圆锥曲线的综合问题-教案
圆锥曲线的综合问题(答案版)讲课教案
圆锥曲线的综合问题【考纲要求】1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想.2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即⎩⎨⎧==++0),(0y x F c By Ax ,消去y 后得02=++c bx ax(1)当0≠a 时,设方程02=++c bx ax 的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切;Δ<0⇔直线与圆锥曲线C 无公共点.(2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长(1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=]4))[(1(212212x x x x k -++=ak ∆⋅+21=1+1k2·|y 1-y 2|.(抛物线的焦点弦长|AB |=x 1+x 2+p =2psin 2θ,θ为弦AB 所在直线的倾斜角). 3、一种方法点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. 4、一条规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”双基自测1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解:y =kx -k +1=k (x -1)+1过定点(1,1),点在椭圆内部,故线与椭圆相交.答案A 2.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析:与渐近线平行的直线也与双曲线有一个公共点. 答案 A3.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( ).A .3 2B .2 6C .27D .4 2解析:根据题意设椭圆方程为x 2b 2+4+y 2b2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个交点,∴Δ=(83b 2)2-4×4(b 2+1)·(-b 4+12b 2)=0,即(b 2+4)(b 2-3)=0,∴b 2=3,长轴长为2b 2+4=27. 答案 C4.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( ).A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2),则有:⎪⎪⎩⎪⎪⎨⎧=-=-11222222221221b y a x by a x ,两式作差得:y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2,又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线的标准方程是x 24-y 25=1. 答案 B5.y =kx +2与y 2=8x 有且仅有一个公共点,则k 的取值为________.解析:由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.故k =0或k =1.答案 0或1【考向探究导析】考向一 直线与圆锥曲线的位置关系【例1】(2011·合肥模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.]21,21[-B .[-2,2]C .[-1,1]D .[-4,4] [审题视点] 设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得.解析 由题意得Q (-2,0).设l 的方程为y =k (x +2),代入y 2=8x 得k 2x 2+4(k 2-2)x +4k2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k 2-2)2-16k 4≥0,即k 2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1.答案 C研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数,但对于选择、填空题,常充分利用几何条件,利用数形结合的方法求解. 【训练1】 若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆 x 29+y 24=1的交点个数是( ).A .至多为1 B .2 C .1 D .0 解:由题意知:4m 2+n 2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.答案 B考向二 弦长及中点弦问题【例2】若直线l 与椭圆C :x 23+y 2=1交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.[审题视点] 联立直线和椭圆方程,利用根与系数关系后代入弦长公式,利用基本不等式求出弦长的最大值即可.解 设A (x 1,y 1),B (x 2,y 2).(1)当AB ⊥x 轴时,|AB |=3; (2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知,得|m |1+k2=32,即m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0. ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-13k 2+1. ∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m 23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,上式=3+129k 2+1k2+6≤3+122×3+6=4,当9k 2=1k 2,即k =±33时等号成立.此时|AB |=2;当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值S max =12×|AB |max ×32=32.当直线(斜率为k )与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,则|AB |=1+k 2·|x 1-x 2|=1+1k2|y 1-y 2|,而|x 1-x 2|=x 1+x 22-4x 1x 2,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.【训练2】 椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若 AB =22,OC 的斜率为22,求椭圆的方程. 法一:设A (x 1,y 1)、B (x 2,y 2),代入椭圆方程作差a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k oc =22,代入上式可得b =2a ,再由|AB |=1+k 2|x 2-x 1|= 2|x 2-x 1|=22,其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根,故⎝ ⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.∴椭圆的方程是x 23+2y 23=1. 法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0,设A (x 1,y 1)、B (x 2,y 2),则|AB |=k 2+1x 1-x 22=2·4b 2-4a +bb -1a +b2.∵|AB |=22,∴a +b -ab a +b =1.① ,设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b ,∵OC 的斜率为22,∴a b =22.代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.考向三 圆锥曲线中的定点定值问题常见的类型(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题.例3、(2011·山东)在平面直角坐标系xOy 中,已知椭圆C :x23+y 2=1.如图所示,斜率为k (k >0)且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C于点G ,交直线x =-3于点D (-3,m ).(1)求m 2+k 2的最小值; (2)若|OG |2=|OD |·|OE |,求证:直线l 过定点. (1)解:设直线l 的方程为y =kx +t (k >0),由题意,t >0.由方程组⎩⎪⎨⎪⎧y =kx +t ,x 23+y 2=1,得(3k 2+1)x 2+6ktx +3t 2-3=0.由题意Δ>0,所以3k 2+1>t 2.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-6kt3k 2+1,所以y 1+y 2=2t 3k 2+1.由于E 为线段AB 的中点,因此x E =-3kt 3k 2+1,y E =t3k 2+1,此时k OE =y E x E =-13k .所以OE 所在直线方程为y =-13k x ,又由题设知D (-3,m ),令x =-3,得m =1k,即mk =1,所以m 2+k 2≥2mk =2,当且仅当m =k =1时上式等号成立,此时由Δ>0得0<t <2,因此当m =k =1且0<t <2时,m 2+k 2取最小值2.(2)证明 由(1)知OD 所在直线的方程为y =-13kx ,将其代入椭圆C 的方程,并由k >0,解得G ⎝ ⎛⎭⎪⎫-3k 3k 2+1,13k 2+1.又E ⎝ ⎛⎭⎪⎫-3kt3k 2+1,t 3k 2+1,D ⎝ ⎛⎭⎪⎫-3,1k ,由距离公式及t >0得 |OG |2=⎝⎛⎭⎪⎫-3k 3k 2+12+⎝ ⎛⎭⎪⎫13k 2+12=9k 2+13k 2+1,|OD |= -32+⎝ ⎛⎭⎪⎫1k 2=9k 2+1k , |OE |= ⎝ ⎛⎭⎪⎫-3kt 3k 2+12+⎝ ⎛⎭⎪⎫t 3k 2+12=t 9k 2+13k 2+1,由|OG |2=|OD |·|OE |得t =k , 因此直线l 的方程为y =k (x +1),所以直线l 恒过定点(-1,0).【训练3】椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=322时,求直线l 的方程.(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值. [审题视点] (1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充分利用已知条件进行等价转化.(1)解:因椭圆焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆方程为y 22+x 2=1.直线l 垂直于x 轴时与题意不符.设直线l 的方程为y =kx +1,将其代入椭圆方程化简得(k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2,|CD |=k 2+1·x 1+x 22-4x 1x 2=22k 2+1k 2+2,由已知得22k 2+1k 2+2=322, 解得k =±2,所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符.设直线l 的方程为y =kx +1(k ≠0且k ≠±1),所以P 点坐标为]0,1[k-,设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2,直线AC 的方程为y =y 1x 1+1(x +1),直线BD 的方程为y =y 2x 2-1(x -1),将两直线方程联立,消去y 得x +1x -1=y 2x 1+1y 1x 2-1,因为-1<x 1,x 2<1,所以x +1x -1与y 2y 1异号.⎝ ⎛⎭⎪⎫x +1x -12=y 22x 1+12y 21x 2-12=2-2x 222-2x 21·x 1+12x 2-12=1+x 11+x 21-x 11-x 2=1+-2k k 2+2+-1k 2+21--2k k 2+2+-1k 2+2=⎝ ⎛⎭⎪⎫k -1k +12.又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1=21-k1+k k 2+2=-21+k 2k 2+2·k -1k +1, ∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1同号,∴x +1x -1=k -1k +1,解得x =-k . 因此Q 点坐标为(-k ,y 0).O P →·O Q →=⎝ ⎛⎭⎪⎫-1k ,0·()-k ,y 0=1.故O P →·O Q →为定值.[训练4](2012年高考福建卷)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程; (2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.[解析] (1)因为|AB |+|AF 2|+|BF 2|=8,即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8.又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a ,所以4a =8,a =2.又因为e =12,即c a =12,所以c =1,所以b =a 2-c 2= 3.故椭圆E 的方程是x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)所以P (-4k m ,3m).由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ) 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.设M (x 1,0),则0MP MQ ⋅=u u u r u u u u r对满足(*)式的m ,k 恒成立.因为MP u u u r =(-4k m-x 1,3m),MQ u u u u r =(4-x 1,4k +m ),由0MP MQ ⋅=u u u r u u u u r ,得-16k m +4kx 1m -4x 1+x 21+12k m +3=0,整理,得(4x 1-4)k m+x 21-4x 1+3=0. (* *)由于(* *)式对满足(*)式的m ,k 恒成立,所以⎩⎪⎨⎪⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .【训练5】已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值正确的是( )A .等于1B .最小值是1C .等于4D .最大值是4解析:设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),由抛物线定义AF =x 1+1,DF =x 2+1,故|AB |=x 1,|CD |=x 2, 故|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.考向四 最值与范围问题1.求参数范围的方法:据已知条件建立等式或不等式的函数关系,再求参数范围. 2.求最值问题的方法(1)几何法:题目中给出的条件有明显的几何特征,则考虑用图象来解决;(2)代数法:题目中给出的条件和结论几何特征不明显则可以建立目标函数,再求这个函数 的最值,求最值的常见方法是判别式法、基本不等式法,单调性法等.例4、已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点. (1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程; (2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.[审题视点] (1)求出圆心和半径,得出圆的标准方程; (2)设直线AB 的点斜式方程,由已知得线段AB 的垂直平分线方程,利用求值域的方法求解.解 (1)∵22=a ,12=b ,∴1=c ,F (-1,0),∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M ),21(t -,则圆半径r =23)2()21(=---,由|OM |=r ,得23)21(22=+-t ,解得t=±2,∴所求圆的方程为49)2()21(22=±++y x(2)设直线AB 方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴,∴方程有两个不等实根.如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k 2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2,∵k ≠0,∴-12<x G <0,∴点G 横坐标的取值范围为)0,21(-【训练6】已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 斜率是12时,l 方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎪⎩⎪⎨⎧+=+=②①2842121py y y y 又∵AC →=4AB →,∴y 2=4y 1③,由①②③及p >0得:y 1=1,y 2=4,p =2,得抛物线G 方程为x 2=4y .(2)设l :y =k (x +4),BC 中点为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4kx -16k =0,④∴x 0=x C +x B2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 中垂线为y -2k 2-4k =-1k(x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2, 对于方程④,由Δ=16k 2+64k >0得k >0或k <-4.∴b ∈(2,+∞).[训练7]已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A .(-23,0)B .(0,23)C .(-32,0)D .(0,32)解析:设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.考向五 探索性问题【问题研究】 解析几何中探索性问题的结论往往不明确,需要根据已知条件通过推理论证或是计算对结论作出明确的肯定或是否定,因此解决起来具有较大的难度.【解决方案】 明确这类问题的解题思想:即假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答,如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.[例5】已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有 FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由. 解:(1)设P (x ,y )是C 上任意一点,那么点P (x ,y )满足:x -12+y 2-x =1(x >0).化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m ,y 2=4x ,得y 2-4ty -4m =0,Δ=16(t 2+m )>0,于是⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4m .①又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2).FA →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-⎝ ⎛⎭⎪⎫y 214+y 224+1<0⇔y 1y 2216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0,③,由①式,不等式③等价于m 2-6m +1<4t 2,④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0, 即3-22<m <3+22,由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0,且m 的取值范围是(3-22,3+22).【训练8】(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.[解析] (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3.∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1,d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2(1-1m 2+n 2).∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0. ∴S △OAB =1m 2+n 2(1-1m 2+n 2)≤ ⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为(62,22),(62,-22),(-62,22)或(-62,-22), 此时△OAB 的面积为12.。
