函数的单调性与最值

合集下载

函数的单调性与最大(小)值

函数的单调性与最大(小)值

函数的单调性与最大(小)值
函数的单调性是指函数的图像从某一点开始递增或者递减,而不发生变化。

最大值是指在函数定义域内,函数图像达到最高点时所对应的函数值,它和函数的单调性有关。

最小值是指在函数定义域内,函数图像达到最低点时所对应的函数值,它也和函数的单调性有关。

计算单调性和求函数最大(小)值的方法需要根据单调函数的特性来考虑:
对于在x=a点处连续可导的单调函数,有f'(a)>0时,f(x)在[a,+∞)上单调递增,f(a)为此区间内的极大值;
对于在x=a点处连续可导的单调函数,有f'(a) < 0时,f(x)在(-∞,a]上单调递减,f(a)为此区间的极小值。

另外,如果函数在整个定义域内单调,则可以通过比较函数的值来确定其最大/最小值。

函数的单调性与极值 最值

函数的单调性与极值 最值

例8
判断函数 y = x − ln x 的单调性

函数的定义域为 (0,+∞ ) x −1 1 Q y′ = 1 − = x x 当 0 < x < 1 时数在 ( 0,1) 内单调减少。 单调减少。
内单调增加。 在 (1, +∞ ) 内单调增加。
x >1
时, y′ > 0,
y
f ( x1 )
( 2)
则称函数 f ( x )在区间 I上是单调减少的 ;
f ( x2 )
y = f ( x)
o
x1
x2
x
I
一、函数的单调性
y
2.判别方法 判别方法
y A y = f (x) B
y = f (x)
A
B
o
a
f ′( x ) ≥ 0
b
x
o a
f ′( x ) ≤ 0
b x
在区间(a,b)上单调上升 若 y = f (x)在区间 上单调上升 在区间(a,b)上单调下降 若 y = f (x)在区间 上单调下降
y
间断
∴ 单增区间为 (−∞, −2) , ( 2, +∞ ) 单减区间为 (−2, 0) , (0, 2)
x < ln(1 + x ) < x . 复习 证明当 x > 0 时, 1+ x 课本P124 课本 证法一设 f ( t ) = ln(1 + t ) t ∈ [0, x ]
足拉格朗日中值定理的条件. 则 f ( x ) 在 [0, x ]上满足拉格朗日中值定理的条件. 故
∴ 在(−∞ ,1]上单调增加; −∞ 上单调增加;
f ′( x ) < 0, ∴ 在[1,2]上单调减少; 上单调减少;

函数的单调性与最值

函数的单调性与最值

函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值 1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln x D .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.已知函数f(x)=2x-1(x∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1f(x)等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y=x2-6x+10在区间(2,4)上是()A.递减函数B.递增函数C.先递减再递增D.先递增再递减答案:C2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]考点一函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3xC.f(x)=-1x+1D.f(x)=-|x|解析:选C当x>0时,f(x)=3-x为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.下列函数中,定义域是R 且为增函数的是( )A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ) A .(-∞,1] B .(-∞,-1] C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log 12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.函数f (x )=x1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=1a -1x(a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数,∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25. 10.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。

函数的单调性与最值(讲义)

函数的单调性与最值(讲义)

函数的单调性与最值【知识要点】 1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.(3)判断函数单调性的方法①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。

2.函数的最值求函数最值的方法:①若函数是二次函数或可化为二次函数型的函数,常用配方法;②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。

【复习回顾】一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2ba-时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小; 提出问题:①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?①这些函数走势是什么?在什么范围上升,在什么区间下降?②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性?③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数.简称为:步调一致增函数.几何意义:增函数的从左向右看,图象是的。

函数的最值与单调性

函数的最值与单调性

函数的最值与单调性函数的最值与单调性对于数学领域来说是非常重要和常见的概念。

在本文中,我将详细介绍函数的最值和单调性,并讨论它们在数学问题中的应用。

一、函数的最值函数的最值是指函数在定义域内取得的最大值和最小值。

一个函数可能有多个最大值和最小值,也可能没有最大值或最小值。

在求解一个函数的最值时,我们可以通过以下步骤进行:1. 找到函数的定义域。

2. 求解函数的导数,并找到导数为零的点和导数不存在的点。

3. 将这些点代入函数中,得到对应的函数值。

4. 比较这些函数值,找到最大值和最小值。

举例来说,考虑函数 f(x) = 2x^2 - 3x + 1。

首先,我们需要找到函数的定义域。

由于这是一个二次函数,它的定义域是整个实数集。

然后,我们求解 f(x) 的导数 f'(x) = 4x - 3,并找到导数为零的点 x = 3/4。

将这个点代入原函数,得到 f(3/4) = 1/8。

由于这个函数是一个开口向上的抛物线,它的最小值就是 f(3/4) = 1/8。

因此,这个函数的最值是 f(3/4) = 1/8。

另外一个例子是函数 g(x) = sin(x)。

对于这个函数,它的定义域是整个实数集。

由于正弦函数的取值范围在 [-1, 1] 之间,所以 g(x) 的最大值是 1,最小值是 -1。

函数的最值在数学中经常用来确定问题的极限、最优解和最不利情况等。

二、函数的单调性函数的单调性是指函数的增减性质。

一个函数可以是递增的、递减的或是既递增又递减。

要判断一个函数的单调性,我们可以通过以下方法:1. 求解函数的导数。

2. 研究导数的符号。

如果导数在定义域内始终大于零,那么函数是递增的;如果导数在定义域内始终小于零,那么函数是递减的。

如果导数既大于零又小于零,那么函数既递增又递减。

比如考虑函数 h(x) = x^2 - 3x + 2。

我们求解 h(x) 的导数 h'(x) = 2x - 3。

通过分析导数的符号,我们可以发现当 x < 3/2 时,导数为负,说明函数 h(x) 在这个区间上是递减的;当 x > 3/2 时,导数为正,说明函数h(x) 在这个区间上是递增的。

