2016年河北省张家口市中考数学一模试卷(解析版)
【精编】2016年河北省数学中考模拟试卷及解析
2016年河北省中考数学模拟试卷(六)一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数为()A.B.﹣C.D.2.(3分)如图,数轴上的点Q所表示的数可能是()A.B.C.D.3.(3分)已知+(b+3)2=0,则(a+b)2016的值为()A.0 B.2016 C.﹣1 D.14.(3分)如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°5.(3分)2015年第39个国际博物馆日,河北博物院开放“蔚县剪纸”等三个展厅,通过现场操作等多种形式,让市民体验传统技艺,某市民将一个正方形彩纸依次按如图1,如图2所示的方式对折,然后沿图3中的虚线裁剪,则将图3的彩纸展开铺平后的图案是()A.B.C.D.6.(3分)若m<n,则下列不等式一定成立的是()A.m2<n2B.m﹣n>0 C.m﹣3<n﹣3 D.﹣m<﹣n7.(3分)下列各选项中,说法正确的是()A.“投掷一枚骰子,向上的一面显示的点数是1”的概率为B.“投掷一枚硬币,正面朝上”属于必然事件C.“为了解河北省中学生课外阅读的情况”应采用普查D.“用长为4cm、6cm、7cm的三条线段围成三角形”属于不可能事件8.(3分)春节前夕,某旅游景区的成人票和学生票均对折,李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则赵芸同学和妈妈去该景区游玩时,门票需要花费()A.120元B.130元C.140元D.150元9.(3分)如图,AB为⊙O的直径,点C在⊙O上,连接AC,OC,过点B作BD ⊥OC,交⊙O于点D,已知∠ACO=35°,则∠COD的度数为()A.70°B.60°C.45°D.35°10.(3分)2015年12月20日,深圳光明新区恒泰裕工业集团后侧发生一起山体滑坡事故,某爱心救援团在得知消息后,为了抢险,途中除2次因加油等原因必须停车外,一路快速行驶,最终到达目的地,则该救援队进行的路程y与时间t之间的函数关系的大致图象是()A.B.C.D.11.(2分)若点A(﹣1,2),B(2,﹣3)在直线y=kx+b上,则函数y=的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限12.(2分)已知函数y=,则当y=10时,x的值为()A.B.或﹣C.或5 D.﹣或513.(2分)2016年1月13日长城河报道,河北香河县中报“全国绿化模范县”通过审核,截止到2015年,香河县林地面积达到24.39万亩,森林覆盖率达到35.5%,若某县从2013到2015年经过两年的时间,使森林覆盖率增长21%,则该县这两年平均每年的森林覆盖的增长率为()A.9% B.10% C.11% D.12%14.(2分)如图1,已知线段a,求作△ABC,使得底边AB和边AB上的高CF 的长度均等于线段a的长度,若王敏的作法如图2所示,则下列关于王敏所做的△ABC的说法中不正确的是()A.AC=BC B.AF=BF C.AB=AC D.∠ACF=∠BCF15.(2分)如图,将一个菱形的纸片剪成4个完全相同的小菱形,共得到4个菱形,再将其中1个小菱形剪成4个完全相同的更小的菱形,共得到7个菱形,…,按照此规律,依次操作减剪下去,则第n次剪,会得到菱形的个数为()A.2n个B.(2n+1)个C.3n个D.(3n+1)个16.(2分)如图,已知矩形纸片OABC在平面直角坐标系中,将该纸片沿对角线AC进行折叠,使得点B到达点D的位置,若该纸片的长为4、宽为2,则点D 的坐标为()A.(﹣,﹣)B.(﹣,﹣)C.(,﹣)D.(,﹣)二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)计算|﹣|+(6﹣)的结果为.18.(3分)已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为.19.(3分)在平面直角坐标系内,若点P(﹣1,p)和点Q(q,3)关于原点O 对称,则pq的值为.20.(3分)如图,在四边形ABCD中,连接AC,BD,AC和BD相交于点E.若AD∥BC,BD⊥AD,2DE=BE,AD=BD,则∠BAC+∠BCA的度数为.三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)根据老师在如图所示的背板上给出的内容,完成下列各小题.(1)求(4*6)*(﹣2)的值;(2)若1*x=3,求x的值.22.(10分)如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.23.(10分)某住宅楼新开盘需要印制一批彩色宣传单,该楼盘管理者在网上浏览到两种供应该规格的宣传单的方案:①从广告公司直接购买,宣传单的单价为0.2元;②从租赁处租赁印刷机器自己印刷,租赁费用为5000元,且每印刷一张宣传单,还需要成本0.12元.(1)请分别写出从广告公司直接购买宣传单的费用y1(元)与需要这种宣传单的张数x(张)之间的函数关系式及租赁印刷机器印刷制作宣传单的费用y2(元)与需要这种宣传单的张数x(张)之间的函数关系式.(2)如果你是该楼盘的管理者,你会采用哪种宣传单供应的方案?24.(11分)某地的A,B,C三家养鸡场之间的位置关系如图1所示,已知B养鸡场在A养鸡场的正东方向50公里处,C养鸡场在A养鸡场的正北方向50公里处,A养鸡场有1万只鸡,B养鸡场的养殖量是这三角养殖场的总养殖量的50%,C养鸡场养了三种鸡,李涵同学将各养鸡场的养殖量绘制成如图2所示的不完整的条形统计图,将C养鸡场各种鸡的养殖量绘制成如图3所示的扇形统计图.(1)补全图2中的条形统计图;(2)求海兰褐鸡的数量即海兰白鸡所对的扇形的圆心角的度数;(3)该地政府部门决定在B,C的中点建设一座货运中转中心E,以解决三角养鸡场的鸡蛋输送问题,已知A,B,C三家养鸡场的每只鸡的年平均产蛋量为1箱,当运送一箱鸡蛋每公里的费用都为0.5元时,求从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为多少元?(提示:=1.4)25.(11分)如图,已知抛物线y=﹣ax2+x+2经过点A(1,),且与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.(1)求该你抛物线的解析式及点A,B的坐标;(2)若代数式﹣ax2+x+2的值为正整数,求x的值有多少个?(3)连接BC,在BC上方的抛物线上是否存在一点E,使得△BCE的面积最小?若存在,请求出点E的坐标;若不存在,请说明理由.26.(14分)如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD 相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.2016年河北省中考数学模拟试卷(六)参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数为()A.B.﹣C.D.【解答】解:﹣的相反数为.故选D.2.(3分)如图,数轴上的点Q所表示的数可能是()A.B.C.D.【解答】解:如图,设Q点表示的数为x,则2<x<3,A、∵1<2<4,∴1<<2,故本选项错误;B、∵1<3<4,∴1<<2,故本选项错误;C、∵4<5<9,∴2<<3,故本选项正确;D、∵9<10<16,∴3<<4,故本选项错误.故选C.3.(3分)已知+(b+3)2=0,则(a+b)2016的值为()A.0 B.2016 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故选:D.4.(3分)如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°【解答】解:∵∠AOD=136°,∴∠BOC=136°,∵MO⊥OB,∴∠MOB=90°,∴∠COM=∠BOC﹣∠MOB=136°﹣90°=46°,故选C.5.(3分)2015年第39个国际博物馆日,河北博物院开放“蔚县剪纸”等三个展厅,通过现场操作等多种形式,让市民体验传统技艺,某市民将一个正方形彩纸依次按如图1,如图2所示的方式对折,然后沿图3中的虚线裁剪,则将图3的彩纸展开铺平后的图案是()A.B.C.D.【解答】解:在两次对折的时,不难发现是又折成了一个正方形,第一次剪的是在两次对折的交点处,剪一扇形,会出现半圆,所以A,C肯定错误,第二次剪的是折成的小正方形的上面的一个圆形,会出现4个小圆,所以B肯定错误,故选:D.6.(3分)若m<n,则下列不等式一定成立的是()A.m2<n2B.m﹣n>0 C.m﹣3<n﹣3 D.﹣m<﹣n【解答】解:A、当0<m<n时,不等式m2<n2成立,故本选项错误;B、由m<n得到:m﹣n<0,故本选项错误;C、在不等式m<n的两边同时减去3,不等式仍成立,即m﹣3<n﹣3,故本选项正确;D、在不等式m<n的两边同时乘以﹣1,不等号的方向改变,即﹣m>﹣n,故本选项错误;故选:C.7.(3分)下列各选项中,说法正确的是()A.“投掷一枚骰子,向上的一面显示的点数是1”的概率为B.“投掷一枚硬币,正面朝上”属于必然事件C.“为了解河北省中学生课外阅读的情况”应采用普查D.“用长为4cm、6cm、7cm的三条线段围成三角形”属于不可能事件【解答】解:A、“投掷一枚骰子,向上的一面显示的点数是1”的概率为,正确;B、“投掷一枚硬币,正面朝上”属于随机事件,故本选项错误;C、“为了解河北省中学生课外阅读的情况”应采用抽样调查,故本选项错误;D、“用长为4cm、6cm、7cm的三条线段围成三角形”属于必然事件,故本选项错误;故选A.8.(3分)春节前夕,某旅游景区的成人票和学生票均对折,李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则赵芸同学和妈妈去该景区游玩时,门票需要花费()A.120元B.130元C.140元D.150元【解答】解:设成人票是x元/张,学生票是y元/张,依题意得:,解得,则x+y=120.即赵芸同学和妈妈去该景区游玩时,门票需要花费120元.故选:A.9.(3分)如图,AB为⊙O的直径,点C在⊙O上,连接AC,OC,过点B作BD ⊥OC,交⊙O于点D,已知∠ACO=35°,则∠COD的度数为()A.70°B.60°C.45°D.35°【解答】解:∵OA=OC,∴∠OAC=∠ACO=35°,∴∠BOC=2∠A=70°,∵BD⊥OC,∴=,∴∠COD=∠BOC=70°.故选A.10.(3分)2015年12月20日,深圳光明新区恒泰裕工业集团后侧发生一起山体滑坡事故,某爱心救援团在得知消息后,为了抢险,途中除2次因加油等原因必须停车外,一路快速行驶,最终到达目的地,则该救援队进行的路程y与时间t之间的函数关系的大致图象是()A.B.C.D.【解答】解:根据题意可得,y随着时间t的增加而增大,中途两次加油需要一定的时间但是距离不变,故选B.11.(2分)若点A(﹣1,2),B(2,﹣3)在直线y=kx+b上,则函数y=的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限【解答】解:根据题意,将点A(﹣1,2),B(2,﹣3)代入直线y=kx+b,得:,解得:,∴由反比例函数的性质可知,k=﹣<0时,函数y=的图象在第二、四象限,故选:C.12.(2分)已知函数y=,则当y=10时,x的值为()A.B.或﹣C.或5 D.﹣或5【解答】解:y=10时,则2x2+4=10,解得x=±,∵x≥1,∴x=;y=10时,则3x﹣5=10,解得x=5,∵x<1,∴此种情况不存在,故x的值为,故选A.13.(2分)2016年1月13日长城河报道,河北香河县中报“全国绿化模范县”通过审核,截止到2015年,香河县林地面积达到24.39万亩,森林覆盖率达到35.5%,若某县从2013到2015年经过两年的时间,使森林覆盖率增长21%,则该县这两年平均每年的森林覆盖的增长率为()A.9% B.10% C.11% D.12%【解答】解:设原来香河县林地面积是1,该县这两年平均每年的森林覆盖的增长率为x.依题意,得(1+x)2=1+21%,解得x1=0.1,x2=﹣2.1(不合题意,舍去).