广东省中山市2017-2018学年高一上数学11月月考试题(4)含答案

合集下载

广东省普通高中2017_2018学年高一数学上学期11月月考试题(含答案)06

广东省普通高中2017_2018学年高一数学上学期11月月考试题(含答案)06

上学期高一数学11月月考试题06错误!未找到引用源。

第I 卷(选择题 共60分)一.选择题(5分×12=60分)在每小题给出的四个选项只有一项正确。

1.如果A =错误!未找到引用源。

,那么正确的结论是( )A . 0错误!未找到引用源。

A B. {0}错误!未找到引用源。

A C. 错误!未找到引用源。

错误!未找到引用源。

A D. 错误!未找到引用源。

A2.下列四组函数中,表示相等函数的是( ) A. 2x y x y ==与 B. 0x y x x y ==与 C.()||2x y x y ==与 D. 错误!未找到引用源。

与错误!未找到引用源。

错误!未找到引用源。

3.下列函数既是偶函数,又在区间错误!未找到引用源。

上是减函数的为( )A .错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D.错误!未找到引用源。

4.设错误!未找到引用源。

,用二分法求方程错误!未找到引用源。

内近似解的过程中得错误!未找到引用源。

则方程的根落在区间 ( )A. 错误!未找到引用源。

B . 错误!未找到引用源。

C. 错误!未找到引用源。

D. 不能确定5.函数错误!未找到引用源。

的定义域为 ( )A .错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

6.已知函数错误!未找到引用源。

14x a -=+的图象恒过定点错误!未找到引用源。

,则点错误!未找到引用源。

的坐标是 ( )A .( 1,5)B .( 1, 4)C .( 0, 4)D .( 4,0)7.错误!未找到引用源。

( )A .9B . 错误!未找到引用源。

C . -9D .错误!未找到引用源。

8.当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是( )A B C D9.函数错误!未找到引用源。

的零点所在的区间是( )A.(-1,0)B. (0,1)C.(1,2)D.(2,3)10.设错误!未找到引用源。

广东省中山市普高2017-2018学年上学期高一数学11月月考试题及答案

广东省中山市普高2017-2018学年上学期高一数学11月月考试题及答案

上学期高一数学11月月考试题01 第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}M=,,a b c ,{}N=,,b c d ,则下列关系式中正确的是A. {},M N a d =UB. {},M N b c =I C .M N ⊆ D. N M ⊆ 2. 下列函数中,既是奇函数又是增函数的为A. 1y x =+B. 3y x =- C .1y x=D. ||y x x = 3. 已知函数2log ,0,()3,0.xx x f x x >⎧=⎨≤⎩ 则1(())4f f = A .19 B .9 C .19- D .9-4. 集合{|lg 0}M x x =>,{|311}N x x =-≤-≤,则M N =IA. (1,2)B. [1,2) C . (1,2] D.[1,2] 5.下列函数中,不满足:(2)2()f x f x =的是A. ()f x x =B. ()f x x x =- C .()f x x =+1 D. ()f x x =-6.函数()2xf x x =--A .(0,1)B .(1,2)C .(2,3)D .(3,4) 7.若10x -<<,那么下列各不等式成立的是 A. 220.2xx x -<< B. 20.22x x x -<<C. 0.222xxx -<< D. 220.2x x x -<<8. 设ln ln 0x y <<,则有 A .1x y >> B .1y x >>C . 01y x <<<D .01x y <<<9. 已知2m >,点1(1,)m y -,2(,)m y ,3(1,)m y +都在函数22y x x =-的图像上,则下列不等式中正确的是A. 123y y y <<B. 321y y y <<C. 132y y y <<D. 213y y y <<10.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为221y x =+,值域为{3,19}的“孪生函数”共有A. 15个B. 12个C. 9个D. 8个 二、填空题:本大题共6小题,每小题5分,共30分.11. 若集合{}1,2,3A =,{}1,,4B x =,{}1,2,3,4A B =U ,则x = . 12. 如果全集为R ,集合{}1M x x =≥,集合{}03N x x =≤<,则)R M N =I (ð .13. 方程555log (2)log (34)log (2)x x x +--=--的解为 . 14.函数()f x =的定义域为 .15. 二次函数的图像过点(2,1)-,且在[)1,+∞上是减少的,则这个函数的解析式可以为 .16. 方程2log 3x x =-的实数解的个数为 .三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.17.已知函数⎪⎩⎪⎨⎧<-=>-=.0 ,21,0 ,2,0 ,4)(2x x x x x x f(Ⅰ)求)]2([-f f 的值;(Ⅱ)求)1(2+a f (a R ∈)的值; (Ⅲ)当34<≤-x 时,求函数)(x f 的值域.18. 已知{25},{121}A x x B x m x m =-≤≤=+≤≤-,若B A ⊆,求实数m的取值范围.19. 某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次每件利润增加4元.,一天的工时可以生产最低档产品60件,每提高一个档次将减少6件产品,求生产何种档次的产品时获得利润最大.20.已知二次函数22()2(21)543f x x a x a a =--+-+,求()f x 在[]0,1上的最小值()g a 的解析式,并画出()g a 的图像.参考答案一、选择题:(本大题共10小题,每小题6分,共60分).1. B2. D 3.A 4. C 5. C6. B7. D 8.D 9. A 10. C 二、填空题:(本大题共6小题,每小题5分,共30分)11. 2或3 12. {|13}x x x <≥或 13. 3 14. 3,14⎛⎤⎥⎝⎦15. 229y x x =-++ (答案不惟一) 16. 2三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.17. 解:(Ⅰ)2[(2)](5)4521f f f -==-=- (5分)(Ⅱ)22242(1)4(1)23f a a a a +=-+=--+ (10分) (Ⅲ)①当04<≤-x 时,∵x x f 21)(-= ∴9)(1≤<x f (11分)②当0=x时,2)0(=f (12分)③当30<<x 时,∵24)(x x f -= ∴45<<-x (14分) 故当34<≤-x 时,函数)(x f 的值域是(5,9]- (15分)18. 解:当B =∅时,211m m -<+ , 解得2m < (4分)当B ≠∅时,由B A ⊆得12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩(12分)解得23m ≤≤ (14分) 综上可知:3m ≤ (15分)19. 解: 设生产第x 档次的产品时获得利润为y 元. (2分) [4(1)8][606(y x x =-+-- (110,x x N ≤≤∈)(8分)224(5)864y x =--+ (13分)当5x =时,max 864y = (14分)答:生产第5档次的产品时获得利润最大. (15分)20. 解:对称轴2(21)212a x a --=-=- (1分) ①当210a -<时,即12a <, 2()(0)543g a f a a ==-+ (3分)②当0211a ≤-<时,即112a ≤<, 22()(21)(21)2(21)(21)543g a f a a a a a a =-=----+-+22a =+ (6分)③当211a -≥时,即1a ≥,2()(1)586g a f a a ==-+ (9分)222154321()2125861a a a g a a a a a a ⎧-+<⎪⎪⎪=+≤<⎨⎪⎪-+≥⎪⎩(10分) 图像得5分。

