(东营专版)2020年中考数学复习 第三章 函数 第三节 一次函数的实际应用练习

合集下载

中考数学总复习第一部分考点梳理第三章函数及其图象第11课时一次函数的实际应用课件

中考数学总复习第一部分考点梳理第三章函数及其图象第11课时一次函数的实际应用课件
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
2019/5/26
最新中小学教学课件
thank
you!
2019/5/26
最新中小学教学课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一

◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
◆知识清单 ◆考点突破 ◆课堂练兵
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。

中考数学第一轮章节复习课件11第三章 第三节一次函数的实际应用

中考数学第一轮章节复习课件11第三章 第三节一次函数的实际应用
第三节 一次函数的实际应用
考点一 纯文字型一次函数的实际应用
例1 某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接 销售,且当天都能销售完.直接销售是40元/斤,加工销售是130元/斤(不 计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工其中的 一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓, 剩下的工人加工蓝莓. (1)若基地一天的总销售收入为y元,求y与x的函数解析式; (2)试求如何分配工人,才能使一天分的 长度y(cm)
…4
6
8 10 … 150
… 73 72 71

(1)根据表中数据的规律,完成以上表格,并直接写出y关于x的函数解析 式; (2)根据小敏的身高和习惯,挎带的长度为120 cm时,背起来正合适,请 求出此时单层部分的长度; (3)设挎带的长度为l cm,求l的取值范围.
3
∵x为正整数,且x≤20,∴7≤x≤20. ∵k=-350<0, ∴y的值随x的增大而减小, ∴当x=7时,y取最大值, 最大值为-350×7+63 000=60 550. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的销售收入 最大,最大收入为60 550元.
纯文字型应用题,首先需找准题设中的等量关系,其次根据题设中的 信息建立函数关系式,一般分为两种形式:①等量关系为“总=A+B”, 用同一自变量表示A,B即可;②等量关系为“y=kx+b”,题设中有两组 满足函数关系式的量,将其看作满足函数图象的两点坐标,待定系数求 解.
∵0≤x≤150,∴75 cm≤l≤150 cm,
答:l的取值范围为75 cm≤l≤150 cm.
解决表格型一次函数问题,需要从表格中提取有效信息.一般情况下, 表格给出的信息是一组满足函数解析式的变量的值,同时也可能是函数关 系式中自变量的系数.

(名师整理)最新数学中考专题复习《一次函数的实际应用》考点精讲精练

(名师整理)最新数学中考专题复习《一次函数的实际应用》考点精讲精练

(4)设y货=mx,且图象经过点A(5,400), ∴400=5m,解得m=80. ∴y货=80x. 当货车与轿车相遇时,有80x=120x-140,解得x=3.5. 答:当x=3.5时,货车与轿车相遇. (5)当x=4.5时,轿车到达乙地,此时y货=80×4.5=360,货车距离乙地 还有400-360=40(千米).
【方法指导】 1.读懂表头内容,理解数据相应的实际意义. 2.结合题意将表格信息转化成数量关系,进而得到函数关系式. 3.注意表格中数据的单位,避免细节失误. 4.利用一次函数的增减性结合自变量的取值是确定最值问题的常见 方法.
(1)求y与x之间的函数关系式; (2)每天最多生产A种玩具多少件? (3)求z与x之间的函数关系式;
(4)每天生产多少件A种玩具时,所获得利润最大?并求出这个最大利 润;
(5)现玩具厂进行改造,生产B种玩具最多为30件,且受市场影响,每 件A产品的售价降低a(3≤a≤7)元,求玩具厂怎么样安排生产,才能使所获得 利润最大,最大利润是多少?
最值.
2.几种常见题型及其解法 (1)文字型应用题:从题干中提取两组有关量(自变量和因变量)作为一 次函数图象上的两点,利用待定系数法求出解析式.对于阶梯收费问题注 意选取的关系量应是同一标准的; (2)表格型应用题:分析表格中数据,从表格中提取两组量利用待定系 数法求函数解析式;
(3)图象型应用题:从函数图象上找出两点,找到其坐标代入求解析 式;若函数图象为分段函数,注意要取同段函数图象上的两点,依此方法 分别求各段函数的解析式,最后记得加上对应自变量的取值范围;
【自主解答】 解:(1)y=50x+35(60-x)=15x+2 100. (2)由题意,得15x+2100≤2 640,解得x≤36. ∴每天最多生产A种玩具36件. (3)z=(70-50)x+(50-35)(60-x)=5x+900.

山东省东营市2020年中考数学试题(Word版,含答案与解析)

山东省东营市2020年中考数学试题(Word版,含答案与解析)