高三数学教案:圆锥曲线的综合问题
第八节 圆锥曲线的综合应用一、基本知识概要:1知识精讲:圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.2重点难点:正确熟练地运用解析几何的方法解决圆锥曲线的综合问题,从中进一步体会分类讨论、等价转化等数学思想的运用.3思维方式:数形结合的思想,等价转化,分类讨论,函数与方程思想等.4特别注意:要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。
二、例题:例1. A ,B 是抛物线)0(22>=p px y 上的两点,且OA OB ⊥(O 为坐标原点)求证:(1)A ,B 两点的横坐标之积,纵坐标之积分别是定植; (2)直线AB 经过一个定点证明:(1)设,,2,2),,(),,(21212221212211=+∴⊥==y y x x OB OA px y px y y x B y x A 则两式相乘得2212214,4p x x p y y =-=)0,2),0,2),2(2).(2,2,),(2)2(212112112121212221p x x p p x y y p y x x y y p y y AB y y p k x x x x p y y AB 时,显然也过点(当过定点(化简得的方程所以直线当=-+=-+=-+=≠-=-所以直线AB 过定点(2p,0)例2、(2005年春季北京,18)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b )0,0(≠>b a ,且交抛物线)(),(于22112,N ,M )0(2y x y x p px y >=两点。
(1) 写出直线l 的截距式方程 (2) 证明:by y 11121=+(3) 当p a 2=时,求MON ∠的大小。
数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析
第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。
知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。
高中数学第一轮总复习 第八章 8.7 圆锥曲线的综合问题教案 新人教A版
8.7 圆锥曲线的综合问题巩固·夯实基础一、自主梳理解析几何考查的重点是圆锥曲线,在历年的高考中,占解析几何总分值的四分之三以上.解析几何的综合问题也主要以圆锥曲线为载体,通常从以下几个方面进行考查:1.位置问题,直线与圆锥曲线的位置关系问题,是研究解析几何的重点内容,常涉及直线与曲线交点的判断、弦长、面积、对称、共线等问题.其解法是充分利用方程思想以及韦达定理.2.最值问题,最值问题是从动态角度去研究解析几何中的数学问题的主要内容.其解法是设变量、建立目标函数、转化为求函数的最值.3.范围问题,范围问题主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围,其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.以上这些问题由于综合性较强,所以备受命题者的青睐.常用来综合考查学生在数形结合、等价转化、分类转化、逻辑推理等多方面的能力.二、点击双基1.方程22)2()2(-++y x =|x-y+3|表示的曲线是( )A.直线B.双曲线C.椭圆D.抛物线解析:原方程变形为2|3|)2()2(22+--++y x y x =2.它表示点(x,y)到点(-2,2)与定直线x-y+3=0的距离比是2.故选B.答案:B2.若点(x,y )在椭圆4x 2+y 2=4上,则2-x y 的最小值为( ) A.1 B.-1 C.-323 D.以上都不对 解析:2-x y 的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y=k(x-2),代入椭圆方程消去y 得(4+k 2)x 2-4k 2x+4k 2-4=0.令Δ=0,k=±323. ∴k min =-323.答案:C 3.双曲线22a x -22b y =1的离心率为e 1,双曲线22b y -22ax =1的离心率为e 2,则e 1+e 2的最小值为( ) A.42 B.2 C.22 D.4解析:(e 1+e 2)2=e 12+e 22+2e 1e 2 =222a b a ++222b a b ++2·a b a 22+·b a b 22+ =2+22a b +22b a +2(a b +ba ) ≥2+2+2×2=8.当且仅当a=b 时取等号.故选C.答案:C4.若椭圆x 2+a 2y 2=a 2的长轴长是短轴长的2倍,则a=___________________.解析:方程化为22ax +y 2=1, 若a 2>1,∴2|a|=2×2,a=±2.当0<a 2<1,∴2=4|a|.∴a=±21. 答案:±2,±21 5.P 是双曲线32x -y 2=1的右支上一动点,F 是双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为____________________________.解析:设F ′为双曲线的左焦点,∴|PF ′|-|PF|=23.∴|PA|+|PF|=|PA|+|PF ′|-23≥|AF ′|-23=26-23.答案:26-23诱思·实例点拨【例1】如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b(a>0,b ≠0),且交抛物线y 2=2px(p>0)于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的截距式方程;(2)证明11y +21y =b1;(3)当a=2p 时,求∠MON 的大小.剖析:易知直线l 的方程为a x +b y =1,欲证11y +21y =b 1,即求2121y y y y +的值,为此只需求直线l 与抛物线y 2=2px 交点的纵坐标.由根与系数的关系易得y 1+y 2、y 1y 2的值,进而证得11y +21y =b 1.由OM ·ON =0易得∠MON=90°.亦可由k OM ·k ON =-1求得∠MON=90°.(1)解:直线l 的截距式方程为a x +b y =1. ① (2)证明:由①及y 2=2px 消去x 可得by 2+2pay-2pab=0. ②点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=bpa 2-,y 1y 2=-2pa. 所以11y +21y =2121y y y y +=pa b pa22--=b1. (3)解:设直线OM 、ON 的斜率分别为k 1、k 2,则k 1=11x y ,k 2=22x y . 当a=2p 时,由(2)知,y 1y 2=-2pa=-4p 2,由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2,x 1x 2=22214)(p y y =2224)4(p p -=4p 2,因此k 1k 2=2121x x y y =2244p p -=-1. 所以OM ⊥ON,即∠MON=90°.讲评:本题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.【例2】已知椭圆C 的方程为22a x +22b y =1(a>b>0),双曲线22a x -22by =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点F 作直线l,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B.(如图)(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;(2)当=λ时,求λ的最大值.剖析:(1)求椭圆方程即求a 、b 的值,由l 1与l 2的夹角为60°易得a b =33,由双曲线的距离为4易得a 2+b 2=4,进而可求得a 、b. (2)由=λ,欲求λ的最大值,需求A 、P 的坐标,而P 是l 与l 1的交点,故需求l 的方程.将l 与l 2的方程联立可求得P 的坐标,进而可求得点A 的坐标.将A 的坐标代入椭圆方程可求得λ的最大值.解:(1)∵双曲线的渐近线为y=±a b x,两渐近线夹角为60°, 又ab <1, ∴∠POx=30°,即a b =tan30°=33. ∴a=3b.又a 2+b 2=4,∴a 2=3,b 2=1. 故椭圆C 的方程为32x +y 2=1. (2)由已知l:y=b a (x-c),与y=ab x 解得P(c a 2,c ab ), 由=λ得A(λλ+•+12c a c ,λλ+•1c ab ). 将A 点坐标代入椭圆方程得(c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2.∴(e 2+λ)2+λ2=e 2(1+λ)2.∴λ2=2224--e e e =-[(2-e 2)+222e -]+3≤3-22. ∴λ的最大值为2-1.讲评:本题考查了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用.解决本题的难点是通过恒等变形,利用重要不等式解决问题的思想.本题是培养学生分析问题和解决问题能力的一道好题.【例3】 已知直线y=-2上有一个动点Q ,过Q 作直线l 垂直于x 轴,动点P 在直线l 上,且⊥,记点P 的轨迹为C 1.(1)求曲线C 1的方程.(2)设直线l 与x 轴交于点A ,且=(≠0).试判断直线PB 与曲线C 1的位置关系,并证明你的结论.(3)已知圆C 2:x 2+(y-a)2=2,若C 1、C 2在交点处的切线互相垂直,求a 的值.解:(1)设P 的坐标为(x,y),则点Q 的坐标为(x,-2).∵⊥,∴·=0.∴x 2-2y=0.∴点P 的轨迹方程为x 2=2y(x ≠0).(2)直线PB 与曲线C 1相切,设点P 的坐标为(x 0,y 0),点A 的坐标为(x 0,0). ∵=,∴=(0,-y 0).∴点B 的坐标为(0,-y 0).∵≠0,∴直线PB 的斜率为k=002x y . ∵x 02=2y 0,∴k=x 0.∴直线PB 的方程为y=x 0x-y 0.代入x 2=2y,得x 2-2x 0x+2y 0=0.∵Δ=4x 02-8y 0=0,∴直线PB 与曲线C 1相切.(3)不妨设C 1、C 2的一个交点为N(x 1,y 1),C 1的解析式即为y=21x 2,则在C 1上N 处切线的斜率为k ′=x 1,圆C 2过N 点的半径的斜率为k=11x a y . ① 又∵点N(x 1,y 1)在C 1上,所以y 1=21x 12. ② 由①②得y 1=-a,x 12=-2a,∵N(x 1,y 1)在圆C 2上,∴-2a+4a 2=2.∴a=-21或a=1. ∵y 1>0,∴a<0. ∴a=-21.。
高二数学《圆锥曲线的综合应用》解析几何教案
高二数学《圆锥曲线的综合应用》解析几何教案一、引言在高中数学中,解析几何是一个重要的分支,而圆锥曲线是解析几何中的重要内容之一。
本教案旨在通过几个实例和应用问题,帮助学生深入理解圆锥曲线的概念、性质和应用,提升他们的解析几何解题能力。
二、教学目标1. 熟练掌握椭圆、双曲线和抛物线的定义和标准方程;2. 理解椭圆、双曲线和抛物线的性质和特点;3. 学会利用圆锥曲线解决实际问题。
三、教学内容与方法1. 椭圆的定义和性质根据椭圆的定义,并结合图形示例,引导学生理解椭圆的定义和性质。
通过绘制平面直角坐标系,演示如何确定椭圆的标准方程,并讨论椭圆的离心率与形状的关系。
2. 双曲线的定义和性质引导学生通过观察双曲线的图形,根据焦点和准线的位置关系,理解双曲线的定义和性质。
通过演示如何确定双曲线的标准方程,让学生掌握双曲线的判别条件和参数对图形的影响。
3. 抛物线的定义和性质以实例引导学生理解抛物线的定义和性质,关注其对称性和焦点的位置。
通过绘制平面直角坐标系,让学生学会确定抛物线的标准方程,重点掌握参数对抛物线形状的影响。
4. 圆锥曲线的应用问题通过一些实际问题,让学生运用所学知识解决与圆锥曲线相关的问题。
包括但不限于:抛物线的反射性质、椭圆/双曲线的焦点问题等。
引导学生运用所学知识分析问题,建立方程,并用图像或计算验证解的合理性。
四、教学过程1. 理论讲解与示例分析引入椭圆的定义和性质,通过示例分析演示如何确定椭圆的标准方程。
带领学生一起讨论离心率的影响,并解答学生提出的问题。
同样的方式,介绍双曲线和抛物线的定义和性质,并通过示例讲解标准方程的确定方法。
2. 练习与巩固让学生自主完成一些练习题,检验他们对所学内容的掌握情况。
可分组进行解题竞赛,激发学生的学习兴趣,提高解题速度和准确率。
3. 应用问题解析给学生提供一些实际问题,引导他们运用所学知识解决问题。
可以采用小组合作形式,让学生通过讨论、推理,找到解决问题的方法和策略。
圆锥曲线教案
及圆锥曲线有关的几种典型题一、教学目标(一)知识教学点使学生掌握及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线相交问题等.(二)能力训练点通过对圆锥曲线有关的几种典型题的教学,培养学生综合运用圆锥曲线知识的能力.(三)学科渗透点通过及圆锥曲线有关的几种典型题的教学,使学生掌握一些相关学科中的类似问题的处理方法.二、教材分析1.重点:圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题.(解决办法:先介绍基础知识,再讲解应用.)2.难点:双圆锥曲线的相交问题.(解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.)3.疑点:及圆锥曲线有关的证明问题.(解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.)三、活动设计演板、讲解、练习、分析、提问.四、教学过程(一)引入及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“及圆锥曲线有关的几种典型题”.(二)及圆锥曲线有关的几种典型题1.圆锥曲线的弦长求法设圆锥曲线C∶f(x,y)=0及直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:(2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.A、B两点,旦|AB|=8,求倾斜角α.分析一:由弦长公式易解.由学生演板完成.解答为:∵抛物线方程为x2=-4y,∴焦点为(0,-1).设直线l的方程为y-(-1)=k(x-0),即y=kx-1.将此式代入x2=-4y中得:x2+4kx-4=0.∴x1+x2=-4,x1+x2=-4k.∴ k=±1.∴|AB|=-(y1+y2)+p=-[(kx1-1)+(kx2-1)]+p=-k(x1+x2)+2+p.由上述解法易求得结果,由学生课外完成.2.及圆锥曲线有关的最值(极值)的问题在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围.例2 已知x2+4(y-1)2=4,求:(1)x2+y2的最大值及最小值;(2)x+y的最大值及最小值.解(1):将x2+4(y-1)2=4代入得:x2+y2=4-4(y-1)2+y2=-3y2+8y由点(x,y)满足x2+4(y-1)2=4知:4(y-1)2≤4 即|y-1|≤1.∴0≤y≤2.当y=0时,(x2+y2)min=0.解(2):分析:显然采用(1)中方法行不通.如果令u=x+y,则将此代入x2+4(y-1)2=4中得关于y的一元二次方程,借助于判别式可求得最值.令x+y=u,则有x=u-y.代入x2+4(y-1)2=4得:5y2-(2u+8)y+u2=0.又∵0≤y≤2,(由(1)可知)∴[-(2u+8)]2-4×5×u2≥0.3.及圆锥曲线有关的证明问题它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法.例3 在抛物线x2=4y上有两点A(x1,y1)和B(x2,y2)且满足|AB|=y1+y2+2,求证:(1)A、B和这抛物线的焦点三点共线;证明:(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.∴ A、B到准线的距离分别d1=y1+1,d2=y2+1(如图2-46所示).由抛物线的定义:|AF|=d1=y1+1,|BF|=d2=y2+1.∴|AF|+|BF|=y1+y2+2=|AB|.即A、B、F三点共线.(2)如图2-46,设∠AFK=θ.∵|AF|=|AA1|=|AK|+2=|AF|sinθ+2,又|BF|=|BB1|=2-|BF|sinθ.小结:及圆锥曲线有关的证明问题解决的关键是要灵活运用圆锥曲线的定义和几何性质.4.圆锥曲线及圆锥曲线的相交问题直线及圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但用△≥0来判断双圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”及直观图形相结合;方法2,由“△≥0”及根及系数关系相结合;方法3,转换参数法(以后再讲).实数a的取值范围.可得:y2=2(1-a)y+a2-4=0.∵△=4(1-a)2-4(a2-4)≥0,如图2-47,可知:(三)巩固练习(用一小黑板事先写出.)2.已知圆(x-1)2+y2=1及抛物线y2=2px有三个公共点,求P的取值范围.顶点.请三个学生演板,其他同学作课堂练习,教师巡视.解答为:1.设P的坐标为(x,y),则2.由两曲线方程消去y得:x2-(2-2P)x=0.解得:x1=0,x2=2-2P.∵0<x<2,∴0<2-2P<2,即0<P<1.故P的取值范围为(0,1).四个交点为A(4,1),B(4,-1),C(-4,-1),D(-4,1).所以A、B、C、D是矩形的四个顶点.五、布置作业1.一条定抛物线C1∶y2=1-x及动圆C2∶(x-a)2+y2=1没有公共点,求a的范围.2.求抛线y=x2上到直线y=2x-4的距离为最小的点P的坐标.3.证明:从双曲线的一个焦点到一条渐近线的距离等于虚半轴长.作业答案:1.当x≤1时,由C1、C2的方程中消去y,得x2-(2a+1)x+a2=0,离为d,则似证明.六、板书设计。
专题53 圆锥曲线的综合问题教学案-2018年高考数学理一
圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一 圆锥曲线中的定点问题【例1】已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,所以a 2=3. 所以椭圆的方程为x 23+y 2=1.∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③将③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1. 由题意mt <0, ∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点. 【方法规李】 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由. 解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=169; 当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎪⎨⎪⎧x 2+⎝⎛⎭⎫y +132=169,x 2+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0, Δ=144k 2+64(9+18k 2)>0, x 1+x 2=12k18k 2+9,x 1x 2=-1618k 2+9,QA →=(x 1,y 1-1),QB →=(x 2,y 2-1), QA →²QB →=x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)²-169+18k 2-4k 3²12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1). 高频考点二 定值问题【例2】 (2016²山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2. (1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . ①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值. ②求直线AB 的斜率的最小值. 解 (1)设椭圆的半焦距为c .由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1. (2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k 为定值-3.同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m=-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎫6k +1k ,由m >0,x 0>0,可知k >0, 所以6k +1k ≥26, 当且仅当k =66时取“=”. 故此时2m -m4-8m 2-0=66,即m =147,符合题意.所以直线AB 的斜率的最小值为62.【方法规律】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【变式探究】 (2016²北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |²|BM |为定值.(1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆方程为x 24+y 2=1.令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1.∴|AN |²|BM |=⎪⎪⎪⎪2+x 0y 0-1²⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2²⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |²|BM |=4.故|AN |²|BM |为定值. 高频考点三 范围问题【例3】 (2016²天津卷)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c ,0),由1|OF |+1|OA |=3e|FA |, 即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.由BF ⊥HF ,得BF →²FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k 212k .设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64.所以直线l 的斜率的取值范围为⎝ ⎛⎦⎥⎤-∞,-64或⎣⎢⎡⎭⎪⎫64,+∞. 【方法规律】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【变式探究】已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →²OB →,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解 (1)由题意知2c =2,所以c =1. 因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1. (2)因为直线l :y =kx +m 与圆x 2+y 2=1相切,所以原点O 到直线l 的距离为|m |12+k 2=1,即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2-2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA →²OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1, 即k 的取值范围是⎣⎢⎡⎦⎥⎤-1,-22∪⎣⎢⎡⎦⎥⎤22,1. (3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎢⎡⎦⎥⎤64,23. 高频考点四 最值问题【例4】 已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1²-2t 4+2t 2+32t 2+12. 且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |²d =12-2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.【方法规律】处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【变式探究】 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1. 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.故线段AB 长度的最小值为2 2. 高频考点五 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题. 例5、如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 解 (1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=22,得|DF 1|=|F 1F 2|22=22c .从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1. 从而|DF 1|=22.(3分)由DF 1⊥F 1F 2,得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322. 所以2a =|DF 1|+|DF 2|=22, 故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(4分)当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C . 设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1²y 1x 1+1=-1.而求得y 1=13,故y 0=53.(10分)圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=423.综上,存在满足题设条件的圆,其方程为:x 2+⎝⎛⎭⎫y -532=329.(12分)【感悟提升】(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【变式探究】 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由. 解 (1)由已知条件,直线l 的方程为y =kx +2, 代入椭圆方程得x 22+(kx +2)2=1, 整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.① 直线l 与椭圆有两个不同的交点P 和Q 等价于①中Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞. (2)不存在,理由如下:设P (x 1,y 1),Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2) 由方程①得,x 1+x 2=-42k1+2k 2,y 1+y 2=k (x 1+x 2)+22=-42k 21+2k 2+2 2.∵(OP →+OQ →)⊥AB →,AB →=(-2,1), ∴(x 1+x 2)²(-2)+y 1+y 2=0,即:-42k 1+2k 2²(-2)-42k 21+2k 2+22=0.解得:k =-24,由(1)知k 2>12,与此相矛盾, 所以不存在常数k 使OP →+OQ →与AB →垂直. 高频考点六、弦长问题例6、 (2016²四川卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |²|PB |,并求λ的值. (1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1). (2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0), 由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3.|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322. 由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|PA |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|PA |²|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m 3-x 1⎝⎛⎭⎫2-2m 3-x 2=54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2=54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2.故存在常数λ=45,使得|PT |2=λ|PA |²|PB |. 【方法规律】有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.【变式探究】 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5,由d <1,得|m |<52.(*)∴|CD |=21-d 2=21-45m 2=255-4m 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y23=1,得x 2-mx +m 2-3=0,由根与系数关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m2=1,解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33. 高频考点七 中点弦问题例7、 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为 (1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a22⎝⎛⎭⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D. (2)设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1), 显然x 1≠x 2.∴y 2-y 1x 2-x 1²y 2+y 1x 2+x 1=3,即k MN ²y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1,∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝⎛⎭⎫-m 4,3m 4,代入抛物线方程得916m 2=18²⎝⎛⎭⎫-m 4, 解得m =0或-8,经检验都符合. 答案 (1)D (2)0或-8【方法规律】处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.【变式探究】 设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝⎛⎭⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4. 两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2³⎝⎛⎭⎫-12=-1,y M +y N =2y 0,y M -y N xM -x N=-1k 代入上式得k =-y 02. 又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m . 所以m =y 0+12k =34y 0.由点P ⎝⎛⎭⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.1.【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=, 所以AR FQ . ......5分 (Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211ba x ab -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分2.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤ 【解析】(Ⅰ)设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a=+⎧⎪⎨+=⎪⎩得()2222120a k xa kx ++=,故10x =,222221a kx a k=-+.因此2122221a kAP x a k=-=+ (Ⅱ)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(Ⅰ)知,1AP =,2AQ =,12=, 所以()()22222222121212120k k k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k +++-=,因此22221211(1)(1)1(2)a a k k ++=+-, ① 因为①式关于1k ,2k 的方程有解的充要条件是221(2)1a a +->,所以a >因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为1a <≤由c e a a==得,所求离心率的取值范围为02e <≤3.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN △的面积AMN S △11212144227749=⨯⨯⨯=. (Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk x x t k t +++-=.由(221233t k tx tk-⋅=+得)21233tk x tk-=+,故1AM x =+=由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==, 由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <<. 因此k 的取值范围是)2.4.【2016年高考北京理数】(本小题14分)已知椭圆C :22221+=x y a b (0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析. 【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.5.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l ’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.(II )由已知可设直线l ' 的方程为1(0)2y x m m =+≠,有方程组123y x m y x ⎧=+⎪⎨⎪=-+⎩,, 可得22321.3m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩, 所以P 点坐标为(222,133m m-+ ),2289P T m =.设点A ,B 的坐标分别为1122(,)(,)A x y B x y , .由方程组2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩,, 可得2234(412)0x mx m ++-=.② 方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==-- ,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =.故存在常数45λ=,使得2PT PA PB λ=⋅.6.【2016高考上海理数】(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新
解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。
圆锥曲线的综合应用(教案)
解析几何中的最值问题授课教师:海门市四甲中学数学组 夏华[执教时间]:2008年4月17日 [授课班级]:高三(2)班【内容概要】解析几何沟通了数学内数与形、代数与几何等最基本对象之间的关系。