广东省中山市高一上数学11月月考试题(1)含答案.doc

广东省中山市高一上数学11月月考试题(1)含答案.doc

上学期高一数学11月月考试题01第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}M=,,a b c ,{}N=,,b c d ,则下列关系式中正确的是A. {},M N a d =UB. {},M N b c =IC .M N ⊆ D. N M ⊆2. 下列函数中,既是奇函数又是增函数的为A. 1y x =+B. 3y x =- C .1y x= D. ||y x x = 3. 已知函数2log ,0,()3,0.x x x f x x >⎧=⎨≤⎩ 则1(())4f f = A .19 B .9 C .19- D .9- 4. 集合{|lg 0}M x x =>,{|311}N x x =-≤-≤,则M N =I A. (1,2) B. [1,2) C . (1,2] D.[1,2]5.下列函数中,不满足:(2)2()f x f x =的是 A. ()f x x = B. ()f x x x =-C .()f x x =+1 D. ()f x x =-6.函数()2x f x x =--A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.若10x -<<,那么下列各不等式成立的是A. 220.2x x x -<<B. 20.22x x x -<<C. 0.222x x x -<<D. 220.2x x x -<<8. 设ln ln 0x y <<,则有A .1x y >>B .1y x >>C . 01y x <<<D .01x y <<<9. 已知2m >,点1(1,)m y -,2(,)m y ,3(1,)m y +都在函数22y x x =-的图像上,则下列不等式中正确的是A. 123y y y <<B. 321y y y <<C. 132y y y <<D. 213y y y <<10.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为221y x =+,值域为{3,19}的“孪生函数”共有A. 15个B. 12个C. 9个D. 8个二、填空题:本大题共6小题,每小题5分,共30分.11. 若集合{}1,2,3A =,{}1,,4B x =,{}1,2,3,4A B =U ,则x = .12. 如果全集为R ,集合{}1M x x =≥,集合{}03N x x =≤<,则)R M N =I (ð .13. 方程555log (2)log (34)log (2)x x x +--=--的解为 .14.函数()f x =的定义域为 .15. 二次函数的图像过点(2,1)-,且在[)1,+∞上是减少的,则这个函数的解析式可以为 .16. 方程2log 3x x =-的实数解的个数为 .三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤. 17.已知函数⎪⎩⎪⎨⎧<-=>-=.0 ,21,0 ,2,0 ,4)(2x x x x x x f(Ⅰ)求)]2([-f f 的值;(Ⅱ)求)1(2+a f (a R ∈)的值;(Ⅲ)当34<≤-x 时,求函数)(x f 的值域.18. 已知{25},{121}A x x B x m x m =-≤≤=+≤≤-,若B A ⊆,求实数m的取值范围.19. 某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次每件利润增加4元.,一天的工时可以生产最低档产品60件,每提高一个档次将减少6件产品,求生产何种档次的产品时获得利润最大.20.已知二次函数22()2(21)543f x x a x a a =--+-+,求()f x 在[]0,1上的最小值()g a 的解析式,并画出()g a 的图像.参考答案一、选择题:(本大题共10小题,每小题6分,共60分).1. B2. D 3.A 4. C 5. C6. B7. D 8.D 9. A 10. C二、填空题:(本大题共6小题,每小题5分,共30分)11. 2或3 12. {|13}x x x <≥或 13. 3 14. 3,14⎛⎤ ⎥⎝⎦15. 229y x x =-++ (答案不惟一) 16. 2三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.17. 解:(Ⅰ)2[(2)](5)4521f f f -==-=- (5分)(Ⅱ)22242(1)4(1)23f a a a a +=-+=--+ (10分)(Ⅲ)①当04<≤-x 时,∵x x f 21)(-= ∴9)(1≤<x f (11分) ②当0=x 时,2)0(=f (12分)③当30<<x 时,∵24)(x x f -= ∴45<<-x (14分)故当34<≤-x 时,函数)(x f 的值域是(5,9]- (15分)18. 解:当B =∅时,211m m -<+ , 解得2m < (4分)当B ≠∅时,由B A ⊆得12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩(12分)解得23m ≤≤ (14分)综上可知:3m ≤ (15分)19. 解: 设生产第x 档次的产品时获得利润为y 元. (2分)[4(1)8][606(y x x =-+-- (110,x x N ≤≤∈)(8分)224(5)864y x =--+ (13分)当5x =时,max 864y = (14分)答:生产第5档次的产品时获得利润最大. (15分)20. 解:对称轴2(21)212a x a --=-=- (1分) ①当210a -<时,即12a <, 2()(0)543g a f a a ==-+ (3分)②当0211a ≤-<时,即112a ≤<, 22()(21)(21)2(21)(21)543g a f a a a a a a =-=----+-+22a =+ (6分)③当211a -≥时,即1a ≥,2()(1)586g a f a a ==-+ (9分)222154321()2125861a a a g a a a a a a ⎧-+<⎪⎪⎪=+≤<⎨⎪⎪-+≥⎪⎩(10分) 图像得5分。

中山市一中2018-2019学年高三上学期11月月考数学试卷含答案

中山市一中2018-2019学年高三上学期11月月考数学试卷含答案

中山市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 2. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)3. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 4. 已知函数sin(2)y x ϕ=+在6x π=处取得最大值,则函数cos(2)y x ϕ=+的图象( )A .关于点(0)6π,对称 B .关于点(0)3π,对称C .关于直线6x π=对称 D .关于直线3x π=对称5. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100米到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50米B .60米C .80米D .100米6. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M7. 设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)8. 如图是一个多面体的三视图,则其全面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.D.9.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值10.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.x3>y3D.sinx>siny11.已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x3﹣2x2,则x<0时,函数f(x)的表达式为f (x)=()A.x3+2x2B.x3﹣2x2C.﹣x3+2x2D.﹣x3﹣2x212.已知U=R,函数y=ln(1﹣x)的定义域为M,集合N={x|x2﹣x<0}.则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)二、填空题13.若点p(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为14.在△ABC中,角A,B,C所对边分别为a,b,c,且,B=45°,面积S=2,则b等于.15.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.16.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.17.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为.18.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.三、解答题19.若函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.20.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.21.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.22.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.23.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人? (3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.24.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .中山市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.:2x ﹣y ﹣1=0解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点, ∴圆心与点P 确定的直线斜率为=﹣,∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0 14. 5 .15. 7+16. ①②④ .17. ﹣ .18. .三、解答题19.20.21.22.23.24.(1)122n n b +=-;(2)222(4)n n S n n +=-++.。

广东省中山市普通高中2017_2018学年高一数学11月月考试题03

广东省中山市普通高中2017_2018学年高一数学11月月考试题03

上学期高一数学11月月考试题03一、填空题:(每题4分,共48分)1、函数y =______________。

2、已知集合{0,1,2}P =,{|2,}Q x x a a P ==∈,则集合P Q = ______ 。

3、命题“若11a b >>且,则2a b +>”的否命题是_________命题(填“真”或“假”)。

4、已知2x >,当122x x +-取到最小值时,x 的值____________。

5、“12a b ≠≠或”是“3a b +≠”成立的______________条件。

6、不等式组2|12|9120x x x -<⎧⎨-->⎩的解集为 _______ 。

7、设条件2:8200P x x -->,条件22:210Q x x a -+->(a R ∈),若P 是Q 的充分非必要条件,则实数a 的取值范围是_______________。

8、若关于x 的方程2(3)0x a x a +-+=的两根均为正数,则实数a 的范围是___________。

9、要围一个面积为8千米的矩形花园,其中一面借助旧墙,另三面需要砌新墙,为了使所用材料最省,该花园较长的一边长为_________________ 。

10、若关于x 的不等式260ax bx ++>的解集是3(,2)2-,则不等式260bx ax +->的解集是____________________。

11、在R 上定义运算⊗:2x x y y⊗=-,若关于x 的不等式()(1)0x a x a -⊗+->的解集为{|22,}x x x R -≤≤∈的子集,则实数a 的取值范围是__________________。

12、对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+的上确界,若,,1a b R a b +∈+=且,则122a b--的上确界为________________。