山东省东营市2020年中考数学试卷一、单选题(共10题;共20分)1.-6的倒数是( ). A. 6 B. 16 C. −16 D. -6 【答案】 C【考点】有理数的倒数【解析】【解答】解: −6×(−16)=1故答案为:C .【分析】两数之积等于1的数被叫做倒数.2.下列运算正确的是( )A. (x 3)2=x 5B. (x −y)2=x 2+y 2C. −x 2y 3⋅2xy 2=−2x 3y 5D. −(3x +y)=−3x +y【答案】 C【考点】单项式乘单项式,完全平方公式及运用,去括号法则及应用,幂的乘方【解析】【解答】A : (x 3)2=x 6 ,故此选项不符合题意B : (x −y)2=x 2−2xy+y 2 ,故此选项不符合题意C : −x 2y 3⋅2xy 2=−2x 3y 5 ,故此选项符合题意D : −(3x+y)=−3x −y ,故此选项不符合题意故答案为:C【分析】根据幂的乘方,完全平方,同底数幂的乘法法则逐一判断即可.3.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A. -2 B. 2 C. ±2 D. 4【答案】 B【考点】计算器在数的开方中的应用【解析】【解答】4的算术平方根 √4=2 ,故答案为:B .【分析】根据算术平方根的求解方法进行计算即可得解.4.如图,直线 AB 、CD 相交于点O,射线 OM 平分 ∠BOD, 若 ∠AOC =42° ,则 ∠AOM 等于( )A. 159∘B. 161∘C. 169∘D. 138∘【答案】A【考点】邻补角,角平分线的定义【解析】【解答】解:由题意可知:∠AOD=180°-∠AOC=180°-42°=138°,∴∠BOD=180°-∠AOD=42°,又OM是∠BOD的角平分线,∴∠DOM= 12∠BOD=21°,∴∠AOM=∠DOM+∠AOD=21°+138°=159°.故答案为:A.【分析】先求出∠AOD=180°-∠AOC,再求出∠BOD=180°-∠AOD,最后根据角平分线平分角即可求解.5.如图,随机闭合开关S1,S2,S3中的两个,则能让两盏灯泡同时发光的概率为()A. 23B. 12C. 13D. 16【答案】C【考点】列表法与树状图法【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴P(两盏灯泡同时发光)26=13,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,其对称轴与x轴交于点C其中A,C两点的横坐标分别为-1和1下列说法错误的是()A. abc<0B. 4a+c=0C. 16a+4b+c<0D. 当x>2时,y随x的增大而减小【答案】B【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】∵开口向下,与y轴交点在正半轴∴a<0,c>0∵A,C两点的横坐标分别为-1和1∴a−b+c=0,−b2a=1∴b=−2a>0,a−(−2a)+c=0∴3a+c=0,abc<0,故A选项不符合题意,B选项符合题意∵A,C两点的横坐标分别为-1和1∴B点横坐标为3∴当x=4时y=16a+4b+c<0,故C选项不符合题意∵当x>1时,y随x的增大而减小∴当x>2时,y随x的增大而减小,故D选项不符合题意故答案为:B.【分析】根据开口方向、对称轴、与y轴交点即可分别判断a、b、c符号,进而判断A选项;由A,C两点的横坐标分别为-1和1可得两个方程,判断B选项;由当x=4时y=16a+4b+c<0判断C选项;由二次函数对称轴及增减性判断D选项.7.用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A. πB. 2πC. 2D. 1【答案】 D【考点】圆锥的计算【解析】【解答】解:根据题意得12•2π•r•3=3π,解得r=1.故答案为:D.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•r•3=3π,然后解方程即可.8.中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A. 96里 B. 48里 C. 24里 D. 12里【答案】B【考点】一元一次方程的实际应用-行程问题【解析】【解答】解:设第一天的路程为x里∴x+x2+x4+x8+x16+x32=378解得x=192∴第三天的路程为x4=1924=48故答案选B【分析】根据题意可设第一天所走的路程为x,用含x的式子分别把这六天的路程表示出来,相加等于总路程378,解此方程即可.9.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A. 12B. 8C. 10D. 13【答案】C【考点】动点问题的函数图象【解析】【解答】由图象可知:点P在A上时,CP=AC=13,点P在AB上运动时,在图象上有最低点,即AB边上的高,为12,点P与点B重合时,CP即BC最长,为13,所以,△ABC是等腰三角形,∴AB的长=2× √132−122=2×5=10故答案为:C【分析】根据图象可知点P沿A→B→C匀速运动到点C,此时AC最长,CP在AB边上先变小后变大,从而可求出AB上的高,从图象可以看出点P运动到点B时CP=CB=13,可知△ABC是等腰三角形,进而得出结论.10.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合) ,对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:① △APE≌△AME;② PM+PN=AC;③ PE2+PF2=PO2;④ △POF∼△BNF;⑤点O在M、N两点的连线上.其中正确的是()A. ①②③④B. ①②③⑤C. ①②③④⑤D. ③④⑤【答案】 B【考点】三角形全等及其性质,矩形的判定与性质,正方形的性质,三角形全等的判定(ASA ),直角三角形斜边上的中线【解析】【解答】∵四边形ABCD 正方形,AC 、BD 为对角线,∴∠MAE=∠EAP=45°,根据题意MP ⊥AC ,故∠AEP=∠AEM=90°, ∴∠AME=∠APE=45°,在三角形 △APE 与 △AME 中,{∠AEP =∠AEMAE =AE ∠EAP =∠EAM∴ △APE ≌△AME ASA ,故①符合题意;∴AE=ME=EP= 12 MP ,同理,可证△PBF ≌△NBF ,PF=FN= 12 NP ,∵正方形ABCD 中,AC ⊥BD ,又∵PM ⊥AC ,PN ⊥BD ,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF 为矩形,∴PF=OE ,∴OE+AE=PF+PE=NF+ME=AO ,又∵ME=PE= 12 MP ,FP=FN= 12 NP ,OA= 12 AC ,∴ PM+PN=AC ,故②符合题意;∵四边形PEOF 为矩形,∴PE=OF ,在直角三角形OPF 中, OF 2+PF 2=PO 2 ,∴ PE 2+PF 2=PO 2 ,故③符合题意;∵△BNF 是等腰直角三角形,而P 点是动点,无法保证△POF 是等腰直角三角形,故④不符合题意;连接MO 、NO ,在△OEM 和△OEP 中,{OE =OE∠OEM =∠OEP EM =EP∴△OEM ≌△OEP ,OM=OP ,同理可证△OFP≌△OFN,OP=ON,又∵∠MPN=90°,OM=OP=ON,OP=12MO+NO,根据直角三角形斜边中线等于斜边一半,OP= 12MN,∴MO+NO=MN,点O在M、N两点的连线上.故⑤符合题意.故答案为:B.【分析】①根据题意及正方形的性质,即可判断△APE≌△AME;②根据△APE≌△AME及正方形的性质,得ME=EP=AE=12MP,同理可证PF=NF= 12NP,根据题意可证四边形OEPF为矩形,则OE=PF,则OE+AE=PF+PE=NF+ME=AO,AO= 12AC,故证明PM+PN=AC;③根据四边形PEOF为矩形的性质,在直角三角形OPF中,使用勾股定理,即可判断;④△BNF是等腰直角三角形,而P点是动点,无法保证△POF是等腰直角三角形,故④可判断;⑤连接MO、NO,证明OP=OM=ON,根据直角三角形斜边中线等于斜边一半,即可证明.二、填空题(共8题;共8分)11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为________.【答案】2×10−8【考点】科学记数法—表示绝对值较小的数【解析】【解答】因为0.00000002=2×10−8,故答案为:2×10−8.【分析】根据科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,进而求解.12.因式分解:12a2−3b2=________.【答案】3(2a+b)(2a-b)【考点】提公因式法与公式法的综合运用【解析】【解答】解:12a2−3b2=3(4a2−b2)=3(2a+b)(2a−b).故答案为:3(2a+b)(2a−b).【分析】先提公因式,再按照平方差公式分解即可.13.某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是________岁.【答案】14【考点】加权平均数及其计算【解析】【解答】解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.【分析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.14.已知一次函数y=kx+b的图象经过A(1,﹣1),B(﹣1,3)两点,则k________0(填“>”或“<”)【答案】<【考点】一次函数的性质【解析】【解答】∵A点横坐标为1,B点横坐标为-1,根据-1<1,3>-1,可知,随着横坐标的增大,纵坐标减小了,∴k<0.故答案为<.【分析】根据A(1,-1),B(-1,3),利用横坐标和纵坐标的增减性判断出k的符号.15.如果关于x的一元二次方程x2−6x+m=0有实数根,那么m的取值范围是________.【答案】m≤9【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵关于x的一元二次方程x2−6x+m=0有实数根,∴△=b2−4ac≥0,∵a=1,b=−6,c=m,∴(−6)2−4×1×m≥0,∴4m≤36,∴m≤9.故答案为:m≤9.【分析】由一元二次方程根与系数的关键可得:△≥0,从而列不等式可得答案.16.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD= 3PF,△PEF,△PDC,△PAB的面积分别记为S、S1,S2.若S=2,则S1+S2=________.【答案】18【考点】平行四边形的性质,相似三角形的判定与性质【解析】【解答】解:∵PA=3PE,PD=3PF,∴PEPA =PDPF=3,且∠APD=∠EPF,∴△PEF∽△PAD,根据相似三角形面积比等于相似比的平方,且△PEF的面积为2可知,SΔPDA SΔPFE =(PDPF)2=32=9,∴SΔPDA=2×9=18,过P点作平行四边形ABCD的底AD上的高PH,∴SΔPDA=1AD×PH=18,2∴AD×PH=36,即平行四边形ABCD的面积为36,∴S1+S2=S平行四边形ABCD−SΔPAD=36−18=18.故答案为:18.【分析】证明△PEF∽△PAD,再结合△PEF的面积为2可求出△PAD的面积,进而求出平行四边形ABCD 的面积,再用平行四边形ABCD的面积减去△PAD的面积即可求解.17.如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为________.【答案】2√2【考点】垂线段最短,含30°角的直角三角形,勾股定理,切线的性质【解析】【解答】解:如图:连接OP、OQ,∵PQ是⊙O的一条切线∴PQ⊥OQ∴PQ2=OP2−OQ2∴当OP⊥AB时,如图OP′,PQ最短在Rt△ABC中,OB=2√3,∠A=30°∴AB=2OB= 4√3,AO=cos∠A·AB= √32×4√3∵S△AOB= 12AO⋅OB=12PO⋅AB∴12×2√3×6=12PO⋅4√3,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ= √OP2−OQ2=√32−12=2√2.故答案为2√2.