函数的单调性与最值

函数的单调性与最值

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0)结论f(x0)为最大值f(x0)为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x2”.()(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.()(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(5)所有的单调函数都有最值.( )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为_____________.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________.命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在[12,2]上的值域为[12,2],则a =________.题型三 函数单调性的应用命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系)命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎪⎪⎭⎫ ⎝⎛x 1<f (1)的实数x 的取值范围是______________.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. (2)已知⎩⎨⎧≥<+-=1,1,1)2()(x a x x a x f x满足对任意x 1≠x 2,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是________.思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x的取值范围是__________.(2)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是__________.1.确定抽象函数单调性解函数不等式典例(14分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练 (时间:40分钟)1.下列函数f (x )中,①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎪⎭⎫⎝⎛-21,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.6.函数f (x )=⎪⎩⎪⎨⎧<≥1,21,log 21x x x x的值域为________.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.8.函数f (x )=x⎪⎭⎫⎝⎛31-log 2(x +2)在区间[-1,1]上的最大值为________.9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1. (1)求f (1),f (19)的值;(2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.14.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。

-函数的单调性、极值与最值

-函数的单调性、极值与最值


2 , 0) 2
+ ↑
( 0, 2 2 )
不存在 无
2 2
+ ↑
0
极大


( 1 , )


2 2
,1 )
1
不存在
+ ↑
0

极小
极大



所以,f(x)的极大值为 f (
2 3 2 3 ) 4 , f ( ) 4 . 2 2 0 )1 . f(x)的极小值为 f(
练习
求下列函数的极值.
注2:Th1中的“>”和“<”号也可改为“≥ ”和“≤ ” 号,
2、分段单调函数: Def 1:若函数在某些子区间上单调递增,而在另一些子
区间上单调递减,则称该函数为分段单调函数.
结论同样成立.
3、驻点: 导数 f '(x)在区间内部的零点称为 f (x)驻点 . Def 2:
即: f ' ( x ) 0 ,则 x 为驻点 . 0 0
2 2 例3:证明 1 x ln( x 1 x ) 1 x ( x 0 ).
2 2 证:令 f ( x ) 1 x ln( x 1 x ) 1 x
2 则 f ' ( x ) ln( x 1 x ) 0
( x 0)
当 x ( 0 , )时, f( x ) 为严格单调递
a
x0
0
b
x
2、极值的必要条件 定理 2 设函数 f(x) 在 I 内连续,点 x0 不是 I 的断点 ,若函数在 x0 处取得极值,则 x0 或是函数的不可导 点,或是可导点;当 x0 是 f(x) 的可导点,那么 x0 必 是函数的驻点,即 f ( x0 ) = 0. 推论:设函数 f(x)在点 x0可导,则函数 f(x)在点 x0 取得极值的必要条件是 f ( x0 ) = 0 . 注1:极值点有可能是可导点,也有可能是极值点.

高一函数(2):函数的单调性与最值

高一函数(2):函数的单调性与最值

专题一 函数的单调性与最值题型一 确定函数的单调性1.确定函数单调性(区间)的三种常用方法(1)定义法:一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性)..(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.(3)导数法:利用导数取值的正负确定函数的单调性. 2.熟记函数单调性的常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”.(4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值.【例1】(2020·华南师范大学附属中学月考)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)【解析】由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间. ∵函数t =x 2-2x -8在(-∞,-2)上单调递减,在(4,+∞)上单调递增, ∴函数f (x )的单调递增区间为(4,+∞).【例2】函数y =x 2+x -6的单调递增区间为________,单调递减区间为________. 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞). 【例3】判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解法一】设-1<x 1<x 2<1,⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-=111111)(x a x x a x f⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-+=-111111)()(2121x a x a x f x f =a (x 2-x 1)(x 1-1)(x 2-1), 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增.【解法二】f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为单调递减函数, 当a <0时,f (x )在(-1,1)上为单调递增函数.题型二 求函数的最值(值域) 求函数的最值(值域)的常用方法(1)单调性法:若所给函数为单调函数,可根据函数的单调性求最值.(2)换元法:求形如y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.(3)数形结合法:若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值(4)有界性法:利用代数式的有界性(如x 2≥0,x ≥0,2x >0,-1≤sin x ≤1等)确定函数的值域.(5)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解。