广东省中山市普通高中2017-2018学年高一上学期数学综合测试题01 Word版含答案

广东省中山市普通高中2017-2018学年高一上学期数学综合测试题01 Word版含答案

2017-2018学年高一上学期数学综合测试题01满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( ) A .{0,1,2,6,8} B .{3,7,8} C .{1,3,7,8} D .{1,3,6,7,8} 2.如图,可作为函数y =f (x )的图象是( )3.已知f (x ),g (x )则f (g (1))的值为( )A .-1B .0C .1D .不存在4.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A };则B 中所含元素的个数为( )A .3B .6C .8D .105.已知f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( )A .-7B .3C .-8D .46.f (x )=-x 2+mx 在(-∞,1]上是增函数,则m 的取值范围是( ) A .{2} B .(-∞,2] C .[2,+∞) D .(-∞,1]7.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( ) A .A ∩B B .A ∪B C .A D .B8.已知函数f (x )=ax 2+bx +3a +b 的定义域为[a -1,2a ]的偶函数,则a +b 的值是( )A .0 B.13 C .1 D .-19.若f (x )是偶函数且在(0,+∞)上减函数,又f (-3)=1,则不等式f (x )<1的解集为( ) A .{x |x >3或-3<x <0} B .{x |x <-3或0<x <3} C .{x |x <-3或x >3} D .{x |-3<x <0或0<x <3}10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)11.设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)=( )A .0B .1 C.52 D .5 12.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( ) A .最大值为3,最小值-1 B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 14.已知函数f (x )=3x 2+mx +2在区间[1,+∞)上是增函数,则f (2)的取值范围是________. 15.如下图所示,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.16.某工厂生产某种产品的固定成本为2 000万元,每生产一单位产品,成本增加10万元,又知总收入k 是产品数θ的函数,k (θ)=40θ-120θ2,则总利润L (θ)的最大值是________. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},集合B ={x |-3≤x ≤2}.求A ∩B ,(∁U A )∪B ,A ∩(∁U B ),(∁U A )∪(∁U B ).18.(本题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围.19.(本题满分12分)图中给出了奇函数f(x)的局部图象,已知f(x)的定义域为[-5,5],试补全其图象,并比较f(1)与f(3)的大小.20.(本题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;(2)21.(本题满分12分)设函数f(x)在定义域R上总有f(x)=-f(x+2),且当-1<x≤1时,f(x)=x2+2.(1)当3<x≤5时,求函数f(x)的解析式;(2)判断函数f(x)在(3,5]上的单调性,并予以证明.22.(本题满分12分)定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)·f(y),f(1)=2.(1)求f(0)的值;(2)求证:对任意x∈R,都有f(x)>0;(3)解不等式f(3-x2)>4.答案1: C [解析]A∩B={1,3},(A∩B)∪C={1,3,7,8},故选C.2: D3: C [解析] ∵g (1)=0,f (0)=1,∴f (g (1))=1. 4: D[解析] x =5,y =1,2,3,4 x =4,y =1,2,3,x =3,y =1,2,x =2,y =1共10个5: B [解析] f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (4)+f (-1)=3,故选B.6: C[解析] f (x )=-(x -m 2)2+m 24的增区间为(-∞,m 2],由条件知m2≥1,∴m ≥2,故选C. 7: D [解析] A *B 的本质就是集合A 与B 的并集中除去它们的公共元素后,剩余元素组成的集合. 因此(A *B )*A 是图中阴影部分与A 的并集,除去A 中阴影部分后剩余部分即B ,故选D.[点评] 可取特殊集合求解.如取A ={1,2,3},B ={1,5},则A *B ={2,3,5},(A *B )*A ={1,5}=B .8: B [解析] 由函数f (x )=ax 2+bx +3a +b 是定义域为[a -1,2a ]的偶函数,得b =0,并且a -1=-2a ,即a =13,∴a +b 的值是13.9: C[解析] 由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )即f (x )<f (-3),∴x <-3,故选C.10: A [解析] 若x 2-x 1>0,则f (x 2)-f (x 1)<0, 即f (x 2)<f (x 1),∴f (x )在[0,+∞)上是减函数, ∵3>2>1,∴f (3)<f (2)<f (1),又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A. 11: C[解析] f (1)=f (-1+2)=f (-1)+f (2)=12,又f (-1)=-f (1)=-12,∴f (2)=1,∴f (5)=f (3)+f (2)=f (1)+2f (2)=52.12: B [解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选B.13: 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1. 14: [2,+∞)[解析] ∵-m6≤1,∴m ≥-6,f (2)=14+2m ≥14+2×(-6)=2. 15: 2[解析] 由已知,得f (3)=1,f (1)=2,则f (1f (3))=f (1)=2.16: 2 500万元[解析] L (θ)=k (θ)-10θ-2000=-120θ2+30θ-2000.当θ=302×120=300时,L (θ)有最大值为:2500万元.17[解析] 如下图所示,在数轴上表示全集U 及集合A ,B .∵A ={x |-2<x <3}, B ={x |-3≤x ≤3}.∴∁U A ={x |x ≤-2,或3≤x ≤4}, ∁U B ={x |x <-3,或2<x ≤4}. ∴A ∩B ={x |-2<x ≤2};(∁U A )∪B ={x |x ≤2,或3≤x ≤4}; A ∩(∁U B )={x |2<x <3};(∁U A )∪(∁U B )={x |x ≤-2,或2<x ≤4}.18[解析] (1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1, 即f (x )=2x 2-4x +3.(2)由条件知2a <1<a +1,∴0<a <12.19[解析] 奇函数的图象关于原点对称,可画出其图象如图.显见f (3)>f (1).20[解析] (1)当0≤x ≤100时,y =0.57x ;当x >100时,y =0.5×(x -100)+0.57×100=0.5x -50+57=0.5x +7.所以所求函数式为y =⎩⎪⎨⎪⎧0.57x , 0≤x ≤100,0.5x +7, x >100.(2)据题意,一月份:0.5x +7=76,得x =138(度), 二月份:0.5x +7=63,得x =112(度), 三月份:0.57x =45.6,得x =80(度). 所以第一季度共用电: 138+112+80=330(度).故小明家第一季度共用电330度. 21[解析] (1)∵f (x )=-f (x +2), ∴f (x +2)=-f (x ).∴f (x )=f [(x -2)+2]=-f (x -2)=-f [(x -4)+2]=f (x -4). ∵-1<x ≤1时,f (x )=x 2+2,又∵当3<x ≤5时,-1<x -4≤1, ∴f (x -4)=(x -4)2+2.∴当3<x ≤5时,f (x )=(x -4)2+2.(2)∵函数f (x )=(x -4)2+2的对称轴是x =4,∴函数f (x )=(x -4)2+2在(3,4]上单调递减,在[4,5]上单调递增. 证明:任取x 1,x 2∈(3,4],且x 1<x 2,有 f (x 1)-f (x 2)=[(x 1-4)2+2]-[(x 2-4)2+2] =(x 1-x 2)(x 1+x 2-8). ∵3<x 1<x 2≤4,∴x 1-x 2<0,x 1+x 2-8<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数y =f (x )在(3,4]上单调递减. 同理可证函数在[4,5]上单调递增. 22[解析] (1)解:对任意x ,y ∈R , f (x +y )=f (x )·f (y ).令x =y =0,得f (0)=f (0)·f (0), 即f (0)·[f (0)-1]=0. 令y =0,得f (x )=f (x )·f (0),对任意x ∈R 成立, 所以f (0)≠0,因此f (0)=1. (2)证明:对任意x ∈R ,有f (x )=f (x 2+x 2)=f (x 2)·f (x 2)=[f (x2)]2≥0. 假设存在x 0∈R ,使f (x 0)=0, 所以f (x 2)-f (x 1)>0, 即f (x 1)<f (x 2).故函数f (x )在(-∞,+∞)上是增函数. 由f (3-x 2)>4,得f (3-x 2)>f (2), 即3-x 2>2. 解得-1<x <1.所以,不等式的解集是(-1,1). 则对任意x >0,有f (x )=f [(x -x 0)+x 0]=f (x -x 0)·f (x 0)=0. 这与已知x >0时,f (x )>1矛盾.所以,对任意x ∈R ,均有f (x )>0成立. (3)解:令x =y =1有f(1+1)=f(1)·f(1),所以f(2)=2×2=4.任取x1,x2∈R,且x1<x2,则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)·f(x1)-f(x1)=f(x1)·[f(x2-x1)-1].∵x1<x2,∴x2-x1>0,由已知f(x2-x1)>1,∴f(x2-x1)-1>0.由(2)知x1∈R,f(x1)>0.。

2017-2018学年广东省中山市普通高中高一数学月考试题 05 Word版含答案

2017-2018学年广东省中山市普通高中高一数学月考试题  05 Word版含答案

上学期高一数学 月考试题05时间120分钟,满分150分.第I 卷(共60分)一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一个是正确的,请将正确的选项选出来涂在答题卡相应的位置.1.设全集I ={0,1,2,3},集合A ={0,1,2},集合B ={2,3},则C I A ∪C I B 等于A .{0}B .{0,1}C .{0,1,3}D .{0,1,2,3}2.下列所给出的函数中,是幂函数的是A .3x y -=B .3-=x yC .32x y =D .13-=x y3.如下图是定义在闭区间[-5,5]上的函数()y f x =图象,该函数的单调增区间为A .[-2,1]B .[3,5]C .[-5,1]和[1,3]D .[-2,1]和[3,5]4.下列四组函数,表示同一函数的是A .2)(x x f =,x x g =)( B .x x f =)(,x x x g 2)(= C .2ln )(x x f =,x x g ln 2)(= D .x a a x f log )(=a (>0)1,≠a ,33)(x x g =5.若函数)(x f y =的图象与函数13)(+=x x g 的图象关于x 轴对称,则函数)(x f 的表达式为A .13)(--=x x fB .13)(-=x x fC .13)(+-=-x x f D .13)(+=-x x f 6.下列函数中,在区间(0,2)上为增函数的是A .x y ⎪⎭⎫ ⎝⎛=21B .3y x =C .()x y -=52logD .23810y x x =+-7.设集合{}25, l o g(3)A a =+,集合{, 2}B a =,若{2}A B =, 则A B 等于 A .{}1,2,5 B .{}1,2,5- C .{}2,5,7 D .{}7,2,5-8.已知0<x <y <a <1,则有A .lo g a (xy )<0B .0<lo g a (xy )<1C .1<lo g a (xy )<2D .lo g a (xy )>29.设I 是全集,集合P 、Q 满足P Q ,则下面的结论中错误的是A .P ∪C I Q =∅B .P ∪Q = QC .P ∩C I Q =∅D .P ∩Q =P10.函数f (x )= a x (a >0,且a ≠1)对于任意的实数x 、y 都有A .f (xy )=f (x )·f (y )B . f (x +y )=f (x )·f (y )C .f (xy )=f (x )+f (y )D .f (x +y )=f (x )+f (y )11.定义运算:,,*,a a b a b b a b ≤⎧=⎨>⎩如1*2=1,则函数()2*2x x f x -=的值域为 A .R B . (0,)+∞ C .](0,1 D . )1,+∞⎡⎣12.一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温渐低而不变第Ⅱ卷(非选择题 共90分)二、填空题(本大题4个小题,每小题4分,共16分)13.设g(x)=⎩⎨⎧>≤,0,ln ,0,x x x e x 则1(())2g g =__________. 14.若01a <<,则函数log (5)a y x =+的图象不经过第 象限.15.若函数a x f x --=121)(是奇函数,则a = . 16.下列命题中,①幂函数在第一象限都是增函数;②幂函数的图象都经过(0,0)和(1,1)点;③若幂函数y x α=是奇函数,则y x α=是定义域上的增函数;④幂函数的图象不可能出现在第四象限.正确命题的序号是 .三、解答题(本大题共5个小题,满分74分,解答时要求写出必要的文字说明、证明过程或推演步骤.)17.(本小题满分14分)计算:(1)2lg 5lg2lg50+⋅; (2)()302423333⨯-18.(本小题满分14分)已知函数)(x f 是定义在(2,2)-上的奇函数且是减函数,若0)21()1(≥-+-m f m f ,求实数m 的取值范围.19.(本小题满分14分)已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.20.(本小题满分16分)已知f(x)=5)(,53333--+=-x x x g x x . (1)求证:()f x 是奇函数,并求()f x 的单调区间;(2)分别计算(4)5(2)(2)f f g -和(9)5(3)(3)f f g -的值,由此概括出涉及函数()f x 和()g x 对所有不等于零的实数x 都成立的一个等式,并加以证明.21.(本小题满分16分)是否存在实数a ,使函数2()log ()a f x ax x =-在区间[2,4]上是增函数?若存在,求出a 的取值范围;若不存在,说明理由.参考答案一、选择题:CBDDA DADAB CC二、填空题:13.12 14.一 15.-1216.④ 三、解答题:17. 解:(1)原式=22lg 5lg2(1lg5)lg 5lg2lg5lg2lg5(lg5lg2)lg2lg5lg21+⋅+=++=++=+=…………………………………………7分(2)原式=1+3+6633-=4.…………………………………………………………14分18.解:⎩⎨⎧<-<-<-<-2212212m m 得2321<<-m 。

