中考数学总复习六分式精练精析1华东师大版

合集下载

中考一轮复习 数学专题06 分式方程(老师版)

中考一轮复习 数学专题06 分式方程(老师版)

专题06 分式方程一、单选题1.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x =【答案】A【解析】【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得 23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.2.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠【答案】B【解析】【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.3.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =-【答案】C【解析】【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.【详解】 解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.4.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+- B .1449630v v =- C .144963030v v =-+ D .1449630v v=+ 【答案】A【解析】【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v =+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.5.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =-【答案】C【解析】【分析】按照解分式方程的步骤解答即可.【详解】 解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案选C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.6.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根. 7.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【解析】【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 8.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x -⨯=- 【答案】D【解析】【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x -⨯=-, 故选:D .【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.9.(2021·四川巴中)关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2【答案】B【解析】【分析】解分式方程得:63m x x +=-即46x m =-,由题意可知2x ≠,即可得到68m -≠.【详解】 解:302m x x +-=- 方程两边同时乘以2x -得:630m x x +-+=,∵46x m =-,∵分式方程有解,∵20x -≠,∵2x ≠,∵68m -≠,∵2m ≠-,故选B.【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键. 10.(2021·内蒙古呼伦贝尔)若关于x 的分式方程2233x a x x ++=--无解,则a 的值为( ) A .3 B .0 C .1- D .0或3【答案】C【解析】【分析】直接解分式方程,再根据分母为0列方程即可.【详解】 解:2233x a x x++=--, 去分母得:2﹣x ﹣a =2(x ﹣3),解得:x =83a -, 当833a -=时,方程无解, 解得1a =-.故选:C .【点睛】本题考查了分式方程无解,解题关键是明确分式方程无解的条件,解方程,再根据分母为0列方程. 11.(2021·四川宜宾)若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2【答案】C【解析】【分析】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.【详解】 解:322x m x x -=--, 去分母得:()32x x m --=,∵关于x 的分式方程322x m x x -=--有增根,增根为:x =2, ∵()2322m --=,即:m =2,故选C .【点睛】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键.12.(2021·广西贺州)若关于x 的分式方程43233m x x x +=+--有增根,则m 的值为( ) A .2B .3C .4D .5【答案】D【解析】【分析】 根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可.【详解】解:∵分式方程43233m x x x +=+--有增根, ∵3x =,去分母,得()4323m x x +=+-,将3x =代入,得49m +=,解得5m =.故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 13.(2021·黑龙江)已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥-B .4m ≥-且3m ≠-C .4m >-D .4m >-且3m ≠- 【答案】B【解析】【分析】根据题意先求出分式方程的解,然后根据方程的解为非负数可进行求解.【详解】解:由关于x 的分式方程3121m x +=-可得:42m x +=,且12x ≠, ∵方程的解为非负数, ∵402m +≥,且4122m +≠, 解得:4m ≥-且3m ≠-,故选B .【点睛】本题主要考查分式方程的解法及一元一次不等式的解法,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.14.(2020·黑龙江鹤岗)已知关于x 的分式方程433x k x x -=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <- 【答案】A【解析】【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】 解:方程433x k x x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∵412x x k -+=-,∵312x k -=--, ∵43k x =+, ∵解为非正数, ∵403k +≤, ∵12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.15.(2020·湖北荆门)已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定 【答案】A【解析】【分析】先解出关于x 的分式方程得到x =63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x kx x x +=+--+得x =217k -,∵41x -<<- ∵21471k --<<-解得-7<k <14∵整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x ≠2且x ≠-3∵k ≠35且k ≠0∵所有符合条件的k 中,含负整数6个,正整数13个,∵k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法. 16.(2020·黑龙江牡丹江)若关于x 的方程201mx x -=+的解为正数,则m 的取值范围是() A .2m < B .2m <且0m ≠ C .2m > D .2m >且4m ≠【答案】C【解析】【分析】先将分式方程化为整式方程,再根据方程的解为正数得出不等式,且不等于增根,再求解.【详解】解:∵解方程201mx x -=+,去分母得:()210mx x -+=,整理得:()22m x -=,∵方程有解, ∵22x m =-,∵分式方程的解为正数, ∵202m >-,解得:m >2,而x≠-1且x≠0,则22m-≠-1,22m-≠0,解得:m≠0,综上:m的取值范围是:m>2.故选C.【点睛】本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.17.(2020·四川泸州)已知关于x的分式方程3211mx x+=---的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6本号资料@皆来源于微*信公#众号:数学【答案】B【解析】【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.【详解】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x=52m,∵分式方程的解为非负数,∵52m≥0且52m≠1,解得:m≤5且m≠3,∵m为正整数∵m=1,2,4,5,共4个,故选:B.【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.18.(2020·重庆)若关于x的一元一次不等式组()213212x xx a⎧-≤-⎪⎨->⎪⎩的解集为x≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .0【答案】B【解析】【分析】 首先由不等式组的解集为x ≥5,得a <3,然后由分式方程有非负整数解,得a ≥-2且a ≠2的偶数,即可得解.【详解】由题意,得()2132x x -≤-,即5x ≥12x a ->,即2x a +> ∵25a +<,即3a <122+=---y a y y ,解得22a y += 有非负整数解,即202a y +=≥ ∵a ≥-2且a ≠2∵23a -≤<且2a ≠ ∵符合条件的所有整数a 的数有:-2,-1,0,1又∵22a y +=为非负整数解, ∵符合条件的所有整数a 的数有:-2,0∵其和为202-+=-故选:B.【点睛】此题主要考查根据不等式组的解集和分式方程的解求参数的值,熟练掌握,即可解题.19.(2020·重庆)若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )# 本号资料皆来源于微@信公*众号:数学A .7B .-14C .28D .-56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.【详解】 解:解不等式3132x x -≤+,解得x ≤7, ∵不等式组整理的7x x a≤⎧⎨≤⎩, 由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a ,解得:y =+23a , 由y 为正整数解且y ≠2,得到a =1,7,1×7=7,故选:A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.(2022·重庆)关于x 的分式方程31133x a x x x -++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20【答案】A【解析】【分析】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.【详解】由分式方程的解为整数可得:313x a x x ---=-解得:2=-x a又题意得:20a ->且23a -≠∵2a >且5a ≠,由()922y y +≤+得:5y ≥ 由213y a ->得:32a y +> ∵解集为5y ≥ ∵352a +< 解得:7a <综上可知a 的整数解有:3,4,6它们的和为:13故选:A .【点睛】本题考查含参数的分式方程和含参数的不等数组,掌握由解集倒推参数范围是本题关键.21.(2022·四川遂宁)若关于x 的方程221m x x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或4 【答案】D【解析】【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=,原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解;当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.22.(2022·重庆)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26B .-24C .-15D .-13【答案】D【解析】【分析】 根据不等式组的解集,确定a >-11,根据分式方程的负整数解,确定a <1,根据分式方程的增根,确定a ≠-2,计算即可.【详解】 ∵ 411351x x x a -⎧-≥⎪⎨⎪-⎩①<②,解∵得解集为2x -≤,解∵得解集为15a x +<, ∵ 不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤, ∵125a +->, 解得a >-11, ∵ 1211y a y y -=-++的解是y =13a -,且y ≠-1,1211y a y y -=-++的解是负整数, ∵a <1且a ≠-2,∵-11<a <1且a ≠-2,故a =-8或a =-5,故满足条件的整数a 的值之和是-8-5=-13,故选D.【点睛】本题考查了不等式组的解集,分式方程的特殊解,增根,熟练掌握不等式组的解法,灵活求分式方程的解,确定特殊解,注意增根是解题的关键.23.(2022·四川德阳)关于x的方程211x ax+=-的解是正数,则a的取值范围是()A.a>-1B.a>-1且a≠0C.a<-1D.a<-1且a≠-2【答案】D【解析】【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x为正数.所以-a-1>0,解得a<-1,且a≠-2.(因为当a=-2时,方程不成立.).【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息.24.(2020·云南昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元【答案】C【解析】【分析】设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【详解】解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据题意得:80004000800011.2x x+-=, 解得:x =2000,经检验:x =2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C .【点睛】本题考查了分式方程的应用,解题的关键是找到题目中的等量关系,难度不大.25.(2020·黑龙江齐齐哈尔)若关于x 的分式方程32x x -=2m x -+5的解为正数,则m 的取值范围为( ) A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣6【答案】D【解析】【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m 的范围即可.【详解】解:去分母得35(2)x m x =-+-, 解得102m x +=, 由方程的解为正数,得到100m +>,且2x ≠,104m +≠,则m 的范围为10m >-且6≠-m ,故选:D .【点睛】本题主要考查了分式方程的计算,去分母化为整式方程,根据方程的解求出m 的范围,其中考虑到分式方程的分母不可为零是做对题目的关键.26.(2020·黑龙江牡丹江)若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3B .5C .3或5D .3或4【答案】D【解析】【分析】解带参数m 的分式方程,得到2122m x m m ==+--,即可求得整数m 的值.【详解】 解:21mx x =-,两边同时乘以()1x x -得:()21x m x =-,去括号得:2x mx m =-,移项得:2x mx m -=-,合并同类项得:()2m x m -=-,系数化为1得:2122mx m m ==+--,若m 为整数,且分式方程有正整数解,则3m =或4m =,当3m =时,3x =是原分式方程的解;当4m =时,2x =是原分式方程的解;故选:D .【点睛】本题考查分式方程的解,始终注意分式方程的分母不为0这个条件.27.(2020·黑龙江黑龙江)已知关于x 的分式方程422x kx x -=--的解为正数,则x 的取值范围是()A .80k -<<B .8k >-且2k ≠-C .8k >-D .4k <且2k ≠-【答案】B【解析】【分析】先解分式方程利用k 表示出x 的值,再由x 为正数求出k 的取值范围即可.【详解】方程两边同时乘以2x -得,()420x x k --+=, 解得:83kx +=.∵x 为正数, ∵803k+>,解得8k >-,∵2x ≠,∵823k +≠,即2k ≠-, ∵k 的取值范围是8k >-且2k ≠-.故选:B .【点睛】本题考查了解分式方程及不等式的解法,解题的关键是熟练运用分式方程的解法,28.(2020·山东枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .4x =B .5x =C .6x =D .7x = 【答案】B【解析】【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.【详解】 解:211(2)(2)4x x x ⊗-==--- ∵方程表达为:12144x x =--- 解得:5x =,经检验,5x =是原方程的解,故选:B .【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.二、填空题29.(2022·辽宁大连)方程213x =-的解是_______. 【答案】5x =【解析】【分析】先去分母,化成一元一次方程,求解,检验分母不为0,即可.【详解】去分母得:23x =-,解得:5x =,检验:35320x -=-=≠,∵原方程的解为x =5.故答案为:5x =.【点睛】本题考查解分式方程,注意结果要代入分母,检验分母是否为0. 本号资料皆来源于微信#:数学30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【解析】【分析】根据解分式方程的方法中确定公分母的方法求解即可.【详解】 解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x(x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2021·湖北黄石)分式方程11322-+=--x x x的解是______. 【答案】3x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 解:11322-+=--x x x 去分母得:()()1132x x --=-,去括号化简得:26x =,解得:3x =,经检验3x=是分式方程的根,故填:3x=.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.32.(2020·山东济南)代数式31x-与代数式23x-的值相等,则x=_____.【答案】7【解析】【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【详解】解:根据题意得:3213x x=--,去分母得:3x﹣9=2x﹣2,解得:x=7,经检验x=7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.33.(2020·山东潍坊)若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.【答案】3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∵m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值. 34.(2022·广东广州)分式方程3221x x =+的解是________ 【答案】3x = 【解析】 【分析】先去分母,将分式方程转化成整式方程求解,再检验即可求解; 【详解】解:方程两边同时乘以2x (x +1),得 3(x +1)=4x 3x +3=4x x =3,检验:把x =3代入2x (x +1)=2×3(3+1)=24≠0, ∵原分式方程的解为:x =3. 故答案为:x=3. 【点睛】本题考查解分式方程,解分式方程的基本思想是将分式方程转化成整式方程求解,注意:解分式方程一定要验根.35.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x mx x x ++=-+-的解大于1,则m 的取值范围是______________. 【答案】m >0且m ≠1 【解析】 【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可. 【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+, ∵分式方程的解大于1, ∵11m +>,解得:0m >,又分式方程的分母不为0, ∵12m 且12m ,解得:1m ≠且3m ≠-,∵m 的取值范围是m >0且m ≠1. 【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 36.(2021·湖北湖北)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______.【答案】3 【解析】 【分析】先根据一元二次方程的根与系数的关系可得22,m m m αβαβ+==-,再根据111αβ+=可得一个关于m 的方程,解方程即可得m 的值. 【详解】解:由题意得:22,m m m αβαβ+==-, 111αβαβαβ++==, 221mm m∴=-,化成整式方程为230m m -=, 解得0m =或3m =,经检验,0m =是所列分式方程的增根,3m =是所列分式方程的根, 故答案为:3. 【点睛】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.37.(2021·湖南常德)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x = 【解析】 【分析】直接利用通分,移项、去分母、求出x 后,再检验即可. 【详解】解:1121(1)x x x x x ++=-- 通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠, ∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.38.(2021·四川凉山)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2 【解析】 【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-, 解得3x m =+, ∵x 为正数,∵m +3>0,解得m >-3. ∵x ≠1,∵m +3≠1,即m ≠-2.∵m 的取值范围是m >-3且m ≠-2. 故答案为:m >-3且m ≠-2. 【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.39.(2020·四川巴中)若关于x 的分式方程31(1)x mx x x +=--有增根,则m =_________. 【答案】4-或0 【解析】 【分析】先确定最简公分母,令最简公分母为0求出x 的值,然后把分式方程化为整式方程,再将x 的值代入整式方程,解关于m 的方程即可得解. 【详解】解:分式方程最简公分母为(1)x x -,由分式方程有增根,得到10x -=或0x =,即0x =或1x =, 分式方程去分母得:23x x m +=-, 把0x =代入方程得:0m =-, 解得:0m =.把1x =代入方程得:13m +=-, 解得:4m =-. 故填:4-或0. 【点睛】本题考查了分式方程的增根问题,增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值.40.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【解析】 【分析】适当引进未知数,合理转化条件,构造等式求解即可. 【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a .∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=, 设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+, ∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n⋅-⋅-=++⋅+, 故答案为:35.【点睛】本题考查了未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键. 41.(2021·山东潍坊)若x <2,且12102x x x +-+-=-,则x =_______. 【答案】1 【解析】 【分析】先去掉绝对值符号,整理后方程两边都乘以x ﹣2,求出方程的解,再进行检验即可. 【详解】 解:12x +-|x ﹣2|+x ﹣1=0, ∵x <2, ∵方程为12x +-2﹣x +x ﹣1=0, 即12x =--1, 方程两边都乘以x ﹣2,得1=﹣(x ﹣2), 解得:x =1,经检验x =1是原方程的解, 故答案为:1. 【点睛】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.42.(2021·四川雅安)若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 【答案】4k <且0k ≠ 【解析】 【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可. 【详解】解: 2(2)11x k -+-=420x k --=42kx -=根据题意0x >且2x ≠ ∵402422kk -⎧>⎪⎪⎨-⎪≠⎪⎩∵40k k <⎧⎨≠⎩∵k 的取值范围是4k <且0k ≠. 【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.43.(2021·辽宁本溪)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________. 【答案】30024010x x=+ 【解析】 【分析】设B 种奖品的单价为x 元,则A 种奖品的单价为(x +10)元,利用数量=总价÷单价,结合用300元购买A 种奖品的件数与用240元购买B 种奖品的件数相同,即可得出关于x 的分式方程. 【详解】解:设B 种奖品的单价为x 元,则A 种奖品的单价为(x +10)元, 依题意得:30024010x x =+, 故答案为:30024010x x=+ 【点睛】本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程. 44.(2021·河北)用绘图软件绘制双曲线m :60y x=与动直线l :y a =,且交于一点,图1为8a =时的视窗情形.(1)当15a =时,l 与m 的交点坐标为__________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由1515x -≤≤及1010y -≤≤变成了3030x -≤≤及2020y -≤≤(如图2).当 1.2a =-和 1.5a =-时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k =__________.【答案】 ()4,15 4 【解析】 【分析】(1)结合题意,根据一次函数和反比例函数的性质列分式方程并求解,即可得到答案;(2)当 1.2a =-和 1.5a =-时,根据一次函数、反比例函数和直角坐标系的性质,分别计算k 的值,再根据题意分析,即可得到答案. 【详解】(1)根据题意,得6015y x== ∵4x = ∵0x ≠ ∵4x =是6015x=的解 ∵当15a =时,l 与m 的交点坐标为:()4,15 故答案为:()4,15; (2)当 1.2a =-时,得601.2y x==- ∵50x =- ∵0x ≠ ∵50x =-是601.2x=-的解 ∵l 与m 的交点坐标为:()50, 1.2--∵(1)视窗可视范围就由1515x -≤≤及1010y -≤≤,且10 1.210-<< ∵1550k -<-根据题意,得k 为正整数 ∵103k >∵4k =同理,当 1.5a =-时,得40x =- ∵1540k -<-∵83k >∵3k =∵要能看到m 在A 和B 之间的一整段图象 ∵4k = 故答案为:4. 【点睛】本题考查了一次函数、反比例函数、分式方程、直角坐标系的知识;解题的关键是熟练掌握一次函数、反比例函数、分式方程、直角坐标系的性质,从而完成求解. 45.(2020·四川眉山)关于x 的分式方程11222kx x-+=--的解为正实数,则k 的取值范围是________. 【答案】2k >-且2k ≠ 【解析】 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】 解:11222kx x-+=-- 方程两边同乘(x -2)得,1+2x -4=k -1, 解得22k x +=222k +≠,022k +> 2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.46.(2020·内蒙古呼和浩特)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x 的解是____________.。