答:该县这两年平均每年的森林覆盖的增长率为10%.故选B.14.(2分)如图1,已知线段a,求作△ABC,使得底边AB和边AB上的高CF 的长度均等于线段a的长度,若王敏的作法如图2所示,则下列关于王敏所做的△ABC的说法中不正确的是()A.AC=BC B.AF=BF C.AB=AC D.∠ACF=∠BCF【解答】解:由王敏的作法可得AB=a,再作AB的垂直平分线EF,F点为垂直,则AF=BF,接着截取FC=a,则CA=CB,然后根据等腰三角形的性质得到∠ACF=∠BCF.故选C.15.(2分)如图,将一个菱形的纸片剪成4个完全相同的小菱形,共得到4个菱形,再将其中1个小菱形剪成4个完全相同的更小的菱形,共得到7个菱形,…,按照此规律,依次操作减剪下去,则第n次剪,会得到菱形的个数为()A.2n个B.(2n+1)个C.3n个D.(3n+1)个【解答】解:∵剪第1次时,可剪出4个菱形,4=1+3×1;剪第2次时,可剪出7个菱形,7=1+3×2;剪第3次时,可剪出10个菱形,10=1+3×3;剪第4次时,可剪出13个菱形,13=1+3×4;…剪n次时,共剪出小菱形的个数为:3n+1,故选:D.16.(2分)如图,已知矩形纸片OABC在平面直角坐标系中,将该纸片沿对角线AC进行折叠,使得点B到达点D的位置,若该纸片的长为4、宽为2,则点D 的坐标为()A.(﹣,﹣)B.(﹣,﹣)C.(,﹣)D.(,﹣)【解答】解:过点D作DF⊥OA于F,AD交x轴于点E,∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA,∵B(﹣4,2),∴AD=AB=4,设OE=x,则AE=EC=OC﹣OE=4﹣x,在Rt△AOE中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x=1.5,∴OE=1.5,AE=2.5,∵DF⊥OA,OE⊥OA,∴OE∥DF,∴,∴AF=,∴OF=AF﹣OA=,∴点D的坐标(﹣).故选:A.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)计算|﹣|+(6﹣)的结果为6.【解答】解:|﹣|+(6﹣)=+6﹣=﹣+6=6故答案为:6.18.(3分)已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为﹣2.【解答】解:因为多项式x|m|+(m﹣2)x﹣10是二次三项式,可得:m﹣2≠0,|m|=2,解得:m=﹣2,故答案为:﹣219.(3分)在平面直角坐标系内,若点P(﹣1,p)和点Q(q,3)关于原点O 对称,则pq的值为﹣3.【解答】解:∵点P(﹣1,p)和点Q(q,3)关于原点O对称,∴q=1,p=﹣3,则pq的值为:﹣3.故答案为:﹣3.20.(3分)如图,在四边形ABCD中,连接AC,BD,AC和BD相交于点E.若AD∥BC,BD⊥AD,2DE=BE,AD=BD,则∠BAC+∠BCA的度数为60°.【解答】解:∵BD⊥AD,∴∠ADB=90°,∵AD=BD,∴tan∠ABD==,∴∠ABD=30°,∵AD∥BC,∴∠CBD=∠ADB=90°,∴∠ABC=30°+90°=120°,∴∠BAC+∠BCA=180°﹣120°=60°.故答案为:60°.三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)根据老师在如图所示的背板上给出的内容,完成下列各小题.(1)求(4*6)*(﹣2)的值;(2)若1*x=3,求x的值.【解答】解:(1)(4*6)*(﹣2)=*(﹣2)==;(2)∵1*x=3,∴=3,解得:x=1,经检验x=1是原方程的解,则x的值是1.22.(10分)如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.【解答】解:(1)∵E为AB的中点,∴AB=2BE,∵AB=2AD,∴BE=AD,∵∠A=90°,AD∥BC,∴∠ABC=90°,在△ABD与△BCE中,,∴△ABD≌△BCE,∴CE=BD;(2)∵AB=4,∴AE=BE=2,BC=4,∵FE⊥CE,∴∠FEC=90°,∴∠AEF+∠AFE=∠AEF+∠BEC=90°,∴∠AFE=∠BEC,∴△AEF∽△BCE,∴,∴AF=1;(3)∵△AEF∽△BCE,∴,∴AF=AE,设AF=k,则AE=BE=2k,BC=4k,∴EF==k,CE==2k,∴CF==5k,∴sin∠EFC==.23.(10分)某住宅楼新开盘需要印制一批彩色宣传单,该楼盘管理者在网上浏览到两种供应该规格的宣传单的方案:①从广告公司直接购买,宣传单的单价为0.2元;②从租赁处租赁印刷机器自己印刷,租赁费用为5000元,且每印刷一张宣传单,还需要成本0.12元.(1)请分别写出从广告公司直接购买宣传单的费用y1(元)与需要这种宣传单的张数x(张)之间的函数关系式及租赁印刷机器印刷制作宣传单的费用y2(元)与需要这种宣传单的张数x(张)之间的函数关系式.(2)如果你是该楼盘的管理者,你会采用哪种宣传单供应的方案?【解答】解:(1)y1=0.2x,y2=0.12x+5000;(2)若y1<y2,即0.2x<0.12x+5000,解得:x<62500,∴当x<62500时,采用从广告公司直接购买宣传单便宜;若y1=y2,即0.2x=0.12x+5000,解得:x=62500,∴当x=62500时,采用从广告公司直接购买宣传单与租赁印刷机器印刷制作宣传单费用相等,均可;若y1>y2,即0.2x>0.12x+5000,解得:x>62500,∴当x>62500时,采用租赁印刷机器印刷制作宣传单便宜.24.(11分)某地的A,B,C三家养鸡场之间的位置关系如图1所示,已知B养鸡场在A养鸡场的正东方向50公里处,C养鸡场在A养鸡场的正北方向50公里处,A养鸡场有1万只鸡,B养鸡场的养殖量是这三角养殖场的总养殖量的50%,C养鸡场养了三种鸡,李涵同学将各养鸡场的养殖量绘制成如图2所示的不完整的条形统计图,将C养鸡场各种鸡的养殖量绘制成如图3所示的扇形统计图.(1)补全图2中的条形统计图;(2)求海兰褐鸡的数量即海兰白鸡所对的扇形的圆心角的度数;(3)该地政府部门决定在B,C的中点建设一座货运中转中心E,以解决三角养鸡场的鸡蛋输送问题,已知A,B,C三家养鸡场的每只鸡的年平均产蛋量为1箱,当运送一箱鸡蛋每公里的费用都为0.5元时,求从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为多少元?(提示:=1.4)【解答】解:(1)C养鸡场的鸡有2÷50%﹣1﹣2=1万只;如图补全图2中的条形统计图,(2)40000×(1﹣35%﹣25%)=1600只;360°×35%=126°,答:海兰褐鸡的数量是1600只,海兰白鸡所对的扇形的圆心角的度数是126°;(3)在Rt△ABC中,AB=AC=50,E是BC的中点,∴AE=CE=BE=25,∴40000×1×0.5×25=700000元,答:从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为700000元.25.(11分)如图,已知抛物线y=﹣ax2+x+2经过点A(1,),且与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.(1)求该你抛物线的解析式及点A,B的坐标;(2)若代数式﹣ax2+x+2的值为正整数,求x的值有多少个?(3)连接BC,在BC上方的抛物线上是否存在一点E,使得△BCE的面积最小?若存在,请求出点E的坐标;若不存在,请说明理由.【解答】解:(1)将(1,)代入函数解析式,得﹣a++2=,解得a=,抛物线的解析式为y=﹣x2+x+2,当y=0时,﹣x2+x+2=0,解得x=﹣1,x=5,即A点坐标为(﹣1,0),B点坐标为(5,0);(2)y=﹣x2+x+2=﹣(x﹣2)2+,顶点坐标为(2,),﹣ax2+x+2的值为正整数为1,2,3.y=﹣x2+x+2与y=1有两个交点,y=﹣x2+x+2与y=2有两个交点,y=﹣x2+x+2与y=3有两个交点,代数式﹣ax2+x+2的值为正整数,x的值有6个;(3)不存在一点E,使得△BCE的面积最小,理由如下:作EF⊥x轴交BC于F,如图,设BC的解析式为y=kx+b,将B,C点坐标代入函数解析式,得,解得,BC的解析式为y=﹣x+2,设E(n,﹣n2+n+2),F(n,﹣n+2),EF=﹣n2+n+2﹣(﹣n+2)=﹣n2+2n,S=EF•x B=(﹣n2+2n)×5=﹣n2+5n=﹣(n﹣)2+,当n=时,面积有最大值,E点坐标为(,),不存在一点E,使得△BCE的面积最小.26.(14分)如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD 相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.【解答】解:(1)过点B作BE⊥AD,垂足为E.∵B(1,﹣),A(2,0),∴BE=,AE=1.∴AB==2.∵四边形ABCD为菱形,∴AB=BC=CD=AD.∴菱形的周长=2×4=8.(2)如图2所示:⊙M与x轴的切线为F,AD的中点为E.∵M(﹣3,1),∴F(﹣3,0).∵AD=2,且E为AD的中点,∴E(3,0).∴EF=6.∴2t+3t=6.解得:t=.平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为⊙M与AD 的切点.∵由(1)可知;AE=1,BE=,∴tan∠EAB=.∴∠EAB=60°.∴∠FAB=120°.∵四边形ABCD是菱形,∴∠FAC=∠FAB=×120°=60°.∵AD为⊙M的切线,∴MF⊥AD.∵F为AD的中点,∴AF=MF=1.∴△AFM为等腰直角三角形.∴∠MAF=45°.∴∠MAC=∠MAF+∠FAC=45°+60°=105°.(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.∵四边形ABCD为菱形,∠DAB=120°,∴∠DAC=60°.∵AC 、AD 是圆M 的切线, ∴∠MAE=30°. ∵ME=MN=1, ∴EA=.∴3t +2t=5﹣.∴t=1﹣.如图5所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .∵四边形ABCD 为菱形,∠DAB=120°, ∴∠DAC=60°. ∴∠NAE=120°.∵AC 、AD 是圆M 的切线, ∴∠MAE=60°. ∵ME=MN=1, ∴EA=.∴3t +2t=5+.∴t=1+.综上所述当t=1﹣或t=1+时,圆M 与AC 相切.。
河北省张家口市中考一模数学考试试卷
