=50В锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鍒?.5x=75锛?鎵€浠ョ敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶50銆?5澶┿€?鈥︹€︹€︹€︹€︹€?6鍒?锛?锛夆憼鍥犱负瀛︽牎鍋囨湡涓?0澶╋紝鐢茬殑瀹屾垚鏃堕棿涓?0澶╋紝灏忎簬60澶╋紱涔欑殑瀹屾垚鏃堕棿涓?5澶╋紝澶т簬60澶╋紝鎵€浠ヤ粠鏃堕棿涓婅€冭檻搴旈€夋嫨鐢查槦锛涒€︹€︹€︹€︹€︹€?7鍒?鈶$敳鎵€闇€鐨勮祫閲戯細50脳1000=50000鍏冿紱涔欐墍闇€璧勯噾锛?5脳600=45000鍏冿紱45000锛?0000 鎵€浠ヤ粠璧勯噾瑙掑害鑰冭檻搴旈€夋嫨涔欓槦銆傗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?21. 璇佹槑锛?锛?BCD?鈭碅B=BC 鍙堚埖鈭燗BG=鈭燙BG锛孊G=BG 鈭粹柍AGB鈮屸柍CGB锛圫AS锛?鈭碅G=CG 鈥︹€︹€︹€︹€︹€︹€?2鍒?锛?锛夎繛缁揂C 鈥︹€︹€︹€︹€︹€︹€?3鍒?鈭靛洓杈瑰舰ABCD?鈭粹垹DCA=鈭燘CA 鍙堚埖CF=CE锛孋A=CA 鈭粹柍AFC鈮屸柍AEC锛圫AS锛?鈭粹垹FAC=鈭燛AC 鈭礎G=CG 鈭粹垹EAC=鈭燝CA 鈭粹垹FAC=鈭燝CA 鈭碈G F 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?锛?锛夆埖BG=CG 鈭粹垹GBC=鈭燝CB 鈭碘柍AGB鈮屸柍CGB 锛堝凡璇侊級鈭粹垹GAB=鈭燝CB 鈭粹垹GAB=鈭燝BC 鍙堚埖鈭燗EB=鈭燗EB 鈭粹柍ABE鈭解柍BGE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?23.锛?锛?20-21x-21y 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?锛墄=2锛?0-x-y锛夛紝y=20-1.5x锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?w=37.5x+15y+21锛?0-x-y锛?25.5x+300锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱锛?鍥犱负x,鎵€浠ヨ兘涔?︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?24.1锛夎繃鐐笰浣淎E C浜庣偣E锛?鈭礎B=5锛宑osB= 鈭碆E=AB osB=3 鈭碋C=BC-BE=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭礎D C锛屸垹BCD=90掳鈭粹垹C=鈭燚=鈭燗EC=90掳鈭村洓杈瑰舰AECD?鈭碅D=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?锛夆埖AD=3 鈭村綋t =AD鏃讹紝OB=3 杩囩偣O浣淥F P浜庣偣F 鈭碆F= BP 鈭礳osB= 鈭碆F=BO osB= 鈭碆P= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?Q 鈭礑Q B锛孉D C 鈭村洓杈瑰舰ABED鈭碆E=AD=3锛孌E=AB=5 鈭碈D= =4 鈭礏O=t 鈭碠E=3-t 鈭电洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q 鈭粹垹OQE=鈭燙=90掳鈭碘垹OEQ=鈭燚EC锛?鈭粹柍OQE鈭解柍DCE 鈭?鈭?鈭磘= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?25. 瑙o細锛?锛夎繃C鐐逛綔CE鈭碘柍ABC 涓虹瓑鑵扮洿瑙掍笁瑙掑舰鈭碅B=AC 鈭?ABC=900 鍦≧t鈻矨OB涓?鈭燨AB+鈭燗BO=900 鈭碘垹ABO+鈭?CBE=900 鈭粹垹OAB=鈭燙BE 鈭碘垹CEB=鈭燗OB=900 鈭粹柍AOB鈮屸柍BEC 鈥︹€︹€︹€︹€︹€︹€?1鍒?鈭碆E=AO CE=OB 鈭礎(0,2)B(1,0) 鈭碅O=2 BO=1 鈭碆E=2 CE=1 鈭碠E=3 鈭?C(3,1) 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?甯﹀叆y=ax2-ax-2鍥惧儚涓?鈭碼= 鈭磞= x2- x-2 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?=- =- = 鈥︹€︹€︹€︹€︹€?4鍒?AB浜庣偣F 鈭寸偣M鐨勫潗鏍囦负锛?锛?锛?鈭寸偣M鏄疧B鐨勪腑鐐?鈭礛F?鈭碏鏄疉B鐨勪腑鐐?鈭靛湪Rt鈻矨OB AB= = 鈭碨鈻矨CM= S鈻矨BC = 脳脳脳= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?锛?BC 娌緼B缈绘姌鍚庡緱鍒扳柍ABD锛?杩囩偣D浣淒M锛?锛夛紝鈭礏D=BC锛屸垹MBD=鈭燛BC锛屸垹DMB=鈭燙EB=90掳锛?鈭粹柍DBM 鈮屸柍CBE锛?鈭碆M=BE=2锛孌M=CE=1锛?鈭碊锛?1锛?1偣D鍦?鎶涚墿绾縴= x2- x-2涓婏紱鈥︹€︹€︹€︹€︹€︹€?鍒?灏嗏柍ABC娌緽C缈绘姌锛岀偣A涓嶅湪璇ユ姏鐗╃嚎涓娿€傗€︹€︹€︹€︹€︹€︹€?0鍒?26.锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?AE2=6-2 ,AC C=6-2 ,鈭寸?鈥︹€︹€︹€︹€︹€︹€?2鍒?鈶犫埖AE2=AC C锛?鈭?鈭礎E=FC 鈭?鍙堚埖鈭燘=鈭燘鈭粹柍ACF鈭解柍FEC 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鈶♀埖鈻矨CF鈭解柍FEC锛屼笖EF=FC 鈭碅C=AF 鈭礎E=EF 鈭粹垹A=鈭燗FE 鈭粹垹FEC=2鈭燗鈭礒F=FC 鈭粹垹C=2鈭燗鈭粹垹AFC=鈭燙=2鈭燗鈭碘垹AFC+鈭燙+鈭燗=180掳鈭粹垹A=36掳鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈶㈣繃鐐笷浣淔MB B浜庣偣M 鐢憋紙1E= 锛孍B= 鈭礒F=FB 鈭碝E= 鈭碅M= 鈭碿os鈭燗= = 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?锛?锛夆憼鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?11鍒?鈶?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?。
河北省2013年中考数学模拟考试试题(1)
W元,求 W与 x 的函数关系式.当销售
单价为何值时,每天可获得的利润最大?最大利润是多少元?