函数的单调性与最值

函数的单调性与最值

1、函数单调性定义:设函数()x f 在区间I 上有定义,如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f <,则称函数()x f 在区间I 上单调递增;如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f >,则称函数()x f 在区间I 上单调递减;单调递增函数和单调递减函数统称为单调函数.2、最值:对于任意的I x ∈,都有()M x f ≤或者()N x f ≥,这个N M 和便是函数()x f 在区间I 上的最大值和最小值.☆平时在做题的过程中,求函数单调区间的时候,各位同学一定要注意区间不要轻易“并”起来,例如对勾函数,如果将它的单调递减区间写成⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-a ba b ,,00 就是错误的,而应该写成⎪⎪⎭⎫ ⎝⎛-0,a b 和⎪⎪⎭⎫ ⎝⎛a b ,0或者写⎪⎪⎭⎫ ⎝⎛-0,a b ,⎪⎪⎭⎫⎝⎛a b ,0都是可以的. 一、函数单调性的判别方法1. 定义法:取值,作差,变形,定号,下结论.2. 图像法:如果函数图形能够画出,直接从图像上得到函数的单调性;3. 复合法:复合函数的单调性:“同增异减”;4. 导数法:设函数()x f 在定义域内可导,则:(1) 单调递增,()x f 单调递增()0≥'⇒x f ; (2) 单调递减,()x f 单调递增()0≤'⇒x f ;5. 多个函数在公共定义域上单调性运算规律如下:增函数+增函数=增函数;增函数-减函数=增函数;增函数⨯增函数=增函数(都大于0);减函数+减函数=减函数;减函数-增函数=减函数;=增函数1减函数,=减函数1增函数.2x 1x 1x 2x ()()x f x f ⇒>'0()()x f x f ⇒<'0恒正或恒负二、分段函数的单调性☆分段函数单调递增(递减)意味着每个分段的区间上函数单调递增(递减)并且在分段点处函数值的大小关系也满足递增(递减). 三、单调性的等价定义对于定义在D 上的函数()x f ,设1x ,D x ∈2,21x x <,则有: (1)()()()x f x x x f x f ⇔>--02121是D 上的单调递增函数; (2)()()[]()()x f x x x f x f ⇔>-⋅-02121是D 上的单调递增函数; (3)()()()x f x x x f x f ⇔<--02121是D 上的单调递减函数; (4)()()[]()()x f x x x f x f ⇔<-⋅-02121是D 上的单调递减函数.例题1:(2017北京)已知函数()xxx f ⎪⎭⎫⎝⎛-=313,则()x f ( )A.是偶函数,且在R 上是增函数;B.是奇函数,且在R 上是增函数;C.是偶函数,且在R 上是减函数;D.是奇函数,且在R 上是减函数;例题2:下列函数中,在区间()∞+,0上为增函数的是 ( ) A.1+=x y B.()21-=x y C.x y -=2 D.()15.0log +=x y 例题3:判断函数12++=x x y 在()+∞-,1上的单调性.例题4:判断函数()12-=x axx f (其中0>a )在()1,1-上的单调性.例题5:若实数a 满足21--->y y a ()R y ∈恒成立,则函数()()65log 2+-=x x x f a 的单调递减区间为( )A.⎪⎭⎫ ⎝⎛+∞,25 B. ()+∞,3 C.⎪⎭⎫ ⎝⎛∞-25, D.()2,∞-例题6:函数12+-=x xy ,(]1,+∈m m x 的最小值为0,则m 的取值范围是 ( ) A.()2,1 B.()2,1- C.[)2,1 D.[)2,1-例题7:已知函数,若()()⎩⎨⎧-=x a xa x f log 12 在()∞+,0上单调递减,则a 的取值范围为( ).A.⎪⎭⎫ ⎝⎛21,0 B.⎥⎦⎤ ⎝⎛31,0 C.⎪⎭⎫⎢⎣⎡21,31 D.⎪⎭⎫⎝⎛1,211≥x 1<x例题8:设()()⎩⎨⎧+-=a x a a x f x 43 对任意的21x x ≠,都有()()02121<--x x x f x f 成立,则a 的取值范围是( ).A. ⎥⎦⎤ ⎝⎛41,0B.()1,0C.⎪⎭⎫⎢⎣⎡1,41 D.()3,0例题9:函数()⎪⎩⎪⎨⎧+-=x aax x x f log 3822,在R 上单调,则a 的取值范围是( ).B. ⎥⎦⎤ ⎝⎛21,0 B.⎪⎭⎫⎢⎣⎡1,21C.⎥⎦⎤⎢⎣⎡8521,D.⎪⎭⎫⎢⎣⎡185,四、函数单调性的应用(1) 已知()x f 是单调函数,若()()21x f x f =,则21x x =.(2) ()x f 是单调递增函数(递减函数),若()()()212121x x x x x f x f ><⇒<.(3) 若函数()x f 的图像关于直线a x =对称,则其对称轴两侧单调性相反;如果函数()x f 的图像关于()0,a 对称,则其对称点两侧单调性相同.0<x 0≥x 1≤x 1>x。