河北省张家口市中考一模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·葫芦岛) 如果温度上升10℃记作+10℃,那么温度下降5℃记作()A . +10℃B . ﹣10℃C . +5℃D . ﹣5℃2. (2分)如图是由4个大小相等的正方形搭成的几何体,其左视图是()A .B .C .D .3. (2分)用科学记数法表示602300,应该是()A . 602.3×103B . 6023×102C . 6.023×105D . 6.023×1064. (2分) (2017九上·哈尔滨期中) 下列运算正确的是()A .B .C .D .5. (2分)(2019·徐州) 某小组名学生的中考体育分数如下:,,,,,,,该组数据的众数、中位数分别为()A . ,B . ,C . ,D . ,6. (2分)在函数y=-+1中,若y的值不小于0.则x()A . x≤4B . x≥4C . x≤-4D . x≥-47. (2分)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A . m+n=8B . m+n=4C . m=n=4D . m=3,n=58. (2分)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()A . 50cmB . 500cmC . 60 cmD . 600cm9. (2分)如图,已知l1∥l2∥l3 ,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A .B .C .D .10. (2分)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为()A . 20B . 22C . 14D . 1611. (2分)(2016·重庆B) 如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF 为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A . 18 ﹣9πB . 18﹣3πC . 9 ﹣D . 18 ﹣3π12. (2分)如图,方格图中小正方形的边长为1.将方格图中阴影部分图形剪下来,再把剪下的阴影部分重新剪拼成一个正方形(不重叠无缝隙),那么所拼成的这个正方形的边长等于().A .B . 2C .D .二、填空题 (共4题;共4分)13. (1分)(2017·静安模拟) 在实数范围内分解因式:2x2﹣6=________14. (1分)(2019·石景山模拟) 如图,⊙O的弦AB=8cm,点C为优弧上的动点,且∠ACB=30°.若弦DE经过弦AC、BC的中点M、N,则DM+EN的最大值是________cm.15. (1分) (2016八上·蕲春期中) 若关于x、y的二元一次方程组的解满足x+y>1,则k 的取值范围是________.16. (1分)如图,点A,B是反比例函数y= (x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=________.三、解答题 (共7题;共72分)17. (5分) (2019七上·台安月考)18. (5分)先化简代数式,再从﹣4<x<4的范围内选取一个合适的整数x代入求值.19. (15分)(2018·济宁) 某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总入数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.20. (5分)(1)如图①所示,AB和DE是直立在地面上的两根木杆,BC是AB在太阳光下的影子,请你在图中画出此时木杆DE的影子(用线段EF表示).图②是直立在地面上的两根木杆及它们在灯光下的影子,请你在图中画出光源的位置(用点O表示);(2)太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是20cm,请你求出皮球的半径.21. (10分) (2016七下·随县期末) 同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?22. (15分)(2017·闵行模拟) 如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.23. (17分)(2018·惠山模拟) 问题提出(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于________时,线段AC的长取得最大值,且最大值为________(用含a,b的式子表示).(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.(4)如图4,在四边形ABCD中,AB=AD,∠BAD=60°,BC= ,若对角线BD⊥CD于点D,请直接写出对角线AC的最大值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共72分)17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、23-4、。
河北省张家口市中考数学一模试卷
河北省张家口市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在3.14,-, 0,π,0.701 ,,3.464664666…(相邻两个4之间6的个数逐次加1)几个数中,无理数的个数是()A . 1B . 2C . 3D . 42. (2分)(2017·菏泽) 生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A . 3.2×107B . 3.2×108C . 3.2×10﹣7D . 3.2×10﹣83. (2分)(2014·防城港) 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .4. (2分)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A . 100°B . 90°C . 80°D . 70°5. (2分)右图是某几何体的三视图,该几何体是()A . 圆柱B . 正方体C . 圆锥D . 长方体6. (2分)(2016·云南) 函数y= 的自变量x的取值范围为()A . x>2B . x<2C . x≤2D . x≠27. (2分)(2019·和平模拟) 下列运算中,正确的是()A .B .C .D .8. (2分)下面各组中的三条线段能组成三角形的是()A . 3cm,4cm,8cmB . 8cm,7cm,15cmC . 13cm,12cm,20cmD . 5cm,5cm,11cm9. (2分)下列命题的逆命题不正确的是()A . 同角的余角相等B . 等腰三角形的两个底角相等C . 两直线平行,内错角相等D . 线段中垂线上的点到线段两端的距离相等10. (2分)如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A . 110°B . 90°C . 70°D . 50°11. (2分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A .B .C .D .12. (2分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=, BD=4,则菱形ABCD的周长为()A . 4B .C .D . 28二、填空题 (共6题;共6分)13. (1分)(2019·曲靖模拟) 在实数范围内因式分解:2x3+8x2+8x=________14. (1分)当x满足条件________ ,分式意义.15. (1分)(2017·临沂模拟) 在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是________.16. (1分) (2017八下·江都期中) 已知ab=1,M= ,N= ,则M________N。
河北省张家口市中考数学一模试卷
河北省张家口市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在实数0,-, 2,-中最小的实数为()A . -2B . -C . 0D . -2. (2分) (2017七下·长春期末) 下列标志中,可以看作是轴对称图形的是()A .B .C .D .3. (2分)(2019·南宁模拟) 2019年中国电影票房收入再次突破百亿,达到约1310000万元,用科学记数法表示1310000为()A . 1.31×106B . 0.131×107C . 1.31×107D . 131×1064. (2分)如图,从边长为cm的正方形纸片中剪去一个边长为cm的正方形,剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为()A . .B . .C . .D . .5. (2分)已知点M(2m-1,m-1)在第四象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A . 平均数是82B . 中位数是82C . 极差是30D . 众数是827. (2分) (2019九上·椒江期末) 如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=3 cm;③扇形OCAB的面积为12π;④四边形ABOC 是菱形.其中正确结论的序号是()A . ①③B . ①②③④C . ②③④D . ①③④8. (2分) (2018九下·绍兴模拟) 如图,已知直线与x轴、y轴分别交于A, B两点,将△AOB 沿直线AB翻折,使点O落在点C处, 点P,Q分别在AB , AC上,当PC+PQ取最小值时,直线OP的解析式为()A . y=-B . y=-C . y=-D .9. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A . a>0B . 当-1<x<3时,y>0C . c<0D . 当x≥1时,y随x的增大而增大10. (2分)若ab<0,则正比例函数y=ax与反比例函数y= 在同一坐标系中的大致图象可能是()。
(word完整版)2016年河北省中考数学试卷及答案(最新word版),推荐文档
2016年河北省初中毕业升学文化课考试 数学试卷一、选择题(本大题有16个小题,共42分.1 —10小题各3分;11 —16小题各2分.在每小 题给出的四个选项中,只有一项是符合题目要求的 ) 1. 计算:-(-1)= () A. ± 1 B.-2 C.-1 D.1 2. 计算正确的是 ()A. ( 5)0 0B. x 2 x 3 x 5C. (ab 2)3 a 3b 5D. 2a 2 a 1 2a5. 若k 0, b 0,则y kx b 的图象可能是 ()7. 关于12的叙述,错误的是() A.12是有理数B.面积为12的正方形边长是.12C. 12 2 ..3D.在数轴上可以找到表示,12的点8. 图1-1和图1-2中所有的正方形都全等,将图1-1的正方形放在图1-2中的①②③④某一 位置,所组成的图形不能围成正方体的位置是 (3.下列图形中,既是轴对称图形,又是中心对称图形的是4.下列运算结果为 A. 1 1xx 2B.-x 1的是 1亠D.( C.6. 关于□ ABCD 勺叙述,正确的是 A.若AB 丄BC 则口 ABCD 是菱形 () B. 若AC 丄BD 则口 ABCD 是正方形 D. 若AB=AD 贝U □ ABCD 是正方形 oO1 _±_-Fl② C. ③ D. 图1- 1/>A.①B.9. 图2为4M的网格图,A,B,C, D, O均在格点上,点O是()A. △ ACD勺外心B. △ ABC的外心C. △ ACM内心D. △ ABC的内心/>10. 如图3,已知钝角厶ABC 依下列步骤尺规作图,并保留痕迹 步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,点交弧①于点 D; 步骤3:连接AD 交BC 延长线于点H. 下列叙述正确的是 ()A.BH 垂直平分线段ADB.AC 平分/ BAD14. a , b, c 为常数,且(a c )2 a 2 c 2,则关于x 的方程ax 2 bx c 0根的情况是() A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根D.有一根为015. 如图6,A ABC 中,/ A=78°, AB=4 AC=6将厶ABC 沿图示中的虚线剪开,剪下的阴影C. S ABC BC AHD.AB=AD11. 点A ,B 在数轴上的位置如图所示,其对应的数分别是 甲:b a 0; 乙:a b 0; 丙:a |b ;A.甲乙B.丙丁C.甲丙D.乙丁a 和b ,对于以下结论:丁: b0.其中正确的是()a12. 在求3x 的倒数的值时,嘉淇同学误将 述情形,所列关系式成立的是()3x 看成了 8x ,她求得的值比正确答案小 5,依上 B.1 3x8x 5D.8x 513. 如图5,将口ABC [沿对角线AC 折叠,使点B 落在点B'处,若/ 1- / 2=44° ()A.66 °B.104°C.114°D.124°,则/ B 为图216. 如图7,/ AO=120°, OP 平分/ AOB 且 0F=2,若点 M N 分别在 OA 0B 上,且△ PMN二、填空题(本大题共3个小题,共10分,17-18小题各3分;19小题有2个空,每空2分, 把答案写在题中横线上)仃.8的立方根为 _________________18. 若 mn m 3,则 2mn 3m 5mn 10 _________________19. 如图8,已知/ AO=7°,一条光线从点A 发出后射向0B 边,若光线与0B 边垂直,则光 线沿原路返回到点A,此时/ A=90° -7° =83° .当/A<83。