【分析】如图:连接OP、OQ,根据PQ2=OP2−OQ2,可得当OP⊥AB时,PQ最短;在Rt△AOB中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=−1x,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,······,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2020=________.【答案】2【考点】反比例函数图象上点的坐标特征,与一次函数相关的规律问题【解析】【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为2,A1(2,3),B1(2,−12) ;A2的纵坐标和B1的纵坐标相同为−12,代入y=x+1,得x= −32,可得A2(−32,−12);B2的横坐标和A2的横坐标相同为−32,代入y=−1x得,y= 23,得B2( −32,23) ;A3的纵坐标和B2的纵坐标相同为23,代入y=x+1,得x= −13,故A3(−13,23)B3的横坐标和A3的横坐标相同为−13,代入y=−1x得,y=3,得B3( −13,3)A4的纵坐标和B3的纵坐标相同为3,代入y=x+1,得x=2,所以A4(2,3)…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673⋯⋯1,∴a2020=a1=2,故答案为:2.【分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可三、解答题(共7题;共76分)19.(1)计算:√27+(2cos60∘)2020−(12)−2−|3+2√3|;(2)先化简,再求值:(x−2xy−y 2x )÷x2−y2x2+xy,其中x=√2+1,y=√2.【答案】(1)解:√27+(2cos60∘)2020−(12)−2−|3+2√3| =3√3+1−4−3−2√3=√3−6;(2)解:(x−2xy−y 2x )÷x2−y2x2+xy=x2−2xy+y2x ⋅x2+xy x2−y2=(x−y)2x ⋅x(x+y) (x−y)(x+y)=x−y.当x=√2+1,y=√2时,原式=√2+1−√2=1.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;(2)先将括号内的进行通分,再按同分母分式减法计算,将除法转化为乘法,把分子分母因式分解后进行约分得到最简结果,再把x,y的值代入即可.20.如图,在△ABC中,以AB为直径的⊙O交AC于点M弦MN//BC交AB于点E,且ME=3, AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【答案】(1)解:∵ME=3,AE=4,AM=5,∴AE2+ME2=AM2,∴∠AEM=90°,∵MN//BC,∴∠ABC=∠AEM=90°,∵AB为⊙O的直径,∴BC是⊙O的切线.(2)解:如图,连接BM,∵AB为⊙O的直径,∴∠AMB=90°,又∵∠AEM=90∘,∴cos∠BAM=AMAB =AEAM,即5AB =45,∴AB=254,∴⊙O的直径AB的长度为254.故答案为:254.【考点】勾股定理的逆定理,圆周角定理,切线的判定,锐角三角函数的定义【解析】【分析】(1)先用勾股定理的逆定理证明△AEM为直角三角形,且∠AEM=90°,再根据MN∥BC即可证明∠ABC=90°进而求解;(2)连接BM,由AB是直径得到∠AMB=90°,再分别在Rt△AMB和Rt△AEM中使用∠A的余弦即可求解.21.如图,C处是一钻井平台,位于东营港口A的北偏东60∘方向上,与港口A相距60√2海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45∘方向,则从B到达C需要多少小时?【答案】解:如图,过点C作CD⊥AB于点D,由题意得:AE//CD,BF//CD,∴∠ACD=∠CAE=60∘,∠BCD=∠CBF=45°,在Rt△ACD中,AC=60√2(海里),∴CD=1AC=30√2(海里),2在Rt△CDB中,CD=30√2(海里),∴BC=√2CD=60,∴60=1.2(小时),50∴从B到达C需要1.2小时.【考点】解直角三角形的应用﹣方向角问题【解析】【分析】过点C作CD⊥AB于点D,在Rt△ACD与Rt△CDB中,利用锐角三角函数的定义求出CD与BC的长,进而求解.22.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.20%,【答案】(1)解:由图形可知:72°占360°的百分比为72360=故调查的总的学生人数为40÷20%=200(名),故答案为:200(名) .(2)解:“非常好”的学生人数为:0.22×200=44(人),总人数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,故一般的人数为200-44-68-40=48,其频率为48÷200=0.24,同样可算出“较好”、“不好”的频率为0.34和0.2,补充如下表所示:(3)解:“非常好”和“较好”的学生的频率为0.22+0.34=0.56,∴该校学生作业情况“非常好”和“较好”的学生一共约1800×0.56=1008(名),故答案为:1008;(4)解:由题意知,列表如下:由列表可以看出,一共有12种结果,并且它们出现的可能性相等.其中两次抽到的作业本都是“非常好”的有2种,∴两次抽到的作业本都是非常好的概率为212=16,故答案为:16.【考点】用样本估计总体,频数(率)分布表,扇形统计图,列表法与树状图法【解析】【分析】(1)用72°除360°得到“不好”的学生人数的占比,然后再用40除以该百分比即可得到总共调查的学生人数;(2)先算出“非常好”的人数,然后再用总分数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,最后分别用求出其人数除总人数得到其频率;(3)先算出“非常好”和“较好”的学生的频率,再乘以1800即可求解;(4)采用列表法将所有可能的情况列出,然后再用概率公式求解即可.23.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【答案】(1)解:设甲种型号口罩的产量是x万只,则乙种型号口罩的产量是(20−x)万只,根据题意得:18x+6(20−x)=300,解得:x=15,则20−x=20−15=5,则甲、乙两种型号口罩的产量分别为15万只和5万只(2)解:设甲种型号口罩的产量是y万只,则乙种型号口罩的产量是(20−y)万只,根据题意得:12y+4(20−y)≤216,解得: y≤17.设所获利润为w万元,则w=(18−12)y+(6−4)(20−y)=4y+40,由于4>0,所以w随y的增大而增大,即当y=17时,w最大,此时w=4>17+40=108.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元【考点】一次函数的实际应用,一元一次方程的实际应用-销售问题【解析】【分析】(1)设甲种型号口罩的产量是x万只,则乙种型号口罩的产量是(20−x)万只,根据该公司三月份的销售收入为300万元列出一元一次方程,从而可以得到甲、乙两种型号的产品分别是多少万只;(2)根据题意,可以得到利润和生产甲种产品数量的函数关系式,再根据公司四月份投入总成本(原料总成本+生产提成总额)不超过216万元,可以得到生产甲种产品数量的取值范围,然后根据一次函数的性质,即可得到应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大,并求出最大利润.24.如图,抛物线y=ax2−3ax−4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)EFDF是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【答案】(1)解:把C(0,2)代入y=ax3−3ax−4a,即−4a=2,解得a=−12∴抛物线的解析式为y=−12x2+32x+2令−12x2+32x+2=0可得: x1=−1,x2=4,∴A(−1,0),B(4,0);(2)解:存在,如图,由题意,点E在y轴的右侧,作EG//y轴,交BC于点G∴CD//EG∴EF DF=EG CD∵ 直线 y =kx +1(k >0) 与 y 轴交于点 D ∴ D(0,1) , ∴CD =2−1=1, ∴EFDF =EG设 BC 所在直线的解析式为 y =mx +n(m ≠0) , 将 B(4,0),C(0,2) 代入上述解析式得: {0=4m +n2=n 解得: {m =−12n =2∴BC 的解析式为 y =−12x +2 设 E(t,−12t 2+32t +2)则 G(t,−12t +2) ,其中 0<t <4 .∴EG =−12t 2+32t +2−(−12x +2)=−12(t −2)2+2∴EF DF =−12(t −2)2+2, ∵−12<0,∴抛物线开口方向朝下∴当 t =2 时,有最大值,最大值为 2 . 将t=2代入 −12t 2+32t +2 =-2+3+2=3 ∴点 E 的坐标为 (2,3) .【考点】待定系数法求二次函数解析式,平行线分线段成比例,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)直接将 C(0,2) 代入 y =ax 3−3ax −4a 求出a ,即可确定抛物线解析式;然后令y=0求得x 的值,再结合已知即可确定A 、B 的坐标;(2)作 EG//y 轴,交 BC 于点 G ,由平行线等分线段定理可得 EFDF =EGCD ;再根据题意求出D 点坐标和CD 的长,可得 EFDF =EG ;然后再根据B 、C 的坐标求出直线BC 的解析式;再设 E(t,−12t 2+32t +2) ,则 G(t,−12t +2) ,运用两点间距离公式求得EG ,然后再代入 EFDF =EG ,根据二次函数的性质即可说明25.如图1,在等腰三角形 ABC 中, ∠A =120∘,AB =AC, 点 D 、E 分别在边 AB 、AC 上, AD =AE, 连接 BE, 点 M 、N 、P 分别为 DE 、BE 、BC 的中点.(1)观察猜想图1中,线段NM、NP的数量关系是________,∠MNP的大小为________;(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】(1)相等;60°(2)解:△MNP是等边三角形.理由如下:如图,由旋转可得∠BAD=∠CAE在△ABD和△ACE中{AB=AC∠BAD=∠CAEAD=AE∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE.∵点M、N分别为DE、BE的中点,∴MN是△EBD的中位线,∴MN=12BD且MN//BD同理可证PN=12CE且PN//CE∴MN=PN,∠MNE=∠DBE,∠NPB=∠ECB∵∠MNE=∠DBE=∠ABD+∠ABE=∠ACE+∠ABE∠ENP=∠EBP+∠NPB=∠EBP+∠ECB∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBP+∠ECB =∠ABC+∠ACB=60°.在△MNP中∵∠MNP= 60°,MN=PN∴△MNP是等边三角形.(3)解:根据题意得: BD≤AB+AD即BD≤4,从而MN≤2△MNP的面积=12MN⋅√32MN=√34MN2.∴△MNP面积的最大值为√3.【考点】三角形的外角性质,等腰三角形的性质,等边三角形的判定,旋转的性质,三角形的中位线定理【解析】【解答】解:(1)由题意知:AB=AC,AD=AE,且点M、N、P分别为DE、BE、BC的中点,∴BD=CE,MN //BD,NP //CE,MN= 12BD,NP= 12EC∴MN=NP又∵MN //BD,NP //CE,∠A= 120°,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C= 30°根据三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C = 60∘.【分析】(1)根据"∠A=120∘,AB=AC,AD=AE,点M、N、P分别为DE、BE、BC的中点",可得MN //BD,NP //CE ,根据三角形外角和定理,等量代换求出∠MNP.(2)先求出△ABD≌△ACE,得出∠ABD=∠ACE,根据MN //BD,NP //CE ,和三角形外角和定理,可知MN=PN,再等量代换求出∠MNP,即可求解.(3)根据BD≤AB+AD,可知BD最大值,继而求出△MNP面积的最大值。