是一门用代数方法研究几何问题及用几何意义直观反映代数关系的学科. 解析几何中涉及最值问题常有求夹角、面积、距离的最值或与之相关的一些问题.这些问题是解析几何与其他知识的交汇处,它是考查我们学生综合能力的主要内容之一,也是近年来高考的热点.【教学目标】1.能够根据变化中的几何量的关系,建立目标函数,然后利用求函数最值的方法求出某些最值;或者列出关于目标量的不等式求出目标量的范围.2.能够比较熟练地应用数形结合的思想,结合曲线的定义和几何性质,用几何法求出某些最值.【方法指导】① 建立目标函数,运用函数求最值的思想. ② 列出目标量的不等式,解出目标量的范围.③ 根据问题的几何意义,运用“数形结合的思想”求解.【考点检测】1.设F (c ,0)是椭圆12222=+by a x (a >b >0)的一个焦点,直线l 经过原点与此椭圆交于A 、B 两点,则△ABF 面积最大值为 bc . 分析:设1122(,),(,)A x y B x y则1211||||22ABF AOF BOF S S S c y c y =+=⋅⋅+⋅⋅△△△ 1||c y bc =⋅=.评注:将三角形分割成两个同底等高的三角形,且两个三角形的底都为定值,此时,很容易就能建立函数关系式进行求解. 2.P 是椭圆13422=+y x 上的点,F 1、F 2是焦点,设k =|PF 1||PF 2|,则k 的最大值与最小值之差为1 .法一:(用焦半径公式)设00(,)P x y ,由题意知12,1,2a c e === 则 2000111(2)(2)4224k x x x =+⋅-=-. 0max min 22,4,3x k k -≤≤∴== max min 1k k ∴-= 法二:(用第一定义)12212111124, 4(4)(2) 4.(13)PF PF a PF PF k PF PF PF PF +==∴=-∴=∙-=--+≤≤max min max min 4,3, 1k k k k ∴==∴-= 评注:①此题主要运用了函数求最值的思想.②此题也可用两点间的距离公式将k 表示出来,再将y 换成x .3.已知椭圆221169x y +=,则x y +的最大值 5 . 法一:(线性规划)令a x y =+,则y x a =-+由2222253216(9)01169y x a x ax a x y =-+⎧⎪⇒-+-=⎨+=⎪⎩令0=△,得5a =±,所以max ()5x y += 法二:(参数法)令4cos ,3sin x y αα==,则4cos 3sin 5sin()x y αααϕ+=+=+ 所以max ()5x y +=评注:此题可由“x +y ”联想到线性规划,进而可用数形结合的思想来解题.4.已知椭圆2211612x y +=内有一点(1,1)P -,F 为右焦点,椭圆上求一点M , 使||2||MP MF +的最小,最小值为 7 .分析:4,,2a b c ===,右准线18,2x e ==, 2MP MF MP MN ∴+=+,因此,,M P N 三点共线时,2MP MF +有最小值为变式训练:若求MP MF+的最小值呢? 分析:由定义知12MF a MF =-, 所以12MP MF MP MF a +=-+所以,当1,,M P F 三点共线且点M 位于第四象限时 min 1()2MP MF PF a +=-+评注:此题主要考查了椭圆的第一、第二定义的应用,及用数形结合求最值的思想.【热点分析】例题:已知点A (3,0)、B (0,4),动点P (x ,y )在线段AB 上,求: (1)x y +的最小值; (2)22x y +的最小值;(3的最小值.解:(1)法一:(函数的思想) 线段AB 的方程为44.(03)3y x x =-+≤≤ 所以 143x y x +=-+,因此34x y ≤+≤,故min ()3x y += 法二:(线性规划)令a x y =+,则y x a =-+,将直线在可行域内平移可得最小值为3. (2)法一:(函数的思想) 2222548144()92525x y x +=-+. 所以22min 144()25x y +=法二:(数形结合)22x y +表示原点O 到点P 的距离的平方,作OH ⊥AB 于点H . 则222min144()25x y OH +==(3)令(0,0),(3,3)O M ,表示点P 到O 、M 的距离之和所以O 、P 、M三点共线时,有最小值为OM = 评注:解析几何中有些表达式具有明显的几何意义.如:x +y 可转化为截距;x 2+y 2可转化为距离; (y +2)/(x -1)可转化为斜率.变式训练1分析:令(1,1)M ,如图作M 关于直线AB 的对称点M ', 则PO PM PO PM '+=+ 所以min ()PO PM OM '+=.变式训练2:在直线l :x -y +9=0上任意取一点P ,经过P 点以椭圆C :131222=+y x 的焦点为焦点作椭圆E .(1)P 在何处时,E 的长轴最短?(2)求E 长轴最短时的方程.方法一:(数形结合的思想)12(3,0),(3,0)F F -,作1F 关于l 的对称点1(9,6)F '- 则12122a PF PF PF PF '=+=+所以12,,P F F '三点共线时,min 12(2)a F F '==此时,由23090x y x y +-=⎧⎨-+=⎩得(5,4)P -,同时可得椭圆方程为2214536x y +=.方法二:(不等式的思想)由题意知3c =,所以可设椭圆方程为222219x y a a +=-. 由22229019x y x y a a -+=⎧⎪⎨+=⎪-⎩(★) 得22224(29)18900a x a x a a -++-= 令≥△0得a ≥min (2)a =将a 代入(★)得(5,4)P -,椭圆方程为2214536x y +=. 评注:此题主要考查了数形结合求最值与不等式求最值的思想.在解析几何中利用△列不等式是隐含条件,要引起注意.【课堂练习】如果点(),x y 在圆()2234x y -+=上运动,则2y x的最大值为 5. 解:2yx表示斜率的一半.【课堂小结】本节课我们主要讲了解析几何中求最值的三种常用思想,① 建立目标函数,运用函数求最值的思想;② 列出目标量的不等式,解出目标量的范围;③ 根据问题的几何意义,运用“数形结合的思想”求解.其中优先考虑“函数的思想”和“数形结合的思想” ,最后再考虑“不等式的思想” .【课后作业】1.直线y =k (x +2)与圆422=+y x 相交于A ,B 两点(O 为坐标原点),三角形ABO 的面积的最大值为 2 . 法一:设11(2,0),(,)A B x y 111||22222S OA y =⋅⋅=⋅⋅= 法二:1sin 2S OA OB AOB =⋅⋅⋅∠122sin 2sin 2AOB AOB =⋅⋅⋅∠=∠ 90AOB ∴∠=时,max 2S =.2. 已知P 点在圆x 2+(y -4)2=1上移动,Q 点有椭圆1922=+y x 上移动,Q 点在椭圆1922=+y x上移动,试求|PQ |的最大值. 解:圆心为(0,4)A ,设(,)Q x y则22222(4)99(4)AQ x y y y =+-=-+- 218()272y =-++所以2max 27AQ =,故max 1PQ =3.若椭圆14922=+y x 上点P 到定点A (a ,0)(0<a <3)的距离最短是1 , 求实数a 的值. 解:设(,)P x y则22222224594()()4()49955d x a y x a x x a a =-+=-+-=-+- 92703, 055a a <<∴<< 33x -≤≤∴① 当935a ≤时,即503a <≤时22min441, 5d a a =-=∴= ②当935a >时,即533a <<时 22min 691, 2d a a a =-+=∴=或4(舍). 综上所述:2a =.教后感:通过本堂课的教学,学生较系统的掌握了“解析几何中最值问题的求法”,在解题思路和解题能力方面有了进一步的提高.同时,在教学过程中也发现了部分学生存在思路不清晰或是对三种思想方法理解不够深入的问题,我在近一段时间的教学中将会有针对性的进行一些强化训练.。
圆锥曲线的综合问题-教案
第三讲圆锥曲线的综合问题考点整合1. 直线与圆锥曲线的位置关系(1) 直线与椭圆的位置关系的判定法:将直线程与椭圆程联立,消去一个未知数,得到一个一元二次程•若少0,则直线与椭圆相交;若A= 0,则直线与椭圆相切;若A<0,则直线与椭圆相离.(2) 直线与双曲线的位置关系的判定法:将直线程与双曲线程联立,消去y或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c=0) •①若a工0,当A>0时,直线与双曲线相交;当A= 0时,直线与双曲线相切;当A<0时,直线与双曲线相离.②若a= 0时,直线与渐近线平行,与双曲线有一个交点.(3) 直线与抛物线的位置关系的判定法:将直线程与抛物线程联立,消去y(或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c =0) •①当a z 0时,用△判定,法同上.②当a= 0时,直线与抛物线的对称轴平行,只有一个交点.2. 有关弦的问题(1) 有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P i(x i,y i), P2(x2, y2),则所得弦长|P i P2|=』1 + k2|x2- X1或|P1P2= - , 1 +胡2—y1|,其中求|x2- X1|与|y2- y11时通常使用根与系数的关系,即作如下变形:|x2 —X1 = \/ X1 + X2 2—4X1x2 ,②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2) 弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.3. 圆锥曲线中的最值(1)椭圆中的最值个端点,O为坐标原点,则有① |0P|€ [b , a].② |PF i |€ [a — c , a + c]. ③ |PF i | |PF 2|€ [ b 2 , a 2]. ④ / F I PF 2<Z F 1BF 2.标原点,则有 ① |OP|》a. ② |PF i |> c — a. (3) 抛物线中的最值点P 为抛物线y 2 = 2px(p > 0)上的任一点,F 为焦点,则有: ① PF |> 21. (2013课标全国I )已知椭圆E :羊+ $= 1(a>b>0)的右焦点为F(3,0),过点F 的直线交Eb 2所以直线AB 的斜率为k = a设直线程为y = *(x — 3),联立直线与椭圆的程得(a 2+ b 2)x 2— 6b 2x + 9b 2— a 4= 0, 所以 X 1 + X 2= a T^= 2 ; 又因为 a 2— b 2= 9,解得 b 2= 9, a 2= 18.2. (2013 )过点(2, 0)引直线I 与曲线y = . 1 — x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 I 的斜率等于( )⑵双曲线中的最值x 2 y 2F i 、F 2为双曲线孑一^2=1(a > 0,b > 0)的左、右焦点, P 为双曲线上的任一点, O 为坐于A 、B 两点.若AB 的中点坐标为1 1 - =(1,— 1),贝U E 的程为 +27 = 1 +右12X362X-18 B D解析 所以设 A(x 1, y 1)、B(X 2, y 2),运用点差法,②A(m , n)为一定点,则|PA|+ |PF|有最小值.y 1b 2=1B .- ¥C .答案 1T S ^AOB = 2|OA||OB|sin / AOB1 / 1=2sin / AOB < 2 解析当/ AOB =,AOB 面积最大.此时O 到AB 的距离d =爭. 设 AB 程为 y = k(x — 2)( k<0), 即 kx — y — i 2k = 0. 由d =「邓=(也可 k = — tan / OPH = 3. (2013大纲全国)椭圆C :k 一逅3 '一) 3 ).2 2 -+ 4 3=1的左、 右顶点分别为 A i 、A 2,点P 在C 上且直线PA 2 斜率的取值围是[—2 , 1 _ A . © 4] 1C .[夕 1]答案 B —1],那么直线 解析利用直线PA 2斜率的取值围确定点 FA 1斜率的边界值.由题意可得 A 1(— 2,0), A 2(2,0), 当PA 2的斜率为— 2时,y =— 2(x — 2), y 化简得 解得x = 2或x = ^6. 由点P 在椭圆上得点P 26, 直线FA 2的程式为 代入椭圆程,消去 同理,当直线PA 2的斜率为一1时, 代入椭圆程,PA 1斜率的取值围是 3 3 [3, 3] ,1] P 变化围的边界点,再利用斜率公式计算直线 19x 2— 64x + 52= 0,24,此时直线PA 1的斜率k =8直线PA 2程为y =— (x — 2), 消去y 化简得7x 2— 16x + 4 = 0,解得x = 2或 由点P 在椭圆上得点 此时直线PA 1的斜率2 12F7, & , k = 3 k= 4.数形结合可知,直线 3PA 1斜率的取值围是 8,4. (2012)椭圆4 + 3=1的左焦点为F ,直线x = m 与椭圆相交于点 A 、B ,当△ FAB 的长最大时,△ FAB 的面积是 ________ . 答案 3解析 直线x = m 过右焦点(1,0)时,△ FAB 的长最大,由椭圆定义知,其长为 4a = 8,b 2 2 X 3i此时,AB|= 2 X-== 3,.・. S ^FAB =-X 2 X 3 = 3.a 225. (2012 )在直角坐标系xOy 中,直线I 过抛物线y 2= 4x 的焦点F ,且与该抛物线相交于 A ,B 两点.其中点A 在x 轴上,若直线I 的倾斜角为60°则厶OAF 的面积为 _____________ 答案 ;3解析••• y 2= 4x 的焦点F(1,0), 又直线I 过焦点F 且倾斜角为60° 故直线l 的程为y = ;'3(x - 1),将其代入 y 2= 4x 得 3x 2- 6x + 3 — 4x = 0,1即 3x 2— 10x + 3 = 0. x = 3或 x = 3.3 又点 A 在 x 轴上,• • X A = 3.二 y A = 2\'- 3.1• S A OAF = 2* 1 X 2 ■ 3 = ■' 3.题型一圆锥曲线中的围、最值问题【例1】已知中心在原点的双曲线 C 的右焦点为(2,0),实半轴长为-3.(1) 求双曲线C 的程;⑵若直线I : y = kx + .2与双曲线C 的左支交于A , B 两点,求k 的取值围;(3)在(2)的条件下,线段 AB 的垂直平分线l 0与y 轴交于M(0, b),求b 的取值围. 审题破题(2)直接利用判别式和根与系数的关系确定k 的围;(3)寻找b 和k 的关系,由已知,得 a = . 3, c = 2, b 2= c 2— a 2= 1, 故双曲线程为彳—y 2= 1. ⑵设 A(X A , y A ), B(X B , y B ),将 y = kx + , 2代入 — y 2= 1, 得(1 — 3k 2)x 2— 6 2kx — 9= 0.利用(2)中k 的围求解.解(1)设双曲线程为2 2x- y-= 1 a b(a>0, b>0),1 —3 k2丰 0,△= 36 1 —k2 >0,由题意,知x A+ x B= 1 ' 3:2<0 , 解得~3<«1.—9XAXB =匚汞 >°,所以当-3<k<1时,直线I与双曲线的左支有两个交点.3⑶由⑵,得X A+ X B= 1—^2,所以Y A+ y B= (kx A+ 2) + (kx B+ 2)=k(X A+ X B) + 2 2= 1—^2,所以AB中点P的坐标为园尘,」.1 —3 k2 1—3k21 A\f2设I o的程为y=—[x+ b,将P点的坐标代入l0的程,得b= 1—3k2,T 33<k<1 ,•••— 2<1 —3k2<0,「. b< —2 2.••• b的取值围是(一a, —2 2).反思归纳求最值或求围问题常见的解法有两种:(1)几法•若题目的条件和结论能明显体现几特征及意义,则考虑利用图形性质来解决,这就是几法. (2)代数法•若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练1 (2013)已知抛物线C的顶点为原点,其焦点F(0, c)(c>0)到直线I: X— y— 2 = 0 的距离为穿.设P为直线I上的点,过点P作抛物线C的两条切线PA, PB,其中A, B为切点.(1) 求抛物线C的程;(2) 当点P(X O, y o)为直线I上的定点时,求直线AB的程;(3) 当点P在直线I上移动时,求|AF||BF|的最小值.解(1)依题意知|c+ 2|=卑乎,c>0,解得c= 1.寸2 2所以抛物线C的程为x2= 4y.(2)由y=扶得y,=],、r 1 1设A(X1, y1), B(X2, y2),则切线PA, PB的斜率分别为"X1, 5x2,所以切线PA的程为y X1 X1X2—y1 = ~(x—X1),即y= ~x —— + y1,即卩X1X —2y—2y1 = 0.同理可得切线PB的程为X2x—2y —2y2= 0,又点P(X0, y0)在切线PA和PB上,所以 x i X o — 2y o — 2y i = 0, X 2X 0 — 2y o — 2y 2= 0,所以(X i , y i ),(X 2, y 2)为程 x o x — 2y o — 2y = 0 的两组解, 所以直线AB 的程为X o x — 2y — 2y o = 0.⑶由抛物线定义知|AF|= y i + 1, |BF|= y 2+ 1, 所以 |AF| |BF |= (y i + 1)(y 2 + 1) = y i y 2 + (y i + y 2)+ 1,消去 x 整理得 y 2 + (2y o — x 0)y + y 2= 0, y 1 + y 2= x 2— 2y 0, y 1y 2= y 2,|AF| |BF|= y 1y 2 + (y 1 + y 2)+ 1 = y 0+ x 0— 2y o + 1 =y 2 + (y o + 2)2 — 2y o + 1 = 2y 0+ 2y o + 5 c 1 2 9=2 y o + 2 2 + 2,•••当y o = — 2■时,|AF||BF|取得最小值,且最小值为 2. 题型二圆锥曲线中的定点、定值问题【例2] (2012 )如图,等边三角形 OAB 的边长为8 .3,且其三个顶点均在抛物线 E : x 2= 2py(p>0)上. (1) 求抛物线E 的程;(2) 设动直线I 与抛物线E 相切于点P,与直线y =— 1相交于点 证明以PQ 为直径的圆恒过 y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线程,可得 p 的值;(2)假设在y 轴上存在定 点M ,使得以线段PQ 为直径的圆经过点 M ,转化为MP MQ = 0,从而判断点 M 是否 存在.(1)解 依题意,|OB|= 8 .3,7 BOy = 30°设 B(x , y),则 x = |OB|sin 30 =4羽,y = |OB|cos 30 = 12. 因为点 B(4 ,3, 12)在 x 2= 2py 上, 所以(4 ,3)2= 2p X 12,解得 p = 2. 故抛物线E 的程为x 2= 4y.⑵证明法一由(1)知y =扶,y '= 2x.1设P(X 0, y o ),则X 0工0, y o = [x 2,且l 的程为联立程X 0X — 2y — 2y 0= 0, x 2= 4y ,x 2— 4 得 X = 2x 0 ,所以Q 为 x 2 —42x1X 0(x — X 0),即卩 y =y — y o =即(y 2+ y i — 2) + (1 — y i )y o = 0.(*) 由于(*)式对满足y o = 4X 0(X O M 0)的y o 恒成立,i — y i = 0, 所以。
专题53 圆锥曲线的综合问题(教学案)-2019年高考数学(理)一轮复习精品资料(原卷版)
专题53 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过其右焦点F 与长轴垂直的弦长为1.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,点P 是直线x =1上的动点,直线P A 与椭圆的另一交点为M ,直线PB 与椭圆的另一交点为N .求证:直线MN 经过一定点.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .高频考点二 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C截得的线段长为4105.(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.【感悟提升】圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【变式探究】 设点P (x ,y )到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设M (-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0),C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.高频考点三 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例3】如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1) 求该椭圆的标准方程;(2) (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【变式探究】 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.1.【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.ARFQ 2.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.3.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.144494.【2016年高考北京理数】(本小题14分) 已知椭圆C :22221+=x y a b(0a b >>)的离心率为32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.5.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.6.【2016高考上海理数】(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
圆锥曲线的综合问题课件
圆锥曲线在生活中的应用和价值
展望未来研究方向
探索圆锥曲线在各个领域的应用前景
关注圆锥曲线研究的最新进展和趋势
深入研究圆锥曲线的性质和几何特征
探讨圆锥曲线与其他数学分支的联系与融合
汇报人:
感谢观看
立体与圆锥曲线的交点求解方法
典型例题的解析与讨论
立体与圆锥曲线的最值问题
定义:最值问题是指求解某个函数在一定范围内的最大值或最小值
解题方法:常用的解题方法有代数法、几何法、三角法等
注意事项:在解题过程中需要注意函数的定义域、取值范围等限制条件
分类:根据不同的分类标准,可以分为不同的类型
06
圆锥曲线在实际问题中的应用
椭圆
双曲线
抛物线
圆锥曲线的一般方程
03
圆锥曲线与直线的综合问题
直线与圆锥曲线的关系
直线与圆锥曲线的基本性质
直线与圆锥曲线的位置关系
直线与圆锥曲线的交点求解
直线与圆锥曲线的综合应用