9
得 分 评卷人
26.(本小题满分 12 分)
3 如图 15,在△ ABC中, BC=12, AB=10, sinB= , 动点 D 从点 A 出发,以每秒 1 个单
5 位的速度沿线段 AB 向点 B 运动, DE∥BC,交 AC于点 E,以 DE为边,在点 A 的异侧作正
2 倍.求矩形 EFGH的面积.
( 2)在( 1)的基础上,再作第二个矩形,使其两个顶点在
EH 上,另外两个顶点分别
在 AB、AC上,且长是宽的 2 倍.则第二个矩形的
面积为
;
A
( 3)在( 2)的基础上,再作第三个矩形,使
其两个顶点在第二个矩形的边上,另外两个顶点 分别在 AB、 AC上,且长是宽的 2 倍.则第三个矩
2013 年河北省初中毕业生中考模拟考试 数学试题
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为 120 分,考试时间为 120 分钟. 卷Ⅰ (选择题,共 24 分) 注意事项: 1.答卷 I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考
试结束,监考人员将试卷和答题卡一并收回. 2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.答在
2
.答卷 II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
题号 二
三
19
20
21
22
23
24
25
26
得分
得 分 评卷人
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分.把答案 写在题中横线上)
2013年安徽省中考数学试卷及答案.doc
2013年安徽省初中毕业学业考试数学试卷及答案一、选择题:(每小题4分,满分40分) 1.-2的倒数是( )A.-21 B.21C.2D.-2 2.用科学记数法表示537万正确的是( )A.537×104B.5.37×105C.5.37×106D.0.537×1073.图中所示的几何体为圆台,其主(正)视图正确的是( )4.下列运算正确的是( )A.2x+3y=5xyB.5m 2·m 3=5m 5C.(a-b)2=a 2-b 2D.m 2·m 3=m 65.已知不等式组⎩⎨⎧≥+〉-0103x x 其解集在数轴上表示正确的是( )6.如图,AB ∥CD,∠A+∠E=750,则∠C 为( )A.600B.65C.750D.8007.目前我国已建立了比较完善的经济困难学生资助体系。
某校去年上半年发给每个经济困难学生398元,今年上半年发放了438元,设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438(1+x)2=389B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时..发光的概率为( ) A.61 B.31 C.21 D.32B 12 3O -1 -2 A 12 3O -1 -2 123O -1 -2 D12 3O -1-2C第3题图ABC DEAB CDF9.图1所示矩形ABCD 中,BC=x,CD=y,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( ) A.当x=3时,EC <EM B.当y=9时,EC >EMC.当x 增大时,EC ·CF 的值增大D.当y 增大时,BE ·DF 的值不变10.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下判断中,不正确...的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥ACC.当PO ⊥AC 时,∠ACP=300D.当∠ACP=300时,△BPC 是直角三角形二、填空题:11.若x 31 在实数范围内有意义,则x 的取值范围是12.分解因式:x 2y-y=13.如图,P 为平行四边形ABCD 边AD 上一点,E,F 分别是PB,PC 的中点,△PEF,△PDC,△PAB 的面积分别为S,S 1,S 2,若S=2,则S 1+S 2=·OABCPAEF ·MDB C O 33 x y第9题 图1第9题 图2 K 2K 3K 1L 1L 2第8题图14.已知矩形纸片ABCD 中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E,F 是该矩形边界上的点),折叠后点A 落在点A /处,给出以下判断: ①当四边形A /CDF 为正方形时,EF=2;②当EF=2时,四边形A /CDF 为正方形;③当EF=5时,四边形BA /CD 为等腰梯形;④当四边形BA /CD 为等腰梯形时,EF=5.其中正确的是 (把所有正确结论的序号都填在横线上)三、解答题:15.计算:2sin300+(-1)2-2216.已知二次函数图像的顶点坐标为(1,-1),且过原点(0,0),求该函数解析式。
2013年河北省中考数学模拟一试卷(含答案)
下午5时早上10时l m123第5题2013年河北省中考数学模拟试题一一、选择题(本大题共有12小题,1—6每小题2分,7—12每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的) 1.16的平方根是( ) A .4B .-4C .±4D .±82.下列运算正确的是( )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x +=3.下面的图形中,既是轴对称图形又是中心对称图形的是 ( )4.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ) A .该调查的方式是普查 B .本地区只有40个成年人不吸烟 C .样本容量是50 D .本城市一定有100万人吸烟 5.如图,l ∥m ,∠1=115°,∠2=95°,则∠3= A .120° B .130° C .140° D .150°6.如图,⊙O 是△ABC 的外接圆,∠OCB =400,则∠A 的度数等于( ) A .60° B . 50° C .45° D .40°7.已知圆锥的底面半径为1cm ,母线长为3cm ,则圆锥的侧面积是( ) A. 6cm 2B. 3πcm 2C .6πcm 28..已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是()A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根9.如图所示,已知在三角形纸片ABC 中,BC =3,AB =6,∠BCA =90°.在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A 、6B 、3C 、错误!未找到引用源。