广东省中山市2017-2018学年高一上数学11月月考试题(4)含答案(打印版)

广东省中山市2017-2018学年高一上数学11月月考试题(4)含答案(打印版)

上学期高一数学11月月考试题04一.填空题:(每小题3分,共42分)1. 集合{1,2,3,4}A =的非空子集的个数为 15 ;2. 若,0,0<>>c b a 则a c >bc ; 3.已知集合}2,2{2a a a -为数集,求实数a 的取值范围是 0≠a 且4≠a ;4.若集合{}0132=++x kx x 中至多有一个元素,则k 的取值范围是 0=k 或49≥; 5.写出命题“已知a 、b 、c 是实数,如果0<ac ,那么()002≠=++a c bx ax 有实数根”的否命题 已知a 、b 、c 是实数,如果0≥ac ,那么()002≠=++a c bx ax 没有实数根” ; 6.写出0x <的一个充分不必要的条件 1-<x (答案不唯一) ;7.设{}{}2,2,1,,4,2,1m Q m P ==,则满足P Q P =的实数m 的值为 0,2- ;8.集合{|24},{|0}A x x B x x a =-<<=-<,当A B =∅时,实数a 的取值范围是 2-≤a ;9.设全集R U =,集合{|11},{|02}A x x B x x =-≤≤=<<,则()B A C U ⋃= {}21≥-<x x x 或 ;10.若{}R x x x x A ∈<--=,0432,则N A = {}3,2,1,0 ; 11.已知全集{}{}{}4,1,2,5,4,3,2,1===B A C B A U U ,则=B {}4,2,1 ; 12.设集合2{|43},{|2}A y y x x a B y y ==--++=<,若A B ⊂≠,则实数a 的取值范围是 5-<a ;13.设集合⎭⎬⎫⎩⎨⎧∈∈-=Z x Z x x A ,36,试用列举法表示集合A = {}9,3,6,0,5,1,4,2- ;14.给出下列条件p 与q :① 1:=x p 或2=x ;11:-=-x x q . ② :p 一元二次方程02=++m x x 有实数解;41:<m q . ③ x p :是6的倍数;x q :是2的倍数.④ :p 一个四边形是矩形;:q 四边形的对角线相等.其中p 是q 的必要不充分条件的序号为 ② ;二.选择题(每小题3分共12分)15.若0,0<<>>d c b a ,则下列不等式恒成立的是 ( C )()22ad bc A < ()33ad bc B < ()c b d aC < ()db c a D < 16.下列命题为真命题的是 ( D )()A 若A B =∅,则B A ,至少有一个为空集;()B 若集合(){}(){}1,,1,2--==+-==x y y x B x y y x A ,则{}1,2-=B A ; ()C 任何集合必有一个真子集;()D 若{}{}22,x y x Q x y y P ====,则Q P ⊆;17.若不等式012>-+bx ax 的解集是{}43<<x x ,则实数b a +的值为 ( A ) ()21A ()2B ()41C ()31D 18.条件M 是N 的充要条件的为 ( D ) ()A 22:;:bc ac N b a M >> ()B c b d a N d c b a M ->->>:;,: ()C bd ac N d c b a M >>>>>:;0,0: ()D 0:;:≤+=-ab N b a b a M三.解答题(共46分)19.(满分7分)已知0>>b a ,试比较2222b a b a -+与ba b a -+的值的大小. 解:因为2222222b a ab b a b a ba b a --=-+--+,又因为0>>b a ,所以002222>-⇒>>b a b a 且0<-ab , 即02222222<--=-+--+b a ab b a b a b a b a ,所以2222b a b a -+<ba b a -+. 20.(满分9分)若{}x U ,1,0=,{}1,0=A ,且U x ∈2,求A C U . 解:因为U x ∈2,则有02=x 或12=x 或x x =2.解得0=x 或1±=x ,由集合元素的互异性知1-=x ,则{}1,1,0-=U ,故{}1-=A C U21.(满分10分)已知31:,421:≤≤+≤≤+x m x m βα,若α是β的必要条件,求实数m 的取值范围.解:设{}421+≤≤+=m x m x A ,{}31≤≤=x x B . 因为α是β的必要条件,所以A B ⊆,所以⎩⎨⎧+≤≤+42311m m 021≤≤-⇒m . 所以实数m 的取值范围是021≤≤-m . 22.(满分10分)设{}{},015,022=++==++=cx x x B b ax x x A又{}{}3,5,3==B A B A ,求c b a ,,的值.解:因为{}3=B A ,所以8015332-=⇒=++c c , 所以{}{},5,30152==++=cx x x B 由{},5,3=B A 可得{}3=A 或{}5,3=A ,而{}3=B A ,所以{}3=A .所以⎪⎩⎪⎨⎧=++=-=∆0330422b a ac a ⎩⎨⎧=-=⇒96b a , 所以8,9,6-==-=c b a .23.(满分10分)已知{}{}2,,1,21,1,1r r B d d A =++=,其中1,0≠≠r d ,问当r d ,满足什么条件时B A =?并求出这种情形下的集合A . 解:由题意,有两种情形:⑴ ⎩⎨⎧=+=+②①2211r d r d ,由①得1-=r d ,代人②得0122=+-r r ,所以1=r ,与条件1≠r 矛盾,因此在这种情形下B A =不能成立.⑵ ⎩⎨⎧=+=+②①r d r d 2112,由①得12-=r d ,代人②得,0122=--r r ()()0112=-+⇒r r ,由条件1≠r ,得21-=r ,代人②得43-=d . 当21-=r ,43-=d 时,⎭⎬⎫⎩⎨⎧-==21,41,1B A .。

广东省中山市普通高中2017-2018学年上学期高一数学11月月考试题: 07 Word版含答案

广东省中山市普通高中2017-2018学年上学期高一数学11月月考试题: 07 Word版含答案

上学期高一数学11月月考试题07一、选择题:(本题共10题,每题3分,共30分。

)1、已知全集}5,4,3,2,1{=U ,且}4,3,2{=A ,}2,1{=B ,则=⋂)(B C A U A }2{ B }5{ C }4,3{ D }5,4,3,2{2、下列函数中是偶函数且在),0(+∞上单调递增的是 A x y = B 2x y -= C x y 2= D ||x y =3、若1)21()22(1-=+-x x g ,则=)3(gA 1-B 21-C 43-D 87- 4、函数1||2)(+-=x x f 的图像大致为5、已知函数⎩⎨⎧<≥+=0|,|0,12)(x x x x x f ,且3)(0=x f ,则实数0x 的值为A 3-B 1C 3-或1D 3-或1或36、若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)()1(<-x f x 的x 的取值范围是 A (1,2))2,(⋃--∞ B ),1()2,(+∞⋃--∞ C ),1()1,(+∞⋃-∞ D )2,1()1,(⋃-∞ 7、不等式0241>-++k x x 对R x ∈恒成立,则k 的取值范围是 A 1-<k B 1->k C 0≤k D 0≥k 8、函数)(x f 满足),)(()()()(4R y x y x f y x f y f x f ∈-++=,且41)1(=f ,0)0(≠f ,则下列等式不成立的是A 41)2()0(=+f f B 41)4()2(-=+f f C 41)2()3(-=-f f D 41)3()4(=-f f 9、函数||2x y =的定义域为],[b a ,值域为]16,1[,则点),(b a 表示的图形可以是10、定义函数B A f →:,其中}1,1{),,0()0,(-=+∞⋃-∞=B A ,且对于)0,(-∞中的任意一个x 都与集合B 中的1对应,),0(+∞中的任意一个x 都与集合B 中的1-对应,则)(2)()()(b a b a f b a b a ≠---+的值为A aB bC b a ,中较小的数D b a ,中较大的数二、填空题(本题共7题,每题3分,共21分。