直线与圆锥曲线的交点问题
直线与圆锥曲线的基本性质
直线与圆锥曲线的交点求解方法
直线与圆锥曲线交点的应用
直线与圆锥曲线交点问题的注意事项
,a click to unlimited possibilities
圆锥曲线的综合问题课件
目录
01
添加目录标题
02
圆锥曲线的定义和性质
03
圆锥曲线与直线的综合问题
04
圆锥曲线与平面的综合问题
05
圆锥曲线与立体的综合问题06圆锥来自线在实际问题中的应用07
总结与展望
01
添加章节标题
02
圆锥曲线的定义和性质
直线与圆锥曲线的最值问题
高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版
【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想. 2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题 【例题精析】考点一 圆锥曲线中的最值与面积问题 例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。
(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ,求△2PB Q 的面积【答案】(Ⅰ)220x +24y =116102PB Q 的面积121211610||||29S B B y y =-= 当2m =- 时,同理可得(或由对称性可得)2PB Q 的面积16109S =综上所述,2PB Q 的面积为16109. 【名师点睛】本小题主要考查直线与椭圆,考查了圆锥曲线中的面积问题,熟练基本知识是解决本类问题的关键. 【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.法二:设2BF m =;则12BF a m =-,则在12BFF ∆中,由余弦定理可得考点二定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。
2019届高考数学一轮复习:《圆锥曲线的综合问题》教学案(含解析)
圆锥曲线的综合问题(文视情况[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y(或x)得关于变量x(或y)的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A(x 1,y 1),B(x 2,y 2),则弦长|AB|=1+k 2|x 1-x 2|或 1+1k2|y 1-y 2|.[小题能否全取]1.(教材习题改编)与椭圆x 212+y216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k(x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交. 3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM|=|MB|,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63. 答案:635.已知双曲线方程是x 2-y22=1,过定点P(2,1)作直线交双曲线于P 1,P 2两点,并使P(2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.典题导入[例1] (2018·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的一个顶点为A(2,0),离心率为22.直线y =k(x-1)与椭圆C 交于不同的两点M ,N.(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值.[自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y22=1.(2)由⎩⎪⎨⎪⎧y =-,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则 y 1=k(x 1-1),y 2=k(x 2-1),x 1+x 2=4k21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN|=2-x 12+2-y 12=+k21+x 22-4x 1x 2]=2+k 2+6k21+2k2.又因为点A(2,0)到直线y =k(x -1)的距离d =|k|1+k2,所以△AMN 的面积为 S =12|MN|· d=|k|4+6k 21+2k 2. 由|k|4+6k 21+2k2=103,解得k =±1. 由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2018·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q(-2,0),于是,可设过点Q(-2,0)的直线l 的方程为y =k(x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =+⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k≤1.典题导入[例2] (2018·浙江高考)如图,椭圆C :x 2a 2+y2b 2=1(a >b >0)的离心率为12,其左焦点到点P(2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F(-c,0),则由题意得 ⎩⎪⎨⎪⎧+2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y23=1.(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M.当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m(m≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0, ⎩⎪⎨⎪⎧x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则 Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB|=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m|32+22=2|m -4|13. 设△ABP 的面积为S ,则 S =12|AB|·d=36·-2-m2.其中m ∈(-23,0)∪(0,23).令u(m)=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u′(m)=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7). 所以当且仅当m =1-7时,u(m)取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2018·东莞模拟)已知抛物线y 2=2px(p≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M(x 1,y 1)、N(x 2,y 2),设直线MN 的方程为y =x +b.将y =x +b 代入抛物线方程,得x 2+(2b -2p)x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p)2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p(2p -1)>0,即3p 2-2p <0,解得0<p <23.典题导入[例3] (2018·辽宁高考)如图,椭圆C 0:x 2a 2+y2b 2=1(a>b>0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b<t 1<a.点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A′,B′,C′,D′四点,其中b<t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A′B′C′D′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A(x 1,y 1),B(x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a),①直线A 2B 的方程为y =-y 1x 1-a (x -a).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A(x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x<-a ,y<0). (2)证明:设A′(x 2,y 2),由矩形ABCD 与矩形A′B′C′D′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2018·山东省实验中学模拟)已知抛物线y 2=2px(p≠0)及定点A(a ,b),B(-a,0),ab≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p -a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y)是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-yy 222p-x ,即y 1y 2=y(y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0,则(2px -by)y 02+2pb(a -x)y 0+2pa(by -2pa)=0. 当x =a ,y =2pa b 时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b . 答案:⎝⎛⎭⎪⎫a ,2pa b1.已知双曲线x 2-y23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选 A 设点P(x ,y),其中x≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF ,=(-1-x ,-y)·(2-x ,-y)=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( ) A .有且只有一条 B .有且只有两条 C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB|=|AF|+|FB|=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2018·南昌联考)过双曲线x 2a 2-y2b 2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N(均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54 B.53 C.35D.45解析:选B 由题意知F(c,0),则易得M ,N 的纵坐标分别为b 2a ,bc a ,由FM ,=4MN ,得b 2a =4·⎝ ⎛⎭⎪⎫bc a -b 2a ,即bc =45.又c 2=a 2+b 2,则e =c a =53.4.已知椭圆x 225+y216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P(x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,2 2 ].答案:[2,2 2 ]6.(2018·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x 22+y 2=1,得3x 2=2,∴x =±63, ∴A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫-63,-63, ∴|AB|=433.设点C(2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪ ≤32,∴S △ABC =12|AB|·d≤12×433×32= 2.答案: 27.设F 1,F 2分别是椭圆E :x 2+y2b2=1(0<b<1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列.(1)求|AB|;(2)若直线l 的斜率为1,求b 的值.解:(1)由椭圆定义知|AF 2|+|AB|+|BF 2|=4, 又2|AB|=|AF 2|+|BF 2|,得|AB|=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A(x 1,y 1),B(x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b 2.因为直线AB 的斜率为1,所以|AB|=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=-b 2+b22-4-2b 21+b2=8b 4+b22,解得b =22. 8.(2018·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C(m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC|=|BC|?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =ca =22a +c =2+1,∴⎩⎨⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F(1,0),∴0≤m≤1. 假设存在满足题意的直线l ,设l 的方程为y =k(x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4k22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k(x 1+x 2-2)=-2k2k 2+1. 设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1.∵|AC|=|BC|,∴CM ⊥AB ,即k CM ·k AB =-1, ∴k2k 2+1m -2k 22k 2+1·k=-1,即(1-2m)k 2=m.∴当0≤m<12时,k =±m1-2m,即存在满足题意的直线l ; 当12≤m≤1时,k 不存在,即不存在满足题意的直线l.9.(2018·江西模拟)已知椭圆C :x 2a 2+y2b 2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m(k≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,求实数k 的取值范围.解:(1)设P(x 0,y 0),x 0≠±a,则G ⎝ ⎛⎭⎪⎫x 03,y 03. 又设I(x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| ,∴2c·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y23=1.(2)设A(x 1,y 1),B(x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km)2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km 3+4k 2,则y 1+y 2=6m3+4k2, ∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.又线段AB 的垂直平分线l′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l′上,∴3m 3+4k =-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k(4k 2+3),∴2+236k2<4k 2+3,∴k 2>332,解得k >68或k <-68,∴k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-68∪⎝ ⎛⎭⎪⎫68,+∞.1.(2018·长春模拟)已知点A(-1,0),B(1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.解:(1)设M(x ,y),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4, 所以(|AM |,+|BM |,)2-4|AM |,| BM |,·cos 2θ=4. 因为|AM |,·|BM |,cos 2θ=3, 所以(|AM |,+|BM |,)2-4×3=4, 所以|AM |,+|BM |,=4. 又|AM |,+|BM|,=4>2=|AB |,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),设椭圆的方程为x 2a 2+y2b 2=1(a >b >0),则a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y23=1.(2)设直线PQ 的方程为x =my +1. 由⎩⎪⎨⎪⎧x =my +1x 24+y23=1,消去x ,整理得(3m 2+4)y 2+6my -9=0.①显然方程①的判别式Δ=36m 2+36(3m 2+4)>0, 设P(x 1,y 1),Q(x 2,y 2),则△APQ 的面积S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+33m 2+42.令t =3m 2+3,则t≥3,(y 1-y 2)2=48t +1t+2, 由于函数φ(t)=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3,所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1.2.(2018·郑州模拟)已知圆C 的圆心为C(m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x 2a 2+y2b 2=1(a >b >0)的其中一个公共点为A(3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m)2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m)2+1=5, 即(3-m)2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k(x -4)+4,即kx -y -4k +4=0, 若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1= 5. ∴4k 2-24k +11=0,解得k =112或k =12. 当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=+2+12+-2+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y22=1.设B(x 1,y 1),D(x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=41+y 22-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F(1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y 得(x-1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n)的直线与椭圆x 29+y24=1的交点个数为( )A .至多1个B .2个C .1个D .0个解析:选B 由题意得4m 2+n2>2,即m 2+n 2<4,则点(m ,n)在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y24=1的内部.3.(2018·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N.