张家口市初三中考数学第一次模拟试题【含答案】
张家口市初三中考数学第一次模拟试题【含答案】一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±77.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x 轴相交于点B,则OA2﹣OB2的值为.17.若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是.18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE.如(2),小杰身高为1.6米,小杰在A处测得博物馆楼顶G点的仰角为27°,前进12米到达B处测得博物馆楼顶G点的仰角为39°,斜坡BD的坡i=1:2.4,BD长度是13米,GE ⊥DE,A、B、D、E、G在同一平面内,则博物馆高度GE约为米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题19.(6分)计算:(1)sin30°﹣cos45°+tan260°(2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x 的二次函数y =ax 2+bx +c (a ,b ,c 为常数)与x 轴交于两个不同的点A (x 1,0),B (x 2,0)与y 轴交于点C ,其图象的顶点为点M ,O 是坐标原点.(1)若A (﹣2,0),B (4,0),C (0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a >0,b >0,△ABC 为直角三角形,△ABM 是以AB =2的等边三角形,试确定a ,b ,c 的值;(3)设m ,n 为正整数,且m ≠2,a =1,t 为任意常数,令b =3﹣mt ,c =﹣3mt ,如果对于一切实数t ,AB ≥|2t +n |始终成立,求m 、n 的值.26.(10分)已知:如图,抛物线y =ax 2+bx +3与坐标轴分别交于点A ,B (﹣3,0),C (1,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P 运动到什么位置时,△PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE ∥x 轴交抛物线于点E ,连接DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求点P 的坐标;若不存在,说明理由.参考答案一.选择题1.解:﹣的倒数是:﹣.故选:B.2.解:A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意.故选:D.3.解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.6.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.7.解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.8.解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.9.解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.10.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.11.解:∵四边形ABCD是菱形,∴AB∥CD,∠ADB=∠CDB,∴∠A+∠ADC=180°,∵∠A=40°,∴∠ADC=140°,∴∠ADB=×140°=70°,故选:D.12.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.二.填空题13.解:5 400 000=5.4×106万元.故答案为5.4×106.14.解:因为l=,l=4π,n=120,所以可得:4π=,解得:r=6,故答案为:615.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.解:∵平移后解析式是y =x ﹣b ,代入y =得:x ﹣b =,即x 2﹣bx =5,y =x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=10,故答案为:10.17.解:∵当1<2时,y 1<y 2,∴函数值y 随x 的增大而增大,∴1﹣2m >0,解得m <∵函数的图象与y 轴相交于正半轴,∴m >0,故m 的取值范围是0<m <故答案为0<m <18.解:如图,延长CF 交GE 的延长线于H ,延长GE 交AB 的延长线于J .设GE =xm .在Rt △BDK 中,∵BD =13,DK :BK =1:2.4,∴DK=5,BK=12,∵AC=BF=HJ=1.6,DK=EJ=5,∴EH=5﹣1.6=3.4,∵CH﹣FH=CF,∴﹣=12,∴﹣=12,∴x=12.6≈13(m),故答案为13.三.解答题19.解:(1)原式==(2)原式==20.解:解不等式组得﹣2<x≤5,所以原不等式组的非负整数解为0,1,2,3,4,5.21.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.22.解:(1)被调查的学生总人数:150÷15%=1000人,选择B的人数:1000×(1﹣15%﹣20%﹣40%﹣5%)=1000×20%=200;补全统计图如图所示;(2)5500×40%=2200人;(3)根据题意画出树状图如下:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B和D的有2种可能,即BD和DB,P(同时选择B和D)=.23.解:(1)设现场购买每张电影票为x元,网上购买每张电影票为y元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m )[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m 2﹣120m =0 m (16m ﹣120)=0 解得m 1=0(舍去) m 2=7.5答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元.24.(1)证明:连接OC . (1分) ∵OA =OC , ∴∠OAC =∠OCA . ∵CE 是⊙O 的切线,∴∠OCE =90°. (2分) ∵AE ⊥CE ,∴∠AEC =∠OCE =90°.∴OC ∥AE . ∴∠OCA =∠CAD .∴∠CAD =∠BAC . (4分) ∴.∴DC =BC . (5分)(2)解:∵AB 是⊙O 的直径, ∴∠ACB =90°. ∴BC ==3. (6分)∵∠CAE =∠BAC ,∠AEC =∠ACB =90°, ∴△ACE ∽△ABC . (7分) ∴. ∴,. (8分)∵DC =BC =3, ∴.(9分)∴tan ∠DCE =. (10分)25.解:(1)函数的表达式为:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8), 则﹣8a =3,解得:a =﹣,故抛物线的表达式为:y =﹣x 2+x +3;(2)如图所示,△ABC 为直角三角形,则∠ACB =90°,∵△AMB 是等边三角形,则点C 是MB 的中点, 则BC =MC =1,则BO =BC =,同理OC =,OA =2﹣=,则点A 、B 、C 的坐标分别为(﹣,0)、(,0),(0,﹣),则函数的表达式为:y =a (x +)(x ﹣)=a (x 2+x ﹣), 即﹣a =﹣,解得:a =,则函数表达式为:y =x 2+x ﹣;(3)y =ax 2+bx +c =x 2+(3﹣mt )x ﹣3mt , 则x 1+x 2=mt ﹣3,x 1x 2=﹣3mt ,AB =x 2﹣x 1==|mt +3|≥|2t +n |,则m 2t 2+6mt +9≥4t 2+4tn +n 2,即:(m 2﹣4)t 2+(6m ﹣4n )t +(9﹣n 2)≥0,由题意得:m2﹣4>0,△=(6m﹣4n)2﹣4(m2﹣4)(9﹣n2)≤0,解得:mn=6,故:m=3,n=2或m=6,n=1.26.解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB =S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣22 3 3 3 3 2 ∴P (﹣2,3)②当﹣1<t <0时,PE =2+2t ∴﹣t 2﹣3t =2+2t 解得:t 1=,t 2=(舍去)∴P (,)综上所述,点P 坐标为(﹣2,3)或(,)时使△PDE 为等腰直角三角形.中学数学一模模拟试卷一.选择题(共 10 小题)1.在数轴上,与原点的距离是 2 个单位长度的点所表示的数是()A .2B .﹣2C .±2D .2.据统计,我市常住人口为 268.93 万人,用科学记数法表示 268.93 万人为()A .268.93×104 人B .2.6893×107 人C .2.6893×106 人D .0.26893×107 人3.下列运算正确的是()A . += B . 4 - = 4C . 2 ⨯ = 2D .4+ =24.下列 4 个图形中:①圆;②正五边形;③正三角形;④菱形、从中任意取两个图形,都是中心对称图形的概率532为( )31 A .B .C .D .4 35.已知直线 y 1=2x+1,y2=-2x+1,则下列说法正确的是()A .两直线互相平行B .两直线互相垂直C .两直线关于 x 轴对称D .两直线关于 y 轴对称6.小明骑自行车到学校上学,若每小时骑 15 千米,可早到 10 分钟,若每小时骑 13 千米,则迟到 5 分钟,设他家到学校的路程为 x 千米,下列方程正确的是( )A .B .C .D .7.若 m >n ,则下列各式中一定成立的是( )A .m ﹣2>n ﹣3B .m ﹣5<n ﹣5C .﹣2m >﹣2nD .3m <4n8.如图,在正方形 A BCD 纸片中,EF 是 B C 的垂直平分线,按以下四种方法折叠纸片,图中不能折出 30°角的是()A .B .C .D .9.直角三角形的三边为 x ,x ﹣y ,x +y 且 x 、y 都为正整数,则三角形其中一边长可能为( ) A .31B .41C .51D .6110.如图,△ABC 中,点D 为边BC 的点,点E、F 分别是边AB、AC 上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD二.填空题(共 5 小题)11.分解因式:4x2﹣4=.12.已知圆弧的长为10πcm,弧的半径为20cm,则圆弧的度数为.13.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1 的大小为.15.已知实数m,n 满足m²-6m=n+3,且满足不等式m - 2 ⋅(7 -m) > 0,则n的取值范围。
最新2016年河北省张家口市中考数学一模试卷含答案解析