函数的单调性与最值问题

函数的单调性与最值问题

函数的单调性与最值问题函数在数学中是一个非常重要的概念,它被广泛应用于各个领域中。

其中特别重要的是函数的单调性和最值问题。

这两个概念对于分析函数的性质和解决实际问题都有着重要的意义。

一、单调性单调性是指函数在某一区间上的增减性质。

具体来说,如果函数在一个区间上逐渐减少或逐渐增加,那么我们就说这个函数在这个区间上是单调的。

对于单调递增的函数,其随着自变量的增加,函数值也随着增加;对于单调递减的函数,其随着自变量的增加,函数值则随之减少。

而如果函数在某一区间内保持不变,则称该函数在该区间上是常数函数,因为函数的值一直不变。

为了更好地理解单调性的概念,我们可以举一个例子:假设一个人每天都要跑步,他的时间和距离之间的关系可以表示为一个函数。

如果他跑步的速度一直不变,则这个函数就是单调的。

在实际应用中,单调性常常被用来研究函数的特性及其变化趋势。

例如,在某些优化问题中,我们需要找到某一函数的最大值或最小值,而单调性正是解决这类问题的重要工具。

二、最值问题最值问题是指在某一函数区间内,求函数在该区间上的最大值或最小值。

这类问题是数学中的一个重要问题,也是各种应用问题的基础。

在解决最值问题时,我们需要找到所有可能的解。

这些解通常是函数在区间端点或者函数趋近于无穷时的解。

然后,我们需要对这些解进行比较,得出最值。

对于一些比较简单的函数,比如二次函数、三次函数等,我们可以直接对函数求导来求最值点。

而对于复杂的函数,我们可以利用单调性来简化求解过程。

例如,如果一个函数在某一区间上单调递增,则该函数的最大值一定在该区间的右端点处取到;同样地,如果该函数在某一区间上单调递减,则该函数的最大值一定在该区间的左端点处取到。

在实际应用中,最值问题的解法非常灵活,根据问题的不同,我们可以采用各种方法来解决这一问题。

三、归纳思考单调性和最值问题虽然看似是两个互不关联的问题,但它们实际上存在着密切的联系。

可以说,单调性是解决最值问题的基础,而最值问题又可以用来检验函数的单调性。

函数的单调性与最值(含解析)

函数的单调性与最值(含解析)

函数单调性与最值一、知识要点1.函数的单调性(1)增函数与减函数一般地,设函数f(x)的定义域为I:①如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是.②如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.(2)单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) ,区间D叫做y=f(x)的.2.函数的最值(1)最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么,我们称M是函数y=f(x)的最大值.(2)最小值一般地,设函数y=f(x)的定义域为I,如果存在实数N满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么我们称N是函数y=f(x)的最小值.自查自纠:1.(1)①任意两个增函数②任意两个减函数(2)单调性单调区间2.(1)①f(x)≤M②f(x0)=M (2)①f(x)≥N②f(x0)=N二、题型训练题组一1.定义在R 上的偶函数在[)0+∞,上是减函数则 ( ) . A . B . C . D .2.如果偶函数)(x f 在上]3,7[--是增函数且最小值是2,那么)(x f 在]7,3[上是( ) A .减函数且最小值是2 B .减函数且最大值是2 C .增函数且最小值是2 D .增函数且最大值是2.3.已知)(x f 是偶函数,它在[)+∞,0上是减函数,若)1()(lg f x f >,则x 的取值范围是( )A .⎪⎭⎫⎝⎛1,101 B .()+∞⋃⎪⎭⎫ ⎝⎛,1101,0 C .⎪⎭⎫ ⎝⎛10,101 D .()()+∞⋃,101,0 4.函数的图像关于直线对称,且在单调递减,(0)0f =,则的解集为( )A .(1,)+∞B .C .D .5.设奇函数()f x 在 (0,+∞)上是增函数,且(1)0f =,则不等式[()()]0x f x f x --<的解集为( ) A .{|10x x -<<或}1x > B .{|1x x <-或}01x << C .{|1x x <-或}1x > D .{|10x x -<<或}01x <<6.已知偶函数f (x )在区间(0,+∞)单调增加,则满足f (x -1)<f ⎪⎭⎫⎝⎛31的x 取值范围是( )A .B .C .24(,)33D .7.已知定义在R 上的偶函数,在时,,若,则a 的取值范围是( )A .B .C .D .8.若函数)(x f 为奇函数,且在),0(+∞上是增函数,又0)2(=f ,则0)()(<--xx f x f 的解集为( )A .)2,0()0,2(⋃-B .)2,0()2,(⋃--∞C .),2()2,(+∞⋃--∞D .),2()0,2(+∞⋃-9.若函数)x (f y =是定义在R 上的增函数,且满足1)b a (f )b (f )a (f ,0)1(f -+=+=,那么=)2(f ,关()f x (3)(2)(1)f f f <-<(1)(2)(3)f f f <-<(2)(1)(3)f f f -<<(3)(1)(2)f f f <<-()y f x =1x =[)1,+∞(1)0f x +>(1,1)-(,1)-∞-(,1)(1,)-∞-⋃+∞11(,)33-11,33⎡⎤-⎢⎥⎣⎦24,33⎢⎥⎢⎥⎣⎦()f x 0x >()ln xf x e x =+()()1f a f a <-(),1-∞1(,)2-∞1(,1)2()1,+∞于x 的不等式0)x 1(f )1x (f 2>-+-的解集是。

(完整版)函数的单调性与最值(含例题详解)

(完整版)函数的单调性与最值(含例题详解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格 的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但 f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -x C .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5log y u =为()0,+∞ 上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭.答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<,所以210x x ->,120x x >.故当)12,x x ∈+∞时,()()12f x f x <,即函数在)+∞上单调递增.当(12,x x ∈时,()()12f x f x >,即函数在(上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,-∞单调递增,在()上单调递减. 综上,函数f (x )在(,-∞和)+∞上单调递增,在()和(上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0, f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为 f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x ,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图 象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区 间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ).又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数. 答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x 2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0,由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7.又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。