2019-2020年九年级总复习(北师大版) 第三章 第3节 一次函数的应用

2019-2020年九年级总复习(北师大版) 第三章 第3节 一次函数的应用

2019-2020年九年级总复习(北师大版) 第三章 第3节 一次函数的应用一次函数图象的应用一次函数图象的应用是指用一次函数的图象来表示题中的数量关系的应用题,解这类题的关键在于要弄清纵、横轴各表示什么量,图象上每一点表示什么实际意义,以及图象的变化趋势、倾斜度大小各表示什么含义等.实际问题中的一次函数步骤:1.分析问题:(1)借助图表等手段分析题目中的数量关系,从而确定函数关系式;(2)根据函数图象获取信息,分析数量关系.2.确定模型:根据所获取的信息,建立一次函数模型.3.解决问题:根据题中数量关系或函数模型解决问题.一次函数图象的应用【例1】(xx·新疆)如图1所示,在A ,B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的路程y 1,y 2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A ,B 两地相距__440__千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式;(3)客、货两车何时相遇?解:(1)440 (2)由图可知货车的速度为80÷2=40(千米/小时),货车到达A 地一共需要2+360÷40=11(小时),设y 2=kx +b ,把(2,0),(11,360)代入得⎩⎨⎧2k +b =0,11k +b =360,解得⎩⎨⎧k =40,b =-80,所以y 2=40x -80 (3)设y 1=mx +n ,把(6,0),(0,360)代入得⎩⎨⎧6m +n =0,n =360,解得⎩⎨⎧m =-60,n =360,所以y 1=-60x +360.由y 1=y 2得40x -80=-60x +360,解得x =4.4,即客、货两车经过4.4小时相遇(1)从图中可读出A ,B 两地距离;(2)从图中读出货车离C 站路程与时间点,从而求出y 2解析式;(3)从图中求y 1解析式,由y 1=y 2求相遇时间.实际问题中的一次函数【例2】(xx·襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x ≥2)个羽毛球,供社区居民免费借用.该社区附近A ,B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A,y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.解:(1)y A=27x+270,y B=30x+240(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10,∴当2≤x<10时,在B超市购买划算;当x=10时,两家超市一样划算;当x >10时在A超市购买划算(3)由题意知x=15>10,∴①选择A超市,y A=27×15+270=675(元);②先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球需(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球(1)由题意写出y A,y B与x的关系式;(2)在(1)的基础上,分类讨论求出自变量取值范围;(3)在(2)的基础上再次分类讨论,经计算、比较,得到结果.没弄清一次函数与实际问题的关系以及不分类讨论而出错.【例3】(xx·汕尾)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是( C )真题热身1.(xx·荆州)出租车的计价器中编入了一个程序如图所示,其中x表示乘客乘坐计程车行驶的路程(千米),当你打的去8.8千米处的体育场看足球比赛,请问你要付计程费(单位:元,精确到1元)( D )A.8元B.9元C.10元D.11元2.(xx·十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示,以下说法错误的是( C )A .加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是y =-8t +25B .途中加油21升C .汽车加油后还可行驶4小时D .汽车到达乙地时油箱中还余油6升3.(xx·赤峰)目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%-15%,预防高血压不容忽视.“千帕kPa ”和“毫米汞柱mmHg ”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是( C )A.13 kPa =C .8 kPa =60 mmHg D .22 kPa =160 mmHg4.(xx·金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行__80__米.5.(xx·南充)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为w 元,请用含x 的代数式表示w ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 基地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)依题意,列表:∴w =40x +20×(380-x )+15×(400-x )+30×(x -80)=35x +11200,又⎩⎨⎧x -80≥0,400-x ≥0,380-x ≥0,解得80≤x ≤380 (2)依题意得⎩⎨⎧35x +11200≤18300,x ≥200,解得200≤x ≤20267,∴x =200,201,202,因为w=35x+11200,k=35,w随x的增大而增大,所以x=200时,运费w最低,最低运费为18200元.此时运输方案如下:。

2020年九年级数学中考压轴专题:《一次函数实际应用》(解析版)

2020年九年级数学中考压轴专题:《一次函数实际应用》(解析版)