河北省廊坊市广阳区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】
河北省廊坊市广阳区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知,一次函数y =kx +b 的图象如图,下列结论正确的是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <02、(4分)如图所示,两个含有30°角的完全相同的三角板ABC 和DEF 沿直线l 滑动,下列说法错误的是()A .四边形ACDF 是平行四边形B .当点E 为BC 中点时,四边形ACDF 是矩形C .当点B 与点E 重合时,四边形ACDF 是菱形D .四边形ACDF 不可能是正方形3、(4分)下列等式一定成立的是()A .B .∣C 45=±D .=-44、(4分)下列说法中,错误的是()A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解5、(4分)已知不等式组2112x x a -⎧≥⎪⎨⎪≥⎩的解集是x≥2,则a 的取值范围是()A .a <2B .a =2C .a >2D .a≤26、(4分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S 2甲=36,S 2乙=30,则两组成绩的稳定性()A .甲组比乙组的成绩稳定B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定7、(4分)如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离都是1,正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD 的面积为()A .B .5C .3D.8、(4分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A .19B .20C .21D .22二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,△ABC 中,AH ⊥BC 于H ,点E ,D ,F 分别是AB ,BC ,AC 的中点,HF=10cm ,则ED 的长度是_____cm .10、(4分)矩形ABCD 的面积为48,一条边AB 的长为6,则矩形的对角线BD =_______.11、(4分)点A 1的点,将点A 沿数轴平移3个单位得到点B ,则点B 表示的实数是________.12、(4分)在△ABC 中,AB=8,,AC=6,D 是AB 的中点,则CD=_____.13、(4分)已知关于x 的一次函数y=(3a-7)x+a-2的图像与y 轴的交点在x 轴的上方,且y 随x 的增大而减小,则a 的取值范围为__________.三、解答题(本大题共5个小题,共48分)14、(12分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x =,a =,b =;(2)补全上面的条形统计图;(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.15、(8分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE .已知∠ABC =60°,EF ⊥AB ,垂足为F ,连接DF .(1)证明:△ACB ≌△EFB ;(2)求证:四边形ADFE 是平行四边形.16、(8分)已知直线y x b =+分别交x 轴于点A 、交y 轴于点()0,2B ()1求该直线的函数表达式;()2求线段AB 的长.17、(10分)解方程:(1)2640x x ++=;(2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?18、(10分)已知反比例函数y =k x 的图象与一次函数y =ax +b 的图象交于点A (1,4)和点B (m ,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得k x >ax +b 成立的自变量x 的取值范围;(3)过点A 作AC ⊥x 轴,垂足为C ,在平面内有点D ,使得以A ,O ,C ,D 四点为顶点的四边形为平行四边形,直接写出符合条件的所有D 点的坐标.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩________分.20、(4分)如图,一次函数y =﹣x ﹣2与y =2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式2x +m <﹣x ﹣2<0的解集为_____.21、(4分)是同类二次根式,则a =______.22、(4分)如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…分别在x 轴上,点B 1,B 2,B 3,…分别在直线y =x 上,△OA 1B 1,△B 1A 1A 2,△B 1B 2A 2,△B 2A 2A 3,△B 2B 3A 3…,都是等腰直角三角形,如果OA 1=1,则点A 2019的坐标为_____.23、(4分)如图,矩形ABCD 中,对角线AC、BD 交于点O,E 为OB 中点,且AE⊥BD,BD=4,则CD=____________________.