函数的单调性与极值、最值

函数的单调性与极值、最值

THANKS FOR WATCHING
感谢您的观看
金融问题
在投资组合理论中,凹凸性可以用来描述投资组合的风险和回报之间的关系。投资者可以根据自己的风 险承受能力和投资目标,选择合适的投资组合策略。
05 函数的拐点
函数拐点定义
函数拐点是指函数图像上凹凸 性发生变化的点,即函数的一 阶导数在该点为零或不存在的 点。
在数学上,函数拐点的定义是 函数在某点的二阶导数为零的 点,即$f''(x)=0$。
最值的求法
代数法
通过求导数、找驻点、判断单调性等方法来求解 最值。
无穷区间法
利用极限的思想,将函数在无穷区间上的最值转 化为有限区间上的最值。
几何法
通过函数图像,直观地观察函数的最大值和最小 值。
最值在实际问题中的应用
01
优化问题
在生产、运输、分配等实际问题 中,常常需要通过求解最值来达 到最优解。
定义法
通过比较任意两点之间的函数值来判断函数的单调性。如 果任意两点之间的函数值都满足增减性条件,则函数在该 区间内单调。
图像法
通过观察函数的图像来判断函数的单调性。如果在图像上 随着$x$的增大,$y$的值也增大(或减小),则函数在该 区间内单调递增(或递减)。
Hale Waihona Puke 单调性在实际问题中的应用单调性与最值
单调性与优化问题
在解决优化问题时,可以利用函数的单调性来找到最优解。例如,在求解最大值或最小值 问题时,可以利用函数的单调性来确定搜索区间,从而缩小搜索范围,提高求解效率。
02 函数的极值
函数极值的定义
极值点
函数在某点的值比其邻近点的值大或小的点。
极大值
函数在某点的值比其左侧邻近点的值大,比 其右侧邻近点的值小。

第05讲-函数的单调性与最值(解析版)

第05讲-函数的单调性与最值(解析版)

第05讲-函数的单调性与最值一、考情分析借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.二、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)上是增函数或是减函数,性,区间M称为单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值[微点提醒]1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(或最小值).2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.3.“对勾函数”y =x +ax (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].三、 经典例题考点一 确定函数的单调性(区间)【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A .()()1212f x f x x x -->0B .f(a)<f(x 1)<f(x 2)<f(b)C .(x 1-x 2) [f(x 1)-f(x 2)]>0D .()()2121x x f x f x -->0【答案】B 【解析】试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此()()12120f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0,()()21210x x f x f x ->-均成立,因为不能确定12,x x 的大小,因此f(a)<f(x 1)<f(x 2)<f(b)不正确【例1-2】(2020·诸城市教育科学研究院高一期末)函数2y x =-的单调递增区间为( ) A .(],0-∞ B .[)0,+∞C .()0,∞+D .(,)-∞+∞【答案】A 【分析】由解析式知函数图像为开口向下的抛物线,且对称轴为y 轴,故可得出其单调增区间. 【详解】∵函数2y x =-, ∴函数图像为开口向下的抛物线,且其对称轴为y 轴 ∴函数的单调增区间为(],0-∞.规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图象不连续的单调区间要用“和”“,”连接.2.(1)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (2)函数y =f [g (x )]的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.考点二 求函数的最值【例2-1】(2020·安徽省六安一中高一月考)若函数()22231x f x x+=+,则()f x 的值域为( ) A .(],3-∞ B .()2,3 C .(]2,3 D .[)3,+∞【答案】C 【分析】利用分子分离法化简()f x ,再根据不等式的性质求函数的值域. 【详解】()22222232(1)112111x x f x x x x+++===++++, 又22211110122311x x x +≥⇒<≤⇒<+≤++, ∴()f x 的值域为(]2,3,故选:C.【例2-2】(2020·民勤县第一中学高二期中(理))下列结论正确的是( )A .当2x ≥时,1xx+的最小值为2 B .当0x >时,2≥ C .当02x <≤时,1x x-无最大值D .当0x >且1x ≠时,1lg 2lg x x+≥ 【答案】B 【分析】结合函数的单调性及基本不等式逐个判断即可. 【详解】 对于A ,x +1x 在[2,+∞)上单调增,所以x =2时,1x x +的最小值为52,故A 错误;对于B ,当x >0时,2x x+≥,当且仅当x =1时,等号成立,故B 成立; 对于C ,1x x -在(0,2]上单调增,所以x =2时,1x x-取得最大值,故C 不成立;对于D ,当0<x <1时,lgx <0,1lg x<0,结论不成立;规律方法 求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)均值不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用均值不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 考点三 函数单调性的应用【例3-1】(2020·安徽师范大学附属中学高三月考(理))若函数32,1()3,1x e a x f x x x x ⎧->=⎨-+≤⎩有最小值,则实数a 的取值范围为( ) A .(,1]-∞ B .(–],e ∞C .(01],D .(0,]e【答案】B 【分析】分别求出两段的范围,结合图象即可得到实数a 的取值范围. 【详解】作出32,1()3,1x e x f x x x x ⎧>=⎨-+≤⎩的图象:当1x >时,()f x =x e a e a ->-,当1x ≤时,'2()363(2),f x x x x x =-+=--在(),0-∞上'()0,<f x 在 ()0,1上'()0,f x > 则()f x =323x x -+在(),0-∞上单调递减,在 ()0,1上单调递增,又(0)0f = ∴()0f x ≥,函数32,1()3,1x e a x f x x x x ⎧->=⎨-+≤⎩有最小值,则0e a -≥, 即a e ≤,故选:B【例3-2】(2020·江苏省高一期末)函数()11xxe f x e -=+(e 是自然对数的底数)的图象大致为( ). A . B .C .D .【答案】A 【分析】利用分离常数的方法,将式子化简,可得()211x f x e =-++,根据单调性以及值域,可得结果. 【详解】因为()11211x x x x e e f x e e -+-==-++ 所以()211xf x e =-++, 可知y=x e 是递增的函数,所以2y=1x e +为递减的函数, 则()211x f x e =-++是递减的函数,且0,1x x e >>所以1112,012xxe e +><<+ 则21101x e -<-+<+,所以A 正确 故选:A【例3-3】(2019·会泽县第一中学校高二开学考试(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16-B .4739[,]1616-C.[- D.39[]16- 【答案】A 【解析】 不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*), 当1x ≤时,(*)式即为22332x x x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+, 又22147473()241616x x x -+-=---≤-(14x =时取等号), 223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+,又3232()22x x x x --=-+≤-x =,222x x +≥=(当2x =时取等号),所以2a -≤≤, 综上47216a -≤≤.故选A .规律方法 1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值. 2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”. [思维升华]1.利用定义证明或判断函数单调性的步骤: (1)取值;(2)作差;(3)定号;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法、利用均值不等式. [易错防范]1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.四、 课时作业1.(2020·湖南省茶陵三中高二开学考试)已知函数()([1,5])y f x x =∈-的图象如图所示,则()f x 的单调递减区间为( )A .[1,1]-B .[1,3]C .[3,5]D .[1,5]-【答案】B 【分析】根据递减区间的性质分析即可. 【详解】由图像可得,函数在[1,3]内单调递减.2.(2020·湖北省高一月考)下列四个函数中,在(0,)+∞上为增函数的是( ) A .||y x = B .1y x =-+ C .23y x x =- D .2y x=【答案】A 【分析】根据四个函数解析式,依次判断即可得解. 【详解】对于A ,||y x =在(),0-∞内单调递减,在(0,)+∞内单调递增,所以A 正确; 对于B ,1y x =-+在R 内单调递减,所以在(0,)+∞内也单调递减,所以B 错误; 对于C ,23y x x =-在3,2⎛⎫-∞ ⎪⎝⎭内单调递减,在3,2⎛⎫+∞ ⎪⎝⎭内单调递增,所以在(0,)+∞内单调递增错误,即C 错误; 对于D ,2y x=在在(0,)+∞内也单调递减,所以D 错误. 综上可知,A 为正确选项,故选:A.3.(2019·湖南省长郡中学高二期中)下列函数中,在区间()0,1上是增函数的是( ) A .y x = B .3y x =-C .1y x=D .24y x =-+【答案】A 【分析】根据一次函数,反比例函数,二次函数性质可得3y x =-,1y x=,24y x =-+在0,1不是增函数,在区间0,1上,y x x ==是增函数. 【详解】()0,1x ∈时, y x x ==,所以y x =在0,1上是增函数;13,y x y x=-=在0,1上均是减函数; 24y x =-+是开口向下以0x =为对称轴的抛物线,所以24y x =-+在在0,1上是减函数,所以A 正确.故选:A4.(2019·江苏省高一月考)下列函数,在区间()0,∞+上是增函数的是( ) A .y x =- B .1y x=-C .1y x =-D .2yx x【答案】B 【分析】A 选项讲0x >的表达式写出易判断;B 选项注意改变单调性的两个因素:取倒数和加负号,易判断;C 选项一次函数看斜率正负,易判断;D 选项二次函数看对称轴,易判断。