中考三轮压轴专题:《一次函数实际应用》1.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y 元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?(3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中20<a<40),且最多购进240套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.运动服款式甲款乙款进价(元/套)60 80售价(元/套)100 1502.某单位要将一份宣传资料进行批量印刷.在甲印刷厂,在收取100元制版费的基础上,每份收费0.5元;在乙印刷厂,在收取40元制版费的基础上,每份收费0.7元.设该单位要印刷此宣传资料x份(x为正整数).(1)根据题意,填写下表:印刷数量(份)150 250 350 450 …甲印刷厂收费(元)175 ①275 ②…乙印刷厂收费(元)145 215 ③355 …(2)设在甲印刷厂收费y1元,在乙印刷厂收费y2元,分别写出y1,y2关于x的函数解析式;(3)当x≥100时,在哪家印刷厂花费少?请说明理由.3.某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费120元,购进A品牌文具袋3个和B品牌文具袋各4个共花费88元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为w元.①求w关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不低于进货价格的45%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.4.今年某水果加工公司分两次采购了一批桃子,第一次费用为25万元,第二次费用为30万元.已知第一次采购时每吨桃子的价格比去年的平均价格上涨了0.1万元,第二次采购时每吨桃子的价格比去年的平均价格下降了0.1万元,第二次采购的数量是第一次采购数量的2倍.(1)试问去年每吨桃子的平均价格是多少万元?两次采购的总数量是多少吨?(2)该公司可将桃子加工成桃脯或桃汁,每天只能加工其中一种.若单独加工成桃脯,每天可加工3吨桃子,每吨可获利0.7万元;若单独加工成桃汁,每天可加工9吨桃子,每吨可获利0.2万元为出口需要,所有采购的桃子必须在30天内加工完毕.①根据该公司的生产能力,加工桃脯的时间不能超过多少天?②在这次加工生产过程中,应将多少吨桃子加工成桃脯才能获取最大利润?最大利润为多少?5.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系;(2)若在购买计划中,B种苗的数量不少于22棵但不超过35棵,请设计购买方案,使总费用最低,并求出最低费用.6.商丘市梁园区紧紧围绕十九大报告提出的阶段性目标任务,深化农业供给侧结构性改革,调整种植结构,深入进行了四大结构调整,分别是:水池铺乡的辣椒产业、刘口乡的杂果基地,孙福集乡的山药、莲藕产业,双八镇的草莓产业.目前,这四种产业享誉省内外.某外地客商慕名来商丘考查,他准备购入山药和草莓进行试销,经市场调查,若购进山药和草莓各2箱共花费170元,购进山药3箱和草莓4箱共花费300元.(1)求购进山药和草莓的单价;(2)若该客商购进了山药和草莓共1000箱,其中山药销售单价为60元,草莓的销售单价为70元.设购进山药x箱,获得总利润为y元.①求y关于x的函数关系式;②由于草莓的保鲜期较短,该客商购进草莓箱数不超过山药箱数的,要使销售这批山药和草莓的利润最大,请你帮该客商设计一个进货方案,并求出其所获利润的最大值.7.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系,根据图象进行探究:(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义:;(3)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.8.甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示(1)a=,甲的速度是km/h;(2)求线段CF对应的函数表达式,并求乙刚到达货站时,甲距B地还有多远?(3)乙车出发min追上甲车?(4)直接写出甲出发多长时间,甲乙两车相距40km.9.为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y(元)与使用面积x(m2)间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y与x间的函数解析式;(2)若校园文化墙总面积共600m2,其中使用甲石材xm2,设购买两种石材的总费用为w 元,请直接写出w与x间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于300m2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?10.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A,B 两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)11.为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动,自行车队从甲地出发,目的地为乙地,在自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往乙地,到达乙地后立即按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的3倍.如图所示的是自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地的时间x(h)的关系图象,请根据图象提供的信息,回答下列问题.(1)自行车队行驶的速度是;邮政车行驶的速度是;a=.(2)邮政车出发多少小时与自行车队相遇?(3)当邮政车与自行车队相距15km时,此时离邮政车出发经过了多少小时?12.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.13.如图①,某商场有可上行和下行的两条自动扶梯,扶梯上行和下行的长度相等,运行速度相同且保持不变,甲、乙两人同时站上了上行和下行端,甲站上上行扶梯的同时又以0.8米/秒的速度往上走,乙站上下行扶梯后则站立不动随扶梯下行,甲到达扶梯顶端后立即乘坐下行扶梯(换乘时间忽略不计)同时以0.8米/秒的速度往下走,乙到达低端后则在原点等候甲,图②中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,高扶梯底端的路程y(米)与所用时间x(秒)的部分函数图象,结合图象解答下列问题:(1)每条扶梯的长度为米(直接填空);(2)求点B的坐标;(3)乙到达扶梯底端后,还需等待秒,甲才到达扶梯底端(直接填空).14.小明和小津去某风景区游览,小明从明桥出发沿景区公路骑自行车去陶公亭,同一时刻小津在霞山乘电动汽车出发沿同一公路去陶公亭,车速为24m/h.他们出发后xh时,离霞山的路程为ykm,y为x的函数图象如图所示:(1)求直线OC和直线AB的函数表达式;(2)回答下列问题,并说明理由;①当小津追上小明时,他们是否已过了夏池?②当小津到达陶公亭时,小明离陶公亭还有多少千米?15.武胜县白坪一飞龙乡村旅游度假区橙海阳光景点组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获得(元)1200 1600 1000(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?(3)设销售利润为W(元),求W与x之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.16.“守护碧水蓝天,守护我们的家园”,某市为了改善城市环境,预算116万元购进A、B两种型号的清扫机,已知A型号清扫机的单价比B型号清扫机单价的多1.2万元,若购进2台A型号清扫机和3台B型号清扫机花费54.6万元.(1)求A型号清扫机和B型号清扫机的单价分别为多少万元;(2)该市通过考察决定先购进两种型号的清扫机共10台,且B型号的清扫机数量不能少于A型号清扫机的1.5倍,该市怎样购买才能花费最少?最少花费多少万元?17.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,其中A型净水器每台的利润为400元,B型净水器每台的利润为500元.该公司计划再一次性购进两种型号的净水器共100台,其中B型净水器的进货量不超过A型净水器的2倍,设购进A型净水器x台,这100台净水器的销售总利润为y元.(1)求y关于x的函数关系式;(2)该公司购进A型、B型净水器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型净水器出厂价下调a(0<a<150)元,且限定公司最多购进A型净水器60台,若公司保持同种净水器的售价不变,请你根据以上信息,设计出使这100台净水器销售总利润最大的进货方案.参考答案1.解:(1)根据题意得y=(100﹣60)x+(150﹣80)(300﹣x)=﹣30x+21000;即y=﹣30x+21000.(2)由题意得,60x+80(300﹣x)≤20000,解得x≥200,∴至少要购进甲款运动服200套.又∵y=﹣30x+21000,﹣30<0,∴y随x的增大而减小,∴当x=200时,y有最大值,y最大=﹣30×200+21000=15000,∴若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,y=(100﹣60+a)x+(150﹣80)(300﹣x),其中200≤x≤240,化简得,y=(a﹣30)x+21000,∵20<a<40,则:①当20<a<30时,a﹣30<0,y随x的增大而减小,∴当小00时,y有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大.②当a=30时,a﹣30=0,y=21000,则服装店应购进甲款运动服的数量应满足100≤x≤120,且x为整数时,服装店获利最大.③当30<a<40时,a﹣30>0,y随x的增大而增大,∵200≤x≤240,∴当x=240时,y有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大.2.解:(1)由题意可得,当x=250时,甲印刷厂的费用为:100+0.5×250=225(元),当x=450时,甲印刷厂的费用为:100+0.5×450=325(元),当x=350时,乙印刷厂的费用为:40+0.7×350=285(元),故答案为:①225;②325;③285.(2)根据题意,得y1=100+0.5x,y2=40+0.7x.(3)设在甲、乙两个印刷厂收费金额的差为y元,则y=y1﹣y2=60﹣0.2x.当y=0时,即60﹣0.2x=0,得x=300.∴当x=300时,在甲、乙两个印刷厂花费相同.∵﹣0.2<0,∴y随x的增大而减小.∴当100≤x<300时,有y>0,在乙印刷厂花费少;当x>300时,有y<0,在甲印刷厂花费少.3.解:(1)设购进A品牌文具袋的单价为x元,B品牌文具袋的单价为y元,,得答:购进A品牌文具袋的单价为8元,B品牌文具袋的单价为16元;(2)①由题意可得,w=(12﹣8)x+(23﹣16)(100﹣x)=﹣3x+700,即w关于x的函数关系式为w=﹣3x+700;②∵所获利润不低于进货价格的45%,∴﹣3x+700≥[8x+16(100﹣x)]×45%,解得,x≥33,∵x为整数,w=﹣3x+700,∴当x=34时,w取得最大值,此时w=598,100﹣x=66,答:购进A品牌文具袋34个,B品牌文具袋66个时,可以获得最大利润,最大利润是598元.4.解:(1)设去年每吨桃子的平均价格是a万元/吨,根据题意,解得a=0.4.经检验,a=0.4是原方程的解.(吨),答:去年每吨桃子的平均价格是0.4万元,两次采购的总数量是150吨;(2)①设该公司加工桃脯用x天,根据题意得,解得x≤20.所以加工桃脯的时间不能超过20天;②设该公司加工桃脯用x天,获得最大利润为w万元,根据题意得w=0.73x+0.2×(150﹣3x)=1.5x+30,∵k=1.5>0,∴y随x的增大而增大,∵x≤20,∴当x=20时,w最大值=1.5×20+30=60(万元),∴3×20=60(吨).答:应将60吨桃子加工成桃脯才能获取最大利润,最大利润为60万元.5.解:(1)当0≤x≤20时,设y与x的函数关系式为y=k1x,20k1=160,解得,k1=8,即当0≤x≤20时,y与x的函数关系式为y=8x,当20<x≤45时,设y与x的函数关系式是y=k2x+b,,解得,即当20<x≤45时,y与x的函数关系式是y=6.4x+32,综上可知:y与x的函数关系式为;(2)设购买B种树苗x课,则22≤x≤35,设总费用为W元,当20<x≤35时,W=7(45﹣x)+(6.4x+32)=﹣0.6x+347,∵﹣6<0,∴W随x的增大而减小,故当x=35时,W取得最小值,此时W=326,45﹣x=10,答:当购买A种树苗10棵,B种树苗35棵时总费用最低,最低费用是326元.6.解:(1)设购进每箱山药的单价为x元,购进每箱草莓的单价为y元,根据题意得,解得,答:每箱山药的单价为40元,每箱草莓的单价为45元;(2)①由题意可得,y=(60﹣40)x+(70﹣45)(1000﹣x)=﹣5x+25000;②由题意可得,,解得:x≥750,又y=﹣5x+25000,k=﹣5<0,∴y随x的增大而减小,∴当x=750时,y达到最大值,即最大利润y=﹣5×750+25000=21250(元),此时1000﹣x=1000﹣750=250(箱),答:购进山药750箱,草莓250箱时所获利润最大,利润最大为21250元.7.解:(1)由题意,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,得图中点B的实际意义是:当慢车行驶4 h时,慢车和快车相遇.故答案为:当慢车行驶4 h时,慢车和快车相遇;(3)设线段CD的解析式为y=kx+b,快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150(km/h).由题意,得快车走完全程的时间按为:900÷150=6h,6时时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).将点C(6,450)、D(12,900)代入函数关系式得,解得,∴线段CD的解析式为y=75x(6≤x≤12).8.解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),甲车的速度==60(千米/小时);故答案为:4.5;60;(2)乙出发时甲所走的路程为:60×=40(km),∴线段CF对应的函数表达式为:y=60x+40;乙刚到达货站时,甲距B地的路程为:460﹣60×(4+)=180(km).(3)设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=90.乙车追上甲车的时间为40÷(90﹣60)=(小时),小时=80分钟,故答案为:80;(4)易得直线OD的解析式为y=90x(0≤x≤4),根据题意得60x+40﹣90x=40或90(x)﹣60x=40或60x=9×4﹣40,解得x=或x=或x=.答:甲出发小时或x=小时或x=小时后,甲乙两车相距40km.9.解:(1)①0≤x≤300时,设y=kx+b(k≠0),过(0,0),(300,24000),,解得,∴y=80x,②x>300时,设y=kx+b(k≠0),过(300,24000),(500,30000),,解得,∴y=30x+15000,∴y=;(2)w=30x+15000+50(600﹣x),即w=﹣20x+45000;(3)设甲种石材为am2,则乙种石材(600﹣a)m2,,∴300<x≤400,由(2)知w=﹣20x+45000,∵k=﹣20<0,∴W随x的增大而减小,即甲400m2,乙200m2时,W min=﹣20×400+45000=37000.答:甲种石材400m2,乙种石材200m2时,总费用最少,最少总费用为37000元.10.解:(1)根据题意,得20x+40y=2000得y=﹣x+50.答:y关于x的函数表达式为y=﹣x+50;(2)①∵购进的A类桶不少于B类桶的2倍,∴x≥2y,即x≥2(﹣x+50).解得x≥50.答:至少购进A类桶50个;②设购入A类桶x个,B类桶y个,C类桶c个,根据题意,得20x+40y+30c=2000得y=.∵调换后C类桶的数量不少于B类桶的数量,∴c≥.解得c≥.∵A类桶不少于B类桶的2倍.∴x≥2y∴x≥2×.解得c≥.∴.=.解得x=∵x、y、c为正整数,所以A类至少买36个,所以B类最多买18个.11.解:(1)自行车队行驶的速度是140÷7=20(m/h),邮政车行驶的速度是:20×3=60(m/h),a=1+140÷60=.故答案为:20km/h;60km/h;.(2)设邮政车出发x小时两车相遇,分两种情况:①首次相遇,由题意得20(x+1)=60x,解得,故邮政车出发小时两车首次相遇②邮政车在返程途中与自行车队再次相遇.根据题意得20(x+1)+60x=140×2,解得,故邮政车出发小时后,在返程途中与自行车队再次相遇.即邮政车出发后小时或小时与自行车队相遇.(3)设离邮政车出发经过了m小时与自行车队相距15km.当时,①当自行车队在邮政车前面时,20(m+1)﹣60m=15,解得;②当邮政车在自行车队前面时,60m﹣20(m+1)=15,解得;当时,①邮政车从乙地返回,与自行车队未相遇,20(m+1)+60m﹣140=140﹣15,解得;②邮政车从乙地返回,与自行车队相遇后,20(m+1)+60m﹣140=140+15,解得.即邮政车与自行车队相距15km时,此时离邮政车出发经过了小时或小时或小时或小时.12.解:(1)图中表示会员卡支付的收费方式是②.(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.13.解:(1)由图象可知,每条扶梯的长度为30米(直接填空);故答案为:30(2)设扶梯上行和下行的速度为xm/s,则7.5(2x+0.8)=30,解得x=1.6,7.5(x+0.8)=7.5×(1.6+0.8)=7.5×2.4=18.则点B的坐标是(7.5,18).∴B(7.5,18);(3)由题意,得30×2÷(1.6+0.8)﹣30÷1.6=60÷2.4﹣18.75=25﹣18.75=6.25(s).故乙到达扶梯底端后,还需等待6.25s,甲才到达扶梯底端.故答案为:6.2514.解:(1)小明骑车的速度为:(60﹣15)÷3.75=12(km/h),∴直线AB的函数表达式为:y=12x+15;直线OC的函数表达式为:y=24x;(2)①当小津追上小明时,24x=12x+15,解得x=1.25(h),24×1.25=30(km),30<15+20,∴当小津追上小明时,他们没有到达夏池;②小津到达陶公亭所需时间为:60÷24=2.5(h),60﹣(12×2.5+15)=15(km).答:当小津到达陶公亭时,小明离陶公亭还有15千米.15.解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20﹣x﹣y),则有:6x+5y+4(20﹣x﹣y)=100整理得:y=﹣2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x、﹣2x+20、x由题意得:,解得4≤x≤8,因为x为整数,所以x的值为4、5、6、7、8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)W=6x×1200+5(﹣2x+20)×1600+4x×1000=﹣4800x+160000,∵k=﹣4800<0∴W的值随x的增大而减小,要使利润W最大,则x=4,故选方案为:装运A种脐橙4车,B种脐橙12车,C种脐橙4车.W最大=﹣4800×4+160000=140800(元),答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为140800元.16.解:(1)设B型号清扫机的单价为x万元,则A型号清扫机的单价为()万元,根据题意得,解得x=11.6,(万元),答:A型号清扫机的单价为9.9万元,型号清扫机的单价为11.6万元;(2)设购进A型号清扫机a台,总花费为W元,根据题意得10﹣a≥1.5a,解得a≤4,W=9.9a+11.6(10﹣a)=﹣1.7a+116,∵k=﹣1.7<0,∴W随a的增大而减小,∴当购进A型号清扫机4台时花费最少,最少花费为:﹣1.7×4+116=109.2(万元).答:当购进A型号清扫机4台,B型号的清扫机6台时花费最少,最少花费为109.2万元.17.解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该公司购进A型净水器34台、B型净水器66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即公司购进34台A型净水器和66台B型净水器的销售利润最大.②a=100时,a﹣100=0,y=50000,即公司购进A型净水器数量满足≤x≤60的整数时,均获得最大利润;③当100<a<150时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即公司购进60台A型净水器和40台B型净水器的销售利润最大.。