(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程; (3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR|·|OS|为定值.解:(1)依题意,得a =2,e =c a =32,∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M(x 1,y 1),N(x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C 上,∴y 21=1-x 214.(*)由已知T(-2,0),则TM ,=(x 1+2,y 1),TN ,=(x 1+2,-y 1), ∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝ ⎛⎭⎪⎫1-x 214=54x 21+4x 1+3=54⎝⎛⎭⎪⎫x 1+852-15.由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15.把x 1=-85代入(*)式,得y 1=35,故M ⎝ ⎛⎭⎪⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325.故圆T 的方程为(x +2)2+y 2=1325. (3)设P(x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0),令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式, 得x R ·x S =-y 2120--y 221y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR|·|OS|=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2018·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1. 2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13 B .-13C .-32D.23解析:选B 设P(x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P(-5,1),所以k =-13.3.(2018·长春模拟)已知点A(1,-1),B(-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB|=[1--2+-1-2=22,∴圆的方程为x 2+y 2=2.4.(2018·福建高考)已知双曲线x 24-y 2b =1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪52×31+54= 5.5.(2018·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98 B.53 C.324D.54解析:选B 依题意得,c +b 2=77+3×2c,即b =45c(其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53.6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|PA|+|AF 1|)-(|PB|+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点.7.圆x 2+y 2-4x =0在点P(1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k(x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33. 所以切线方程为y -3=33(x -1),即x -3y +2=0. 8.(2018·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )A. 2 B .2 2 C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A(-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2018·潍坊适应性训练)已知双曲线C :x 24-y25=1的左,右焦点分别为F 1,F 2,P 为C 的右支上一点,且|PF 2|=|F 1F 2|,则|PF 2|=|F 1F 2|,则1PF ,·2PF ,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50.10.(2018·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y2100=1 B.x 2100-y275=1 C.x 29-y216=1D.x 216-y29=1 解析:选D ∵sin ∠BAC =BC 2R =5314, ∴cos ∠BAC =1114, |AC|=2Rsin ∠ABC =2×1433×32=14, sin ∠ACB =sin(60°-∠BAC)=sin 60°cos∠BAC -cos 60°sin∠BAC =32×1114-12×5314=3314, ∴|AB|=2Rsin ∠ACB =2×1433×3314=6,∴2a =||AC|-|AB||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y29=1.11.(2018·乌鲁木齐模拟)已知抛物线y 2=2px(p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2± 3B .2+ 3 C.3±1D.3-1解析:选A 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF|=|QF|,得y 212p +p 2=y 222p +p 2,所以y 21=y 22,所以y 1=-y 2.又|PQ|=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF|=12p +p2=2,由此解得p =2± 3.12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m≠n 且m ,n >0),与直线方程x +3y +4=0联立, 消去x 得(3m +n)y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m =16,①又c =2,即1m -1n =±4,②由①②联立得⎩⎪⎨⎪⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15,故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2018·青岛模拟)已知两直线l 1:x +ysin θ-1=0和l 2:2xsin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z).所以当θ=k π(k ∈Z)时,l 1⊥l 2.答案:k π(k ∈Z)14.已知F 1,F 2分别是椭圆x 2a 2+y2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A|=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a ,故直线OP 的斜率为-b a ,直线OP 的方程为y =-b a x.与椭圆方程联立得x2a 2+x 2a 2=1,解得x =±22a.根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c.又|F 1A|=a +c =10+5,故 2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y25=1.答案:x 210+y25=115.(2018·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y.当y =-3时,x 2=6,即x =±6,所以水面宽为2 6.答案:2 616.(2018·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m2+n 2=13≥2|mn|,所以|mn|≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn|≥3,最小值为3. 答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P(0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k(x -1)(由题可知k 存在),即kx -y +2-k =0, ∵P(0,4)到直线距离为2,∴2=|-2-k|1+k2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2018·南昌模拟)已知圆C 过点P(1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C(a ,b),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k(x -1),PB :y -1=-k(x -1),由⎩⎪⎨⎪⎧y -1=-,x 2+y 2=2得(1+k 2)x 2+2k(1-k)x +(1-k)2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y Ax B -x A =-B--A-x B -x A=2k -B+x Ax B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2018·天津高考)已知椭圆x 2a 2+y 2b 2=1(a>b>0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ|=|AO|,求直线OQ 的斜率的值. 解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b 2=1,消去y 0并整理得x 20=a 2b2k 2a 2+b2.①由|AQ|=|AO|,A(-a,0)及y 0=kx 0, 得(x 0+a)2+k 2x 20=a 2.整理得(1+k 2)x 2+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =± 5.20.(12分)(2018·河南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴的一个端点为M(0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B.(1)若|AB|=4269,求k 的值;(2)求证:不论k 取何值,以AB 为直径的圆恒过点M. 解:(1)由题意知c a =22,b =1.由a 2=b 2+c 2可得c =b =1,a =2, ∴椭圆的方程为x 22+y 2=1.由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝ ⎛⎭⎪⎫-169=16k 2+649>0恒成立, 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=4k2+,x 1x 2=-162+. ∴|AB|=1+k 2·|x 1-x 2|=1+k 2·1+x 22-4x 1x 2=4+k22+2+=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0, 解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1), ∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1), =(1+k 2)x 1x 2-43k(x 1+x 2)+169=-+k22+-16k 22++169=0.∴不论k 取何值,以AB 为直径的圆恒过点M.21. (2018·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2,解得a 2=6.所以椭圆M 的方程为x 26+y22=1.(2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,) =(-NF ,-NP ,)·(NF ,-NP ,) =NP ,2-NF ,2=NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值.因为P 是椭圆M 上的任意一点,设P(x 0,y 0), 所以x 206+y 202=1,即x 20=6-3y 20.因为点N(0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12.所以PE ,·PF ,的最大值为11.22. (2018·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52.(1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|= 2|CF 2|,求△CF 1F 2的面积. 解:(1)设椭圆方程为x 2a 2+y2b2=1(a >b >0),则2a =|AF 1|+|AF 2|=72+52=6,得a =3. 设A(x ,y),F 1(-c,0),F 2(c,0),则(x +c)2+y 2=⎝ ⎛⎭⎪⎫722,(x -c)2+y 2=⎝ ⎛⎭⎪⎫522,两式相减得xc =32. 由抛物线的定义可知|AF 2|=x +c =52, 则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22, 所以曲线C 1的方程为x 29+y 28=1⎝ ⎛⎭⎪⎫-3≤x≤32,曲线C 2的方程为y 2=4x ⎝⎛⎭⎪⎫0≤x≤32. (2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|= 2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°, 所以∠CF1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2.由余弦定理得22+(2r)2-2×2×2rcos 45°=r 2,解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。
高三数学专题复习 1.6.3直线与圆锥曲线的综合问题教案(第1课时)
c a
3 ,知 a= 3c.过点 F 且与 x 轴垂直的直线为 x=-c, 3
-c y 6 代入椭圆方程 + 2=1,解得 y=± b, a2 b 3 2 6 4 于是 b= 3,∴b= 2, 3 3 又 a -c =b , 从而可得 a= 3,c=1, ∴椭圆的方程为 + =1. 3 2 (2)设点 C(x1,y1),D(x2,y2),由 F(-1,0)得直线 CD 的方程为 y=k(x+1),
x 轴垂直的直线被椭圆截得的线段长为
(1)求椭圆的方程;
4 3 . 3
→ → (2)设 A, B 分别为椭圆的左、 右顶点, 过点 F 且斜率为 k 的直线与椭圆交于 C, D 两点. 若AC·DB → → +AD·CB=8,求 k 的值. [思路点拨](1)由离心率和椭圆基本量之间的关系建立方程,求得椭圆方程;(2)联立直线与椭 圆方程,由韦达定理,结合向量的坐标运算求解. 解 (1)设 F(-c,0),由 =
2 2 2
AC·DB+AD·CB=(x1+ 3,y1)·( 3-x2,-y2)+(x2+ 3,y2)·( 3-x1,-y1)
=6-2x1x2-2y1y2=6-2x1x2-2k (x1+1)(x2+1) =6-(2+2k )x1x2-2k (x1+x2)-2k
2 2 2 2
→ → →
2k +12 =6+ 2 . 2+3k 2k +12 由已知得 6+ 2 =8,解得 k=± 2. 2+3k [探究提升] 1.(1)本题最常见的是计算错误, 关键在于细心认真, 平 时强化计算能力训练. (2) 用代数方法研究曲线的性质,关键是方程思想的应用. 2.直线与圆锥曲线的位置关系问题,常联立方程,充分利用根与系数的关系建立等式(或不等 式)整体代入求解,并注意判别式满足的条件限制,防止增解. 【变式训练 1】 在平面直角坐标系 xOy 中,已知椭圆 C1: 2+ 2=1(a>b>0)的左焦点为 F1(- 1 ,0),且点 P(0,1)在 C1 上. (1)求椭圆 C1 的方程; (2)设直线 l 同时与椭圆 C1 和抛物线 C2:y =4x 相切,求直线 l 的方程. 解 (1)因为椭圆 C1 的左焦点为 F1(-1,0),
高考数学一轮复习 第九章 平面解析几何 10 第10讲 圆锥曲线的综合问题教学案
第10讲 圆锥曲线的综合问题圆锥曲线中的定点、定值问题(2020·杭州七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切.(1)求椭圆C 的方程;(2)过点(1,0)的直线l 与C 相交于A ,B 两点,在x 轴上是否存在点N ,使得NA →·NB →为定值?如果有,求出点N 的坐标及定值;如果没有,请说明理由.【解】 (1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切,所以⎝ ⎛e =c a =12bc =32 b 2+c 2a 2=b 2+c2,解得c 2=1,a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),⎩⎪⎨⎪⎧3x 2+4y 2=12y =k (x -1)⇒(3+4k 2)x 2-8k 2x +4k 2-12=0, 则Δ>0,⎩⎪⎨⎪⎧x 1+x 2=8k24k 2+3x 1x 2=4k 2-124k 2+3, 若存在定点N (m ,0)满足条件, 则有NA →·NB →=(x 1-m )(x 2-m )+y 1y 2 =x 1x 2+m 2-m (x 1+x 2)+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(m +k 2)(x 1+x 2)+k 2+m 2=(1+k 2)(4k 2-12)4k 2+3-(m +k 2)8k 24k 2+3+k 2+m 2=(4m 2-8m -5)k 2+3m 2-124k 2+3. 如果要使上式为定值,则必须有4m 2-8m -53m 2-12=43⇒m =118,验证当直线l 斜率不存在时,也符合.故存在点N ⎝⎛⎭⎪⎫118,0满足NA →·NB →=-13564.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.(2020·杭州、宁波二市三校联考)已知抛物线C :y 2=2px (p >0)过点M (m ,2),其焦点为F ′,且|MF ′|=2.(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :(x -1)2+y 2=1相切,切点分别为A ,B ,求证:直线AB 过定点.解:(1)抛物线C 的准线方程为x =-p2,所以|MF ′|=m +p2=2,又4=2pm ,即4=2p ⎝ ⎛⎭⎪⎫2-p 2,所以p 2-4p +4=0,所以p =2, 所以抛物线C 的方程为y 2=4x .(2)证明:设点E (0,t )(t ≠0),由已知切线不为y 轴,设直线EA :y =kx +t ,联立⎩⎪⎨⎪⎧y =kx +t y 2=4x,消去y ,可得k 2x 2+(2kt -4)x +t 2=0,① 因为直线EA 与抛物线C 相切,所以Δ=(2kt -4)2-4k 2t 2=0,即kt =1,代入①可得1t 2x 2-2x +t 2=0,所以x =t 2,即A (t 2,2t ).设切点B (x 0,y 0),则由几何性质可以判断点O ,B 关于直线EF :y =-tx +t 对称,则⎩⎪⎨⎪⎧y 0x 0×t -00-1=-1y 02=-t ·x 02+t ,解得⎩⎪⎨⎪⎧x 0=2t 2t 2+1y 0=2t t 2+1,即B ⎝ ⎛⎭⎪⎫2t2t 2+1,2t t 2+1.直线AF 的斜率为k AF =2tt 2-1(t ≠±1), 直线BF 的斜率为k BF =2tt 2+1-02t 2t 2+1-1=2tt 2-1(t ≠±1),所以k AF =k BF ,即A ,B ,F 三点共线.当t =±1时,A (1,±2),B (1,±1),此时A ,B ,F 三点共线. 