函数的单调性与最值

函数的单调性与最值

证明:必要性。设函数 f(x)在区间 [a,b]上单调增加,在区间 (a,b)内任取两点x, x+x,有
(1)当x 0时,则 x < x+x,从而
于是
f(x+x) - f(x) 0;
f(x+x) f(x),
(2)当x < 0时,则 x x+x,从而
于是
f(x+x) - f(x) 0;
有了这些结果以后,我们就可以利用导数的性质来判断函数的 性质,这可以说是导数的一个重要应用。它通常包含三个典型 的问题:
(1)、求函数的单调区间; (2)、证明不等式,通常是两项不等式; (3)、证明方程只有一个实根。
;单创:/News/Detail/2019-9-20/442424.htm
则对于开区间(a,b)内的任意两点 x1 , x2 ,且设 x1 < x2 , 由拉格朗日中值定理可知,有
f ( x2 ) f ( x1) f ' ( )( x2 x1 )
由于 f () 0,因此, f( x2) f( x1)。即 f(x)为单调增加。 对于单调减少的情况类似可以证明。
f(x+x) f(x),
综合(1)、(2)即知,对任意的 x,恒有
从而有
f (x x) f (x) 0. x
lim f (x x) f (x) f ' (x) 0.
x0
x
充分性。设函数 f(x)在 开区间(a,b)内可导,且 f (x) 0,
(2)当 x1 < x2 时,恒有 f(x1) f(x2)(或 f(x1) f(x2)),则称函 数 f(x)在开区间(a,b)内单调减(或严格单调减);