中考数学总复习《分式》专项测试卷(带有答案)

中考数学总复习《分式》专项测试卷(带有答案)

中考数学总复习《分式》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________1.(2023·萧山区模拟)若分式3x -9x -2的值为零,则x 的值为( )A .2B .3C .-2D .-32.(2023·振兴区一模)若x ,y 的值均扩大到原来的3倍,则下列分式的值一定保持不变的是( ) A.2+x x -y B.2y x 2 C.2y 33xD.2y x -y3.(2023·玄武区期末)若分式A2x +y 中的x 和y 都扩大为原来的3倍后,分式的值不变,则A 可能是( ) A .3x +2y B .3x +3 C .2xyD .34.(2023·金东区期末)下列各式从左到右的变形,一定正确的是( ) A.b a =b 2a 2 B.b a =b +1a +1 C.b a =ab a2D.-b +1a =-b +1a5.(2023·河南)化简a -1a +1a的结果是( ) A .0B .1C .aD .a -26.(2023·兰州)计算:a 2-5aa -5=( )A .a -5B .a +5C .5D .a7.(2023·南充)若x +1x -2=0,则x 的值为8.(2023·鼓楼区期中)如果分式2-|x|x -2的值为0,那么x 的值是 .9.(2022·自贡)化简:a -3a 2+4a +4·a 2-4a -3+2a +2= .10.(2021·绥化)当x = 2 021+3时,代数式⎝ ⎛⎭⎪⎫x +3x 2-3x -x -1x 2-6x +9÷x -9x 的值是 .11.(2023·成都)若3ab -3b 2-2=0,则代数式(1-2ab -b 2a 2)÷a -b a 2b的值为 .12.(2021·广东)若x +1x =136且0<x <1,则x 2-1x2= .13.(2022·达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =5-12,b =5+12,记S 1=11+a +11+b ,S 2=21+a 2+21+b 2,…,S 100=1001+a 100+1001+b100,则S 1+S 2+…+S 100= . 14.(2023·荆门一模)已知a>0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,….即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n = -S n -1-1.计算S 1+S 2+S 3+…+S 2 022的结果为 . 15.(2023·陕西)化简:(3a a 2-1-1a -1)÷2a -1a +1.16.(2023·十堰)化简:(1-4a +3)÷a 2-2a +12a +6.17.(2023·深圳)先化简,再求值:(1x -1+1)÷x 2-1x 2-2x +1,其中x =3.18.(2023·眉山)先化简:(1-1x -1)÷x 2-4x -1,再从-2,-1,1,2中选择一个合适的数作为x 的值代入求值.19.(2023·枣庄)先化简,再求值:(a -a 2a 2-1)÷a 2a 2-1,其中a 的值从不等式组-1<a <5的解集中选取一个合适的整数.20.(2023·聊城)先化简,再求值:(a a 2-4a +4+a +22a -a 2)÷2a 2-2a ,其中a =2+2.参考答案1.(2023·萧山区模拟)若分式3x -9x -2的值为零,则x 的值为( B )A .2B .3C .-2D .-32.(2023·振兴区一模)若x ,y 的值均扩大到原来的3倍,则下列分式的值一定保持不变的是( D ) A.2+x x -y B.2y x 2 C.2y 33xD.2y x -y3.(2023·玄武区期末)若分式A2x +y 中的x 和y 都扩大为原来的3倍后,分式的值不变,则A 可能是( A ) A .3x +2y B .3x +3 C .2xyD .34.(2023·金东区期末)下列各式从左到右的变形,一定正确的是( C ) A.b a =b 2a 2 B.b a =b +1a +1 C.b a =ab a2D.-b +1a =-b +1a5.(2023·河南)化简a -1a +1a 的结果是( B )A .0B .1C .aD .a -26.(2023·兰州)计算:a 2-5aa -5=( D )A .a -5B .a +5C .5D .a7.(2023·南充)若x +1x -2=0,则x 的值为 -18.(2023·鼓楼区期中)如果分式2-|x|x -2的值为0,那么x 的值是 -2.9.(2022·自贡)化简:a -3a 2+4a +4·a 2-4a -3+2a +2=aa +2.10.(2021·绥化)当x = 2 021+3时,代数式⎝ ⎛⎭⎪⎫x +3x 2-3x -x -1x 2-6x +9÷x -9x 的值是12 021.11.(2023·成都)若3ab -3b 2-2=0,则代数式(1-2ab -b 2a 2)÷a -b a 2b 的值为23.12.(2021·广东)若x +1x =136且0<x <1,则x 2-1x 2=-6536.13.(2022·达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =5-12,b =5+12,记S 1=11+a +11+b ,S 2=21+a 2+21+b 2,…,S 100=1001+a 100+1001+b 100,则S 1+S 2+…+S 100=5 050. 14.(2023·荆门一模)已知a>0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,….即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n = -S n -1-1.计算S 1+S 2+S 3+…+S 2 022的结果为-1 011. 15.(2023·陕西)化简:(3a a 2-1-1a -1)÷2a -1a +1.解:原式=3a -(a +1)(a +1)(a -1)·a +12a -1=2a -1a -1·12a -1=1a -1. 16.(2023·十堰)化简:(1-4a +3)÷a 2-2a +12a +6.解:原式=a +3-4a +3·2(a +3)(a -1)2=a -1a +3·2(a +3)(a -1)2=2a -1. 17.(2023·深圳)先化简,再求值:(1x -1+1)÷x 2-1x 2-2x +1,其中x =3.解:原式=1+x -1x -1·(x -1)2(x +1)(x -1)=x x -1·x -1x +1=x x +1当x =3时,原式=33+1=34.18.(2023·眉山)先化简:(1-1x -1)÷x 2-4x -1,再从-2,-1,1,2中选择一个合适的数作为x 的值代入求值. 解:原式=x -2x -1·x -1(x +2)(x -2)=1x +2∵x ≠1且x ≠±2 ∴当x =-1时,原式=1.19.(2023·枣庄)先化简,再求值:(a -a 2a 2-1)÷a 2a 2-1,其中a 的值从不等式组-1<a <5的解集中选取一个合适的整数. 解:原式=(a -a 2a 2-1)·a 2-1a 2=a ·a 2-1a 2-a 2a 2-1·a 2-1a2=a 2-1a -1=a 2-a -1a∵a 2-1≠0,a ≠0 ∴a ≠±1,a ≠0 ∴a =2原式=22-2-12=12.20.(2023·聊城)先化简,再求值:(a a 2-4a +4+a +22a -a 2)÷2a 2-2a ,其中a =2+2.解:原式=[a (a -2)2-a +2a (a -2)]·a (a -2)2=a 2-(a +2)(a -2)a (a -2)2·a (a -2)2=4a (a -2)2·a (a -2)2 =2a -2当a =2+2时 原式=22+2-2= 2.。