二、解答题(本大题共3个小题,共30分)24、(8分)先化简,再求值:211()11a a a a -⋅--,其中a =-12.25、(10分)先化简,再求值:22(2)4442x x x x x x -++⋅-+﹣2(x ﹣1),其中x 26、(12分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,;(2)平行四边形有一锐角为45°,且面积为1.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据图象在坐标平面内的位置,确定k,b的取值范围,从而求解.【详解】∵一次函数y=kx+b的图象,y随x的增大而增大,∴k>1,∵直线与y轴负半轴相交,∴b<1.故选:B.本题主要考查一次函数的解析式的系数的几何意义,掌握一次函数的解析式的系数与直线在坐标系中的位置关系,是解题的关键.2、B【解析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形,选项A正确;当E是BC中点时,无法证明∠ACD=90°,选项B错误;B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,选项C正确;当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC 不可能是正方形,选项D 正确.故选B.点睛:本题考查平行四边形、矩形、菱形、正方形的判定.熟练应用平行四边形、矩形、菱形、正方形的判定方法进行证明是解题的关键.3、D 【解析】分析:根据二次根式的运算一一判断即可.详解:321,=-=故错误.B.2 2.=故错误.45=,故错误.D.正确.故选D.点睛:考查二次根式的运算,根据运算法则进行运算即可.4、C 【解析】对于A 、B 选项,可分别写出满足题意的不等式的解,从而判断A 、B 的正误;对于C 、D ,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断C 、D 的正误.【详解】A.由x <5,可知该不等式的整数解有4,3,2,1,-1,-2,-3,-4等,有无数个,所以A 选项正确,不符合题意;B.不等式x >−5的负整数解集有−4,−3,−2,−1.故正确,不符合题意;C.不等式−2x <8的解集是x >−4,故错误.D.不等式2x <−8的解集是x <−4包括−40,故正确,不符合题意;故选:C.本题是一道关于不等式的题目,需结合不等式的解集的知识求解;5、B【解析】解不等式①可得出x ≥32,结合不等式组的解集为x ≥1即可得出a =1,由此即可得出结论.【详解】2112x x a -⎧≥⎪⎨⎪≥⎩①②,∵解不等式①得:x ≥32,又∵不等式组2112x x a -⎧≥⎪⎨⎪≥⎩的解集是x ≥1,∴a =1.故选B.本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.6、B 【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵30<36,∴乙组比甲组的成绩稳定.故选B .7、B 【解析】过D 点作直线EF 与平行线垂直,与l 2交于点E ,与l 4交于点F .易证△ADE ≌△DFC ,得CF=2,DF=2.根据勾股定理可求CD 2得正方形的面积.【详解】作EF ⊥l 2,交l 2于E 点,交l 4于F 点.∵l 2∥l 2∥l 3∥l 4,EF ⊥l 2,∴EF ⊥l 2,EF ⊥l 4,即∠AED=∠DFC=90°.∵ABCD 为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE .在△ADE 和△DCF 中DEA CFD EAD CDF AD DC ===∠∠⎧⎪∠∠⎨⎪⎩∴△ADE ≌△DCF (AAS ),∴CF=DE=2.∵DF=2,∴CD 2=22+22=3,即正方形ABCD 的面积为3.故选B .此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.8、D 【解析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】分析中先利用直角三角形的性质,然后再利用三角形的中位线定理可得结果.【详解】∵AH⊥BC,F是AC的中点,∴FH=12AC=1cm,∴AC=20cm,∵点E,D分别是AB,BC的中点,∴ED=12AC,∴ED=1cm.故答案为:1.本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.10、10【解析】先根据矩形面积公式求出AD的长,再根据勾股定理求出对角线BD即可.【详解】解:∵矩形ABCD的面积为48,一条边AB的长为6,∴AD=48÷6=8,∴对角线10=,故答案为:10.本题主要考查了勾股定理的应用,解决此题的关键是根据矩形面积求出另一边的长.2+或4-【解析】根据点的坐标左移减右移加,可得答案.【详解】点A 1-的点,将点A 在数轴上向左平移3个单位长度到点B ,则点B 所4-;点A 1-的点,将点A 在数轴上向右平移3个单位长度到点B ,则点B 所2+;2+4-.此题考查数轴,解题关键在于掌握平移的性质.12、4【解析】先运用勾股定理逆定理得出△ABC 是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可得出CD 的长.【详解】解:在△ABC ,AC=6,82=64=)2+62,所以AB 2=BC 2+AC 2,所以△ABC 是直角三角形,∵D 是AB 的中点,∴CD=12AB=4,故答案为:4本题考查勾股定理逆定理,解题关键根据勾股定理逆定理及直角三角形斜边上的中线等于斜边的一半的性质解答.13、2<a <73.【解析】分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y 轴交点的位置可得a-2>1.详解:∵关于x 一次函数y=(3a-7)x+a-2的图象与y 轴的交点在x 轴的上方,且y 随着x的增大而减少,∴37020a a -⎧⎨-⎩<>,解得2<a <73.故答案是:2<a <73.点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b (k≠1):函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >1,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <1,一次函数y=kx+b 图象过原点⇔b=1.三、解答题(本大题共5个小题,共48分)14、(1)50;20;30;(2)图见解析;(3)2000人。