广东省中山市普通高中2017_2018学年高一数学11月月考试题02

广东省中山市普通高中2017_2018学年高一数学11月月考试题02

上学期高一数学11月月考试题02一、填空题(每题5分,共45分)1. 命题P :“如果0a b +>,那么00.a b >>且”写出命题P 的否命题: ___“如果0a b +≤,那么00.a b ≤≤或” _. 2.{}{}|52,1,A x x B x x y y A=-<<==+∈,()__-42_________.A B = 则,3. 不等式03)4()2(32≤-+-x x x x 的解集为:___(]{}[)-,-402,3∞ ____. 4.函数0()f x =_____()(),11,0-∞-- ___________. 5. 已知方程2(3)4210m x mx m +-+-=的两个根异号,且负根的绝对值比正根大,那么 实数m 的取值范围是:______()3,0-___________. 6. 对于实数x ,设[]x 表示不超过x 的最大整数,则不等式021][20][42<+-x x 的解集是:_____[)2,4________7. Rt ABC 如图1所示,直角边3AB =,4AC =,D 点是斜边BC 上的动点,DE AB ⊥交于点E ,DF AC ⊥交 于点F . 设x AE =,四边形FDEA 的面积为y ,则y 关于x 的函数()f x =___()244,0,33x x x -+∈____.8. 若不等式220ax x --≤的解集为R ,则实数a 的取值范围是:_______1,8⎛⎤-∞- ⎥⎝⎦_____.9. 已知21()(13),0,,3f x x x x ⎛⎫=-∈ ⎪⎝⎭则()f x 的最大值为:_____4243________. 二、选择题(每题4分,共16分)10. 下列各组函数是同一函数的是:( C )①()f x =()g x = ②()f x x =与()g x =③0()f x x =与01()g x x=; ④2()21f x x x =--与2()21g t t t =-- A. ① ② B. ① ③ C. ③ ④ D. ① ④C图111. “2,2a b >>”的( B )条件是44a b a b +>⎧⎨⋅>⎩.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 12. 下列关于集合的说法中,正确的是:( C )A. 绝对值很小的数的全体形成一个集合B. 方程()210x x -=的解集是{}1,0,1 C. 集合{}1,,,a b c 和集合{},,,1c b a 相等 D. 空集是任何集合的真子集13. 设{}1,2,3,4,U =A 与B 是U 的子集,若{}1,3A B = ,则称()A B ,为一个“理想 匹配”,规定(,)A B 与(,)B A 是两个不同的“理想匹配”,那么符合此条件的“理想匹配” 的个数是:( B )A. 8B. 9C. 10D. 11三、解答题(8+10+10+13=41)14. 已知集合{}{}2222240,,430,.A x x x x R B x x ax a x R =--<∈=-+<∈若A B φ= ,求实数a 的取值范围.(){}()()(]{}[)4,6B=|()(3)0,.0,3,6;0;03,, 4.,406,.A x x a x a x R aB a a A B a a B a B a a A B a a φφφ=---<∈>==≥==<==≤-∴∈-∞-+∞ 解:,当时,由得当时,当时,由得15. 设定义域为R 的函数21,0,().(1),0x x f x x x ⎧+≤=⎨->⎩(1). 在平面直角坐标系内作出该函数的图像;(2). 试找出一组b 和c 的值,使得关于x 的方程2()()0f x b f x c +⋅+=有7个不同的实 根. 请说明你的理由.解:(1)(2)(开放题)如31,22b c =-=等. 设()2,0f x t t bt c =++=,由图像可得以上有关于t 的方程必须有一解为1,另一解在区间()0,1中,才会使得关于x 的方程2()()0f x b f x c +⋅+=有7个解. 其中,()1f x =有3个解,()()0,1f x a =∈有四个解. 令()f x t =,所以1211,2t t ==,即可得方程231022t t -+=. 16. 已知,,(0,1)a b c ∈,求证: (1). 1a b ab +<+;(1)1(1)(1),,(0,1),10, 1.a b ab a b a b a b ab a b ab +--=--∈∴+--<+<+ 且即(2). 利用(1)的结论证明 2a b c abc ++<+;(1)()(1)111 2.a b c a b c a bc a bc abc abc ++=++<++=++<++=+(2)由知:(3). 猜想一般结论:1212(0,1),1,2,,, 1.i n n a i n a a a a a a n ∈=+++<+- 已知则17. 已知命题P :函数)1(31)(x x f -=且2)(<a f , 命题Q :集合 {}{}2(2)10,,0A x x a x x R B x x =+++=∈=>且A B =∅ . (1). 若命题P 、Q 中有且仅有一个为真命题,求实数a 的取值范围; (2). 分别求命题P 、Q 为真命题时的实数a 的取值范围; (3). 设P 、Q 皆为真命题时,a 的取值范围为集合S ,已知 ,,0m T y y x x R x x ⎧⎫==+∈≠⎨⎬⎩⎭,若R T S ⊆ð,求m 的取值范围. (1) 当P 为真Q 为假时,(5,4]a ∈--;当Q 为真P 为假时,[7,)a ∈+∞ .所以(5,4][7,).a ∈--+∞(2) P :(5,7)a ∈- ;Q :(4,)a ∈-+∞ .(3) ()((]{}(],4,7.0.,0,4.0=0.0=.,4.R R R R R R P Q S m C T C T S m m C T C T S m C T C T S m φ∴=->=-⊆∴∈=⊆<⊆∴∈-∞ 皆为真,当时,当时,,当时,,。