中考数学专题训练第6讲分式1(解析版)

中考数学专题训练第6讲分式1(解析版)

分式题型一 分式的概念1.(2021·浙江平阳·九年级期中)已知要使分式32x x +-有意义.则x 的取值应满足( )A .2x ≠B .3x ≠-C .3x =-D .2x =【答案】A 【分析】要使分式32x x +-有意义.则20x -≠.所以2x ≠.故选:A . 2.(2021·内蒙古·包头市第四十八中学九年级月考)下面是某同学在一次数学测验中解答的填空题.其中答对的是( ) A .若x 2=4.则x =2 B .若分式2232x x x --+的值为零.则x =2C .x 2+x ﹣k =0的一个根是1.则k =2D .若3x 2=6x .则x =2 【答案】C【分析】解:A 、x 2=4.则2x =±.选项错误.不符合题意;B 、分式2232x x x --+的值为零.则220320x x x -=⎧⎨-+≠⎩.21,2x x x =⎧⎨≠≠⎩.无解.选项错误.不符合题意;C 、x 2+x ﹣k =0的一个根是1.则110k +-=.解得2k =.选项正确.符合题意;D 、3x 2=6x .解得0x =或2x =.选项错误.不符合题意;故选C3.(2021·陕西·西安高新一中实验中学九年级开学考试)如果分式||11x x -+的值为0.那么x 的值为( ) A .0 B .1 C .1- D .±1【答案】B 【分析】分式||11x x -+的值为0.10x ∴-=.1x =.解得1x =±.又10x +≠.1x ∴≠-.1x ∴=.故选:B . 4.若代数式(2)(1)||1x x x ---的值为零.则x 的取值是( )A .2x =或1x =B .2x =且1x =C .2x =D .1x =-【答案】C【分析】(2)(1)0x x --=且||1x ≠.解得x =2或x =1.且x ≠±1∴2x =.故选C .5.(2021·广西百色·中考真题)当x =﹣2时.分式2232796x x x -++的值是( )A .﹣15B .﹣3C .3D .15【答案】A【分析】解:2232796x x x -++()()22393x x -=+()()()23333x x x +-+=()333x x -=+ 把2x =-代入上式中.原式()3231523--==--+.故选A.6.(2021·四川省隆昌市第一中学九年级月考)3311a a a a --=++ )A .1a ≠-B .3a ≥-且1a ≠C .1a >-D .3a ≥【答案】D【分析】解:根据题意得.30-≥a .10a +> ∴3a ≥.1a >- ∴3a ≥.故选D . 7.(2021·云南昭通·二模)1x-.则实数x 的取值范围是( ) A .1x ≤ B .1x ≤且0x ≠ C .1x <且0x ≠ D .1x <【答案】D【分析】由题意可得:10x -≥10x -≠.解得:1x <.故选:D 8.(2021·浙江瓯海·三模)若a b=12.则a bb+的值是( ) A .3 B .23C .32D .2【答案】C【分析】解:∵ab=12.∴2b a =.将2b a =代入a bb +中.得2322a a a +=.故选:C . 9.(2021·浙江浙江·九年级期末)下列分式一定有意义的是( )A .11x -B .1xC .211x - D .211x + 【答案】D【分析】∵当x =1时.|1-x |=0,∴A 不符合题意;∵当x =0时.分母为0.∴B 不符合题意;∵当x =1或-1时.21x -=0,∴C 不符合题意;∵220+110x x ≥,≥≠.∴D 符合题意;故选D 10.(2021·广东·执信中学模拟预测)不论x 取何值.下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .()21x +【答案】C【分析】解:A 、当x =-1时.x +1=0.故不合题意;B 、当x =±1时.x 2-1=0.故不合题意;C 、分子是1.而1≠0.则11x +≠0.故符合题意;D 、当x =-1时.()210x +=.故不合题意;故选C .题型二 分式的性质、约分、通分11.(2021·贵州·贵阳市第十九中学九年级月考)若把x .y 的值同时缩小x 为原来的13倍.则下列分式的值保持不变的是( )A .xy x y+B .22y x ++C .()22x y x + D .222xy x - 【答案】C【分析】A.1111333==11333x y xyxy x y x y x y ⨯⨯+++.选项说法错误.不符合题意;B. 61263=3616233y y x x y x +++=+++.选项说法错误.不符合题意;C. 22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==.选项说法正确.符合题意;D. 22222213112261())(33()3xx x y x y x y x ⨯==---⨯.选项说法错误.不符合题意.故选C12.(2021·重庆一中九年级开学考试)把代数式3xyx y+中的x 、y 同时扩大五倍后.代数式的值( ) A .扩大为原来的3倍 B .不变 C .缩小为原来的15D .扩大为原来的5倍【答案】D 【分析】解:3xyx y+中的x 、y 都扩大为原来的5倍.得3557515555()x y xy xy x y x y x y ⨯⋅==+++.故选:D . 13.分式11x--可变形为( ). A .11x -- B .11x+ C .11x -+ D .11x -【答案】D 【分析】解:1111=1(1)11x x x x -==----+-.故选项A 、B 、C 均不符合题意.选项D 符合题意.故选:D .14.(2021·河北张家口·一模)下列各式从左到右的变形中.不正确的是( ) A .2233a a-=- B .66b ba a-=- C .3344a ab b=- D .8833a ab b--=-- 【答案】C 【分析】解:A 、2233a a-=-.符号改变了两处.改变了分子与分式的符号.分式的值不变.正确.故选项A 不符合题意;B 、66b ba a-=-.符号改变了两处.改变了分子与分母的符号.分式的值不变.正确.故选项B 不符合题意;C 、3344a ab b=-.符号改变了一处.改变了分母的符号.分式的值发生改变.不正确.故选项C 符合题意; D 、8833--=a ab b. 符号改变了两处.改变了分子与分式的符号.分式的值不变.正确.故选项D 不符合题意;故选:C . 15.下列各式中.正确的有( )①263333()22=b b a a ;②222224()=++x x x y x y ;③a b a b a b a b -++=---;④1x y x y -+=--;⑤0x y x y +=+;⑥2222()()()()---+=+-x y x y x y x y .A .1个B .2个C .3个D .4个【答案】B【分析】①2633327()28b b a a =.故不符合题意;②222224()2x x x y x xy y =+++.故不符合题意;③a b a ba b a b-+-=--+.故不符合题意;④1x y x y -+=--.故符合题意;⑤1x y x y +=+.故不符合题意;⑥2222()()()()---+=+-x y x y x y x y .故符合题意;所以正确的有2个.故选:B .16.下列分式中属于最简分式的是( ) A .42xB .11xx -- C .211x x -- D .221xx + 【答案】D 【分析】解:A 、42=2x x.不是最简分式.故此选项不符合题意;B 、111x x -=--.不是最简分式.故此选项不符合题意;C 、211x x --=11(1)(1)1x x x x -=+-+.不是最简分式.故此选项不符合题意;D 、221xx +是最简分式.故此选项符合题意.故选:D . 17.(2021·河北唐山·一模)若221()3m n m n m n -=≠-.则m n +=( ) A .3 B .-3 C .13D .13-【答案】C【分析】∵()()22,m n m n m n m n m n m n +--=≠--.∴2213m n m n m n -=+=-.故选:C . 18.(2021·江苏·苏州市南环实验中学校二模)分式222()a b a b --化简为最简分式的结果为( ) A .a b + B .-a b C .a ba b+- D .a ba b-+ 【答案】C【分析】解:222()a b a b --=2()()()a b a b a b +--=a ba b+-.故选C .19.(2021·广东·广州市第十六中学二模)分式3x y xy +.232yx .26xy xy 的最简分母是( ) A .3x B .xC .26xD .226x y【答案】D 【分析】解:3x y xy +.232y x .26xy xy的分母分别是3xy 、22x 、26xy .故最简公分母为226x y .故选:D .20.(2021·河北唐山·一模)要把分式232a b 与2a bab c-通分.分式的最简公分母是( ) A .222a b c B .332a b C .332a b c D .336a b c【答案】A【分析】解:根据最简公分母是各分母的最小公倍数.∵系数2与1的公倍数是2.2a 与a 的最高次幂是2a .b 与2b 的最高次幂是2b .对于只在一个单项式中出现的字母c 直接作公分母中的因式.∴公分母为:222a b c .故选择:A .21.能使分式2321020224x x x x ---+-的值为正整数的所有x 的值的和为( ) A .10 B .0 C .8- D .10-【答案】D【分析】∵20x ≥.∴220x +>.()()()22322102102010224222x x x x x x x x -+---==-+---+.若分式的值为正整数.则210x -=-.1-.2-.5-.所以8x =-.1.0.3-.所以()810310-+++-=-.故选D. 22.关于分式的约分或通分.下列哪个说法正确( ) A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x ﹣1 C .22xx约分的结果是1D .化简221x x -﹣211x -的结果是1【答案】D 【分析】解:A 、211x x +-=11x - .故本选项错误;B 、分式211x -与11x -的最简公分母是x 2﹣1.故本选项错误;C 、22x x =2x .故本选项错误;D 、221x x -﹣211x -=1.故本选项正确;故选D .题型三 分式的运算23.(2021·四川蓬安·九年级月考)卵细胞是人体中最大的细胞.直径约为0.0002米.直径用科学记数法表示为( )米. A .0.2×10﹣3 B .0.2×10﹣4 C .2×10﹣4 D .2×10﹣3【答案】C【分析】解:直径约为0.0002米.用科学记数法表示为2×10﹣4米.故选:C . 24.(2021·河南·郑州外国语中学九年级开学考试)化简22111a a a+--的结果正确的是( ) A .2311a a +- B .2311a a -- C .11a + D .11a - 【答案】C 【分析】221212(1)111(1)(1)1(1)(1)1a a a a a a a a a a a a -++=-==--+--+-+;故选:C . 25.(2021·北京市陈经纶中学分校九年级月考)如果a ﹣b =3那么代数式(222a b a+﹣b )•aa b-的值为( ) A 3B .3C .3 D .3【答案】A【分析】解:原式222()22a b ab aa a ab +=-⋅-2()2a b a a a b-=⋅-2a b -=. 当23a b -=.原式233==故选:A . 26.(2021·湖北·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是( )A .-a bB .a b +C .1a b- D .1a b+ 【答案】A【分析】解:2b a b a a a ⎛⎫+-÷ ⎪⎝⎭=22a b aa ab -⨯+ =()()a b a b a a a b +-⨯+ =-a b .故选:A .27.(2021·山东乳山·模拟预测)如果2320a a +-=.那么代数式2231933a a a a ⎛⎫+÷ ⎪-+-⎝⎭的值为( ) A .1 B .12C .13D .14【答案】B【分析】解:2231933a a a a ⎛⎫+÷⎪-+-⎝⎭=2333(3)(3)(3)(3)a a a a a a a ⎡⎤--+⋅⎢⎥+-+-⎣⎦.23(3)(3)a a a a a -=⋅+-213a a =+ 由a 2+3a ﹣2=0.得到a 2+3a =2.则原式=12.故选B . 28.已知实数a .b 满足1a b ⋅=.那么221111a b +++的值为( ) A .14B .12C .1D .2【答案】C【分析】解:∵•1a b =.∴()2221a b ab ==.∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C . 29.(2021·重庆市天星桥中学九年级开学考试)化简2111a a a +--的结果为( )A .211a a +-B .211a a+-C .1a +D .1a -【答案】C【分析】解:原式=2111a a a ---=211a a --=()()111a a a +--=1a +.故选C . 30.(2021·河北桥东·二模)当2ab =-时.计算2b a ba a a ⎛⎫--÷ ⎪⎝⎭的值为( )A .2B .2-C .12D .12-【答案】A【分析】2b a b a a a ⎛⎫--÷⎪⎝⎭22a b a b a a --=÷()()a b a b aa ab -+=⋅-a b =+.把2a b =-代入得22a b b b +=-+=故选A .31.(2021·河南·二模)下列各式计算正确的是( ) A 42±B .11011a a+=+- C .2333122x y x x y ⎛⎫÷= ⎪⎝⎭D .22()()a b b a b a +-=-【答案】D【分析】42=.故该选项计算错误.不符合题意.B.21111211(1)(1)1a a a a a a a -+++==+-+--.故该选项计算错误.不符合题意.C.233122x y x xy ⎛⎫÷= ⎪⎝⎭.故该选项计算错误.不符合题意.D.22()()a b b a b a +-=-.故该选项计算正确.符合题意.故选:D . 