【初中数学】河北省2013年初中毕业生中考模拟考试数学试题3 通用
河北省2013年初中毕业生中考模拟考试数学试题3本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数(-1)0 、-|1|- 、 (-1) 3 、 (-1) -2 中,负数的个数有 A .0个B .1个C .2个D .3个2、在下列几何体中,主视图是等腰三角形的是3.下列计算正确的是 A.x +x =x 2 B. x ·x =2x C.(x 2)3=x 5 D. x 3÷x =x 24、一个正方形的面积等于10,则它的边长a 满足A. 3<a <4B. 5<a <6C.7<a <8D. 9<a <105.如图,矩形ABCD 的对角线AC ⊥OF ,边CD 在OE 上,∠BAC =70°,则∠EOF 等于A. 10°B. 20°C. 30°D. 70°6.以下四种说法:①为检测酸奶的质量,应采用抽查的方式;②甲乙两人打靶比赛,平均各中5环,方差分别为0.15,0.17,所以甲稳定;③等腰梯形既是中心对称图形,又是轴对称图形;④举办校运会期间的每一天都是晴天是必然事件.其中正确的个数是 A .4 B .3 C .2 D .17. 若不等式组0,122x a x x -⎧⎨->-⎩≥有解,则a 的取值范是A .a >-1B .a ≥-1C .a ≤1D .a <18.如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点,若60APD ∠=°,则CD 的长为AAA.12 B .23 C .34D .1 9.某公园有一个圆形喷水池,喷出的水流呈抛物线,一条水流的高度h (单位:m )与水流运动时间t (单位:s )之间的关系式为h =30t -5t 2,那么水流从抛出至回落到地面所需要的时间是A.6sB.4sC.3sD.2s10.如图:⊙O 与AB 相切于点A ,BO 与⊙O 交于点C ,∠BAC=30°,则∠B 等于A.20°B.50°C.30°D. 60°11.函数y =4x 和y =1x 在第一象限内的图象如图,点P 是y =4x 的图象上一动点,PC ⊥x 轴于点C ,交y =1x 的图象于点A . PD ⊥y 轴于点D ,交y =1x 的图象于点B 。
2013年初中数学中考河北试题解析
120 100 所以, = ,选A。
x x-10
8.如图 1,一艘海轮位于灯塔 P 的南偏东 70°方向的 M 处,
它以每小时 40 海里的速度向正北方向航行,2 小时后到
达位于灯塔 P 的北偏东 40°的 N 处,则 N 处与灯塔 P 的
距离为
A.40 海里
B.60 海里
C.70 海里
D.80 海里
7.甲队修路 120 m 与乙队修路 100 m 所用天数相同,已知甲队比乙队每天多修 10 m,
设甲队每天修路 xm.依题意,下面所列方程正确的是
120 100
A.
x
= x-10
120 100
B.
x
= x
+
10
120 100 C.x-10= x
120 100
D.x
+= 10x答案:A解析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,
2 D.3π
答案:D
解析:∠AOD=2∠C=60°,可证:△EAC≌△EOD,因此阴影部分的面积就是扇形AOD
60 22 2
的面积,半径OD=2,S扇形AOD=
360
=π
3
15.如图8-1,M是铁丝AD的中点,将该铁丝首尾相接折成 △ABC,且∠B = 30°,∠C = 100°,如图 8-2. 则下列说法正确的是 A.点 M 在 AB 上 B.点 M 在 BC 的中点处 C.点 M 在 BC 上,且距点 B 较近,距点 C 较远 D.点 M 在 BC 上,且距点 C 较近,距点 B 较远
2 013 年 河 北 省 初 中 毕 业 生 升 学 文 化 课 考 试
数学试卷
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为 120 分,考试时间为 120 分钟.
河北省2013届中考第一次模拟检测数学试题及答案
1
A.
2
B.0
2.下列运算中,正确的是1源自C.3A . a3 a2 a6 B . ( x3 )3 x6 C. ( a) 5 ( a)2
D.- 1
a3 D. 9 5 4
3.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是
第 3 题图
4.南海是我国固有领海,南海的面积超过东海、黄海、渤海面积的总和,约为
⊙ C 的圆心坐标为 (2 ,0) ,半径为 2,D 是⊙ C 上的
一个动点,线段 DA 与 y 轴交于点 E,则△ ABE 面积 A
的最小值和最大值分别是
.
A
F
EO
x
第 14 题图
第 17 题图
y
B D
E
O
C
x
第 18 题图
三、解答题(本大题共 8 个小题; 共 72 分)
得分
阅卷人 19.本题 8 分
数学试卷
2013.5
卷 II (非选择题,共 90 分)
注意事项: 1.答卷 II 前,将密封线左侧的项目填写清楚.
2.答卷 II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
三
题号
二]
19
20
21
22
23
24
25
26
得分
得分
阅卷人 二、填空题(本大题共 在题中横线上)
6 个小题;每小题 3 分,共 18 分.把答案写
该直线的解析式是
.
16.在一个不透明的口袋中装有若干个只有颜色不同的球,如
果口袋中装有 3 个红球,且摸出红球的概率为
1 ,那么袋 3
中共有
个球.