(东营专版)2019年中考数学复习 第三章 函数 第三节 一次函数的实际应用练习

(东营专版)2019年中考数学复习 第三章 函数 第三节 一次函数的实际应用练习

第三节一次函数的实际应用姓名:________ 班级: _______ 用时:______分钟1.(2019·易错题)小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地( )A.100千米B.120千米C.180千米D.200千米2.(2018·东营模拟)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为__________km.3.(2018·成都中考)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1 200 m2,若甲种花卉的种植面积不少于200 m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?4.(2018·南京中考)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16 min回到家中.设小明出发第t min时的速度为v m/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2 min时离家的距离为________m;(2)当2<t≤5时,求s与t之间的函数解析式;(3)画出s与t之间的函数图象.5.(2018·湖州中考)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥.甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元.(1)根据题意,填写下表.(2)设总运费为y元,求y关于x的函数解析式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省总运费是多少元?6.(2018·垦利模拟)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?参考答案1.C 2.0.33.解:(1)y =⎩⎪⎨⎪⎧130x (0≤x≤300),80x +15 000(x>300).(2)设甲种花卉种植a m 2,则乙种花卉种植(1 200-a)m 2,总费用为W ,由题意得⎩⎪⎨⎪⎧a≥200,a≤2(1 200-a ),∴200≤a≤800.当200≤a≤300时,W =130a +100(1 200-a)=30a +120 000, ∴当a =200时,W min =126 000元;当300<a≤800时,W =80a +15 000+100(1 200-a)=135 000-20a , ∴当a =800时,W min =119 000元. ∵119 000<126 000,∴当a =800时,总费用最低,最低为119 000元. 此时乙种花卉种植面积为1 200-800=400(m 2).答:应分配甲种花卉种植800 m 2,乙种花卉种植400 m 2,才能使种植总费用最少,最少总费用为119 000元. 4.解:(1)200(2)当2<t≤5时,s =100×2+160(t -2)=160t -120, ∴s 与t 之间的函数解析式为s =160t -120. (3)s 与t 之间的函数解析式为 s =⎩⎪⎨⎪⎧100t (0≤t≤2),160t -120(2<t≤5),80t +280(5<t≤6.25),1 280-80t (6.25<t≤16).s 与t 之间的函数图象如图所示.5.解:(1)填表如下:(2)y=2×15x+2×25(110-x)+2×20(80-x)+2×20(x-10),即y关于x的函数解析式为y=-20x+8 300.∵-20<0,且10≤x≤80,∴当x=80时,总运费y最省,此时y最小=-20×80+8 300=6 700.答:当甲仓库运往A果园80吨有机化肥时,总运费最省,最省总运费是6 700元.6.解:(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12 540(0≤x≤30).(2)根据题意得140x+12 540≥16 460,∴x≥28.∵0≤x≤30,∴28≤x≤30,∴有3种不同的调运方案:方案一:从A城调往C乡28台,调往D乡2台,从B城调往C乡6台,调往D乡34台;方案二:从A城调往C乡29台,调往D乡1台,从B城调往C乡5台,调往D乡35台;方案三:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.(3)W=x(250-a)+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12 540,∴当a=200时,W最小=-60x+12 540,此时x=30时,W最小=10 740元,此时的方案为从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台,使总费用最少.。

山东省东营市中考数学复习 第三章 第三节随堂演练

山东省东营市中考数学复习 第三章 第三节随堂演练

第3章 第3节随堂演练1.(2017·日照)反比例函数y =kbx的图象如图所示,则一次函数y =kx +b(k≠0)的图象大致是( )2.(2017·青岛)一次函数y =kx +b(k≠0)的图象经过A(-1,-4),B(2,2)两点,P 为反比例函数y =kbx 图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( ) A .2B .4C .8D .不确定3.(2016·菏泽)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( )A .36B .12C .6D .34.(2017·滨州)在平面直角坐标系内,直线AB 垂直x 轴于点C(点C 在原点的右侧),并分别与直线y =x 和双曲线y =1x 相交于点A ,B ,且AC +BC =4,则△OAB 的面积为( )A .23+3或23-3 B.2+1或2-1C .23-3D.2-15.(2017·枣庄)如图,反比例函数y =2x 的图象经过矩形OABC 的边A B 的中点D ,则矩形OABC 的面积为_________.6.(2017·菏泽)直线y =kx(k>0)与双曲线y =6x 交于A(x 1,y 1)和B(x 2,y 2)两点,则3x 1y 2-9x 2y 1的值为________.7.在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是________.8.(2017·菏泽)如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连接OA ,OB ,过B 作BD⊥y 轴,垂足为D ,交OA 于C ,若OC =CA. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.参考答案1.D 2.A 3.D 4.A 5.4 6.36 7.b>2或b<-2 8.解:(1)如图1,过点A 作AF⊥x 轴交BD 于E ,图1∵点B(3,2)在反比例函数y =ax 的图象上,∴a=3×2=6,∴反比例函数的解析式为y =6x .∵B(3,2),∴EF=2. ∵BD⊥y 轴,OC =CA , ∴AE=EF =12AF ,∴AF=4,∴点A 的纵坐标为4.∵点A 在反比例函数y =6x 图象上,∴A(32,4).又∵一次函数图象过点A ,B ,∴3k b 23k b 42+=⎧⎪⎨+=⎪⎩解得4k 3b 6⎧=⎪⎨⎪=⎩∴一次函数的解析式为y =-43x +6.(2)如图2,过点A 作AF⊥x 轴于F ,交OB 于G ,交BD 于E ,图2∵B(3,2),∴直线OB 的解析式为y =23x ,∴G(32,1).∵A(32,4),∴AG=4-1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.。

(东营专版)2020年中考数学复习 第三章 函数 第二节 一次函数的图象与性质要题随堂演练

(东营专版)2020年中考数学复习 第三章 函数 第二节 一次函数的图象与性质要题随堂演练

一次函数的图象与性质要题随堂演练1.(2018·湘潭中考)若b >0,则一次函数y =-x +b 的图象大致是( )2.(2017·德州中考)下列函数中,对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2的是( )A .y =-3x +2B .y =2x +1C .y =2x 2+1D .y =-1x3.(2018·枣庄中考)如图,直线l 是一次函数y =kx +b 的图象,如果点A(3,m)在直线l 上,则m 的值为( )A .-5 B.32 C.52 D .74.(2017·莱芜中考)对于实数a ,b ,定义符号min{a ,b},其意义为:当a≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.例如:min ={2,-1}=-1,若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D.535.(2018·天津中考)将直线y =x 向上平移2个单位长度,平移后直线的解析式为______________.6.(2018·十堰中考)如图,直线y =kx +b 交x 轴于点A ,交y 轴于点B ,则不等式x(kx +b)<0的解集为________________.7.(2017·眉山中考)设点(-1,m)和点(12,n)是直线y =(k 2-1)x +b(0<k <1)上的两个点,则m ,n 的大小关系为__________.8.(2018·广饶模拟)如图,一次函数的图象与x 轴、y 轴分别相交于点A ,B ,将△AOB 沿直线AB 翻折得△ACB.若C(32,32),则该一次函数的解析式为________.9.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.参考答案1.C 2.A 3.C 4.D 5.y =x +2 6.-3<x <07.m >n 8.y =-3x + 39.解:(1)设一次函数的解析式为y =kx +b ,则⎩⎪⎨⎪⎧-3=-2k +b ,3=k +b ,解得⎩⎪⎨⎪⎧k =2,b =1. ∴函数的解析式为y =2x +1.(2)将点P(-1,1)代入函数解析式,1≠-2+1, ∴点P 不在这个一次函数的图象上.(3)当x =0时,y =1,当y =0时,x =-12, 此函数与x 轴、y 轴围成的三角形的面积为12×1×|-12|=14.。