122016年河北省张家口市中考数学一模试卷34一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分542分)61.的相反数是()7A .﹣B .C.﹣2 D.282.河北省2016年普通高考报名工作已经结束,报名人数为42.31万9人.42.31万用科学记数法表示为()10A.42.31×106 B.4.231×105C.42.31×108D.42.31×107113.下列计算正确的是()12A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b2134.如图,下列水平放置的几何体中,俯视图是长方形的是()14A .B .C .D .155.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()16117A.20°B.50°C.70°D.110°186.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的19周长是()20A.6cm B.12cm C.18cm D.36cm217.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC22的大小为()2324A.45°B.50°C.60°D.75°258.下列说法:26①要了解一批灯泡的使用寿命,应采用普查的方式;27②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;28③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,29=0.2,则甲组数据比乙组数据稳定;30④“掷一枚硬币,正面朝上”是必然事件.31正确说法的序号是()32A.①B.②C.③D.④29.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则33抛物线y=ax2+bx的对称轴为()34A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣43510.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25 36元,而按原定价的九折出售,将赚20元,则这种商品的原价是()37A.500元B.400元C.300元D.200元3811.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,39CD=3,那么EF的长是()4041A .B .C .D .4212.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<043<x2,y1<y2,则m的取值范围是()44A.m >B.m <C .m≥D .m≤4513.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不46等式的解,则实数a的取值范围是()47A.a>1 B.a≤2C.1<a≤2D.1≤a≤24834914.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数50的算术平方根是()51A.a+2 B.a2+2 C .D .5215.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是53(0,0),(2,0),则顶点B的坐标是()5455A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)5616.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则57b=()5859A .B .C .D .6061二、填空题(共4小题,每小题3分,满分12分)6217.分解因式:2a3b﹣8ab= .46318.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积64为.6519.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,66则线段BE的长为.676820.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象69有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值70范围是.717273三、解答题(共6小题,满分66分)7421.先化简,再求值:﹣÷(1﹣).其中m满足一元二75次方程m2+(5tan30°)m﹣12cos60°=0.57622.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂77线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.78(1)求证:△CDQ是等腰三角形;79(2)如果△CDQ≌△COB,求BP:PO的值.808123.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首82届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写8350个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分84布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a6第5组45≤x<50 1085请结合图表完成下列各题:86(1)求表中a的值;87(2)请把频数分布直方图补充完整;88(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?89(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组90进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同91一组的概率.929324.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,94得到△O′A′B′.95(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数96y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;97(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.7989925.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原100来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C101三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公102园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元103的门票.104(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花105在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?106(2)求一年中进入该公园至少多少次,购买A类年票比较合算.10726.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C108运动,连接DM交AC于点N.109110(1)如图1,当点M在AB边上时,连接BN:111①求证:△ABN≌△ADN;112②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.8113(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试114问:x为何值时,△ADN为等腰三角形.11511691171182016年河北省张家口市中考数学一模试卷119参考答案与试题解析120121一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分12242分)1231.的相反数是()124A .﹣B .C.﹣2 D.2125【考点】相反数.126【分析】根据只有符号不同的两个数互为相反数解答.127【解答】解:的相反数是﹣.128故选A.1291302.河北省2016年普通高考报名工作已经结束,报名人数为42.31万131人.42.31万用科学记数法表示为()132A.42.31×106 B.4.231×105C.42.31×108D.42.31×107133【考点】科学记数法—表示较大的数.134【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为135整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值10136与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1371时,n是负数.138【解答】解:42.31万=423100,用科学记数法表示为:4.231×105.139故选:B.1401413.下列计算正确的是()142A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b2143【考点】完全平方公式;合并同类项;同底数幂的乘法;同底数幂的除法.144【分析】利用合并同类项、同底数幂的乘法、同底数幂的除法以及完全平145方公式的知识求解,即可求得答案,注意排除法在解选择题中的应用.146【解答】解:A、3a﹣2a=a,故本选项错误;147B、a4•a6=a10,故本选项错误;148C、a2÷a=a,故本选项正确;149D、(a+b)2=a2+2ab+b2,故本选项错误.150故选C.1511524.如图,下列水平放置的几何体中,俯视图是长方形的是()153A .B .C .D .11154【考点】简单几何体的三视图.155【分析】俯视图是从物体上面看,所得到的图形.156【解答】解:A、圆柱的俯视图是圆,故A选项错误;157B、圆锥的俯视图是带圆心的圆,故B选项错误;158C、三棱柱的俯视图是三角形,故C选项错误;159D、长方体的俯视图是长方形,故D选项正确;160故选:D.1611625.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()163164A.20°B.50°C.70°D.110°165【考点】平行线的性质;对顶角、邻补角.166【分析】首先根据对顶角相等可得∠1=∠3,进而得到∠3=70°,然后根据167两直线平行,同位角相等可得∠2=∠3=70°.168【解答】解:∵∠1=70°,169∴∠3=70°,12170∵a∥b,171∴∠2=∠3=70°,172故选:C.1731741756.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的176周长是()177A.6cm B.12cm C.18cm D.36cm178【考点】三角形中位线定理.179【分析】由三角形的中位线定理可知,以三角形三边中点为顶点的三角形180的周长是原三角形周长的一半.181【解答】解:如图,点D、E、F分别是AB、AC、BC的中点,182∴DE=BC,DF=AC,EF=AB,183∵原三角形的周长为36cm,184则新三角形的周长为=18(cm).185故选C.131861871887.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC189的大小为()190191A.45°B.50°C.60°D.75°192【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.193【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,194求出β即可解决问题.195【解答】解:设∠ADC的度数=α,∠ABC的度数=β;196∵四边形ABCO是平行四边形,197∴∠ABC=∠AOC;198∵∠ADC=β,∠AOC=α;而α+β=180°,199∴,14200解得:β=120°,α=60°,∠ADC=60°,201故选C.2022038.下列说法:204①要了解一批灯泡的使用寿命,应采用普查的方式;205②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;206③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,207=0.2,则甲组数据比乙组数据稳定;208④“掷一枚硬币,正面朝上”是必然事件.209正确说法的序号是()210A.①B.②C.③D.