17.如图,矩形 ABCD 沿着直线 BD 折叠,使点 C 落在 C 处,
广阳区2013年初中生毕业统练一语文参考答案
广阳区2013年初中生毕业统练一语文参考答案第一部分积累运用(1-6题 25分)1. (每空1分,有错即不得分。
共7分)(1)呼朋引伴地卖弄清脆的喉咙(2)清荣峻茂(3)食之不能尽其材(4)无可奈何花落去(5)山回路转不见君(6)长风破浪会有时,直挂云帆济沧海2.(1)辗转或展转(全对得1分,有错即不得分) zì suī(全对得1分,有错即不得分)(2)孱改为潺,模改为膜(找出并改对得1分,共2分)(3)删掉“正在”前边的“不”(或删掉“不是”后面的“不”)。
3. C4. B5.(1)《名人传》贝多芬(每空1分)(2)示例:贝多芬忍受双耳失聪的痛苦,创造出不朽名著《命运交响曲》。
6. (1)示例一:不少初中生书写笔顺不规范。
示例二:通过对中学生书写笔顺抽样调查发现,不少中学生不能按规范笔顺书写汉字。
如果回答:“火” “方” “忆”三个字笔画顺序很容易写错,特别是“忆”字。
得1分。
(2)示例一:按照规范的笔顺书写汉字,写出来会很好看;笔顺混乱,写出来的字就不好看。
示例二:笔顺规范对于写好汉字很重要。
(3)称呼后面加上冒号;将署名和日期调换位置。
(每处1分,共2分)第二部分阅读理解(7-23题 45分)一、7.曲牌名、题目(标题)(每空1分,共2分)8.示例一:“聚”和“怒”写出了山河的动态与灵性,将山的雄伟与水的奔腾之势勾勒出来,有力地烘托了作者吊古伤今的悲愤伤感之情。
示例二:“聚”化静为动,表现了峰峦的众多和动感;“怒”写出了波涛的汹涌澎湃。
突出了潼关地势险要。
9.作者“意踌躇”的原因是:灾难频繁,百姓受苦。
(意近即可)二、10.①鳞:像鱼鳞似的②空明:形容水的澄澈11. C12.(1)亮晶晶的,好像明镜刚打开,清冷的光辉突然从镜匣中射出来一样。
(2)哪个夜晚没有月亮,哪个地方没有竹子和柏树,只是缺少像我们两个这样的闲人罢了。
13.主要写了水光山色,柳条麦田,以及游人的欢欣,鱼鸟的“悠然自得”(或主要写了水、山、柳条、麦田、游人、鱼鸟)。
2013年中考数学模拟试卷001(含答案)
南通市2013年中考数学模拟考试试卷(如皋)(考试时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.5的倒数是A.15 B .-15C.-5D.5 2.下列运算结果正确的是A .x 2·x3=2x 6 B.(5x )3=125x3C .(-x 2)3=x 6 D.x3÷x =x 33.已知∠a =32°12',则∠a 的余角为A.32°12' B .67°48' C.57°18' D.57°48' 4. 在△A BC≌△DEF 中,在给出下列四组条件:①AB =DE ,BC =EF ,A C=DF ;②AB =D E,∠B=∠E ,BC =EF ; ③∠B=∠E,BC =EF ,∠C =∠F;④AB =DE ,A C=DF ,∠B=∠E . 其中,能使△ABC ≌△D EF 的条件共有A.1组 B .2组 C .3组 D .4组5.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数23672A .180,160B.160,180C.160,160D.180,180 6.解集在数轴上表示为如图所示的不等式组是A.3,2x x <-⎧⎨≥⎩B .3,2x x <-⎧⎨≤⎩ C.3,2x x >-⎧⎨≥⎩ D.3,2x x >-⎧⎨≤⎩7.根据如图提供的信息,可知一个杯子的价格是A .51元B .35元C.8元D .7.5元8.已知:二次函数y =x 2-4x +a,下列说法错误..的是 A.当x <1时,y 随x 的增大而减小B.若图象与x 轴有交点,则a≤4C .当a =3时,不等式x 2-4x+a >0的解集是1<x <3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-39.如图,直角三角形纸片A BC 的∠C =90°,将三角形纸片沿着图示的中位线DE 剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能..拼出的图形是 A .平行四边形 B.矩形 C .等腰梯形 D.直角梯形(第6题)2 -3 (第7题)AD E(第17题)ABCDD’ C’B’10.如图,两个反比例函数y=1k x和y =2k x (其中k1>k 2>0)在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C,交C 2于点A ,PD ⊥y 轴于点D ,交C2于点B,则四边形P AOB 的面积为 A.k 1+k 2 B .k 1-k 2 C .k1·k 2D.12k k 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.月球表面温度,中午是101℃,半夜是-150℃,则半夜比中午低是℃. 12.用科学记数法表示13000000=.13.函数y=12x -+中,自变量x 的取值范围是. 14.如图,点A ,B ,C都在⊙O 上,若∠C=31°,则∠AOB =°.15.一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为.16.如图热气球的探测器显示,从热气球上看一栋高楼顶部的仰角为60°,看这栋高楼底部的俯角为30°,若热气球与高楼水平距离为60m ,则这栋楼的高度为m.17.把两个相同的矩形按如图所示的方式叠合起来,若它们的长与宽分别为8cm 与6cm ,则重叠部分的面积为cm 2.18.等腰梯形ABCD 中,AD =CD=BC =5,AB =11,以A B的中点O 为原点,AB 所在的直线为x若直线y =12-x +b 与梯形A BCD (包括边界)始终有公共点,则b 的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算(π-2013)0+12+tan 602︒-+11()2-.(第10题)·O ABC(第14题)(第15题)(第16题)b y +-=21DAOCB yx20.(本小题满分6分)计算262393m m m m -÷+--. 21.(本小题满分8分)如图,在△ABC 和△AD E中,∠BAC =∠DAE =90°,AB =A C,AD=AE ,点C,D ,E三点在同一直线上,连结BD . (1)求证:△BA D≌△CAE ;(2)试猜想BD ,CE 有何特殊位置关系,并证明.22.(本小题满分8分)某校300名初二年级学生进行数学测验,从中随机抽取部分学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面尚未完成并有局部污染的频率分布表和频率分布直方图(如图).回答下列问题: (1)被抽取调查的学生成绩的数量为; (2)补全频数分布直方图;(3)请估计该校初二年级学生在这次数学测验中优秀学生人数约为多少名?(90分以上为优秀)23.(本小题满分10分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树形图法或列表法,求恰好选中甲、乙两位同学的概率. (2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(第21题) AB C D E(第22题)24.