32.(2021·山东诸城·二模)下列计算正确的是( ) A .1a ba b-+=-- B .5333= C .23193x x x -=-- D .1122a a-=【答案】A 【分析】A.()1a b a b a b a b-+--==---.符合题意;B. 532333不符合题意;C. 23193x x x -=-+.不符合题意;D.1122a a -=.不符合题意.故选A . 33.(2021·广东高要·二模)下列运算错误的是( ) A .224a a a += B .34a a a ÷= C .1a bb a-=-- D .123ccc+=【答案】A【分析】A 、2222a a a +=.原式计算错误.符合题意;B 、34a a a ÷=.正确.不合题意;C 、1a b b a -=--.正确.不合题意;D 、123c c c+=.正确.不合题意;故选:A .34.(2021·黑龙江大庆·中考真题)已知0b a >>.则分式a b 与11a b ++的大小关系是( )A .11a ab b +<+B .11a ab b +=+ C .11a ab b +>+ D .不能确定【答案】A 【分析】解:()()()()111111a b b a a a a bb b b b b b +-++--==+++.∵0b a >>.∴()1011a a a b b b b b +--=<++.∴11a ab b +<+.故选:A .题型四 分式方程的概念与解法35.下列关于x 的方程.其中不是分式方程的是( ) A .1a ba xa++=B .11b a a x b x-=+ C .1x a x a b+-= D .1x n x mx m x n-++=+- 【答案】C【分析】分式方程是分母含有未知数的等式.A 、1a ba xa++=分母含未知数.是分式方程.不符合题意;B 、11b a ax b x -=+分母含未知数.是分式方程.不符合题意;C 、1x a x a b+-=分母不含未知数.不是分式方程.符合题意;D 、1x n x mx m x n-++=+-分母含未知数.是分式方程.不符合题意;故选:C . 36.下列结论正确的是( ) A .153y y+=是分式方程 B .方程221624x x x --+-=1无解 C .方程223x xx x x x=++的根为x =0 D .解分式方程时.一定会出现增根【答案】B【分析】解:A .原方程中分母不含未知数.不是分式方程.所以A 选项不符合题意;B .解方程.得x =﹣2.经检验x =﹣2是原方程的增根.所以原方程无解.所以B 选项符合题意;C .解方程.得x =0.经检验x =0是原方程的增根.所以原方程无解.所以C 选项不符合题意;D .解分式方程时.不一定会出现增根.只有使分式方程分母的值为0的根是增根.所以D 选项不符合题意.故选:B .37.(2021·黑龙江·哈尔滨市萧红中学九年级期中)方程5113x x =-+的解是( ) A .2x =- B .2x =C .4x =-D .4x =【答案】C【分析】解:去分母得:5(x +3)=x -1. 去括号得:5x +15=x -1. 解得:x =-4.检验:把x =-4代入得:(x -1)(x +3)≠0. ∴分式方程的解为x =-4.故选:C .38.(2021·重庆八中九年级月考)若关于x 的一元一次不等式组()31212x x x a ⎧-<+⎨≤+⎩的解集为4x <.且关于y 的分式方程2422y a ay y++=--的解是非负整数解.则所有满足条件的整数a 的值之和是( )A .5B .7C .13D .15【答案】C【分析】解不等式()3121x x -<+得.4x <.2x a ≤+不等式组的解集为:4x < 24a ∴+≥2a ∴≥解分式方程2422y a ay y++=--得 2422y a ay y +-=-- 24(2)y a a y ∴+-=-整理得8=3ay -. 20,y -≠ 则82,3a-≠ 2,a ∴≠分式方程的解是非负整数解.803a-∴≥ 8a ∴≤.且8a -是3的倍数. 28a ∴<≤.且8a -是3的倍数.∴整数a 的值为58,5813∴+=.故选:C .39.(2021·重庆实验外国语学校九年级月考)关于x的分式方程114211a xx x---=++有整数解.且关于y的不等式组116232(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩有解.则所有满足条件的正整数a的和是()A.6 B.12 C.14 D.20 【答案】A【分析】解:∵11 623 2(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩∴y<52.y≥32a-∵关于y的不等式组116232(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩有解∴不等式组的解集为32a-≤y<52.∴32a-<52.即a-3<5.可得a<8由114211a xx x---=++有整数解,可得:x=22a-,即a为偶数∵x≠-1∴x≠6∵正整数a∴a=2或a=4∴4+2=6.故选A.40.(2021·重庆一中九年级期中)若关于x的不等式组4213222()x xx x a+-⎧-≥⎪⎨⎪+≤-⎩有解.且关于y的分式方程1211y a yy y--+--=﹣3的解为非负数.则所有满足条件的整数a的值之积是()A.﹣6 B.0 C.4 D.12 【答案】D【分析】解:不等式组整理得:822xx a≤⎧⎨≥+⎩.∵关于x的不等式组4213222()x xx x a+-⎧-≥⎪⎨⎪+≤-⎩有解.∴2a+2≤8.即a≤3.解分式方程1211y a yy y--+--=﹣3得y=22a+.∵关于y 的分式方程1211y a yy y--+--=﹣3的解为非负数. ∴22a +≥0.且22a +≠1. 解得.a ≥﹣2.且a ≠0. ∴﹣2≤a ≤3.且a ≠0. ∵a 为整数.∴a =﹣2或﹣1或1或2或3.∴满足条件的所有整数a 的值之积:(﹣2)×(﹣1)×1×2×3=12.故选:D . 41.(2021·重庆实验外国语学校九年级月考)若关于x 的一元一次不等式组3214x x x a+⎧>-⎪⎨⎪≤⎩的解集为x a ≤.且关于y 的分式方程52122y a yy y--+=--有正整数解.则所有满足条件的整数a 的个数为( ) A .2 B .3 C .4 D .5【答案】B【分析】解:3214x x x a +⎧>-⎪⎨⎪≤⎩①②. 解不等式①.得:x <6. 解不等式②.得:x ≤a . ∵该不等式解集为x ≤a . ∴a <6; 由52122y a yy y--+=-- 分式方程去分母.得:y -a -(5-2y )=y -2. 解得:y =32a +. ∵分式方程有正整数解.且y ≠2.∴满足条件的整数a 可以取5;3;-1;共3个;故选:B . 42.(2021·重庆·西南大学附中九年级月考)已知关于x 的分式方程()()232626mx x x x x +=--+-无解.且关于y 不等式组()4434m y y y ->⎧⎨-≤+⎩有且只有三个偶数解.则符合条件的整数m 有( )个A .0B .1C .2D .3【答案】B【分析】解:分式方程无解的情况有两种.分式方程去分母得:(2)2(2)(6)3(2)(2)mx x x x x x ++--=+-.整理得:2(1)2(8)360m x m x -+-+=.情况一:整式方程无解时.即()()24843610m m ∆=--⨯-<且10m -≠时.方程无解. ∴2521000m m -+<. 解得250m <<.即当250m <<时方程无解;情况二:当整式方程有解.是分式方程的增根.即2x =.或6x =.或2x =-. ①当2x =时.4(1)4(8)360m m -+-+=.解得0m =. ②当6x =时.36(1)12(8)360m m -+-+=.解得2m =. ③当2x =-时.4(1)4(8)360m m ---+=.此方程无解. 综合两种情况得.当0m =或250m <≤时.分式方程无解.解不等式得48y m y <-⎧⎨≥-⎩. 根据题意得不等式的解集为84y m -<-. ∵不等式组有且只有三个偶数解为8-.6-.4-. ∴442m -<--≤. ∴02m <≤.综上所述当2m =时符合题目中所有要求.故选:B .43.(2021·四川省成都市七中育才学校九年级月考)若关于x 的分式方程211x kx x-=--有增根.则k 的值为( ) A .1 B .0 C .﹣2 D .﹣1【答案】D【分析】解:去分母得: ()21--=-x x k .∴22x x k -+=-.∴2x k =+∵分式方程有增根.10x -=.解得x =1.即210k +-=解得:k =﹣1.故选D .44.(2021·重庆酉阳·九年级期末)在321012-,-,-,,,这六个数中.随机取出一个数记为a .那么使得关于x 的一元二次方程2420x x a --=有解.且使得关于x 的方程1311x a x x+-=--有整数解的所有a 的值之和为( ) A .2B .1C .0D .1-【答案】A【分析】解:要使得关于x 的一元二次方程2420x x a --=有解.则Δ≥16-4×(-2a )≥0.解得a ≥-2,∴a 的可能值为-2.-1、0、1、2.解1311x a x x+-=--可得.22a x=+.1,x ≠ 21,2a∴+≠2,a ∴≠- 使得方程有整数解满足条件的a 的值为0、2.综上所述满足条件的a 的值为0、2.0+2=2.故选:A .45.(2021·广东·深圳市罗湖区翠园初级中学九年级开学考试)关于x 的分式方程311x mx x -=--有增根.则m 的值是( ) A .﹣2 B .3 C .﹣3 D .2【答案】A【分析】解:去分母.得:x -3=m .由分式方程有增根.得到x -1=0.即x =1.把x =1代入整式方程.可得:m =-2.故选:A .46.(2021·黑龙江佳木斯·三模)已知关于x 的分式方程3102112kx x x-+=--有解.则k 的取值范围为( ) A .2k ≠- B .6k ≠- C .2k ≠-且6k ≠- D .2k <-且6k ≠-【答案】C 【分析】解:3102112kx x x-+=--. 去分母得.3210kx x ++-=. 解得.22x k -=+. ∵关于x 的分式方程3102112kx x x-+=--有解. ∴2122k -≠+且20k +≠. 解得.2k ≠-且6k ≠-.故选:C .题型五 分式方程的应用47.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)高铁为居民出行提供了便利.从铁路沿线相距360km 的甲地到乙地.乘坐高铁列车比乘坐普通列车少用3h .已知高铁列车的平均速度是普通列车平均速度的3倍.设普通列车的平均速度为x km/h.依题意.下面所列方程正确的是( )A.36036033x x-=B.36036033x x-=C.360360313x x-=D.360360313xx-=【答案】A【分析】根据题意可得:列车的平均速度为x km/h.则高铁列车的平均速度为3x km/h.高铁列车所用的时间为:3603x.普通列车的时间为:360x.所列方程为:36036033x x-=.故选:A.48.(2021·陕西·交大附中分校模拟预测)某修路队计划x天内铺设铁路120km.由于采用新技术.每天多铺设铁路3km.因此提前2天完成计划.根据题意.可列方程为()A.12012032x x=+-B.12012032x x=+-C.12012032x x=++D.12012032x x=++【答案】B【分析】解:原计划每天修建道路120xm.则实际用了(x﹣2)天.每天修建道路为1202x-m.根据采用新技术.每天多铺设铁路3km得.12012032x x=+-.故选:B.49.(2021·辽宁·沈阳市第四十三中学九年级月考)随着快递业务的增加.某快递公司为快递员更换了快捷的交通工具.公司投递快件的能力由每周6000件提高到8400件.平均每人每周比原来多投递80件.若快递公司的快递人数不变.求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件.根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80 D.6000x=840080x-【答案】A【分析】解:设原来平均每人每周投递快件x件.则更换交通工具后平均每人每周投递快件(x+80)件.依题意得:6000x=840080x+.故选:A.50.(2021·福建省厦门第六中学三模)某次列车平均提速v km/h.用相同的时间.列车提速前行驶s km.提速后比提速前多行驶50km.则方程50s svx x++=所表达的等量关系是()A.提速前列车行驶s km与提速后行驶(s+50)km的时间相等B .提速后列车每小时比提速前列车每小时多开v kmC .提速后列车行驶(s +50)km 的时间比提速前列车行驶s km 多v hD .提速后列车用相同的时间可以比提速前多开50km 【答案】B【分析】解:∵用相同的时间.列车提速前行驶s km.提速后比提速前多行驶50km .∴s +50表示列车提速后同样的时间内行驶的路程.∵某次列车平均提速v km/h.路程=速度×时间.∴方程50s s v xx++=表达的含义提速后列车每小时比提速前列车每小时多开v km.故选B.51.(2021·山东淄博·中考真题)甲、乙两人沿着总长度为10km 的“健身步道”健步走.甲的速度是乙的1.2倍.甲比乙提前12分钟走完全程.设乙的速度为km/h x .则下列方程中正确的是( ) A .1010121.2x x-= B .10100.21.2x x-= C .1010121.2x x-= D .10100.21.2x x-= 【答案】D【分析】解:由题意得:10100.21.2x x-=;故选D . 52.(2021·重庆市育才中学九年级月考)每年中秋节.某商家生产的甲、乙、丙三种月饼礼盒一直深受消费者喜爱.今年中秋节.该商家继续售卖甲、乙、丙三种月饼礼盒.已知去年该商家售卖甲、乙、丙三种月饼礼盒的营业额之比为4:9:7.今年.由于商家加大了促销宣传力度.预计三种月饼礼盒的营业额都会增加.其中甲种礼盒增加的营业额占总增加的营业额的815.此时.甲种月饼礼盒的营业额与今年三种月饼礼盒总营业额之比为4:15.为使今年乙、丙两种月饼礼盒的营业额之比为6:5.则今年乙种月饼礼盒增加的营业额与今年总营业额之比为______. 