④211【考点】全面调查与抽样调查;方差;随机事件;概率的意义.212【分析】了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性213较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根214据必然事件可得④错误.215【解答】解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式,故216①错误;217②若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故②218错误;15219③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,220=0.2,则甲组数据比乙组数据稳定,故③正确;221④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件,故④222错误.223故选:C.2242259.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则226抛物线y=ax2+bx的对称轴为()227A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4228【考点】二次函数的性质;一次函数图象上点的坐标特征.229【分析】先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即230b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.231【解答】解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,2320),233∴﹣2a+b=0,即b=2a,234∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣=﹣1.235故选:C.23623710.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25238元,而按原定价的九折出售,将赚20元,则这种商品的原价是()16239A.500元B.400元C.300元D.200元240【考点】一元一次方程的应用.241【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,242根据利润=售价﹣成本,即可列出方程求解.243【解答】解:设这种商品的原价是x元,根据题意得:75%x+25=90%x﹣20,244解得x=300.245故选C.24624711.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,248CD=3,那么EF的长是()249250A .B .C .D .251【考点】相似三角形的判定与性质.252【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得253=, =,从而可得+=+=1.然后把AB=1,CD=3代入即可求出254EF的值.255【解答】解:∵AB、CD、EF都与BD垂直,17∴AB∥CD∥EF,256∴△DEF∽△DAB,△BEF∽△BCD,257∴=, =,258∴+=+==1.259∵AB=1,CD=3,260∴+=1,261∴EF=.262故选C.26326412.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0265<x2,y1<y2,则m的取值范围是()266A.m >B.m <C .m≥D .m≤267【考点】反比例函数图象上点的坐标特征.268【分析】首先根据当x1<0<x2时,有y1<y2则判断函数图象所在象限,再269根据所在象限判断1﹣3m的取值范围.270【解答】解:∵x1<0<x2时,y1<y2,271∴反比例函数图象在第一,三象限,272∴1﹣3m>0,27318274解得:m <.275故选B.27627713.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不278等式的解,则实数a的取值范围是()279A.a>1 B.a≤2C.1<a≤2D.1≤a≤2280【考点】不等式的解集.281【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这282个不等式的解,列出不等式,求出解集,即可解答.283【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,284∴(2﹣5)(2a﹣3a+2)≤0,285解得:a≤2,286∵x=1不是这个不等式的解,287∴(1﹣5)(a﹣3a+2)>0,288解得:a>1,289∴1<a≤2,290故选:C.2911929214.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数293的算术平方根是()294A.a+2 B.a2+2 C .D .295【考点】算术平方根.296【分析】根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被297开方数,根据开方运算,可得答案.298【解答】解:由题意,得299正偶数是a2,下一个偶数是(a2+2),300与这个正偶数相邻的下一个正偶数的算术平方根是,301故选:C.30230315.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是304(0,0),(2,0),则顶点B的坐标是()305306A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)307【考点】坐标与图形性质;正方形的性质.308【分析】此题根据坐标符号即可解答.20309【解答】解:由图中可知,点B在第四象限.各选项中在第四象限的只有C.故310选C.31131216.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则313b=()314315A .B .C .D .316【考点】一元二次方程的应用.317【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一318个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式319(a+b)2=b(b+a+b),而a=1,代入即可得到关于b的方程,解方程即可求出b.320【解答】解:依题意得(a+b)2=b(b+a+b),321而a=1,322∴b2﹣b﹣1=0,323∴b=,而b不能为负,324∴b=.21325故选B.326327二、填空题(共4小题,每小题3分,满分12分)32817.分解因式:2a3b﹣8ab= 2ab(a+2)(a﹣2).329【考点】提公因式法与公式法的综合运用.330【分析】原式提取公因式,再利用平方差公式分解即可.331【解答】解:原式=2ab(a2﹣4)=2ab(a+2)(a﹣2),332故答案为:2ab(a+2)(a﹣2).33333418.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积为33524cm2.336【考点】菱形的性质.337【分析】根据菱形的对角线的长度即可直接计算菱形ABCD的面积.338【解答】解:∵菱形的对角线长AC、BD的长度分别为8cm、6cm339∴菱形ABCD的面积S=BD•AC=×6×8=24cm2.340故答案为:24cm2.34134219.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,343则线段BE的长为2.22344【考点】正方形的性质;三角形的面积;勾股定理.345【分析】根据正方形面积是△ABE面积的2倍,求出边长,再在RT△B CE中346利用勾股定理即可.347【解答】解:设正方形边长为a,348∵S△ABE =18,349∴S正方形ABCD =2S△ABE=36,350∴a2=36,351∵a>0,352∴a=6,353在RT△BCE中,∵BC=6,CE=4,∠C=90°,354∴BE===2.355故答案为2.35635720.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象358有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值359范围是﹣2<b<2 .36023361362【考点】反比例函数与一次函数的交点问题.363【分析】根据双曲线的性质、结合图象解答即可.364【解答】解:如图,365∵直线y=﹣x+2与反比例函数y=的图象有唯一公点,双曲线是中心对称图366形,367∴直线y=﹣x﹣2与反比例函数y=的图象有唯一公点,368∴﹣2<b<2时,直线y=﹣x+b与反比例函数y=的图象没有公共点,369故答案为:﹣2<b<2.370371372三、解答题(共6小题,满分66分)2437321.先化简,再求值:﹣÷(1﹣).其中m满足一元二374次方程m2+(5tan30°)m﹣12cos60°=0.375【考点】分式的化简求值;解一元二次方程-因式分解法;特殊角的三角函376数值.377【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利378用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简379结果,求出m的值代入计算即可求出值.380【解答】解:原式=﹣÷=﹣381•=﹣==,382方程m2+(5tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,383解得:m=1(舍去)或m=﹣6,384当m=﹣6时,原式=﹣.38538622.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂387线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.388(1)求证:△CDQ是等腰三角形;389(2)如果△CDQ≌△COB,求BP:PO的值.25390391【考点】切线的性质;全等三角形的判定;等腰三角形的判定;圆周角定392理.393【分析】(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,则394有∠OCB=30°,再结合CD时切线,可求∠BCD=60°,那么∠DCQ可求,即可得395出△CDQ是等腰三角形;396(2)可以假设AB=2,则OB=OA=OC=1,利用勾股定理可得BC=;由于397△CDQ≌△COB,那么有CB=CQ,即可求出AQ的长;在直角三角形APQ中,利用39830°所对的边等于斜边的一半,又可求AP,而OP=AP﹣OA,即可求OP,BP也就399可求,从而得出BP:PO的值.400【解答】(1)证明:由已知得∠ACB=90°,∠ABC=30°,401∴∠Q=30°,∠BCO=∠ABC=30°;402∵CD是⊙O的切线,CO是半径,403∴CD⊥CO,404∴∠DCQ=∠BCO=30°,405∴∠DCQ=∠Q,406故△CDQ是等腰三角形.26407408(2)解:设⊙O的半径为1,则AB=2,OC=1,BC=.409∵等腰三角形CDQ与等腰三角形COB全等,410∴CQ=BC=.411∴AQ=AC+C Q=1+,412∴AP=AQ=,413∴BP=AB﹣AP=,414∴PO=AP﹣AO=,415∴BP:PO=.41641723.