所以直线AB 过定点F (1,0).圆锥曲线中的范围、最值问题(高频考点)圆锥曲线中的范围(最值)问题是高考命题的热点,多以解答题的第二问呈现,试题难度较大.主要命题角度有:(1)建立目标函数求范围、最值; (2)利用基本不等式求最值; (3)利用判别式构造不等关系求范围. 角度一 建立目标函数求范围、最值如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.【解】 (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1). 因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |= 1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.角度二 利用基本不等式求最值(2020·浙江省名校协作体联考)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同的两点A ,B ,且AC →=2CB →,当△AOB 的面积最大时,求直线l 的方程.【解】 (1)由题意知,c +b2=3⎝ ⎛⎭⎪⎫c -b 2,所以b =c ,a 2=2b 2,所以e =ca=1-⎝ ⎛⎭⎪⎫b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0), 因为AC →=2CB →,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0,①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1x 2+2y 2=2b 2,消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2kk 2+2,② 由①②知,y 2=-2k k 2+2,y 1=4kk 2+2, 因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤32·12|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号, 此时直线l 的方程为x =2y -1或x =-2y -1. 角度三 利用判别式构造不等关系求范围已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,中心在原点.若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的标准方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.【解】 (1)依题意可设椭圆方程为x 2a2+y 2=1,则右焦点F (a 2-1,0),由题设|a 2-1+22|2=3,解得a 2=3.所以所求椭圆的方程为x 23+y 2=1.(2)设P (x P ,y P ),M (x M ,y M ),N (x N ,y N ),P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1, 得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 因为直线与椭圆相交,所以Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1.① 所以x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又因为|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1.②把②代入①,得m 2<2m ,解得0<m <2; 由②得k 2=2m -13>0,解得m >12.综上,m 的取值范围是⎝ ⎛⎭⎪⎫12,2.范围、最值问题的求解策略(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上的点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4xx =sy +1,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t .从而得直线FN :y =-t 2-12t (x-1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2t t 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1.所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2020·杭州中学高三月考)如图,以椭圆x 2a 2+y 2=1的右焦点F 2为圆心,1-c 为半径作圆F 2(其中c 为已知椭圆的半焦距),过椭圆上一点P 作此圆的切线,切点为T .(1)若a =54,P 为椭圆的右顶点,求切线长|PT |;(2)设圆F 2与x 轴的右交点为Q ,过点Q 作斜率为k (k >0)的直线l 与椭圆相交于A ,B 两点,若OA ⊥OB ,且|PT |≥32(a -c )恒成立,求直线l 被圆F 2所截得弦长的最大值. 解:(1)由a =54得c =34,则当P 为椭圆的右顶点时|PF 2|=a -c =12,故此时的切线长|PT |= |PF 2|2-(1-c )2=34. (2)当|PF 2|取得最小值时|PT |取得最小值,而|PF 2|min =a -c ,由|PT |≥32(a -c )恒成立,得(a -c )2-(1-c )2≥32(a -c ),则34≤c <1. 由题意知Q 点的坐标为(1,0),则直线l 的方程为y =k (x -1),代入x 2a2+y 2=1,得(a 2k 2+1)x 2-2a 2k 2x +a 2k 2-a 2=0, 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=2a 2k 2a 2k 2+1,x 1x 2=a 2k 2-a2a 2k 2+1,可得y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=k 2(1-a 2)a 2k 2+1,又OA ⊥OB ,则x 1x 2+y 1y 2=k 2-a 2a 2k 2+1=0⇒k =a ,可得直线l 的方程为ax -y -a =0,圆心F 2(c ,0)到直线l 的距离d =|ac -a |a 2+1,半径r =1-c ,则直线l 被圆F 2所截得弦长s =2(1-c )2-a 2(1-c )2a 2+1=2(1-c )c 2+2,设1-c =t ,则0<t ≤14,又1s =123t 2-2t +1=12 3⎝ ⎛⎭⎪⎫1t -132+23, 则当t =14时1s 的最小值为412,即当c =34时s 的最大值为24141.圆锥曲线中的探索性问题(2020·温州中学高三模拟)设直线l 与抛物线x 2=2y 交于A ,B 两点,与椭圆x 24+y 23=1交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4,若OA ⊥OB .(1)是否存在实数t ,满足k 1+k 2=t (k 3+k 4),并说明理由; (2)求△OCD 面积的最大值.【解】 设直线l 方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 联立y =kx +b 和x 2=2y ,得x 2-2kx -2b =0,则x 1+x 2=2k ,x 1x 2=-2b ,Δ=4k 2+8b >0. 由OA ⊥OB ,所以x 1x 2+y 1y 2=0,得b =2. 联立y =kx +2和3x 2+4y 2=12,得 (3+4k 2)x 2+16kx +4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k 2.由Δ2=192k 2-48>0,得k 2>14.(1)因为k 1+k 2=y 1x 1+y 2x 2=k ,k 3+k 4=y 3x 3+y 4x 4=-6k ,所以k 1+k 2k 3+k 4=-16. 即存在实数t =-16,满足k 1+k 2=-16(k 3+k 4).(2)根据弦长公式|CD |=1+k 2|x 3-x 4|,得 |CD |=43·1+k 2·4k 2-13+4k2,根据点O 到直线CD 的距离公式,得d =21+k2,所以S △OCD =12|CD |·d =43·4k 2-13+4k2,设4k 2-1=t >0,则S △OCD =43t t 2+4≤3,所以当t =2,即k =±52时,S △OCD 的最大值为 3.探索性问题的求解策略(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2020·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A ,B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p 2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px,即3x 2-5px +34p 2=0,所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 的中点坐标M 为(m 28+b ,m8),即线段CD的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以kMC 2=m8m28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,故直线l 的方程为x =±11-63y +33-24. [基础题组练]1.已知椭圆E 的中心在坐标原点,左、右焦点F 1,F 2在x 轴上,离心率为12,在其上有一动点A ,A 到点F 1距离的最小值是1.过A ,F 1作一个平行四边形,顶点A ,B ,C ,D 都在椭圆E 上,如图所示.(1)求椭圆E 的方程;(2)判断▱ABCD 能否为菱形,并说明理由.解:(1)依题,令椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),c 2=a 2-b 2(c >0),所以离心率e =c a =12,即a =2c .令点A 的坐标为(x 0,y 0),所以x 20a 2+y 20b2=1,焦点F 1(-c ,0),即|AF 1|=(x 0+c )2+y 20 =x 20+2cx 0+c 2+b 2-b 2x 20a2=c 2a 2x 20+2cx 0+a 2=|c ax 0+a |, 因为x 0∈[-a ,a ],所以当x 0=-a 时,|AF 1|min =a -c , 由题a -c =1,结合上述可知a =2,c =1,所以b 2=3, 于是椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),直线AB 不能平行于x 轴,所以令直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1,得(3m 2+4)y 2-6my -9=0, 所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.连接OA ,OB ,若▱ABCD 是菱形,则OA ⊥OB ,即OA →·OB →=0,于是有x 1x 2+y 1y 2=0,又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1,所以有(m 2+1)y 1y 2-m (y 1+y 2)+1=0,得到-12m 2-53m 2+4=0,可见m 没有实数解, 故▱ABCD 不能是菱形.2.(2020·金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值. 解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m ,所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减, 当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.3.(2020·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A ,B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23,由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得y 1-y 2x 1-x 2=-14×x 1+x2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得y 20<59,由r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得13<r <63.所以半径r 的取值范围为(13,63) .4.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 的中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 5.(2020·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2. 所以a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)设点P 的坐标为(x P ,y P ), 因为直线l 过点B ,所以x =1是方程(*)的一个根.由根与系数的关系,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,所以点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ). 所以AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).因为AP ⊥AQ ,所以AP →·AQ →=0, 即-2k2k 2+4[k -4(k +2)]=0. 因为k ≠0,所以k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为y =-83(x -1).6.(2020·学军中学高三模拟)已知椭圆x 2a2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线PA 的斜率为±22. (1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解:(1)当P 点在x 轴上时,P (2,0),PA :y =±22(x -2),⎩⎪⎨⎪⎧y =±22(x -2)x2a 2+y 2=1⇒(1a 2+12)x 2-2x +1=0,Δ=0⇒a 2=2,椭圆方程为x 22+y 2=1.(2)设切线为y =kx +m ,设P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m x 2+2y 2-2=0⇒(1+2k 2)x 2+4kmx +2m 2-2=0⇒Δ=0⇒m 2=2k 2+1, 且x 1=-2km 1+2k 2,y 1=m1+2k2,y 0=2k +m , 则|PO |=y 20+4,PO 的直线为y =y 02x ⇒A 到直线PO 距离d =|y 0x 1-2y 1|y 20+4,则S △POA =12|PO |·d =12|y 0x 1-2y 1|=12|(2k +m )-2km 1+2k 2-2m1+2k2| =|1+2k 2+km 1+2k 2m |=|k +m |=|k +1+2k 2|, 所以(S -k )2=1+2k 2⇒k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0⇒S ≥22,此时k =±22,所以△POA 面积的最小值为22. [综合题组练]1.(2020·浙江高考冲刺卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),点F ,B 分别是椭圆的右焦点与上顶点,O 为坐标原点,记△OBF 的周长与面积分别为C 和S .(1)求CS的最小值; (2)如图,过点F 的直线l 交椭圆于P ,Q 两点,过点F 作l 的垂线,交直线x =3b 于点R ,当C S取最小值时,求|FR ||PQ |的最小值.解:(1)△OBF 的周长C =b 2+c 2+b +c .△OBF 的面积S =12bc .C S =b 2+c 2+b +c 12bc=2b 2+c 2+b +c bc ≥2·2bc +2bc bc =2+22,当且仅当b =c 时,CS的最小值为2+2 2. (2)由(1)得当且仅当b =c 时,CS的最小值为2+2 2.此时椭圆方程可化为x 22c 2+ y 2c2=1.依题意可得过点F 的直线l 的斜率不能为0,故设直线l 的方程为x =my +c .联立⎩⎪⎨⎪⎧x =my +c x 2+2y 2=2c 2,整理得(2+m 2)y 2+2mcy -c 2=0. y 1+y 2=-2mc 2+m 2,y 1y 2=-c 22+m 2,|PQ |=1+m2(y 1+y 2)2-4y 1y 2=1+m 2×8c 2(m 2+1)2+m 2=22c ×m 2+1m 2+2. 当m =0时,PQ 垂直横轴,FR 与横轴重合,此时|PQ |=2c ,|FR |=3b -c =2c ,|FR ||PQ |=2c 2c = 2.当m ≠0时,设直线FR :y =-m (x -c ),令x =3c 得R (3c ,-2mc ),|FR |=2c m 2+1, |FR ||PQ |=2c m 2+1×m 2+222c (m 2+1)=m 2+22m 2+1 =22(m 2+1+1m 2+1)>22×2=2, 综上所述:当且仅当m =0时,|FR ||PQ |取最小值为 2.2.(2020·杭州市第一次高考数学检测)设点A ,B 分别是x ,y 轴上的两个动点,AB =1.若AC →=λBA →(λ>0).(1)求点C 的轨迹Γ;(2)过点D 作轨迹Γ的两条切线,切点分别为P ,Q ,过点D 作直线m 交轨迹Γ于不同的两点E ,F ,交PQ 于点K ,问是否存在实数t ,使得1|DE |+1|DF |=t|DK |恒成立,并说明理由.解:(1)设A (a ,0),B (0,c ),C (x ,y ),则BA →=(a ,-c ),AC →=(x -a ,y ).由AB =1得a 2+c 2=1,所以⎩⎪⎨⎪⎧x -a =λa y =-λc,消去a ,c ,得点C 的轨迹Γ为x 2(λ+1)2+y 2λ2=1.(2)设点E ,F ,K 的横坐标分别为x E ,x F ,x K ,设点D (s ,t ),则直线PQ 的方程为s (λ+1)2x +tλ2y =1. 设直线m 的方程:y =kx +b ,所以t =ks +b .计算得x K =1-tλ2b s(λ+1)2+t λ2k .将直线m 代入椭圆方程,得⎝ ⎛⎭⎪⎫k 2λ2+1(λ+1)2x 2+2kb λ2x +b 2λ2-1=0,所以x E +x F =-2kbλ2(λ+1)2+k 2,x E x F =b 2-λ2λ2(λ+1)2+k 2,所以|DK ||DE |+|DK ||DF |=|x D -x K ||x D -x E |+|x D -x K ||x D -x F |=⎪⎪⎪⎪⎪⎪s -1-t λ2b s (λ+1)2+t λ2k ·|2x D -(x F +x E)||x 2D -x D (x F +xE )+xF x E|=2.验证当m 的斜率不存在时成立.故存在实数t =2,使得1|DE |+1|DF |=t|DK |恒成立.。
圆锥曲线综合应用教学案
圆锥曲线综合应用教学案教学目标: 1.能熟练求各种圆锥曲线的方程;2.会用方程组解决直线与圆锥曲线的位置关系问题;3.用向量的方法解决解析几何中常见的共线、垂直关系,夹角问题、最值问题。
教学重点:圆锥曲线几何性质与方程组、向量的综合运用。
教学难点:圆锥曲线的几何性质与方程组、向量的运用,数形结合、函数与方程的思想、等价转化思想的运用等。
一、例题选讲例1. 已知圆O: 222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为2的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q .(1)求椭圆C 的标准方程;(2)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(3)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.1例2.若A、B是抛物线24y x=上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”。