【答案】1:25【分析】解:∵甲种月饼礼盒的营业额与今年三种月饼礼盒总营业额之比为4:15.且乙、丙两种月饼礼盒的营业额之比为6:5.∴今年甲、乙、丙三种月饼礼盒的营业额之比为4∶6∶5.设今年甲、乙、丙三种月饼礼盒的营业额分别为4a .6a .5a .则今年总营业额为15a .∵去年该商家售卖甲、乙、丙三种月饼礼盒的营业额之比为4:9:7.∴设去年甲、乙、丙三种月饼礼盒的营业额分别为4b .9b .7b .则去年总营业额为20b .∴今年甲、乙、丙三种月饼礼盒的营业额分别增加了44a b -.69a b -.57a b -.总营业额增加了1520a b -.∵甲种礼盒增加的营业额占总增加的营业额的815.∴448152015a b a b -=-.解得:0.6b a =.经检验:b=0.6a 符合题意.∴今年乙种月饼礼盒增加的营业额与今年总营业额之比为69690.66 5.4115151525a b a a a a a a a --⨯-===.故答案为:1∶25. 53.(2021·重庆实验外国语学校九年级开学考试)重庆某笔记本电脑公司每年都会组织员工出国学习旅行.今年有A 、B 、C 、D 四个国家可供员工们选择(每名员工只能选择一个国家旅行).但要求选择A 、C 两个国家的人数相同.选择B 、D 两个国家的人数也相同.选择A 、B 两国的人数总和为100人.A 、D 两国的费用单价相等.B 、C 两个国的费用单价也相等.A 、B 两国的费用单价之和不超过8万元.且选择A 、B 两个国家的员工总费用比选择C 、D 两个国家员工总费用多20万元.则选择A 、B 两个国家员工总费用的最大值为__万元. 【答案】410【分析】解:设有x 人选择A .A 单价为1y 万元.B 单价为2y 万元.依题意可知.B 有(100)x -人.即100x <.128y y +①.1221(100)[(100)]20xy x y xy x y +--+-=.即121050y y x -=-.100x .5050x ∴-.101505x -. 即1215y y -②.①+②得24125y .解得24110y .代入①中.13910y .代入②中.13910y .13910y ∴=.24110y ∴=.A ∴、B 两个国家员工总费用为12(100)xy x y +-.B 单价A >单价.0x ∴=时总费用最大.最大值为410(1000)41010+-⨯=(万元).故选择A 、B 两个国家员工总费用的最大值为410万元.故答案为:410.54.(2021·四川省宜宾市第二中学校三模)某服装厂准备加工400套运动装.在加工完160套后.采用了新技术.使得工作效率比原计划提高了20%.结果共用了18天完成任务.问计划每天加工服装多少套?在这个问题中.设计划每天加工x 套.则根据题意可得方程为__________________.【答案】160x +()400160120%x -+=18【分析】根据题意.采用新技术前所用时间为:160x天.采用新技术后所用时间为:()400160120%x -+天.∴所列方程为:160x +()400160120%x -+=18.故答案为:160x +()400160120%x -+=18.55.(2021·辽宁鞍山·中考真题)习近平总书记指出.中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化.某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后.发现这批图书满足不了学生的阅读需求.图书管理员在购买第二批时正赶上图书城八折销售该套书.于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元.则符合题意的方程是___________________. 【答案】3600240040.8x x-= 【分析】解:设第一批购买的“四大名著”每套的价格为x 元.则设第二批购买的“四大名著”每套的价格为0.8x 元.依题意得:3600240040.8x x -=.故答案为:3600240040.8x x-=. 56.(2021·吉林省第二实验学校九年级月考)2021年4月8日世界园艺博览会在扬州拉开了帷幕.世园会以“绿色城市.健康生活”为主题.吸引了大批游客游览.世园会成人一日票分为平日票和指定日票.其中平日票比指定日票便宜30元/张.某一售票点在5月份售出平日票4万元.指定日票2.6万元.且售出的平日票数量是指定日票的2倍.这一售票点在5月份售出的平日票和指定日票各多少张?【答案】这一售票点在5月份售出的平日票和指定日票各400张.200张.【分析】解:设这一售票点在5月份售出的指定日票为x 张.则平日票为2x 张.由题意得:2600040000302x x-=. 解得:200x =.经检验200x =是原方程的解.∴2400x =.答:这一售票点在5月份售出的平日票和指定日票各400张.200张.57.某公司生产开发了960件新产品.需要经过加工后才能投放市场.现在有A .B 两个工厂都想参加加工这批产品.已知A 工厂单独加工这批产品比B 工厂单独加工这批产品要多用20天.而B 工厂每天比A 工厂多加工8件产品.公司需要支付给A 工厂每天80元的加工费.B 工厂每天120元的加工费.(1)A .B 两个工厂每天各能加工多少件新产品?(2)公司制定产品方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中.公司需要派一名工程师每天到厂进行技术指导.并负担每天5元的午餐补助费.请帮助公司选择哪家工厂加工比较省钱.并说明理由.【答案】(1)A 每天加工16件.B 每天加工24件;(2)两个工厂合作完成.理由见解析 【分析】解:(1)设A 每天加工x 件产品.则B 每天加工x +8件产品.由题意得960960208x x -=+.解得x =16件.答:A 每天加工16件产品.则B 每天加工24件产品; (2)A 单独加工完成需要960÷16=60天.费用为:60×(80+5)=5100元.B 单独加工完成需要960÷24=40天.费用为:40×(120+5)=5000元;A 、B 合作完成需要960÷(16+24)=24天.费用为:24×(120+80+5)=4920元.所以既省时又省钱的加工方案是A 、B 合作.58.(2021·黑龙江·哈尔滨市虹桥初级中学校九年级月考)某单位在疫情期间用6000元购进A 、B 两种口罩1100包.购买A 种口罩与购买B 种口罩的费用相同.且一包A 种口罩的单价是一包B 种口罩单价的1.2倍. (1)求A .B 两种口罩一包的单价各是多少元?(2)若计划用不超过11000元的资金再次购进A 、B 两种口罩共2000包.已知A 、B 两种口罩的进价不变.求A 种口罩最多能购进多少包?【答案】(1)A 种口罩一包的单价为6元.B 种口罩一包的单价为5元(2)A 种口罩最多能购进1000包【分析】(1) 设B 种口罩一包的单价为x 元.则A 种口罩一包的单价为1.2x 元.根据题意.得:3000300011001.2x x+=.解得:x = 5.经检验.x = 5是原方程的解.且符合题意.则1.2 x = 6.答:A 种口罩一包的单价为6元.B 种口罩一包的单价为5元;(2)设购进A 种口罩m 包.则购进B 种口罩(2000-m )包. 依题意.得:6m +5 (2000 - m )≤ 11000.解得:m ≤ 1000.答:A 种口罩最多能购进1000包.59.(2021·黑龙江·哈尔滨市第六十九中学校九年级月考)杭州国际动漫节开幕前.某动漫公司预测某种动漫玩具能够畅销.就用32000元购进了一批这种玩具.上市后很快脱销.动漫公司又用68000元购进第二批这种玩具.所购数量是第一批购进数量的2倍.但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同.且全部售完后总利润率不低于20%.那么每套售价至少是多少元?【答案】(1)600套;(2)200元【分析】解:(1)设动漫公司第一次购x 套玩具.由题意得:6800032000102x x-=.解这个方程.200x =.经检验.200x =是原方程的根.∴22200200600x x +=⨯+=.答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y 元.由题意得:600y 320006800020%3200068000--≥+.解这个不等式.200y ≥.答:每套玩具的售价至少是200元.60.(2021·山东青岛·中考真题)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用100元购进乙品牌洗衣液数量的45.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲品牌洗衣液进价为30元/瓶.乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶时所获利润最大.最大利润是560元【分析】解:(1)设甲品牌洗衣液进价为x 元/瓶.则乙品牌洗衣液进价为()6x -元/瓶. 由题意可得.18004180056x x =⋅-. 解得30x =.经检验30x =是原方程的解.答:甲品牌洗衣液进价为30元/瓶.乙品牌洗衣液进价为24元/瓶. (2)设利润为y 元.购进甲品牌洗衣液m 瓶. 则购进乙品牌洗衣液()120m -瓶. 由题意可得.()30241203120m m +-≤. 解得40m ≤.由题意可得.()()()363028*********y m m m =-+--=+. ∵20k =>.∴y 随m 的增大而增大.∴当40m =时.y 取最大值.240480560y =⨯+=最大值.答:购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶时所获利润最大.最大利润是560元. 61.(2021·重庆八中九年级月考)巫溪某村民承包土地发展李子种植.2020年开始大量投产增收.其中早熟李种植面积亩数是晚熟李种植面积亩数的3倍.早熟李、晚熟李分别收益60000元和40000元.而早熟李平均每亩收益比晚熟李少1000元. (1)2020年早熟李、晚熟李种植面积分别有多少亩?(2)在扶贫专家小组的精准帮助下.优化管理.淘汰了部分低产李子林改种其他经济作物增加收益.2021年.早熟李、晚熟李的种植面积比2020年分别降低了1%3a 和%a .然而平均每亩早熟李和晚熟李的收益在2020年基础上分别增加了%a 和1%2a .2021年两种李子的总收益与2020年两种李子总收益相等.求a 的值.【答案】(1)早熟李种60亩.晚熟李种20亩;(2)50.【分析】解:(1)设2020年晚熟李种植面积有x 亩.则早熟李种植面积为3x 亩. 根据题意.得40006000010003x x-= . 解方程.得20x. 经检验.20x是分式方程式得解.360x ∴= . 即2020年早熟李、晚熟李种植面积分别有60亩、20亩.(2)由(1)可得: 2020年早熟李、晚熟李种植面积分别有60亩、20亩.2020年早熟李平均每亩收益为60000100060=元.晚熟李平均每亩收益为40000200020=元. 由题意可得:2021 年早熟李、晚熟李种植面积分别有1601%3a ⎛⎫- ⎪⎝⎭亩、()201%a -亩. 2021 年早熟李平均每亩收益为()10001%a + 元.晚熟李平均每亩收益为120001%2a ⎛⎫+ ⎪⎝⎭元. 由2021 年两种李子的总收益与2020 年两种李子总收益相等.得.()()11601%10001%201%20001%600004000032a a a a ⎛⎫⎛⎫-⨯++-⨯+=+ ⎪ ⎪⎝⎭⎝⎭令%t a =.则()()11600001140000111000032t t t t ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭. ()()()()31125t t t t -++-+= .223225t t t t +-+--=.220t t -=.()210t t -=.0t =或0.5=t .0a =(舍).50a =.答:50a =.62.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)某学校计划从商店购买测温枪和洗手液.已知购买一个测温枪比购买一瓶洗手液多用20元.若用400元购买测温枪和用160元购买洗手液.则购买测温枪的数量是购买洗手液数量的一半. (1)求购买一个测温枪、一瓶洗手液各需多少元;(2)经商谈.商店给予该学校购买一个测温枪赠送一瓶洗手液的优惠.如果该学校需要洗手液的数量是测温枪数量的2倍还多8个.且该学校购买测温枪和洗手液的总费用不超过1540元.那么该学校最多可购买多少个测温枪?【答案】(1)购买一个测温枪需要25元.购买一瓶洗手液需要5元;(2)该学校最多可购买50个测温枪.【分析】(1)设购买一瓶洗手液需要x 元.则购买一个测温枪需要(20)x +元.依题意.得:4001160202x x=⨯+. 解得:5x =.经检验.5x =是原方程的解.且符合题意.2025x ∴+=.答:购买一个测温枪需要25元.购买一瓶洗手液需要5元.(2)设该学校购买m 个测温枪.则购买(28)m +瓶洗手液.依题意.得:255(28)1540m m m ++-.解得:50m .答:该学校最多可购买50个测温枪.63.(2021·山东·青岛大学附属中学二模)扶贫工作小组对果农进行精准扶贫.帮助果农将一种有机生态水果拓宽了市场.与去年相比.今年这种水果的产量增加了1000千克.每千克的平均批发价比去年降低了125.批发销售总额比去年增加了20%. (1)已知去年这种水果批发销售总额为10万元.求这种水果今年每千克的平均批发价是多少元?(2)今年某水果店从果农处直接批发.专营这种水果.调查发现.若每千克的平均销售价为41元.则每天可售出300千克;若每千克的平均销售价每降低3元.每天可多卖出180千克.工商部门规定.该水果利润率不得超过40%.设水果店一天的利润为W 元.当每千克的平均销售价为多少元时.该水果店一天的利润最大.最大利润是多少?(利润计算时.其他费用忽略不计.并且售价为整数)【答案】(1)24元;(2)每千克平均售价为33元.最大利润为7020元.【分析】解: (1)由题意.设这种水果去年每千克的平均批发价是x 元.则今年的批发价为1125x ⎛⎫- ⎪⎝⎭元 .今年的批发销售总额为10(1+20%)=12万元 ∴ 1000001200001000,1125x x +=⎛⎫- ⎪⎝⎭解得x =25经检验x =25是分式方程的解.。