函数的单调性与最值

函数的单调性与最值

1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的 自左向右看图象是下降的(2)单调区间的定义 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值1.常见函数的单调性:(1)一元一次函数:)0(≠+=a b ax y ,当0>a 时,是增函数;当0<a 时,是减函数;(2)一元二次函数:一般式:)0(2≠++=a c bx ax y ;对称轴方程是x=-a b 2;顶点为(-a b 2,a b ac 442-); 两点式:))((21x x x x a y --=;对称轴方程是x=221x x +与x 轴交点(x 1,0)(x 2,0); 顶点式:h k x a y +-=2)(;对称轴方程是x=k ;顶点为(k ,h );①一元二次函数的单调性: 当0>a 时:(-+∞,2a b )为增函数;(-a b 2,-∞)为减函数;当0<a 时:(-a b 2,-∞)为增函数;(-+∞,2ab )为减函数; (3)反比例函数:)0(≠=x x a y ⇒bx c a y -+= )0(>+=k x k x y 的图象:定义域:{x|x 0≠};值域:(][)∞+⋃-∞-,22,k k ; 奇偶性:奇函数; 单调性:(][)+∞-∞-,,,k k 是增函数;(][)0,,,0k k -是减函数。

(4)形如求y =cx +d ax +b(ac ≠0)的函数的值域或最值常用分离常数法求解. 定义的变式 设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 3. 复合函数的单调性 讨论函数y =f [g(x)]的单调性时要注意两点:(1) 若u =g(x),y =f (u )在所讨论的区间上都是增函数或都是减函数,则y =f [g(x)]为增函数;(2) 单调性的单调区间不能用“∪”连接.4. 单调函数的运算性质若函数f(x),g(x)在给定的区间上具有单调性,利用增(减)函数的定义容易证得,在个区间上:(1)函数f(x)与f(x)+C(C 为常数)具有相同的单调性.(2)C >0时,函数f(x)与C ·f(x)具有相同的单调性;C <0时,函数f(x)与C ·f(x)具有相反的单调性.(3)若f(x)≠0,则函数f(x)与)(1x f 具有相反的单调性.5.二次函数在闭区间上的最值一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

函数的单调性与最值

函数的单调性与最值

数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
解析 因为“对任意 x1,x2∈(0,+∞)(x1≠x2),都有fxx11- -fx2x2>0”,所以 f(x) 为(0,+∞)上的增函数.对于 A:f(x)=-2x在(0,+∞)上为增函数,故 A 正确;对 于 B:f(x)=-3x+1 在(0,+∞)上为减函数,故 B 错误;对于 C:f(x)=x2+4x+3 的图象的对称轴为 x=-2,开口向上,所以在(0,+∞)上为增函数,故 C 正确;对 于 D:f(x)=x-1x,因为 y1=x 在(0,+∞)上为增函数,y2=-1x在(0,+∞)上为增函 数,所以 f(x)=x-1x在(0,+∞)上为增函数,故 D 正确.故选 ACD.
最大值2-2 1=2.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)(2023·枣庄检测)函数 f(x)= x2-3x+2的单调递减区间为 (-∞,1] .
解析 由 x2-3x+2≥0,解得 x≤1 或 x≥2,即 f(x)的定义域为(-∞,1]∪[2, +∞),因为 y=x2-3x+2 在(-∞,1]单调递减,在[2,+∞)单调递增,所以 f(x)的 单调递减区间为(-∞,1].
思维点睛►
求函数最值的三种基本方法 (1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用 基本不等式求出最值.
数学 N 必备知识 自主学习 关键能力 互动探究
第二章 函数
第2讲 函数的单调性与最大(小)值
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读

函数的单调性与最值

函数的单调性与最值

函数的单调性与最值引言:函数在数学中扮演着至关重要的角色,是研究数学问题和解决实际问题的重要工具。

对于一个函数,我们通过研究它的单调性和最值来揭示其内在性质和规律。

本教案将详细介绍函数的单调性和最值的概念、性质以及应用,在此基础上,引导学生深入理解和运用。

一、函数的单调性1. 函数的单调性概念1.1 定义对于定义在区间上的函数f(x),如果对于x1和x2(x1 < x2)都有f(x1) ≤ f(x2),则称函数f(x)在区间上是单调递增的;如果对于x1和x2(x1 < x2)都有f(x1) ≥ f(x2),则称函数f(x)在区间上是单调递减的。

1.2 单调性的判定方法可以通过函数图像、导数和函数的增减表等方法判定函数的单调性。

2. 函数单调性的性质与应用2.1 函数单调递增与导数的关系对区间上的可导函数f(x),如果f'(x) > 0,则函数在该区间上是单调递增的。

2.2 单调性在数学问题中的应用单调性常常用于函数的极值判定、方程的根的定位等问题,具有重要的实际意义。

二、函数的最值1. 函数的最值概念1.1 定义对于定义在区间上的函数f(x),如果对于任意x在该区间上,都有f(x) ≤ f(x0),则称f(x0)为函数f(x)在该区间上的最大值;如果对于任意x在该区间上,都有f(x) ≥ f(x0),则称f(x0)为函数f(x)在该区间上的最小值。