广东省中山市一般高中2017_2018学年高一数学11月月考

广东省中山市一般高中2017_2018学年高一数学11月月考

上学期高一数学11月月考试题04一.填空题:(每题3分,共42分)1. 集合{1,2,3,4}A =的非空子集的个数为 15 ;2. 若,0,0<>>c b a 则a c > b c ; 3.已知集合}2,2{2a a a -为数集,求实数a 的取值范围是 0≠a 且4≠a ;4.假设集合{}0132=++x kx x 中最多有一个元素,那么k 的取值范围是 0=k 或49≥ ; 5.写出命题“已知a 、b 、c 是实数,若是0<ac ,那么()002≠=++a c bx ax 有实数根”的否命题 已知a 、b 、c 是实数,若是0≥ac ,那么()002≠=++a c bx ax 没有实数根” ;6.写出0x <的一个充分没必要要的条件 1-<x (答案不唯一) ;7.设{}{}2,2,1,,4,2,1m Q m P ==,那么知足P Q P =的实数m 的值为 0,2- ; 8.集合{|24},{|0}A x x B x x a =-<<=-<,当AB =∅时,实数a 的取值范围是 2-≤a ; 9.设全集R U =,集合{|11},{|02}A x x B x x =-≤≤=<<,那么()B AC U ⋃= {}21≥-<x x x 或 ;10.假设{}R x x x x A ∈<--=,0432,那么N A = {}3,2,1,0 ; 11.已知全集{}{}{}4,1,2,5,4,3,2,1===B A C B A U U ,那么=B {}4,2,1 ; 12.设集合2{|43},{|2}A y y x x a B y y ==--++=<,假设A B ⊂≠,那么实数a 的取值范围是5-<a ;13.设集合⎭⎬⎫⎩⎨⎧∈∈-=Z x Z x x A ,36,试用列举法表示集合A = {}9,3,6,0,5,1,4,2- ;14.给出以下条件p 与q :① 1:=x p 或2=x ;11:-=-x x q . ② :p 一元二次方程02=++m x x 有实数解;41:<m q . ③ x p :是6的倍数;x q :是2的倍数. ④ :p 一个四边形是矩形;:q 四边形的对角线相等.其中p 是q 的必要不充分条件的序号为 ② ;二.选择题(每题3分共12分)15.假设0,0<<>>d c b a ,那么以下不等式恒成立的是 ( C )()22ad bc A < ()33ad bc B < ()c b d a C < ()db c a D < 16.以下命题为真命题的是 ( D )()A 假设A B =∅,那么B A ,至少有一个为空集;()B 假设集合(){}(){}1,,1,2--==+-==x y y x B x y y x A ,那么{}1,2-=B A ;()C 任何集合必有一个真子集;()D 假设{}{}22,x y x Q x y y P ====,那么Q P ⊆;17.假设不等式012>-+bx ax 的解集是{}43<<x x ,那么实数b a +的值为 ( A ) ()21A ()2B ()41C ()31D 18.条件M 是N 的充要条件的为 ( D ) ()A 22:;:bc ac N b a M >> ()B c b d a N d c b a M ->->>:;,: ()C bd ac N d c b a M >>>>>:;0,0: ()D 0:;:≤+=-ab N b a b a M三.解答题(共46分)19.(总分值7分)已知0>>b a ,试比较2222b a b a -+与ba b a -+的值的大小. 解:因为2222222b a ab b a b a ba b a --=-+--+,又因为0>>b a ,因此002222>-⇒>>b a b a 且0<-ab , 即02222222<--=-+--+b a ab b a b a b a b a ,因此2222b a b a -+<ba b a -+. 20.(总分值9分)假设{}x U ,1,0=,{}1,0=A ,且U x ∈2,求A C U . 解:因为U x ∈2,那么有02=x 或12=x 或x x =2.解得0=x 或1±=x ,由集合元素的互异性知1-=x ,那么{}1,1,0-=U ,故{}1-=A C U21.(总分值10分)已知31:,421:≤≤+≤≤+x m x m βα,假设α是β的必要条件,求实数m 的取值范围. 解:设{}421+≤≤+=m x m x A ,{}31≤≤=x x B .因为α是β的必要条件,因此A B ⊆,因此⎩⎨⎧+≤≤+42311m m 021≤≤-⇒m . 因此实数m 的取值范围是021≤≤-m .22.(总分值10分)设{}{},015,022=++==++=cx x x B b ax x x A又{}{}3,5,3==B A B A ,求c b a ,,的值.解:因为{}3=B A ,因此8015332-=⇒=++c c , 因此{}{},5,30152==++=cx x x B 由{},5,3=B A 可得{}3=A 或{}5,3=A ,而{}3=B A ,因此{}3=A .因此⎪⎩⎪⎨⎧=++=-=∆0330422b a ac a ⎩⎨⎧=-=⇒96b a , 因此8,9,6-==-=c b a .23.(总分值10分)已知{}{}2,,1,21,1,1r r B d d A =++=,其中1,0≠≠r d ,问当r d ,知足什么条件时B A =?并求出这种情形下的集合A .解:由题意,有两种情形:⑴ ⎩⎨⎧=+=+②①2211r d r d ,由①得1-=r d ,代人②得0122=+-r r ,因此1=r ,与条件1≠r 矛盾,因此在这种情形下B A =不能成立.⑵ ⎩⎨⎧=+=+②①r d r d 2112,由①得12-=r d ,代人②得,0122=--r r ()()0112=-+⇒r r ,由条件1≠r ,得21-=r ,代人②得43-=d . 当21-=r ,43-=d 时,⎭⎬⎫⎩⎨⎧-==21,41,1B A .。

广东省中山市2017-2018学年高一上数学11月月考试题(1)有答案

广东省中山市2017-2018学年高一上数学11月月考试题(1)有答案

上学期高一数学11月月考试题01第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}M=,,a b c ,{}N=,,b c d ,则下列关系式中正确的是A. {},M N a d =UB. {},M N b c =IC .M N ⊆ D. N M ⊆2. 下列函数中,既是奇函数又是增函数的为A. 1y x =+B. 3y x =- C .1y x= D. ||y x x = 3. 已知函数2log ,0,()3,0.x x x f x x >⎧=⎨≤⎩ 则1(())4f f = A .19 B .9 C .19- D .9- 4. 集合{|lg 0}M x x =>,{|311}N x x =-≤-≤,则M N =I A. (1,2) B. [1,2) C . (1,2] D.[1,2]5.下列函数中,不满足:(2)2()f x f x =的是 A. ()f x x = B. ()f x x x =-C .()f x x =+1 D. ()f x x =-6.函数()2x f x x =-A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.若10x -<<,那么下列各不等式成立的是A. 220.2x x x -<<B. 20.22x x x -<<C. 0.222x x x -<<D. 220.2x x x -<<8. 设ln ln 0x y <<,则有A .1x y >>B .1y x >>C . 01y x <<<D .01x y <<<9. 已知2m >,点1(1,)m y -,2(,)m y ,3(1,)m y +都在函数22y x x =-的图像上,则下列不等式中正确的是A. 123y y y <<B. 321y y y <<C. 132y y y <<D. 213y y y <<10.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为221y x =+,值域为{3,19}的“孪生函数”共有A. 15个B. 12个C. 9个D. 8个二、填空题:本大题共6小题,每小题5分,共30分.11. 若集合{}1,2,3A =,{}1,,4B x =,{}1,2,3,4A B =U ,则x = .12. 如果全集为R ,集合{}1M x x =≥,集合{}03N x x =≤<,则)R M N =I (ð .13. 方程555log (2)log (34)log (2)x x x +--=--的解为 .14.函数()f x =的定义域为 .15. 二次函数的图像过点(2,1)-,且在[)1,+∞上是减少的,则这个函数的解析式可以为 .16. 方程2log 3x x =-的实数解的个数为 .三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤. 17.已知函数⎪⎩⎪⎨⎧<-=>-=.0 ,21,0 ,2,0 ,4)(2x x x x x x f(Ⅰ)求)]2([-f f 的值;(Ⅱ)求)1(2+a f (a R ∈)的值;(Ⅲ)当34<≤-x 时,求函数)(x f 的值域.18. 已知{25},{121}A x x B x m x m =-≤≤=+≤≤-,若B A ⊆,求实数m的取值范围.19. 某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次每件利润增加4元.,一天的工时可以生产最低档产品60件,每提高一个档次将减少6件产品,求生产何种档次的产品时获得利润最大.20.已知二次函数22()2(21)543f x x a x a a =--+-+,求()f x 在[]0,1上的最小值()g a 的解析式,并画出()g a 的图像.参考答案一、选择题:(本大题共10小题,每小题6分,共60分).1. B2. D 3.A 4. C 5. C6. B7. D 8.D 9. A 10. C二、填空题:(本大题共6小题,每小题5分,共30分)11. 2或3 12. {|13}x x x <≥或 13. 3 14. 3,14⎛⎤ ⎥⎝⎦15. 229y x x =-++ (答案不惟一) 16. 2三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.17. 解:(Ⅰ)2[(2)](5)4521f f f -==-=- (5分)(Ⅱ)22242(1)4(1)23f a a a a +=-+=--+ (10分)(Ⅲ)①当04<≤-x 时,∵x x f 21)(-= ∴9)(1≤<x f(11分) ②当0=x 时,2)0(=f(12分) ③当30<<x 时,∵24)(x x f -= ∴45<<-x (14分)故当34<≤-x 时,函数)(x f 的值域是(5,9]- (15分)18. 解:当B =∅时,211m m -<+ , 解得2m < (4分)当B ≠∅时,由B A ⊆得12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩(12分)解得23m ≤≤ (14分)综上可知:3m ≤ (15分)19. 解: 设生产第x 档次的产品时获得利润为y 元. (2分)[4(1)8][606(y x x =-+-- (110,x x N ≤≤∈)(8分)224(5)864y x =--+ (13分)当5x =时,max 864y = (14分)答:生产第5档次的产品时获得利润最大. (15分)20. 解:对称轴2(21)212a x a --=-=- (1分) ①当210a -<时,即12a <,2()(0)543g a f a a ==-+ (3分)②当0211a ≤-<时,即112a ≤<, 22()(21)(21)2(21)(21)543g a f a a a a a a =-=----+-+22a =+ (6分)③当211a -≥时,即1a ≥,2()(1)586g a f a a ==-+ (9分)222154321()2125861a a a g a a a a a a ⎧-+<⎪⎪⎪=+≤<⎨⎪⎪-+≥⎪⎩ (10分) 图像得5分。