华东师大版数学全国中考复习方案第4讲分式PPT课件

华东师大版数学全国中考复习方案第4讲分式PPT课件
[2012·义乌] 下列计算错误的是( A ) A.00..72aa-+bb=27aa+ -bb B.xx32yy23=xy C.ba--ab=-1 D.1c+2c=3c
第4讲┃ 归类示例
[解析] 利用分式的加减运算法则与约分的性质,即可 求得答案,注意排除法在解选择题中的应用.选项A的计算 结果为72aa-+1100bb,故本选项错误.
第4讲┃ 归类示例
分式化简求值题的一般解题思路为: (1)利用因式分解、通分、约分等相关知识对原复杂的分 式进行化简. (2)选择合适的字母取值代入化简后的式子计算得结 果.注意字母取值时一定要使原分式有意义,而不是只看化 简后的式子.
第4讲┃ 归类示例
► 类型之四 分式的创新应用
命题角度: 1. 探究分式中的规律问题; 2. 有条件的分式化简.
第4讲┃ 归类示例
[解析] 根据题意可得: 1⊕2=2⊕1=3=21+22, (-3)⊕(-4)=(-4)⊕(-3)=-76=-23+-24, (-3)⊕5=5⊕(-3)=-145=-23+25, 则 a⊕b=2a+2b=2a+ ab2b,故答案为:a⊕b=2a+ ab2b或 a⊕b=2a+2b.
分母不变,把分子相加减,
分 式 的
同分母b__ 先通分,变为同分母的分式,
加 减
异分母分式相加减
然后相加减,即ab±dc= ___ab_dd____±___bb_dc____=adb±dbc
第4讲┃ 考点聚焦
乘法 分式乘分式,用分子的积做积的分子,分母的
分 式 的
(1)[2012·宜昌] 若分式a+2 1有意义,则 a 的取值范
围是
(C )
A.a=0 B.a=1
C.a≠-1 D.a≠0
[解析] ∵分式有意义,∴a+1≠0,∴a≠-1.