(本小题满分10分)如图,在正方形网络图中建立一直角坐标系,一条圆弧经过网络点A ,B ,C ,请在网格中进行下列操作:(1)请在图中标出该圆弧所在圆心点D的位置,点D 坐标为;(2)连接AD,CD ,则⊙D的半径为(结果保留根号),扇形D AC 的圆心角度数为°;(3)若扇形DAC 是某一个圆锥的侧面展开图,则该圆锥的底面半径为(结果保留根号).25.(本小题满分10分)已知关于x 的方程x 2-2ax -a +2b =0,其中a ,b 为实数.(1)若此方程有一个根为2a (a <0),判断a与b 的大小关系并说明理由; (2)若对于任何实数a,此方程都有实数根,求b 的取值范围.26.(本小题满分12分)如图1,在底面积为l00cm 2、高为20cm 的长方体水槽内放入一个圆柱形烧杯.以恒定不变的流量先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止.此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h (单位:c m)与注水时间t (单位:s)之间的函数关系如图2所示. (1)写出函数图象中点A、点B的实际意义; (2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.(第24题) 图1 (第26题)h (cm) B 图2 t (s)AO 20 18 9027.(本小题满分12分)在平面内,按图1方式摆放着三个正方形A BCD 、D EF G和MNPF ,其中点B ,C ,E ,M ,N 依次位于直线l 上.(1)请在图1中过点G 画AD 的垂线,交AD 的延长线于点H .判断△DHG 与△D CE是否全等,并说明理由. (2)在图1中,已知正方形ABCD 的面积为4,正方形DE FG 的面积为16,求△ADG 的面积.(3)让图1中的点E 在线段CM 上移动(点E 不与点C ,M 重合),且四边形ABCD 、DEFG 和MN PF 依然是正方形,如图2,其中哪些三角形的面积始终与△ADG 的面积相等?请直接写出所有符合条件的三角形.28.(本小题满分14分)已知抛物线y =-(m -2)x 2+(m -1)x+m2-5m+9与x 轴交于点A 和点B (点B在点A的右边),与y轴交于点C (0,3).以AB 为直径画半⊙I (x 轴下方部分),在半圆上任取一点M,过点M作半⊙I的切线,并且交抛物线于点P,Q(点P 在点Q 的右边),交x 轴于点N.(1)求抛物线的解析式及A,B两点的坐标; (2)若直线与x轴相交所成的角为30°,求直线PQ 的解析式;(3)过点A ,B 作半⊙I 的切线,交直线PQ 于点D 、E,若EM ∶D M=1∶2,求点M 的坐标; (4)是否存在点M ,使得IQ ⊥AM ?若存在,请求出M的坐标;若不存在,请说明理由.(第27题) AB C E D F M N P G l (图1) A B C ED F M N PG l (图2)y。
河北省广阳区初中数学毕业生统练一
广阳区2011年初中毕业生统练一数 学 试 卷卷I (选择题,共24分)注意事项:1、答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在题卡上,考试结束,监考人员将试题和答题卡一并收回。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
一、 选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、-64的立方根是( )A 、-8B 、8C 、-4D 、42、下列图形中,既是..轴对称图形又是..中心对称图形的是 ( )A B C D3、下列计算结果正确的是 ( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a4、今年某市约有5.2万学生参加初中毕业会考,为了解这5.2万名学生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是 ( ) A .1000名学生是样本容量 B .5.2万名考生是总体C .这1000名考生是总体的一个样本D .每位考生的数学成绩是个体 5、已知x=1是一元二次方程0122=+-mx x 的一个解,则m 的值为 ( )A 、1B 、0C 、0或1D 、0或-16、如图,已知点A (-1,0)和点B (1,2),在坐标轴上确定点P ,使△ABP 为直角三角形,则满足条件的点P 共有 ( ) A 、2个 B 、3个 C 、6个 D 、7个)x第6题第8题第10题7、若反比例函数kyx=的图象经过点(3)m m,,其中0m≠,则此反比例函数的图象()A.第一、二象限B.第一、三象限 C.第二、四象限D.第三、四象限8、如图A、B的坐标分别为(2,0),(0,1).将线段AB平移至11A B,则a b+的值为()A、 2B、3C、4D、59、抛物线21y x x=--与x轴的一个交点为(0)m,,则代数式20102+-mm的值为()A、2008B、2009C、2010D、201110、如图,ABC△内接于O⊙,若28OAB∠=°,则C∠的大小为()A.28°B.56°C.60°D.62°11、如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°12、某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A、4小时B、4.4小时C、4.8小时D、5小时第11题第12题Ⅱ卷(非选择题,共96分)二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13、-7的倒数是;14、已知一次函数的图象过点(03),与(21),,则这个一次函数y 随x 的增大而 . 15、抛物线2y ax bx c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = ; 16、如图矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm ,则AC 的长为 cm .17、如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .18、如图,将边长为6cm 的正六边形纸板的六个角各剪切去一个全等的四边形,再沿虚线折起,做成一个无盖直六棱柱纸盒,使侧面积等于底面积,被剪去的六个四边形的面积和为 cm 2.第16题 第17题第18题 三、解答题(本大题8个小题共78分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广阳区2013年初中毕业生统练一
数 学 试 卷
卷I (选择题,共24分)
注意事项:1、答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在题卡上,考试结束,
监考人员将试题和答题卡一并收回。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
答在试
卷上无效。
一、
选择题(本大题共12个小题;每小题2分,共24分.在每
小题给出的四个选项中,只有一项是符合题目要求的)
1、3的算术平方根是: ( ) A 、3± B 、3- C 、3 D 、3
2、如图,立体图形的主视图是 ( )
3、下列等式成立的是 ( )
A.26a a =3()
B.223a a a -=-
C.632
a a a ÷= D.2(4)(4)4a a a +-=-
4、不等式组⎩⎨
⎧≥+>-0
101x x 的解集在数轴上表示正确的是 ( )