广东省中山市2018-2019学年高一上数学11月月考试题(4)含答案

广东省中山市2018-2019学年高一上数学11月月考试题(4)含答案

上学期高一数学11月月考试题一.填空题:(每小题3分,共42分)1. 集合{1,2,3,4}A =的非空子集的个数为 15 ;2. 若,0,0<>>c b a 则a c > bc ; 3.已知集合}2,2{2a a a -为数集,求实数a 的取值范围是 0≠a 且4≠a ;4.若集合{}0132=++x kx x 中至多有一个元素,则k 的取值范围是 0=k 或49≥ ; 5.写出命题“已知a 、b 、c 是实数,如果0<ac ,那么()002≠=++a c bx ax 有实数根”的否命题 已知a 、b 、c 是实数,如果0≥ac ,那么()002≠=++a c bx ax 没有实数根” ;6.写出0x <的一个充分不必要的条件 1-<x (答案不唯一) ;7.设{}{}2,2,1,,4,2,1m Q m P ==,则满足P Q P =的实数m 的值为 0,2- ;8.集合{|24},{|A x x B x x a =-<<=-<,当AB =∅时,实数a 的取值范围是 2-≤a ;9.设全集R U =,集合{|11},{A x x B x x =-≤≤=<<,则()B A C U ⋃= {}21≥-<x x x 或 ;10.若{}R x x x x A ∈<--=,0432,则N A = {}3,2,1,0 ; 11.已知全集{}{}{}4,1,2,5,4,3,2,1===B A C B A U U ,则=B {}4,2,1 ; 12.设集合2{|43},{|2}A y y x x a B y y ==--++=<,若A B ⊂≠,则实数a 的取值范围是5-<a ;13.设集合⎭⎬⎫⎩⎨⎧∈∈-=Z x Z x x A ,36,试用列举法表示集合A = {}9,3,6,0,5,1,4,2- ;14.给出下列条件p 与q :① 1:=x p 或2=x ;11:-=-x x q .② :p 一元二次方程02=++m x x 有实数解;41:<m q . ③ x p :是6的倍数;x q :是2的倍数.④ :p 一个四边形是矩形;:q 四边形的对角线相等.其中p 是q 的必要不充分条件的序号为 ② ;二.选择题(每小题3分共12分)15.若0,0<<>>d c b a ,则下列不等式恒成立的是 ( C )()22ad bc A < ()33ad bc B < ()c b d a C < ()db c a D < 16.下列命题为真命题的是 ( D )()A 若A B =∅,则B A ,至少有一个为空集;()B 若集合(){}(){}1,,1,2--==+-==x y y x B x y y x A ,则{}1,2-=B A ;()C 任何集合必有一个真子集;()D 若{}{}22,x y x Q x y y P ====,则Q P ⊆;17.若不等式012>-+bx ax 的解集是{}43<<x x ,则实数b a +的值为 ( A ) ()21A ()2B ()41C ()31D 18.条件M 是N 的充要条件的为 ( D )()A 22:;:bc ac N b a M >> ()B c b d a N d c b a M ->->>:;,:()C bd ac N d c b a M >>>>>:;0,0: ()D 0:;:≤+=-ab N b a b a M三.解答题(共46分)19.(满分7分)已知0>>b a ,试比较2222b a b a -+与ba b a -+的值的大小. 解:因为2222222b a ab b a b a ba b a --=-+--+,又因为0>>b a ,所以002222>-⇒>>b a b a 且0<-ab , 即02222222<--=-+--+b a ab b a b a b a b a ,所以2222b a b a -+<ba b a -+. 20.(满分9分)若{}x U ,1,0=,{}1,0=A ,且U x ∈2,求A C U . 解:因为U x ∈2,则有02=x 或12=x 或x x =2.解得0=x 或1±=x ,由集合元素的互异性知1-=x ,则{}1,1,0-=U ,故{}1-=A C U21.(满分10分)已知31:,421:≤≤+≤≤+x m x m βα,若α是β的必要条件,求实数m 的取值范围. 解:设{}421+≤≤+=m x m x A ,{}31≤≤=x x B .因为α是β的必要条件,所以A B ⊆,所以⎩⎨⎧+≤≤+42311m m 021≤≤-⇒m .所以实数m 的取值范围是021≤≤-m . 22.(满分10分)设{}{},015,022=++==++=cx x x B b ax x x A 又{}{}3,5,3==B A B A ,求c b a ,,的值.解:因为{}3=B A ,所以8015332-=⇒=++c c , 所以{}{},5,30152==++=cx x x B 由{},5,3=B A 可得{}3=A 或{}5,3=A , 而{}3=B A ,所以{}3=A .所以⎪⎩⎪⎨⎧=++=-=∆0330422b a ac a ⎩⎨⎧=-=⇒96b a , 所以8,9,6-==-=c b a .23.(满分10分)已知{}{}2,,1,21,1,1r r B d d A =++=,其中1,0≠≠r d ,问当r d ,满足什么条件时B A =?并求出这种情形下的集合A . 解:由题意,有两种情形:⑴ ⎩⎨⎧=+=+②①2211rd r d ,由①得1-=r d ,代人②得0122=+-r r ,所以1=r ,与条件1≠r 矛盾,因此在这种情形下B A =不能成立.⑵ ⎩⎨⎧=+=+②①r d r d 2112,由①得12-=r d ,代人②得,0122=--r r ()()0112=-+⇒r r ,由条件1≠r ,得21-=r ,代人②得43-=d . 当21-=r ,43-=d 时,⎭⎬⎫⎩⎨⎧-==21,41,1B A .。

广东省中山市2018-2019学年高一上数学11月月考试题(3)含答案

广东省中山市2018-2019学年高一上数学11月月考试题(3)含答案

上学期高一数学11月月考试题一、填空题:(每题4分,共48分)1、函数y =______________。

2、已知集合{0,1,2}P =,{|2,}Q x x a a P ==∈,则集合P Q = ______ 。

3、命题“若11a b >>且,则2a b +>”的否命题是_________命题(填“真”或“假”)。

4、已知2x >,当122x x +-取到最小值时,x 的值____________。

5、“12a b ≠≠或”是“3a b +≠”成立的______________条件。

6、不等式组2|12|9120x x x -<⎧⎨-->⎩的解集为 _______ 。

7、设条件2:8200P x x -->,条件22:210Q x x a -+->(a R ∈),若P 是Q 的充分非必要条件,则实数a 的取值范围是_______________。

8、若关于x 的方程2(3)0x a x a +-+=的两根均为正数,则实数a 的范围是___________。

9、要围一个面积为8千米的矩形花园,其中一面借助旧墙,另三面需要砌新墙,为了使所用材料最省,该花园较长的一边长为_________________ 。

10、若关于x 的不等式260ax bx ++>的解集是3(,2)2-,则不等式260bx ax +->的解集是____________________。

11、在R 上定义运算⊗:2x x y y⊗=-,若关于x 的不等式()(1)0x a x a -⊗+->的解集为{|22,}x x x R -≤≤∈的子集,则实数a 的取值范围是__________________。

12、对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+的上确界,若,,1a b R a b +∈+=且,则122a b--的上确界为________________。