2020年中考备考数学专题复习--第1部分 第3章 第10节 一次函数的实际应用

2020年中考备考数学专题复习--第1部分  第3章  第10节 一次函数的实际应用
5.验:利用一次函数的性质求相应的值,对所求的值进 行检验,看是否符合实际意义;
6.作答.
一次函数的实际应用
命题解读:均为解答题,在中考试卷中一般在第 21 题出 现,主要考查:(1)由实际问题求一次函数的表达式或解方程 组;(2)求一次函数的最值、增减性或与一元一次不等式(组) 结合解决实际问题.
第 9 题图
(1)分别求出 y1,y2 与 x 的函数表达式;
解:由题意,设 y1=kx+80(k≠0), 将(2,110)代入,得 110=2k+80,解得 k=15, 则 y1 与 x 的函数表达式为 y1=15x+80; 设 y2=mx(m≠0), 将(5,150)代入,得 150=5m,解得 m=30, 则 y2 与 x 的函数表达式为 y2=30x.
(元/每棚)
香瓜
2 000
12
8 000
甜瓜
4 500
3
5 000
现假设李师傅今年下半年香瓜种植的大棚数为 x 个,明
年上半年 8 个大棚中所产的瓜全部售完后,获得的利润为 y
元.根据以上提供的信息,请你解答下列问题:
6.[2017 陕西,21]在精准扶贫中,某村的李师傅在县政 府的扶持下,去年下半年,他对家里的 3 个温室大棚进行整 修改造,然后,1 个大棚种植香瓜,另外 2 个大棚种植甜瓜.今 年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完.他 高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工 作者的指导下,计划在农业合作社承包 5 个大棚,以后就用 8 个大棚继续种植香瓜和甜瓜.他根据种植经验及今年上半 年的市场情况,打算下半年种植时,两个品种同时种,一个 大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价 格及成本如下:

中考数学《一次函数的实际应用》总复习训练含解析

中考数学《一次函数的实际应用》总复习训练含解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)16192124鞋长(cm)鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A0.5千克0.2千克B0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D总计A200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)16192124鞋长(cm)鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y 与x的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A0.5千克0.2千克B0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30150=178∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.方案二:A地的赈灾物资运往D县42吨,运往E县58吨;B地的赈灾物资运往D县78吨,运往E县22吨.。

中考数学复习第三章函数第三节一次函数的实际应用要题随堂演练(2021年整理)

中考数学复习第三章函数第三节一次函数的实际应用要题随堂演练(2021年整理)

(东营专版)2019年中考数学复习第三章函数第三节一次函数的实际应用要题随堂演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((东营专版)2019年中考数学复习第三章函数第三节一次函数的实际应用要题随堂演练)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(东营专版)2019年中考数学复习第三章函数第三节一次函数的实际应用要题随堂演练的全部内容。

一次函数的实际应用要题随堂演练1.(2018·潍坊中考)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1 080立方米的挖土量,且总费用不超过12 960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?2.(2018·恩施州中考)某学校为改善办学条件,计划采购A,B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39 000元;4台A型空调比5台B型空调的费用多6 000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A,B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217 000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?3.(2018·南通中考)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km。

2020年中考数学一轮复习第三章函数及其图象第3节一次函数的实际应用

2020年中考数学一轮复习第三章函数及其图象第3节一次函数的实际应用

第三节一次函数的实际应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏无锡中考)一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg的这种水果.已知水果店每售出1 kg该水果可获利润10元,未售出的部分每1 kg将亏损6元,以x(单位:kg,2 000≤x≤3 000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?2.某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家.他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回,同时,爸爸在家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心活动时间为________小时,他从活动中心返家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.3.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?4. (2017·河北中考)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E ,点B ,E 关于x 轴对称,连结AB. (1)求点C ,E 的坐标及直线AB 的表达式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S,请通过计算解释他的想法错在哪里.5.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1,所以点P(-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b|1+k 2=|1×(-2)-1+1|1+12=22= 2. 根据以上材料,求:(1)点P(1,1)到直线y =3x -2的距离,并说明点P 与直线的位置关系; (2)点P(2,-1)到直线y =2x -1的距离;(3)已知直线y =-x +1与y =-x +3平行,求这两条直线的距离.参考答案1.解:(1)由题意得当2 000≤x≤2 600时,y =10x -6(2 600-x)=16x -15 600, 当2 600<x≤3 000时,y =2 600×10=26 000. (2)由题意得16x -15 600≥22 000, 解得x≥2 350.∴当A 酒店本月对这种水果的需求量小于等于3 000 kg ,不少于2 350 kg 时,该水果店销售这批水果所获的利润不少于22 000元. 2.解:(1)22 2 25(2)由题意知,点B 的坐标为(3,22),点C 的坐标为(175,20),设线段BC 的函数关系式为y =kx +b , 把点B 和点C 的坐标代入, 得⎩⎪⎨⎪⎧3k +b =22,175k +b =20,解得⎩⎪⎨⎪⎧k =-5,b =37,所以线段BC 所表示的y(千米)与x(小时)之间的函数关系式是y =-5x +37.(3)爸爸开车接上小宇前行驶路程为20千米,用时25小时,速度为20÷25=50(千米/小时),接上小宇后开车返回的速度是50千米/小时,路程为20千米,需要2050=25(小时),到家时间为8+3+25+25=1145时,即11时48分,所以小宇能在12:00前回到家.3.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, 故y 关于x 的函数表达式是y =x +1.填表如下:(2)从图2看出,设伦敦时间(夏时制)为t 时,则北京时间为(t +7)时, 由第(1)题,知韩国首尔时间为(t +8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30. 4.解:(1)在直线y =-38x -398中,令y =0,则有0=-38x -398,∴x=-13,∴C(-13,0).令x =-5,则有y =-38×(-5)-398=-3,∴E(-5,-3).∵点B ,E 关于x 轴对称,∴B(-5,3). ∵A (0,5),∴设直线AB 的表达式为y =kx +5, ∴-5k +5=3,∴k=25,∴直线AB 的表达式为y =25x +5.(2)由(1)知,E(-5,-3),∴DE=3, ∵C(-13,0),∴CD=-5-(-13)=8, ∴S △CDE =12CD·DE=12.由题意知,OA =5,OD =5,BD =3,∴S 四边形ABDO =12(BD +OA)·OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32. (3)由(2)知,S =32, 在△AOC 中,OA =5,OC =13, ∴S △AOC =12OA·OC=652=32.5,∴S≠S △AOC .理由:由(1)知,直线AB 的表达式为y =25x +5,令y =0,则0=25x +5,∴x=-252≠-13.∴点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∴S △AOC ≠S.5.解:(1)∵点P(1,1),∴点P 到直线y =3x -2的距离为d =|3×1-1-2|1+32=0, ∴点P 在直线y =3x -2上. (2)∵y=2x -1,∴k=2,b =-1. ∵P(2,-1),∴d=|2×2-(-1)-1|1+22=455. ∴点P(2,-1)到直线y =2x -1的距离为455.(3)在直线y =-x +1任意取一点P , 当x =0时,y =1,∴P(0,1). ∵直线y =-x +3,∴k=-1,b =3, ∴d=|-0-1+3|1+(-1)2=2,∴两平行线之间的距离为 2.。

中考数学第三章函数及其图像第3节一次函数的实际应用

中考数学第三章函数及其图像第3节一次函数的实际应用

第三节一次函数的实际应用,贵阳五年中考真题及模拟) 一次函数的实际应用(1次)1.(2011贵阳23题10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要________分钟,生产1件B产品需要________分钟;(2)求小李每月的工资收入范围.2.(2015贵阳模拟)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是________元;(2)第二档的用电量范围是________;(3)“基本电价”是________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?3.(2015贵阳模拟)李明乘车从市区到某景区旅游,同时王红从该景区返回市区,线段OB表示李明离市区的路程s1(km)与时间t(h)的函数关系;线段AC表示王红离市区的路程s2(km)与时间t(h)的函数关系,已知行驶1小时,李明、王红离市区的路程分别为100km、280km,王红从景区返回市区用了4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求s1,s2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离市区还有多远?,中考考点清单)一次函数的实际应用1.用一次函数解决实际问题的一般步骤为:(1)设定实际问题中的自变量与因变量;(2)通过列方程(组)与待定系数法求一次函数关系式;(3)确定自变量的取值范围;(4)利用函数性质解决问题;(5)检验所求解是否符合实际意义;(6)答.2.方案最值问题对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过列不等式,求解出某一个事物的取值范围,再根据另一个事物所要满足的条件,即可确定出有多少种方案.【方法点拨】求最值的本质为求最优方案,解法有两种:①可将所有求得的方案的值计算出来,再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解,由一次函数的增减性可直接确定最优方案及最值;若为分段函数,则应分类讨论,先计算出每个分段函数的取值,再进行比较.显然,第②种方法更简单快捷.,中考重难点突破)一次函数的实际应用【例】(2014河南中考)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A小学+初中+高中①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解析】(1)[信息梳理]设每台A型电脑的销售利润为a元,每台B型电脑的销售利润为b元.【学生解答】(2)①[信息梳理]【学生解答】②[信息梳理]【学生解答】(3)[信息梳理]【学生解答】(2015贵阳中天中学模拟)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为________元;若都在乙林场购买所需费用为________元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?。