1.2 最值的存在性与唯一性在闭区间上连续的函数一定有最值,而在开区间上连续的函数可能没有最值。

2. 最值的求解方法2.1 导数法对于可导函数,函数取得最值的点往往对应于导数为0或不存在的点。

2.2 边界法对于在闭区间上连续的函数,最值往往出现在区间的端点处。

3. 最值在实际问题中的应用3.1 优化问题在实际问题中,通过求解函数的最值可以得到问题的最优解,如生产成本的最小化、投资利润的最大化等。

3.2 几何问题在几何问题中,通过求解函数的最值可以确定几何体的最佳位置、最大面积、最短路径等。

函数的单调性与最值

函数的单调性与最值

函数的单调性与最值定义
函数单调性:
单调增
⼀般地,设函数y=f(x)的定义域为A,区间I⊆A
如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有
f(x1)<f(x2)那么就说y=f(x)在单调区间I上时单调增函数,I称为y=f(x)的单调增区间
单调减
⼀般地,设函数y=f(x)的定义域为A,区间I⊆A
如果对于区间I内的任意两个值x1,x2,当x1>x2时,都有
f(x1)>f(x2)那么就说y=f(x)在单调区间I上是单调减函数,I称为y=f(x)的单调减区间
函数最值:
最⼤值
⼀般地,设函数y=f(x)的定义域为A
如果存在x0∈A,使得对于任意的x∈A,都有
f(x)≤f(x0)那么就说f(x0)为y=f(x)的最⼤值,记为
y max=f(x0)最⼩值
⼀般地,设函数y=f(x)的定义域为A
如果存在x0∈A,使得对于任意的x∈A,都有
f(x)≤f(x0)那么就说f(x0)为y=f(x)的最⼤值,记为
y max=f(x0)
解题
求函数的单调区间:
设x1<x2属于某个区间,证明x1有固定的⼤⼩关系x2
求函数最值的⽅法:
配⽅法、单调性法、判别式法、单调性法、不等式法、换元法
根据单调性求参数取值范围:
主要⽅法是先设x1<x2,根据定义⽤参数表⽰出单调区间,然后反推出参数值
这类题⽬往往是⼆次函数,和⼆次函数相关的题⽬要优先判断是否为⼆次函数Processing math: 100%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.2函数的单调性与最值
一.教学目标
1.会利用函数的单调性定义来判断、证明一个给定函数在某区间上的单调性。

2.掌握最大(小)值的定义。

3..会利用函数单调性来求给定函数在区间上的最值。

4.会求二次函数在任意给定区间上的最值。

二.教学重点
1.利用函数单调性定义来判断、证明一个给定函数在某区间上的单调性。

2.会求已经学过的基本初等函数在给定区间上的最值。

三.教学难点
1.熟练掌握证明函数单调性的五个步骤。

2.灵活运用恰当的方法来求解给定函数在给定区间上的最值。

四.教具准备
黑板、粉笔。

五.课时安排
一个课时
六.教学过程
同学们好,上节课我们共同探究了函数在某区间上单调性的定义,在此我们大家一起回顾下。

竟然我们学习了函数的单调性,那我们就要知道怎么用它。

这节课老师带大家看看函数单调性到底是怎么用的。

大家一起把书本翻到第29页,看书本上的例二。

从上面的这个例子大家能不能总结出证明函数在某一区间D 上单调性的一般步骤呢?
1.任取2121,,x x D x x <∈且;
2.作差()()21x f x f -;
3.变形(通常是因式分解和配方);
4.定号(即判断差()()21x f x f -的正负);
5.下结论(即指出函数()x f 在给定区间D 上的单调性)。

大家想一想,竟然我们能用函数单调性定义来证明一个函数在给定区间上的单调性,如果函数()x f 在闭区间[]b a ,上单调递增,也就是说随着x 值在该区间上增大,相应的函数值也增大。

我们很容易想出()a f 就是该函数在此区间上的最小的函数值,()b f 就是该函数在此区间上的最大的函数值。

伴随着我们这样的思考,我们来看看书上对于函数在其定义域上最值是怎么定义的呢?
一般地,设函数()x f y =的定义域为I ,如果存在实数M 满足:
1.对于任意的I x ∈,都有()M x f ≤;
2.存在I x ∈0,使得()M x f =0。

那么,我们称M 是函数()x f y =的最大值。

同理我们有:
一般地,设函数()x f y =的定义域为I ,如果存在实数M 满足:
1.对于任意的I x ∈,都有()M x f ≥;
2.存在I x ∈0,使得()M x f =0。

那么,我们称M 是函数()x f y =的最小值。

我们已经知道了函数最大值与最小值的定义,我们也可以证明一个函数在给定区间上的单调性。

我们能否把这两者结合起来,从而来求一个函数在给定区间上的最值呢?
接下来我们一起来看看书本上的例四。

从这个例题可以看出:当我们求一个函数在给定闭区间上的最值,我们可以先判断出函数在该闭区间上的单调性,然后根据最值的定义很容易求出最值。

那如果函数在给定区间上不是单调的呢?
此时在这里我们着重讨论下对于二次函数在给定闭区间上的最值。

大家一起来看看书本上的例三。

说完例三后我会补充一下几个小题:
(1)当t 在区间[]3,5.1上,()t h 的最值。

(2)当t 在区间[]5.1,5.0上,()t h 的最值。

(3)当t 在区间[]5.2,1上,()t h 的最值。

(4)在t 在区间[]2,5.0上,()t h 的最值。

在这里本节课的知识的讲解就告一段落了。

让我们一起来回顾下本节课学了哪些东西吧? 本节课首先回顾了上节课对于函数在某区间上单调性的定义,然后我们利用函数在某区间上的单调性定义来判断和证明了一个给定函数在给定区间上的单调性、并且求出该函数在该给定区间上的最值。

之后我们详细讨论了对于二次函数在给定区间上的最值情况。

最后是作业,大家做书本P32 4、5两个小题
另外大家还做这样一个题目。

已知函数()642
+-=x x x f (1). []2,2-∈x ,()x f 的最值 (2) 当[]5,2∈x ,()x f 的最值。

(3) 当[]3,0∈x ,()x f 的最值 (4) 当[]4,1∈x ,()x f 的最值。

相关文档
最新文档