A. B. C. D.
5、已知
24221x y k x y k ì+=ïïí
ï+=+ïî
,且10x y -<-<,则k 的取值范围为 ( ) A.112
k -<<-
B.102
k <
<
C.01k << D.
112
k <<
6、将一副三角板按图中的方式叠放,则∠α等于 ( ) A. 75° B. 60° C. 45° D. 30°
7、若一组数据中有2个145,3个148,4个156,1个160,则这组数据的中位数是b,众数是c ,则下列说法正确的是 ( ) A .b <c B .c <b C . b =c D .b 、c 的大小不确定
8、
( )
A .y 1>y 2
B .y 1=y 2
C .y 1<y 2
D 无法确定.
第6题图第8题图第9题图第10题图第12题图
9、如图,以点D为位似中心,作△ABC的一个位似三角形A1B1C1,A,B,C的对应点分别为
A1,B1,C1,DA1与DA的比值为k,若两个三角形的顶点及点D均在如图所示的格点上,则k的值和点C1的坐标分别为()
A.2,(2,8)B.4,(2,8)C.2,(2,4)D.2,(4,4)
10、如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为
顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为()
A.(1,1)
B.(0,1)
C.(1,0)
D.(-1,0)
11、有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小
镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()
A.1
B.2
C.3
D.4
第17题图第18题图12、在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的
坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()
A.
2009
2
3
5⎪
⎭
⎫
⎝
⎛
B.
2010
4
9
5⎪
⎭
⎫
⎝
⎛
C.
2008
4
9
5⎪
⎭
⎫
⎝
⎛
D.
4018
2
3
5⎪
⎭
⎫
⎝
⎛
二、填空题(本大题共6个小题;每小题3分,共18分.把答案
写在题中横线上)
13、分解因式:x
y-9xy=___________________.
14、函数
1
1
y
x
=
+
的自变量x的取值范围是.
15、如果10
x y
+=,那么7x y
--= .
16、已知函数2
3
2+
-
=x
mx
y(m是常数).不论m为何值,该函数的图象都经过y轴上的一个定点,写出这个顶点的坐标.
17、如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在
直线翻折至△AGE,那么△AGE与四边形AECD重叠部分的面积是____________。
18、如图⊙O 是△ABC 的外接圆,∠BAC =60°,⊙O 的半径OC 为2,弦BC 的长为 . 三、解答题(本大题8个小题共78分。
解答应写出必要的文字说明、证明过程或演算步骤)
19.(每小题4分,共8分)
(1)若关于x 的方程a ax -=-36的解是1-=x ,求关于y 的不等式y a )1(+>3-
(2)解方程: 1
2111x
x x -=
--
20、(本小题满分8分)
如图,某校把一块沿河的三角形废地开辟为生物园,已知∠ACB =90°,∠CAB =54°,BC =60米.(1)现学校准备从点C 处向河岸AB 修一条小路CD ,使得CD 将生物园分割成面积相等的两部分.请你用直尺和圆规在图中作出小路CD (保留作图痕迹);
(2)为便于浇灌,学校在点C 处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).
参考数据:sin54°=0.8090,sin36°=0.5878,cos54°=0.5878, cos36°=0.8090,tan54°=1.3764,tan36°=0.7265
21、(本小题满分8分)
如图,在矩形OABC 中,点A ,C 分别在坐标轴上,点B 的坐标为(-4,3). (1)画出矩形OABC 绕点O 顺时针旋转90°后的矩形OA 1B 1C 1; (2)直接写出点A 1,B 1,C 1的坐标;
(3)求点B 在旋转过程中所经过的路径长(结果保留
22、(本小题满分10分)
某省自家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售比为5∶4∶2∶1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图,如图1、图2.
请根据以上信息解答问题: (1)补全条形统计图:
(2)四种家电销售总量为 万台;
(3)扇形统计图中彩电部分所对应的圆心角是 度; (4)为跟踪调查农户对这四种家电的使用情况,从已销售的
家电中随机抽取一台..家电,求抽到冰箱的概率.
图2
图1
23、(本小题满分10分)
24、(本小题满分10分)
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系。
根据图像进行以下探究:
信息读取:
(1)甲乙两地之间的距离为km;
(2)请解释图中点B的实际意义:;
图象理解:
(3)求快车和慢车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并直接写出自变量x的取值范围;
问题解决:
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车
相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
25、(本小题满分12分)
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图2情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?(只需写出结论)
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
图1 图2
26、(本小题满分12分)
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC 的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求这条抛物线对应的函数关系式;
(2)连结BD,试判断BD与AD的位置关系,并说明理由;
(3)连结BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不
存在,请说明理由.。