华东师大版16.1分式及基本性质综合提升讲义

华东师大版16.1分式及基本性质综合提升讲义

16.1 分式及其基天性质综合提高讲义一、分式的定义针对分式的定义可以提出多各种类的问题。

比方:如何划分整式与分式;分式何时有意义、无心义;分式取值状况等。

此中分式的取值状况又包含:①分式值为 0 的条件;②分式的值何时为正;③分式的值何时为负等.解题要领是:分式有意义分式无心义分式值为 0分式值为正分式值为负分母不等于 0分母等于 0分子等于 0,分母不等于分子、分母同号分子、分母异号二、分式的基天性质及其应用1.分式的基天性质(1)分式的基天性质由六部分构成:①分式的分子与分母;②都乘以(或除以);③同一个;④不等于0 的;⑤整式;⑥分式的值不变.(2)类比思想是学习本章的重要思想方法.学习分式的基天性质可与分数的基天性质类比进行,可以依照下边的顺口溜记:分数分式不同样,分数上下数值型;分式分母含字母,分数分式要分清;分式上下同除乘,除乘整式要非零;分式之值不改变,分式分母不为零.2.分式基天性质的应用分式的基天性质是分式变形的重要依照.主要用于以下几个方面:(1)将分子、分母中各项的系数化为整数;(2)改变分式的分子、分母中部分项的符号(比方:改变分式的首项系数的符号,改变分式的最高次项的符号等);(3)符号化简:分式的分子、分母与分式自己的符号,随意改变此中的两个,分式的值不变;(4)约分:依据分式的基天性质,把一个分式的分子和分母的公因式约去.老师:约分是化简分式的一种手段,如何进行分式的约分?小刚:有些分式的分子与分母都是单项式,而有些分式的分子与分母中出现了多项式,约分时步骤应有所不一样.小明:分子与分母都是单项式时,分子与分母的系数约去最大合约数,字母则约去分子与分母中同样字母的最低次幂.小勇:若分子与分母中有多项式,不方便直接约分,这时先将多项式分解因式,转变成乘积的形式,再约分.老师:约分后,分式的分子与分母应没有公因式,化成最简形式.三、研究活动问题:分式何时不可以约分 ?研究:学习了分式及其基天性质此后,感觉到分式的约分为我们带来了很大的方便,但分式其实不是在什么状况下都能约分,下边从以下几个方面来研究:1.判断分式看法时不可以约分。

2019-2020年中考数学总复习 六 分式精练精析1 华东师大版

2019-2020年中考数学总复习 六 分式精练精析1 华东师大版

2019-2020年中考数学总复习六分式精练精析1 华东师大版一.选择题(共9小题)1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x%D.(2+x%)•x%2.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x23.化简÷的结果是()A.m B.C.m﹣1 D.4.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x5.化简:﹣=()A.0 B.1 C.x D.6.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2) D.﹣a﹣2(a≠﹣2)7.已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1 C.﹣1 D.﹣58.当a=2时,÷(﹣1)的结果是()A.B.﹣C.D.﹣9.一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|二.填空题(共7小题)10.若分式有意义,则实数x的取值范围是_________ .11.代数式有意义时,x应满足的条件为_________ .12.若分式的值是0,则x的值为_________ .13.化简:=._________ .14.计算:÷= _________ .15.计算:= _________ .16.化简:= _________ .三.解答题(共8小题)17.先化简,再求值:•,其中x=2+,y=2﹣.18.计算:•.19.计算:•.20.计算(﹣)÷.21.计算:(﹣)÷.22.化简:(x2﹣2x)÷.23.已知非零实数a满足a2+1=3a,求的值.24.先化简,再求值:÷(2+),其中x=﹣1.数与式——分式1参考答案与试题解析一.选择题(共9小题)1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x%D.(2+x%)•x%考点:一元二次方程的应用.专题:增长率问题.分析:根据题意列出正确的算式即可.解答:解:根据题意得:第三季度的产值比第一季度增长了(2+x%)•x%,故选D点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.2.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C D.4(m﹣n)x2考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.点评:本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.3.化简÷的结果是()A.m B.C.m﹣1 D.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=m.故选:A.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.4.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选:D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.5.化简:﹣=()A.0 B1 C.x D.考点:分式的加减法.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选:C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2) C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)考点:分式的混合运算.专题:计算题.分析:原式变形后,计算即可确定出w.解答:解:根据题意得:w===﹣(a+2)=﹣a﹣2.故选:D.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1 C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴同除以a,得a+=3,则原式=3﹣2=1,故选:B.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.当a=2时,÷(﹣1)的结果是()A.B.﹣ C D.﹣考点:分式的化简求值.专题:计算题.分析:通分、因式分解后将除法转化为乘法约分即可.解答:解:原式=÷=•=,当a=2时,原式==﹣.故选:D.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法是解题的关键.9.一个代数式的值不能等于零,那么它是()A.a2B.a0C D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:解:A、当a=0时,a2=0,故A错误;B、a0=1(且a≠0),故B正确;C、当a=0时,=0,故C错误;D、当a=0时,|a|=0,故D错误.故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.二.填空题(共7小题)10.若分式有意义,则实数x的取值范围是x≠5.考点:分式有意义的条件.专题:计算题.分析:由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.解答:解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.点评:本题主要考查分式有意义的条件:分式有意义,分母不能为0.11.代数式有意义时,x应满足的条件为x≠±1.考点:分式有意义的条件.分析:根据分式有意义,分母等于0列出方程求解即可.解答:解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.若分式的值是0,则x的值为 2 .考点:分式的值为零的条件.分析:根据分式的值为零的条件得到x﹣2=0且x≠0,易得x=2.解答:解:∵分式的值是0,∴x﹣2=0且x≠0,∴x=2.故答案为:2.点评:本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.13.化简:=.a+b .考点:约分.分析:先将分式的分子因式分解,再约分,即可求解.解答:解:==.故答案为:a+b.点评:本题考查了约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.14.计算:÷= .考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.故答案为:.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.15.计算:= a﹣2 .考点:分式的加减法.专题:计算题.分析:根据同分母分式加减运算法则,分母不变只把分子相加减即可求解.解答:解:==a﹣2.故答案为:a﹣2.点评:本题主要考查同分母分式加减,熟练掌握运算法则是解题的关键.16.化简:= x+2 .考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.三.解答题(共8小题)17.先化简,再求值:•,其中x=2+,y=2﹣.考点:分式的化简求值.专题:计算题.分析:将原式第一个因式括号中两项通分并利用同分母分式的减法法则计算,分子利用完全平方公式展开,去括号合并得到最简结果,第二个因式通分并利用同分母分式的减法法则计算,分子提取﹣1并利用平方差公式分解因式,约分得到最简结果,然后将x与y的值代入化简后的式子中计算,即可得到原式的值.解答:解:原式=•=•(﹣)=4xy•=,则当x=2+,y=2﹣时,原式==﹣=﹣4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找出最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先化简再代值.18.计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.计算:•.考点:分式的乘除法.专题:计算题.分析:把式子中的代数式进行因式分解,再约分求解.解答:解:•=•=x点评:本题主要考查分式的乘除法,解题的关键是进行因式分解再约分.20.计算(﹣)÷.考点:分式的混合运算.分析:首先把除法运算转化成乘法运算,然后找出最简公分母,进行通分,化简.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.点评:此题主要考查了分式的混合运算,通分、因式分解和约分是解答的关键.21.计算:(﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.已知非零实数a满足a2+1=3a,求的值.考点:分式的混合运算.专题:计算题.分析:已知等式两边除以a变形后求出a+的值,两边平方,利用完全平方公式展开即可求出所求式子的值.解答:解:∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.24.先化简,再求值:÷(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.。

九年级中考总复习(华师大版)精练精析:十一、分式方程2(13页)

九年级中考总复习(华师大版)精练精析:十一、分式方程2(13页)
三.解答题(该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?
18.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.
(1)求购买该品牌一个台灯、一个手电筒各需要多少元?
(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?
21.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
6.方程=﹣1的解是( )
A.x=﹣2B.x=2C.x=0D.无解
7.分式方程﹣1=的解为( )
A.x=4B.x=2C.x=0D.无解
8.方程﹣=0的解是( )
A.无解B.x=﹣2C.x=2D.x=±2
9.方程=的解为( )
A.﹣1B.1C.2D.3
二.填空题(共7小题)
10.若关于x的方程的解为正数,则m的取值范围是_________.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?

九年级中考总复习(华师大版)精练精析:十一、分式方程1(13页)

九年级中考总复习(华师大版)精练精析:十一、分式方程1(13页)

方程与不等式——分式方程1一.选择题(共9小题)1.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠32.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=23.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定4.分式方程的解为()A.1 B.2 C.3 D.45.将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=36.方程﹣=0解是()A.x= B.x= C.x= D.x=﹣17.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.9.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.=二.填空题(共8小题)10.当m_________时,方程=无解.11.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是_________.12.方程的解是_________.13.分式方程﹣=1的解是_________.14.若代数式和的值相等,则x=_________.15.若关于x的方程﹣1=0有增根,则a的值为_________.16.若分式方程﹣=2有增根,则这个增根是_________.17.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是_________.三.解答题(共9小题)18.解方程:.19.解方程:.20.解方程:=1.21.解分式方程:+=3.22某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?。

八年级数学“分式”小结与复习华东师大版知识精讲

八年级数学“分式”小结与复习华东师大版知识精讲

初二数学“分式”小结与复习华东师大版【本讲教育信息】一. 教学内容:“分式”小结与复习二. 重点、难点: 1. 重点:(1)分式及其基本性质;(2)分式的运算;(3)可化为一元一次方程的分式方程的解法; (4)零指数幂与负整数指数幂. 2. 难点:(1)分式方程转化为整式方程;(2)理解增根产生的原因,认识到检验的必要性,并会进行检验; (3)列分式方程解决实际问题.三. 知识梳理:(一)本章知识结构图:(二)主要知识回顾 1. 分式的基本性质(1)整式A 除以整式B ,可以表示成B A 的形式,如果B 中含有字母,则称BA叫做分式,对于任意一个分式,分母都不为零。

(2)分式无意义的条件:分式的分母=0;分式有意义的条件:分式的分母≠0。

(3)分式的值为0的条件:分式的分母≠0,且分式的分子=0。

(4)分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变,即M B MA BM AMB A ÷÷==(M 为不为0的整式).它是分式通分和约分的根据。

2. 分式的运算(1)分式的乘除法:实质是分式的约分。

(2)分式的乘方:把分子、分母分别乘方。

(3)分式的加减法:①同分母分式相加减,分母不变,分子相加减;②异分母分式相加减,先通分化为同分母分式,再加减。

(4)分式的混合运算:先乘方,再乘除,最后加减,如有括号,先算括号内的。

(5)在进行分式的各种运算时:①分子、分母中的多项式能因式分解的,应先进行因式分解;②分式运算的结果要化成最简分式或整式。

3. 分式方程及其应用(1)分母中含有未知数的方程叫分式方程。

解分式方程的一般思路是把分式方程转化为整式方程,其一般步骤是:①化简整理,确定分式方程的最简公分母;②分式方程两边都乘以最简公分母,约去分母,化成整式方程;③解这个整式方程,求出整式方程的解;④验根,即将整式方程的解代入最简公分母,看最简公分母是否为零.从而确定分式方程的根。