已知当2x>时,点P(,0x)存在无穷多条“相关弦”,给定2x>。
(1)证明:点P(,0x)的所有“相关弦”的中点的横坐标相同;(2)试问:点P(,0x)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x表示);若不存在,请说明理由。
二、巩固练习(选讲)1.如图,在正方体1111ABCD A B C D-中,P是侧面11BB C C内一动点,若点P到直线BC的距离是点P到直线11C D距离的2倍,则动点P的轨迹所在的曲线是。
(填:圆、椭圆、双曲线或抛物线)2.设F是椭圆的左焦点,A、B分别是右顶点、上顶点,若∠ABF=90°,则这个椭圆的离心率为。
3.如图所示,“神舟七号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用12c和22c分别表示椭园轨道Ⅰ和Ⅱ的焦距,用12a和22a分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c+=+; ②1122a c a c-=-; ③1212c a a c>;④11ca<22ca. 其中正确式子的序号是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲圆锥曲线的综合问题1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=(x1+x2)2-4x1x2,|y2-y1|=(y1+y2)2-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.3.圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥p2.②A (m ,n )为一定点,则|P A |+|PF |有最小值.1.(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案 D解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎨⎧x 21a 2+y 21b2=1x 22a 2+y 22b2=1运用点差法,所以直线AB 的斜率为k =b 2a2,设直线方程为y =b2a2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18.2.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33B .-33C .±33D .- 3答案 B解析 ∵S△AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan ∠OPH =-33).3.(2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线P A 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线P A 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当P A 2的斜率为-2时,直线P A 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝⎛⎭⎫2619,2419,此时直线P A 1的斜率k =38. 同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2), 代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝⎛⎭⎫27,127,此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是⎣⎡⎦⎤38,34.4.(2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△F AB 的周长最大时,△F AB 的面积是________. 答案 3解析 直线x =m 过右焦点(1,0)时,△F AB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △F AB =12×2×3=3.5.(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______. 答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1), 将其代入y 2=4x 得3x 2-6x +3-4x =0,即3x 2-10x +3=0.∴x =13或x =3.又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.题型一 圆锥曲线中的范围、最值问题例1 已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A+x B=62k1-3k 2<0,x A x B=-91-3k 2>0,解得33<k <1. 所以当33<k <1时,直线l 与双曲线的左支有两个交点. (3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-2 2. ∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练1 (2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y-2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y .(2)由y =14x 2得y ′=12x ,设A (x 1,y 1),B (x 2,y 2),则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线P A 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1 =y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5=2⎝⎛⎭⎫y 0+122+92, ∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例2 (2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上, 所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝⎛⎭⎫x 20-42x 0,-1.设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝⎛⎭⎫x 20-42x 0,-1-y 1,由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).方法二 由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝⎛⎭⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝⎛⎭⎫1,14,Q ⎝⎛⎭⎫-32,-1, 以PQ 为直径的圆为⎝⎛⎭⎫x +142+⎝⎛⎭⎫y +382=12564, 交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝⎛⎭⎫x 20-42x 0,-2,所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.变式训练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3, ∴b =5-3= 2. 由题意得⎩⎪⎨⎪⎧c a =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k (x -x 0)+y 0y 23+x 22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例3 如图,椭圆的中心为原点O ,离心率e =22,且a 2c=2 2.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上.解 (1)由e =c a =22,a 2c =22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率,由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2(25)2+y 2(10)2=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =(25)2-(10)2=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练3 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0),所以DQ →=(x -x 0,y ),DP →=(0,y 0),又DQ →=23DP →,故⎩⎪⎨⎪⎧ x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y , 因为P 在圆O 上,故有x 20+y 20=9,所以x 2+⎝⎛⎭⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1.(2)假设椭圆x 29+y24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点, 且有⎩⎨⎧x 1+x22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2. 又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎨⎧x 219+y 214=1,x 229+y 224=1,两式相减,得(x 1-x 2)(x 1+x 2)9+(y 1-y 2)(y 1+y 2)4=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.典例 (12分)抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0). 由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分]设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12, 解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大.对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离 d =|2·(-2)-(-2)-2|22+(-1)2=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, 则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4·(-4)=410.于是,△ABP 面积的最大值为12×410×455=8 2.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值.1.由椭圆x22+y 2=1的左焦点作倾斜角为45°的直线l 交椭圆于A ,B 两点,设O 为坐标原点,则OA →·OB →等于 ( )A .0B .1C .-13D .-3答案 C解析 直线l 的方程为:y =x +1, 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1得3x 2+4x =0. ∴x 1=0或x 2=-43,则y 1=1,y 2=-13.∴OA →·OB →=x 1x 2+y 1y 2=-13.2.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48答案 C解析 不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得,y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.3.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( )A .(2,0)B .(1,0)C .(0,1)D .(0,-1)答案 B解析 因为动圆的圆心在抛物线y 2=4x 上,且x =-1是抛物线y 2=4x 的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0),所以选B.4.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 ∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|FM |=y 0+2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.5.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为________. 答案 y 2=4x解析 设抛物线方程为y 2=ax .将y =x 代入y 2=ax ,得x =0或x =a ,∴a2=2.∴a =4.∴抛物线方程为y 2=4x .6.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b2=1的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是____________.答案 ⎣⎡⎦⎤33,22解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],所以2c 2≤a 2≤3c 2,所以离心率e =c a ∈⎣⎡⎦⎤33,22.专题限时规范训练一、选择题1.已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于 ( )A .1B .2C .3D .4答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线 l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM .∴M 为焦点,即p2=1,∴p =2.2.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.3.设AB 是过椭圆x 2a 2+y2b2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为( )A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4.已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|P A |=m |PB |,则m 的最大值为( )A .3B .2C. 3D. 2答案 C解析 据已知设P (x ,y ),则有m =|P A ||PB |= (x +1)2+y 2(x -1)2+y 2= (x +1)2+2x(x -1)2+2x=x 2+4x +1x 2+1=1+4x x 2+1=1+4x +1x ,据基本不等式有m =1+4x +1x≤1+42x ×1x=3,即m 的最大值为 3.故选C.5.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为 ( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y 得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5, ∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是 ( )A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23.7.已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A. 8.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1 答案 D解析 设P ⎝⎛⎭⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y2, 当kQF 2存在时,则kF 1P =cy a 2+c 2,kQF 2=cyb 2-2c 2, 由kF 1P ·kQF 2=-1,得y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0,即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c -c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎡⎭⎫33,1.二、填空题9.已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝⎛⎭⎫-95,15 解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x+27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝⎛⎭⎫-95,15. 10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|P A |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎫-1,14 解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝⎛⎭⎫-1,14即为所求点P 的坐标,此时|PF |+|P A |最小. 11.斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥ l ′,抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y-16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.三、解答题13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解 (1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以 AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则 d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6, ∴当y =-1时,d 取得最大值,d max =3b 2+6=3, 解得b 2=1,∴a 2=3.∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1,d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=2 1-1m 2+n2.∴S △OAB =12|AB |d ′=12·2 1-1m 2+n 2·1m 2+n 2= 1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2. ∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB = 1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2 ≤⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n2,即m 2+n 2=2>1时,S △OAB 取得最大值12. 由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n2得⎩⎨⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22或 ⎝⎛⎭⎫-62,-22,此时△OAB 的面积为12.。