2020-2021中考数学——一元二次方程组的综合压轴题专题复习含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学——一元二次方程组的综合压轴题专题复习含答案解析
一、一元二次方程
1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2
﹣(2k +1)x +4(k ﹣
1
2
)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】
分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】
当a =4为腰长时,将x =4代入原方程,得:()2
14421402k k ⎛⎫-++-
= ⎪⎝⎭
解得:5
2
k = 当52
k =
时,原方程为x 2
﹣6x +8=0, 解得:x 1=2,x 2=4,
∴此时△ABC 的周长为4+4+2=10;
当a =4为底长时,△=[﹣(2k +1)]2
﹣4×1×4(k ﹣12
)=(2k ﹣3)2
=0, 解得:k =
32
, ∴b +c =2k +1=4. ∵b +c =4=a ,
∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】
本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.
2.已知:关于x 的方程x 2-4mx +4m 2-1=0. (1)不解方程,判断方程的根的情况;
(2)若△ABC 为等腰三角形,BC =5,另外两条边是方程的根,求此三角形的周长.2 【答案】(1) 有两个不相等的实数根(2)周长为13或17 【解析】
试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m
为何值,该方程总有两个不相等的实数根;
(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.
试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.
(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.
将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.
当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;
当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.
综上所述:此三角形的周长为13或17.
点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.
3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)请回答李晨的问题:若CD=10,则AD= ;
(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:
①∠FCD的最大度数为;
②当FC∥AB时,AD= ;
③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;
④△FCD的面积s的取值范围是 .
【答案】(1)2;(2)① 60°;②;③;④.
【解析】
试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.
(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.
②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.
③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.
④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.
∵CD=10,∴AD=2.
(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.
∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."
② 如图,过点F作FH⊥AC于点H,
∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.
∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.
∵AC=12,∴AD=.
③如图,过点F作FH⊥AC于点H,设AD=x,
由②知DH=3,FH=,则HC=.
在Rt△CFH中,根据勾股定理,得.
∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,
∴,即,解得.
④设AD=x,易知,即.
而,
当时,;当时,.
∴△FCD的面积s的取值范围是.
考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.
4.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.
【答案】
5.有一个人患了流感,经过两轮传染后共有36人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
【详解】
(1)设每轮传染中平均一个人传染了x个人,根据题意得:
x+1+(x+1)x=36,
解得:x=5或x=﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
6.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.
【答案】1
【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.
试题解析:把x=﹣1代入x2+2ax+a2=0得
1﹣2a+a2=0,
解得a1=a2=1,
所以a的值为1.
7.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.
(1)求y与x之间的函数关系式;
(2)当每箱售价为多少元时,每星期的销售利润达到3570元?
(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?
【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元
【解析】
【分析】
(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,
(3)表示出最大利润将函数变成顶点式即可求解.
【详解】
解:(1)∵售价每降价1元,每星期可多卖10箱,
设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),
(2)依题意得:
(x-40)(-10x+780)=3570,
解得:x=57,
∴当每箱售价为57元时,每星期的销售利润达到3570元.
(3)设每星期的利润为w,
W=(x-40)(-10x+780)=-10(x-59)2+3610,
∵-10 0,二次函数向下,函数有最大值,
当x=59时, 利润最大,为3610元.
【点睛】
本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.
8.关于x的一元二次方程x2﹣2x﹣(n﹣1)=0有两个不相等的实数根.
(1)求n 的取值范围;
(2)若n 为取值范围内的最小整数,求此方程的根. 【答案】(1)n >0;(2)x 1=0,x 2=2. 【解析】 【分析】
(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案. 【详解】
(1)根据题意知,[]
2
2
4(2)41(1)0b ac n ∆=-=--⨯⨯--> 解之得:0n >;
(2)∵0n > 且n 为取值范围内的最小整数, ∴1n =,
则方程为220x x -=, 即(2)0x x -=, 解得120,2x x ==. 【点睛】
本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程
20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等
的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.
9.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根. (1)求a 的取值范围;
(2)当a 为符合条件的最大整数,求此时方程的解. 【答案】(1)a ≤17
4
;(2)x =1或x =2 【解析】
【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2
﹣4ac≥0,建立关于a 的不等
式,即可求出a 的取值范围;
(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.
【详解】(1)∵关于x 的一元二次方程x 2
﹣3x +a ﹣2=0有实数根,
∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤
174
; (2)由(1)可知a ≤
174
, ∴a 的最大整数值为4,
此时方程为x 2
﹣3x +2=0, 解得x =1或x =2.
【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
10.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
【答案】(1)两次下降的百分率为10%;
(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元. 【解析】 【分析】
(1)设每次降价的百分率为 x ,(1﹣x )2
为两次降价后的百分率,40元 降至 32.4元 就
是方程的等量条件,列出方程求解即可;
(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】
解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4
x =10%或 190%(190%不符合题意,舍去)
答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得
()4030y (448)5100.5
y
--⨯
+= 解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.
答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
11.关于x 的一元二次方程ax 2+bx+1=0.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1. 【解析】 【详解】
分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况. (2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.
详解:(1)解:由题意:0a ≠.
∵()2
2242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.
(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.
点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,
当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.
12.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2
时,裁掉的正方形边长多大?
【答案】裁掉的正方形的边长为2dm ,底面积为12dm 2
.
【解析】
试题分析:设裁掉的正方形的边长为xdm ,则制作无盖的长方体容器的长为(10-2x )dm ,宽为(6-2x )dm ,根据长方体底面面积为12dm 2列出方程,解方程即可求得裁掉的正方形边长. 试题解析:
设裁掉的正方形的边长为xdm , 由题意可得(10-2x)(6-2x)=12,
即x 2
-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm ,底面积为12dm 2
.
13.已知关于x的方程x2-(m+2)x+(2m-1)=0。

(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。

【答案】(1)见详解;(2)4或4+.
【解析】
【分析】
(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.
【详解】
解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.
∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.
(2)∵此方程的一个根是1,
∴12-1×(m+2)+(2m-1)=0,解得,m=2,
则方程的另一根为:m+2-1=2+1=3.
①当该直角三角形的两直角边是1、3
形的周长为1+3=4
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直
角边为1+3+=4+
14.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?
(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天
开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可
以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.
【答案】(1)销售单价至少为35元;(2)m=16.
【解析】
试题分析:(1)根据利润的公式列出方程,再求解即可;
(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.
试题解析:(1)设销售单价至少为x 元,根据题意列方程得, 150(x ﹣20)=2250, 解得x=35,
答:销售单价至少为35元;
(2)由题意得:35×(1﹣m%)(150+m )=5670,
150+m ﹣150×m%﹣m%×m=162,
m ﹣
m 2=12,
60m ﹣3m 2=192, m 2﹣20m+64=0, m 1=4,m 2=16, ∵要使销售量尽可能大, ∴m=16.
【考点】一元二次方程的应用;一元一次不等式的应用.
15.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.
()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有
多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】
对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;
对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280
()2因为1020020002625⨯=<.
因此参加人比10人多, 设在10人基础上再增加x 人,
由题意得:()()1020052625x x +-=.
解得 15x = 225x =,
∵2005150x -≥,
∴010x <≤,
经检验 15x =是方程的解且符合题意,225x =(舍去).
1010515x +=+=
答:该单位共有15名员工参加旅游.
【点睛】
本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。

相关文档
最新文档