普通高中2017-2018学年上学期高一数学11月月考试题: 02含答案

普通高中2017-2018学年上学期高一数学11月月考试题: 02含答案

上学期高一数学11月月考试题02一、填空题(每题5分,共45分) 1. 命题P :“如果0a b +>,那么00.a b >>且”写出命题P 的否命题: ___“如果0a b +≤,那么00.a b ≤≤或” _.2.{}{}|52,1,A x x B x x y y A=-<<==+∈,()__-42_________.A B =I则,3. 不等式03)4()2(32≤-+-x x x x 的解集为:___(]{}[)-,-402,3∞U ____. 4.函数0()f x =的定义域是:_____()(),11,0-∞--U ___________. 5. 已知方程2(3)4210m x mx m +-+-=的两个根异号,且负根的绝对值比正根大,那么 实数m 的取值范围是:______()3,0-___________. 6. 对于实数x ,设[]x 表示不超过x 的最大整数,则不等式021][20][42<+-x x 的解集是:_____[)2,4________7. Rt ABC V 如图1所示,直角边3AB =,4AC =,D 点是斜边BC 上的动点,DE AB ⊥交于点E ,DF AC ⊥交 于点F . 设x AE =,四边形FDEA 的面积为y ,则y 关于x 的函数()f x =___()244,0,33x x x -+∈____.8. 若不等式220ax x --≤的解集为R ,则实数a 的取值范围是:_______1,8⎛⎤-∞- ⎥⎝⎦_____.9. 已知21()(13),0,,3f x x x x ⎛⎫=-∈ ⎪⎝⎭则()f x 的最大值为:_____4243________. 二、选择题(每题4分,共16分)10. 下列各组函数是同一函数的是:( C )①()f x =()g x = ②()f x x =与()g x =;③0()f x x =与01()g x x=; ④2()21f x x x =--与2()21g t t t =-- A. ① ② B. ① ③ C. ③ ④ D. ① ④ 11. “2,2a b >>”的( B )条件是44a b a b +>⎧⎨⋅>⎩.C图1A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 12. 下列关于集合的说法中,正确的是:( C )A. 绝对值很小的数的全体形成一个集合B. 方程()210x x -=的解集是{}1,0,1C. 集合{}1,,,a b c 和集合{},,,1c b a 相等D. 空集是任何集合的真子集13. 设{}1,2,3,4,U =A 与B 是U 的子集,若{}1,3A B =I ,则称()A B ,为一个“理想 匹配”,规定(,)A B 与(,)B A 是两个不同的“理想匹配”,那么符合此条件的“理想匹配” 的个数是:( B )A. 8B. 9C. 10D. 11三、解答题(8+10+10+13=41)14. 已知集合{}{}2222240,,430,.A x x xx R B x x ax a x R =--<∈=-+<∈若A B φ=I ,求实数a 的取值范围.(){}()()(]{}[)4,6B=|()(3)0,.0,3,6;0;03,, 4.,406,.A x x a x a x R aB a a A B a a B a B a a A B a a φφφ=---<∈>==≥==<==≤-∴∈-∞-+∞I I U U 解:,当时,由得当时,当时,由得15. 设定义域为R 的函数21,0,().(1),0x x f x x x ⎧+≤=⎨->⎩ (1). 在平面直角坐标系内作出该函数的图像;(2). 试找出一组b 和c 的值,使得关于x 的方程2()()0f x b f x c +⋅+=有7个不同的实 根. 请说明你的理由. 解:(1)(2)(开放题)如31,22b c =-=等. 设()2,0f x t t bt c =++=,由图像可得以上有关于t 的方程必须有一解为1,另一解在区间()0,1中,才会使得关于x 的方程2()()0f x b f x c +⋅+=有7个解. 其中,()1f x =有3个解,()()0,1f x a =∈有四个解. 令()f x t =,所以1211,2t t ==,即可得方程231022t t -+=. 16. 已知,,(0,1)a b c ∈,求证: (1). 1a b ab +<+;(1)1(1)(1),,(0,1),10, 1.a b ab a b a b a b ab a b ab +--=--∈∴+--<+<+Q 且即(2). 利用(1)的结论证明 2a b c abc ++<+;(1)()(1)111 2.a b c a b c a bc a bc abc abc ++=++<++=++<++=+(2)由知:(3). 猜想一般结论:1212(0,1),1,2,,, 1.i n n a i n a a a a a a n ∈=+++<+-L L L 已知则17. 已知命题P :函数)1(31)(x x f -=且2)(<a f ,命题Q :集合 {}{}2(2)10,,0A x x a x x R B x x =+++=∈=>且A B =∅I . (1). 若命题P 、Q 中有且仅有一个为真命题,求实数a 的取值范围; (2). 分别求命题P 、Q 为真命题时的实数a 的取值范围; (3). 设P 、Q 皆为真命题时,a 的取值范围为集合S ,已知 ,,0m T y y x x R x x ⎧⎫==+∈≠⎨⎬⎩⎭,若R T S ⊆ð,求m 的取值范围.(1) 当P 为真Q 为假时,(5,4]a ∈--;当Q 为真P 为假时,[7,)a ∈+∞ .所以(5,4][7,).a ∈--+∞U(2) P :(5,7)a ∈- ;Q :(4,)a ∈-+∞ .(3)()((]{}(],4,7.0.,0,4.0=0.0=.,4.R RR RR RP Q Sm C T C T S mm C T C T Sm C T C T Smφ∴=->=-⊆∴∈=⊆<⊆∴∈-∞QQ皆为真,当时,当时,,当时,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根” ;
6.写出 x 0 的一个充分不必要的条件 x 1 (答案不唯一)

7. 设 P 1, 2, 4, m,Q 1, 2, m2 , 则 满 足 P Q P 的 实 数 m 的 值 为
2 ,0

8.集 合 A {x | 2 x 4}, B {x | x a 0} , 当 A B 时 , 实 数 a 的 取 值 范 围 是
③ p : x 是 6 的倍数; q : x 是 2 的倍数.
④ p :一个四边形是矩形; q : 四边形的对角线相等.
其中 p 是 q 的必要不充分条件的序号为


二.选择题(每小题 3 分共 12 分)
15.若 a b 0 , c d 0 ,则下列不等式恒成立的是
(C )
A bc2 ad 2

4. 若 集 合 x kx2 3x 1 0 中 至 多 有 一 个 元 素 , 则 k 的 取 值 范 围 是 k 0 或
k9 ; 4
5.写出命题“已知 a 、 b 、 c 是实数,如果 ac 0 ,那么 ax 2 bx c 0 a 0有实数根”
的否命题 已知 a 、 b 、 c 是实数,如果 ac 0 ,那么 ax 2 bx c 0 a 0没有实数
满足什么条件时 A B ?并求出这种情形下的集合 A .
1 d r
解:由题意,有两种情形:⑴
1

2d

r2
① ,由①得 d r 1,代人②得 r 2 2r 1 0 ,

所以 r 1 ,与条件 r 1 矛盾,因此在这种情形下 A B 不能成立.
1 d r 2 ⑵
又 A B 3,5, A B 3,求 a ,b , c 的值.
解:因为 A B 3,所以 32 3c 15 0 c 8 ,
所以 B x x2 cx 15 0 3 ,5, 由 A B 3,5, 可得 A 3或 A 3 ,5,

13.设集合
A

x
3
6
x

Z
,
x

Z

,试用列举法表示集合
A
=
2,4,1,5,0,6,3,9

14.给出下列条件 p 与 q :
① p : x 1或 x 2 ;q : x 1 x 1.
② p :一元二次方程 x 2 x m 0 有实数解; q : m 1 . 4
C 任何集合必有一个真子集;
D 若 P y y x2 ,Q x y x2 ,则 P Q ;
17.若不等式 ax2 bx 1 0 的解集是 x 3 x 4 ,则实数 a b 的值为 ( A )
A 1
B 2
2
18.条件 M 是 N 的充要条件的为
异性知 x 1,则U 0,1, 1,故 CU A 1
21.(满分 10 分)已知 :m 1 x 2m 4, :1 x 3 ,若 是 的必要条件,求实数 m
的取值范围.
解:设 A x m 1 x 2m 4, B x1 x 3.
A M : a b; N : ac2 bc2
C 1
4
D 1
3
(D)B M : a Fra bibliotek b,c d ; N : a d b c
C M : a b 0, c d 0; N : ac bd D M : a b a b ; N : ab 0
B bc3 ad 3
16.下列命题为真命题的是
C a b
dc
A 若 A B ,则 A, B 至少有一个为空集;
D a b
cd
(D )
B 若集合 A x , y y x 1, B x , y y x2 1 ,则 A B 2,1;
且 ab 0 ,
a2

a2
b2 b2

ab ab

2ab a2 b2

a2 0 ,所以 a 2
b2 b2
ab


ab
20.(满分 9 分)若U 0,1, x, A 0 , 1,且 x2 U ,求 CU A .
解:因为 x 2 U ,则有 x 2 0 或 x 2 1或 x 2 x .解得 x 0 或 x 1,由集合元素的互

a 2

9.设 全 集 U R , 集 合 A {x | 1 x 1}, B {x | 0 x 2} , 则 CU A B =
x x 1或x 2

10.若 A x x2 3x 4 0, x R ,则 A N = 0,1,2,3

A

B

3,所以
A

3.所以
a 2 4ac 32 3a b
0
0

a b

6 9

所以 a 6 ,b 9 , c 8 .
23.(满分 10 分)已知 A 1 ,1 d ,1 2d, B 1 , r , r 2 ,其中 d 0, r 1 ,问当 d , r
1 2d r
① ,由①得 d r 2 1,代人②得, 2r 2 r 1 0 ②
2r 1r 1 0 ,由条件 r 1,得 r 1 ,代人②得 d 3 .
2
4
当 r


1 2
,d


3 4
时,
A

B

1
,
1 4
,
1
2

因为


的必要条件,所以
B

m 1 A ,所以 3 2m
1
4


1 2

m

0.
所以实数 m 的取值范围是 1 m 0 . 2
22.(满分 10 分)设 A x x2 ax b 0 , B x x2 cx 15 0 ,
三.解答题(共 46 分)
19.(满分
7
分)已知 a

b

0 ,试比较
a2 a2

b2 b2

a a

b b
的值的大小.
解:因为 a 2 b2 a b 2ab ,又因为 a b 0 ,所以 a 2 b2 0 a 2 b2 0 a2 b2 a b a2 b2

11.已知全集U 1 , 2,3, 4,5, A B 2,CU A B 1, 4,则 B 1,2,4

12.设集合 A {y | y x2 4x a 3}, B {y | y 2},若 A B ,则实数 a 的取值范围
是 a 5
上学期高一数学 11 月月考试题 04
一.填空题:(每小题 3 分,共 42 分)
1. 集合 A {1, 2, 3, 4}的非空子集的个数为 15

2. 若 a b 0, c 0, 则 c

c

a
b
3.已知集合{2a, a2 2a}为数集,求实数 a 的取值范围是 a 0 且 a 4
相关文档
最新文档