(东营专版)2020年中考数学复习 第三章 函数 第二节 一次函数的图象与性质练习

(东营专版)2020年中考数学复习 第三章 函数 第二节 一次函数的图象与性质练习

第二节 一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2017·垦利模拟)一次函数y =kx +b(k≠0)在平面直角坐标系内的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k <0,b <0C .k <0,b >0D .k >0,b <02.(2019·易错题)直线y =3x 向下平移1个单位长度再向左平移2个单位长度,得到的直线是( ) A .y =3(x +2)+1 B .y =3(x -2)+1 C .y =3(x +2)-1D .y =3(x -2)-13.(2017·泰安中考)已知一次函数y =kx -m -2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( ) A .k<2,m >0B .k<2,m<0C .k >2,m >0D .k<0,m<04.(2018·南通中考)函数y =-x 的图象与函数y =x +1的图象的交点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.(2018·陕西中考)如图,在矩形AOBC 中,A(-2,0),B(0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )A .-12B.12C .-2D .26.(2019·原创题)一次函数y =x +6的图象与坐标轴的交点坐标为____________________________.7.(2018·眉山中考)已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.8.(2018·邵阳中考)如图所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是__________.9.(2019·改编题)一次函数y =kx +b 的图象与两坐标轴围成的三角形的面积是16,且过点(0,4),求此一次函数的解析式.10.(2018·娄底中考)将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -211.(2019·创新题)已知一系列直线y =a k x +b(a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子a i -a jx i -x j (1≤i≤k,1≤j ≤k,i≠j),下列一定正确的是( ) A .大于1 B .大于0 C .小于-1D .小于012.(2018·连云港中考)如图,一次函数y =kx +b 的图象与x 轴、y 轴分别相交于A ,B 两点,⊙O 经过A ,B 两点,已知AB =2,则kb的值为________.13.(2018·长春中考)如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,3),(n ,3),若直线y =2x 与线段AB 有公共点,则n 的值可以为____________________.(写出一个即可)14.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的解析式; (2)求△BDC 的面积.15.(2018·河北中考)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.16.(2019·改编题)一次函数y =kx +b 的图象是一条直线,而y =kx +b 经过恒等变形可化为直线的另一种表达形式:Ax +By +C =0(A ,B ,C 是常数,且A ,B 不同时为0).如图1,点P(m ,n)到直线l :Ax +By +C =0的距离(d)计算公式是:d =|A·m+B·n+C|A 2+B 2.如图2,已知直线y =-43x -4与x 轴交于点A ,与y 轴交于点B ,点M(3,2),连接MA ,MB ,求△MAB 的面积.参考答案【基础训练】1.C 2.C 3.A 4.B 5.A6.(0,6)和(-6,0) 7.y1>y28.x=29.解:设坐标原点为O,一次函数图象与x轴交于点B.∵一次函数的图象y=kx+b与两坐标轴围成的三角形的面积是16,∴12OB×4=16,解得OB=8,∴B(8,0)或B(-8,0).①当y=kx+b的图象过点(0,4),(8,0)时,则⎩⎪⎨⎪⎧8k +b =0,b =4,解得⎩⎪⎨⎪⎧k =-12,b =4,∴一次函数的解析式为y =-12x +4.②当y =kx +b 的图象过点(0,4),(-8,0)时,则⎩⎪⎨⎪⎧-8k +b =0,b =4,解得⎩⎪⎨⎪⎧k =12,b =4,∴一次函数的解析式为y =12x +4.综上所述,一次函数的解析式为y =12x +4或y =-12x +4.【拔高训练】 10.A 11.B 12.-2213.2(答案不唯一) 14.解:(1)把x =2代入y =12x ,得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的解析式为y =12x -4.将y =-2代入y =12x -4得x =4,∴点C 的坐标为(4,-2). 设直线l 2的解析式为y =kx +b. ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的解析式为y =-32x +4.(2)∵直线l 2的解析式为y =-32x +4,∴x=0时,y =4, ∴D(0,4).∵l 3的解析式为y =12x -4,∴x=0时,y =-4,∴B(0,-4),∴BD=8,∴S △BDC =12×8×4=16.15.解:(1)把C(m ,4)代入一次函数y =-12x +5可得4=-12m +5,解得m =2, ∴C(2,4).设l 2的解析式为y =ax ,则4=2a , 解得a =2,∴l 2的解析式为y =2x.(2)如图,过C 作CD⊥AO 于点D ,CE⊥BO 于点E ,则CD =4,CE =2. ∵y=-12x +5,令x =0,则y =5;令y =0,则x =10, ∴A(10,0),B(0,5), ∴AO=10,BO =5,∴S △AOC -S △BOC =12×10×4-12×5×2=20-5=15.(3)k 的值为32或2或-12.【培优训练】16.解:由题意得A(-3,0),B(0,-4),则OA =3,OB =4, 由勾股定理得AB =5.如图,过点M 作ME⊥AB 于点E ,则ME =d.y =-43x -4可化为4x +3y +12=0,由上述距离公式得d =|4×3+3×2+12|32+42=305=6,即ME =6, ∴S △MAB =12×5×6=15.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节一次函数的实际应用
姓名:________ 班级: _______ 用时:______分钟
1.(2019·易错题)小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地( )
A.100千米B.120千米
C.180千米D.200千米
2.(2018·东营模拟)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为__________km.
3.(2018·成都中考)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1 200 m2,若甲种花卉的种植面积不少于200 m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
4.(2018·南京中考)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16 min回到家中.设小明出发第t min时的速度为v m/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).
(1)小明出发第2 min时离家的距离为________m;
(2)当2<t≤5时,求s与t之间的函数解析式;
(3)画出s与t之间的函数图象.
5.(2018·湖州中考)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥.甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:
路程(千米)
甲仓库乙仓库
A果园15 25
B果园20 20
设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元.
(1)根据题意,填写下表.
运量(吨) 运费(元)
甲仓库乙仓库甲仓库乙仓库
A果园x 110-x 2×15x2×25(110-x)
B果园______ ______ ______ ______
(2)设总运费为y元,求y关于x的函数解析式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省总运费是多少元?
6.(2018·垦利模拟)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?
参考答案
1.C 2.0.3
3.解:(1)y =⎩
⎪⎨⎪⎧130x (0≤x≤300),
80x +15 000(x>300).
(2)设甲种花卉种植a m 2,则乙种花卉种植(1 200-a)m 2
,总费用为W ,
由题意得⎩
⎪⎨⎪
⎧a≥200,a≤2(1 200-a ),∴200≤a≤800.
当200≤a≤300时,W =130a
+100(1 200-a)=30a +120 000, ∴当a =200时,W min =126 000元;
当300<a≤800时,W =80a +15 000+100(1 200-a)=135 000-20a , ∴当a =800时,W min =119 000元. ∵119 000<126 000,
∴当a =800时,总费用最低,最低为119 000元. 此时乙种花卉种植面积为1 200-800=400(m 2
).
答:应分配甲种花卉种植800 m 2
,乙种花卉种植400 m 2
,才能使种植总费用最少,最少总费用为119 000元. 4.解:(1)200
(2)当2<t≤5时,s =100×2+160(t -2)=160t -120, ∴s 与t 之间的函数解析式为s =160t -120. (3)s 与t 之间的函数解析式为 s =⎩⎪⎨⎪⎧100t (0≤t≤2),160t -120(2<t≤5),80t +280(5<t≤6.25),1 280-80t (6.25<t≤16).
s 与t 之间的函数图象如图所示.
5.解:(1)填表如下:
(2)y=2×15x+2×25(110-x)+2×20(80-x)+2×20(x-10),
即y关于x的函数解析式为y=-20x+8 300.
∵-20<0,且10≤x≤80,
∴当x=80时,总运费y最省,
此时y最小=-20×80+8 300=6 700.
答:当甲仓库运往A果园80吨有机化肥时,总运费最省,最省总运费是6 700元.
6.解:(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12 540(0≤x≤30).
(2)根据题意得140x+12 540≥16 460,∴x≥28.
∵0≤x≤30,∴28≤x≤30,
∴有3种不同的调运方案:
方案一:从A城调往C乡28台,调往D乡2台,从B城调往C乡6台,调往D乡34台;
方案二:从A城调往C乡29台,调往D乡1台,从B城调往C乡5台,调往D乡35台;
方案三:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.
(3)W=x(250-a)+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12 540,
∴当a=200时,W最小=-60x+12 540,
此时x=30时,W最小=10 740元,
此时的方案为从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台,使总费用最少.。

相关文档
最新文档