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首418届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写41950个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分420布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 827第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10421请结合图表完成下列各题:422(1)求表中a的值;423(2)请把频数分布直方图补充完整;424(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?425(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组426进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同427一组的概率.428429【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.430【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;431(2)根据(1)得出的a的值,补全统计图;28432(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;433(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,434再根据概率公式列式计算即可.435【解答】解:(1)表中a的值是:436a=50﹣4﹣8﹣16﹣10=12;437438(2)根据题意画图如下:439440441(3)本次测试的优秀率是=0.44.442答:本次测试的优秀率是0.44;443444(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树445状图如下:44629447共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,当CD448分为一组时,其实也表明AB在同一组;449则小宇与小强两名男同学分在同一组的概率是.45045124.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,452得到△O′A′B′.453(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数454y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;455(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.456457【考点】反比例函数与一次函数的交点问题;平移的性质.458【分析】(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,4590),进而利用待定系数法求一次函数解析式即可;460(2)首先得出A′B′的中点M的坐标为:(,1)则2m=m+2,求出m461的值即可.462【解答】解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,4630),30464∴k=4×2=8,465∴y=,466把(4,2),(8,0)代入y=ax+b得:467,468解得:,469∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;470471(2)当△AOB向右平移m个单位时,472A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)473则A′B′的中点M的坐标为:(,1),474∵反比例函数y=的图象经过点A′及M,475∴m×2=×1,476解得:m=2,477∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.47847925.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原480来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C31481三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公482园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元483的门票.484(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花485在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?486(2)求一年中进入该公园至少多少次,购买A类年票比较合算.487【考点】一元一次不等式的应用.488【分析】(1)由题意可知:若直接买票可以买到100÷10=10张;若买A类489票,则100<120,买不到;若买B类票,则剩余100﹣60=40元,可以买到40÷2=20490张票;若买C类票,则剩余100﹣30=70元,可以买到70÷4≈17张;所以用100491元花在公园门票上,买B类票次数最多;492(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据购买A493类年票才比较合算说明购B和C票花的钱多余购A票花的钱,购B票花的钱为49460+2x,购C票花的钱为30+4x,列出不等式组,求出x的取值范围,即可得出495答案.496【解答】解:(1)①直接买票:100÷10=10张;497②A类不够买120>100;498③B类÷2=20(张);499④C 类÷4=,即可买17张.500综上所述,用100元购买B类票使你进入该公园的次数最多;32501502(2)设一年中进入该公园至少x次时,购买A类票比较合算,503根据题意得:,504解得:x>30.505答:一年中进入该公园至少31次,购买A类年票比较合算.50650726.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C508运动,连接DM交AC于点N.509510(1)如图1,当点M在AB边上时,连接BN:511①求证:△ABN≌△ADN;512②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.513(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试514问:x为何值时,△ADN为等腰三角形.515【考点】菱形的性质;全等三角形的判定;等腰三角形的判定;解直角三516角形.33517【分析】(1)①△ABN和△ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是518公共边,根据SAS即可判定两三角形全等.519②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由①可得520∠MDA=∠ABN,那么M到AD的距离和∠α就转化到直角三角形MDH和MAH中,521然后根据已知条件进行求解即可.522(2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论.523【解答】解:(1)①证明:∵四边形ABCD是菱形,524∴AB=AD,∠1=∠2.525又∵AN=AN,526∴△ABN≌△ADN(SAS).527②作MH⊥DA交DA的延长线于点H.528由AD∥BC,得∠MAH=∠ABC=60°.529在Rt△AMH 中,MH=AM•sin60°=4×sin60°=2.530∴点M到AD的距离为2.531∴AH=2.532∴DH=6+2=8.533在Rt△DMH 中,tan∠MDH=,534由①知,∠MDH=∠ABN=α,34535∴tanα=;536537(2)∵∠ABC=90°,538∴菱形ABCD是正方形.539∴∠CAD=45°.540下面分三种情形:541(Ⅰ)若ND=NA,则∠ADN=∠NAD=45°.542此时,点M恰好与点B重合,得x=6;543(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°.544此时,点M恰好与点C重合,得x=12;545(Ⅲ)若AN=AD=6,则∠1=∠2.546∵AD∥BC,547∴∠1=∠4,又∠2=∠3,548∴∠3=∠4.549∴CM=CN.550∵AC=6.551∴CM=CN=AC﹣AN=6﹣6.552故x=12﹣CM=12﹣(6﹣6)=18﹣6.35553综上所述:当x=6或12或18﹣6时,△ADN是等腰三角形.554555556557365585592016年6月6日37。
2016届河北省中考模拟数学试卷(带解析)
绝密★启用前2016届河北省中考模拟数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:139分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,四边形OABC 是菱形,对角线OB 在x 轴负半轴上,位于第二象限的点A 和第三象限的点C 分别在双曲线y=和y=的一支上,分别过点A 、C 作y 轴的垂线,垂足分别为E 和F .下列结论:①|k 1|=|k 2|;②AE=CF ;③若四边形OABC 是正方形,则∠EAO=45°.其中正确的有( )A .0个B .1个C .2个D .3个【答案】D .试卷第2页,共17页【解析】试题分析:连接AC 交OB 于D ,如图所示:∵四边形OABC 是菱形,∴AC ⊥OB ,AD=CD ,BD=OD ,∴△AOD 的面积=△COD 的面积,∵△AOD 的面积=|k 1|,△COD 的面积=|k 2|,∴|k 1|=|k 2|,①正确;∵AE ⊥y 轴,AC ⊥BD ,∴∠AEO=∠ADO=90°,∵∠DOE=90°,∴四边形ADOE 是矩形,∴AE=DO ,同理:CF=DO ,∴AE=CF ,②正确;若四边形OABC 是正方形,则∠AOB=45°,∴∠AOE=90°﹣45°=45°,∵∠AEO=90°,∴∠EAO=45°,③正确;正确的有3个,故选:D .考点:反比例函数与几何综合.2、张萌和小平两人打算各用一张正方形的纸片ABCD 折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF ,沿点B 翻折纸片,使点A 落在EF 上的点M 处,连接CM ,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF ,沿点B 翻折纸片,使点C 落在EF 上的点M 处,连接BM ,△BCM 即为所求,对于两人的作法,下列判断正确的是( )A .小平的作法正确,张萌的作法不正确B .两人的作法都不正确C .张萌的作法正确,小平的作法不正确D .两人的作法都正确【答案】D . 【解析】试题分析:图1中,∵四边形ABCD 是正方形,∴AB=AD=BC ∵AE=ED=BF=FC ,AB=BM ,∴BM=2BF ,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC ,∴△MBC 是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF ,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC ,∴△MBC 是等边三角形,∴小平的作法正确.故选D .考点:图形的翻折.3、如图,在△ABC 中,∠ABC >90°,∠C=30°,BC=12,P 是BC 上的一个动点,过点P 作PD ⊥AC 于点D ,设CP=x ,△CDP 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .【答案】A .试卷第4页,共17页【解析】试题分析:∵PD ⊥AC ,∴∠CDP=90°,∵∠C=30°,∴PD=PC=x ,∴CD=PD=x ,∴△CDP 的面积y=PD•CD=×x×x=x 2,x 的取值范围为:0<x≤12,即y=x 2(0<x≤12),∵>0,∴二次函数图形的开口向上,顶点为(0,0),图象在第一象限.故选A .