第1讲 分式及分式方程-2021年新九年级数学(华师大版)(解析版)

第1讲 分式及分式方程-2021年新九年级数学(华师大版)(解析版)

第1讲分式及分式方程【学习目标】1.理解分式的意义,明确分式与整式的区别2.掌握分式的计算3.解分式方程4.运用分式方程解决问题【基础知识】考点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.考点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.考点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减. (2)乘法运算 ,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算 ,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘. (4)乘方运算分式的乘方,把分子、分母分别乘方. 4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的. 考点三、分式方程 1.分式方程的概念分母中含有未知数的方程叫做分式方程. 2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程. 3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.考点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解. 考点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【考点剖析】 考点一:分式及其基本性质例1.在中,分式的个数是( )A.2B.3C.4D.5【答案】C ; 【解析】是分式.【总结】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 例2、当x 为何值时,分式的值为0?【思路】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值. 【答案】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得 解得3x =. ∴ 当3x =时,分式的值为0.【总结】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______; (2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2; (2)当10x -=,即x =1时,分式没有意义. 考点二:分式运算例3.计算:.【答案】 解:.【总结】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键. 举一反三:【变式】化简:÷(﹣)【答案】 解:原式=÷=• =﹣. 考点三:分式方程的解法例4.解方程:.【思路】观察可得最简公分母是(x ﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【答案】解:方程的两边同乘(x ﹣1)(x+1),得 3x+3﹣x ﹣3=0, 解得x=0.检验:把x=0代入(x ﹣1)(x+1)=﹣1≠0. ∴原方程的解为:x=0.【总结】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 举一反三: 【变式】, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解. 考点四:分式方程的应用例4.某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答. 【答案】解:设原计划每天铺设x 米管道,由题意得: ﹣=5, 解得:x=20,经检验:x=20是原方程的解. 答:原计划每天铺设20米管道.【总结】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等. 举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少? 【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h .根据题意得:. 解得:5x =.经检验5x =是原方程的根且符合题意. 当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .【真题演练】1.下列各式:(﹣m )2,,,x 2+y 2,5,,中,分式有( ) A . 1个 B . 2个 C . 3个 D . 4个【答案】B ;【解析】解:(﹣m )2,,x 2+y 2,5,的分母中均不含有字母,因此它们是整式,而不是分式.,分母中含有字母,因此是分式.故选B .2.把分式yx x+2中的x y 、都扩大3倍,则分式的值( ). A.扩大3倍B.扩大6倍C.缩小为原来的31D.不变【答案】D ; 【解析】.3.下列各式中,正确的是( ). A. B. C. D.【答案】A ; 【解析】. 4.式子222x x x +--的值为0,那么x 的值是( ) A .2 B .-2C .±2D .不存在【答案】B ;【解析】由题意+2=0x 且220x x --≠,解得2x =-. 5.化简﹣等于( ) A . B .C .﹣D .﹣ 【答案】B ;【解析】解:原式=+=+==,故选B. 6.下列分式中,最简分式是( ).A.21521yxyB.y x y x +-22C.222x xy y x y-+-D.y x y x -+22【答案】D ;7.将分式方程化为整式方程时,方程两边应同乘( ).A .B .C .D .【答案】D ;【解析】原方程的最简公分母为. 8.方程的解是( )A .0B .2C .3D .无解【答案】D ;【解析】解分式方程得3x =,经检验,3x =为原方程的增根. 二.填空题9.若x >,那么的值是______________. 【答案】1; 【解析】若x >,不等式两边同时乘以5,得到5x >2, 则2﹣5x <0, ∴|2﹣5x|=5x ﹣2, 那么==1..10.当x ______时,分式有意义. 【答案】12≠; 11.当x ______时,分式的值为正. 【答案】;【解析】要使分式的值为正,需210x +<,解得12x <-. 12.2232)()(yx y x -÷=______.【答案】4x y ; 【解析】.13.化简:(+)= . 【答案】a ;【解析】解:原式=•=(a+3)•=a . 14.写出下列分式中的未知的分子或分母: (1);(2);(3).【答案】(1)4n (2)2a ab - (3)x15.分式方程若要化为整式方程,在方程两边同乘的最简公分母是______. 【答案】21x -16.方程的解是______. 【答案】10x =;【解析】去分母得,,化简得:10x =,经检验,10x =是原方程的根. 三.解答题 17.计算;(2). 【解析】 解:(1).(2)原式.18.已知1x = 【解析】 解:原式.当1x =2==-. 19. 已知345x y z ==,求23x yx y z+-+的值. 【解析】解: 设345x y zk ===,则3x k =,4y k =,5z k =. 所以347723324351010x y k k k x y z k k k k ++===-+-⨯+⨯.20.济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度. 【解析】解:设普通快车的速度为xkm/时,由题意得:﹣=4, 解得:x=80,经检验:x=80是原分式方程的解, 3x=3×80=240,答:高铁列车的平均行驶速度是240km/时.【过关检测】 一.选择题1.下列关于x 的方程,其中不是分式方程的是( ) A. B. C. D. 【答案】C ;【解析】分式方程是分母含有未知数的等式. 2.的结果是( )A .B .C .D .1【答案】B ; 【解析】2222()()()()a b a b a b a b a b a b a ba b a b a b a b a b a b a b++++-++÷⨯=⨯⨯=----+--. 3.分式方程的解是( )A .0B .2C .0或2D .无解【答案】D ;【解析】去分母得,()3226x x =-+,解得2x =是增根. 4.关于x 的分式方程=2+有增根,则实数k 的值为( ) A . 3 B .0C.±3D . 无法确定【答案】A ;【解析】解:分式方程去分母得:x=2x ﹣6+k ,由分式方程有增根,得到x ﹣3=0,即x=3, 把x=3代入整式方程得:k=3. 故选A .5.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( ) A . B . C .D .【答案】A ;【解析】原计划所用时间为,实际所用时间为,选A . 6.化简的结果是( ). A .yx +1B .yx +-1C .x y -D .y x -【答案】B ; 【解析】.7. 若关于x 的分式方程的解为非负数,则a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≥1且a ≠4 D .a >1且a ≠4 【答案】C ;【解析】去分母得:2(2x ﹣a )=x ﹣2,解得:x=,由题意得:≥0且≠2,解得:a ≥1且a ≠4,故选:C .8. 甲、乙两人分别从两地同时出发,若相向而行,则经过ah 相遇;若同向而行,则经过bh 甲追上乙.那么甲的速度是乙的( )A .倍B .ba b+倍 C .倍 D .倍【答案】C ;【解析】不妨设甲乙两人开始时相距s 千米,甲的速度为1v ,乙的速度为2v ,则根据题意有于是 1212()()a v v b v v +=-,所以 ,即12v a b v b a +=-.甲的速度是乙的倍.二.填空题9.若分式的值为0,则x 的值为______.【答案】0;【解析】由题意20x x -=且,解得0x =.10.若2212x y xy -=,且xy >0,则分式y x y x -+23的值为______. 【答案】1;【解析】由2212x y xy -=得,因为xy >0,所以4x y =,代入原式得312x y x y+=-. 11.化简2222936a b a b ab =-______;=______. 【答案】;312b a-; 【解析】;.12.化简﹣的结果是__________.【答案】a+1;【解析】﹣=.13.a ,b 互为倒数,代数式÷(+)的值为____________.【答案】1;【解析】原式=÷=(a+b )•=ab ,∵a ,b 互为倒数,∴a •b=1,∴原式=1.14.已知,则= .【答案】;【解析】解:设=k ,则x=2k ,y=3k ,z=4k ,则===.15.若分式方程的解是0x =,则a =______.【答案】7;【解析】将0x =代入原方程,解得7a =.16.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是________. 【答案】2a c; 【解析】每人每天做c ab 个零件,b 个人用同样速度做a 个零件所需天数是 .三.解答题17.(1)已知13a a +=,求221a a +,441a a+的值; (2)已知2217a a +=,求1a a-的值. 【解析】 解:(1)因为13a a +=,所以0a ≠, 所以2213a a ⎛⎫+= ⎪⎝⎭,所以22129a a ++=. 所以2217a a +=.同理可得44147a a +=. (2)因为2217a a +=,所以22125a a +-=,所以215a a ⎛⎫-= ⎪⎝⎭,所以1a a -= 18.已知x 2﹣x ﹣6=0,求的值.【解析】解:∵x 2﹣x ﹣6=0,∴x 2=x+6,∴把x 2=x+6代入:原式===== =18所以原式的值是18. 19.a 为何值时,关于x 的方程会产生增根?【解析】解:方程两边都乘以,得2(2)3(2)x ax x ++=-.整理得(1)10a x -=-.当1a =时,方程无解.当1a ≠时,.如果方程有增根,那么(2)(2)0x x +-=,即2x =,或2x =-.当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以6a =. 所以当4a =-或6a =时,原方程会产生增根.20. 某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【解析】解:(1)设第一批购进书包的单价为x 元,则第二批购进书包的单价为元,第一批购进书包个,第二批购进书包个.依题意,得,整理,得20(4)21x x +=,解得80x =.经检验80x =是原方程的根.(2)(元).答:第一批购进书包的单价为80元.商店共盈利3700元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数与式——分式1
一.选择题(共9小题)
1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()
A.2x%B.1+2x%C.(1+x%)•x%D.(2+x%)•x%
2.下列三个分式、、的最简公分母是()
A.4(m﹣n)xB.2(m﹣n)x2C.D.4(m﹣n)x2
3.化简÷的结果是()
A.mB.C.m﹣1D.
4.化简的结果是()
A.x+1B.x﹣1C.﹣xD.x
5.化简:﹣=()
A.0B.1C.xD.
6.若(+)•w=1,则w=()
A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)
7.已知:a2﹣3a+1=0,则a+﹣2的值为()
A.+1B.1C.﹣1D.﹣5
8.当a=2时,÷(﹣1)的结果是()
A.B.﹣C.D.﹣
9.一个代数式的值不能等于零,那么它是()
A.a2B.a0C.D.|a|
二.填空题(共7小题)
10.若分式有意义,则实数x的取值范围是_________.
11.代数式有意义时,x应满足的条件为_________.
12.若分式的值是0,则x的值为_________.
13.化简:=._________.
14.计算:÷=_________.
15.计算:=_________.
16.化简:=_________.
三.解答题(共8小题)
17.先化简,再求值:•,其中x=2+,y=2﹣.18.计算:•.
19.计算:•.
20.计算(﹣)÷.
21.计算:(﹣)÷.。

相关文档
最新文档