考点:二次函数的图像及其性质.4、若关于x 的一元二次方程kx 2﹣4x+2=0有实数根,则k 的非负整数值为( ) A .1B .0,1C .1,2D .0,1,2【答案】C . 【解析】试题分析:根据题意得:△=16﹣8k≥0,且k≠0,解得:k≤2且k≠0,则k 的非负整数值为1或2.故选C . 考点:解一元二次方程.5、如图,已知△ABC 在平面直角坐标系中,点A 的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC 位似,且相似比为2:1,则点C′的坐标为( )A .(0,0)B .(0,1)C .(1,﹣1)D .(1,0)【答案】D . 【解析】试题分析:如图所示:△A′BC′与△ABC 位似,相似比为2:1,点C′的坐标为:(1,0).故选D .考点:位似图形.6、一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A .50°B .60°C .70°D .80°【答案】C . 【解析】试题分析:∵OM=60海里,ON=80海里,MN=100海里,∴OM 2+ON 2=MN 2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C . 考点:解直角三角形.7、如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为( )A .B .C .D .【答案】A .试卷第6页,共17页【解析】试题分析:∵阴影部分的面积占总面积的,∴飞镖落在阴影部分的概率为.故选A . 考点:阴影部分图形的相关计算.8、将抛物线y=x 2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为( ) A .y=(x+2)2+4 B .y=(x+2)2﹣4 C .y=(x ﹣2)2+4D .y=(x ﹣2)2﹣4【答案】C . 【解析】试题分析:抛物线y=x 2先向右平移2个单位长度,得:y=(x ﹣2)2;再向上平移4个单位长度,得:y=(x ﹣2)2+4.故选C . 考点:二次函数表达式的确定.9、某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为( )A .150πcm 2B .200πcm 2C .300πcm 2D .400πcm 2【答案】A . 【解析】试题分析:根据图示,可得商品的外包装盒是底面直径是10cm ,高是15cm 的圆柱,则这个包装盒的侧面积为:10π×15=150π(cm 2).故选A . 考点:几何体的三视图.10、如图,已知△ABC 与△A′B′C′关于点O 成中心对称图形,则下列判断不正确的是( )A .∠ABC=∠A′B′C′B .∠BOC=∠B′A′C′【答案】D.【解析】试题分析:因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA'.故选D.考点:中心对称与中心对称图形.11、已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.【答案】D.【解析】试题分析:由x+2>1,得x>﹣1,由x+3≤5,得x≤2,不等式组的解集为﹣1<x≤2.故选D.考点:一次不等式(组)的解法及其解集的表示.12、下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣2【答案】B.【解析】试题分析:A、5是25的算术平方根,正确,不合题意;B、m2n与mn2不是同类项,故此选项错误,符合题意;C、多项式﹣3a3b+7ab+1的次数是4,正确,不合题意;D、﹣8的立方根为﹣2,正确,不合题意.故选B.考点:①平方根;②算术平方根;③立方根.试卷第8页,共17页13、如图,已知直线a ∥b ,点A 、B 、C 在直线a 上,点D 、E 、F 在直线b 上,AB=EF=2,若△CEF 的面积为5,则△ABD 的面积为( )A .2B .4C .5D .10【答案】C . 【解析】试题分析:∵直线a ∥b ,点A 、B 、C 在直线a 上,∴点D 到直线a 的距离与点C 到直线B 的距离相等.又∵AB=EF=2,∴△CEF 与△ABD 是等底等高的两个三角形,∴S △ABD =S △CEF =5.故选C . 考点:三角形的面积.14、下列各数中,最小的数是( ) A .1B .﹣|﹣2|C .D .2×10﹣10【答案】B . 【解析】 试题分析:∵1、、2×10﹣10都是正数,﹣|﹣2|是负数,∴最小的数是﹣|﹣2|.故选B .考点:实数大小比较.15、计算4﹣(﹣4)0的结果是( ) A .0B .2C .3D .4【答案】C . 【解析】试题分析:根据非零的零次幂等于1,可得答案.原式=4﹣1=3.故选C . 考点:实数运算.16、如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为6,∠ADC=60°,则劣弧AC 的长为( )A .2πB .4πC .5πD .6π【答案】B . 【解析】试题分析:连接OA 、OC ,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC 的长为:=4π.故选B .考点:弧长计算.试卷第10页,共17页第II 卷(非选择题)二、填空题(题型注释)17、如图,在矩形ABCD 中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF 、FG 、AE 三边的中点,得到三角形①;连接矩形GMCH 对边的中点,又得到四个矩形,顺次连接GQ 、QP 、GN 三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为 .【答案】.【解析】试题分析:∵矩形ABCD 的长AD=4,宽AB=2,∴AF=2,AE=1,则S 三角形①=×2×=;S 三角形②=×1×=;S 三角形③=××=;…∴S 三角形n=.故答案为.考点:数与形结合的规律.18、如图,鹏鹏从点P 出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P 时,一共走了100米,则α的度数为_______________.【答案】36°. 【解析】试题分析:∵第一次回到出发点A 时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:100÷10=10,根据多边形的外角和为360°,∴则他每次转动的角度为:360°÷10=36°.故答案为36°. 考点:多边形的内角与外角. 19、若x=﹣2,则代数式x 2+1的值为_________.【答案】10﹣4.【解析】 试题分析:把x=﹣2代入x 2+1,得(﹣2)2+1=()2﹣4+4+1=10﹣4.故答案为10﹣4.考点:二次根式的运算及其估值. 20、分解因式:x 3﹣2x 2y+xy 2=_________.【答案】x (x ﹣y )2. 【解析】试题分析:x 3﹣2x 2y+xy 2=x (x 2﹣2xy+y 2)=x (x ﹣y )2.故答案为x (x ﹣y )2. 考点:因式分解.三、解答题(题型注释)21、四边形ABCD 是⊙O 的内接正方形,AD=8,EB 、EC 是⊙O 的两条,切点分别为B 、C ,P 是边AB 上的动点,连接DP .(1)如图1,当点P 与点B 重合时,连接OC . ①求∠E 的度数; ②求CE 的度数;试卷第12页,共17页(2)如图2,当点P 在AB 上,且AP <AB 时,过点P 作FP ⊥DP 于点P ,交BE 于点F ,连接DF .①试判断DP 与FP 之间的数量关系,并说明理由; ②若,求DP 的长度.【答案】(1)①90°;②;(2)①见解析;②.【解析】试题分析:(1)如图1,①∵EB 、EC 是⊙O 的两条切线,∴∠OCE=∠OBE=90°,由四边形ABCD 是⊙O 的内接正方形,可知,∠BOC=90°,∴∠E=90°;②∵EB 、EC 是⊙O 的两条切线,∴EB=EC ,在直角三角形BEC 中,设EB=EC=x ,由勾股定理得:x 2+x 2=82,解得:x=,∴CE=;(2)①如图2,在AD 上截取AM=AP ,由∠A=90°可求∠AMP=∠APM=45°,∴∠PMD=135°,∵AD=AB ,∴MD=BP ,由(1)②知三角形BEC 是等腰直角三角形,∴∠CBE=45°,∴∠PBF=135°,∴∠PMD=∠PBF ,又可求:∠BPF+∠BFP=45°,∵FP ⊥DP ,∴∠MPD+∠BPD=45°,∴∠MPD=∠BFP ,在△MPD 和△BFP 中,,∴△MPD ≌△BFP ,DP=FP ;2)①知,△DPF 为等腰直角三角形,又△DAB 是等腰直角三角形,∴△DPF ∽△DAB ,∴,∵,AD=8,可求:DP=.考点:圆的综合题.22、2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB 、折线CDB 分别表示葵花籽每千克的加工成本y 1(元)、销售价y 2(元)与产量x (kg )之间的函数关系;(1)请你解释图中点B 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的y 1与x 之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?【答案】(1)当产量为130kg 时,葵花籽每千克的加工成本与销售价相同,都是9.8元;(2)y 1=0.06x+2;(3)该葵花籽的产量为75kg 时,该企业获得的利润最大;最大利润为225元. 【解析】试题分析:(1)图中点B 的横坐标、纵坐标的实际意义为:当产量为130kg 时,葵花籽每千克的加工成本与销售价相同,都是9.8元.(2)设线段AB 所表示的y 1与x 之间的函数解析式为y 1=k 1x+b 1,∵A 点坐标为(0,2),B 点坐标为(130,9.8),∴有,解得:.∴线段AB 所表示的y 1与x 之间的函数解析式y 1=0.06x+2.(3)当0<x≤90时,销售价y 2(元)与产量x (kg )之间的函数图象为线段CD .设线段CD 所表示的y 2与产量x 之间的函数解析式为y 2=k 2x+b 2,∵C 点坐标为(0,8),D点坐标为(90,9.8),∴有,解得:.∴线段CD 所表示的y 2与x 之间的函数解析式y 2=0.02+8.令企业获得的利润为W ,则有W=x (y 2﹣y 1)=﹣0.04x 2+6x=﹣0.04(x ﹣75)2+225,故当x=75时,W 取得最大值225.答:该葵花试卷第14页,共17页籽的产量为75kg 时,该企业获得的利润最大;最大利润为225元. 考点:二次函数与一次函数综合.23、为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是 班; (2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.【答案】(1)见解析,(3)班;(2)10;(3)八年级参加竞赛的总人数为400人. 【解析】试题分析:(1)10×8﹣(8+11+6+9+12+10)=80﹣66=14(人),如图所示:故九年级获奖人数最多的班级是(3)班;(2)从小到大排列为6,8,9,10,11,12,14,正中间的数是10,九年级七个班的获奖人数的这组数据的中位数是10;(3)设八年级参加竞赛的总人数为x 人,依题意有=,解得x=400,经检验x=400是原分式方程的解.故八年级参加竞赛的总人数为400人. 考点:统计图的分析.24、如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B (﹣3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)若将点C 先向左平移3个单位长度,再向上平移6个单位长度得到点D ,请你判断点D 是否在直线l 1上;(3)已知直线l 2:y=x+b 经过点B ,与y 轴交于点E ,求△ABE 的面积.【答案】见解析. 【解析】试题分析:(1)∵B (﹣3,3),将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,∴﹣3+1=﹣2,3﹣2=1,∴C 的坐标为(﹣2,1),设直线l 1的解析式为y=kx+c ,∵点B 、C 在直线l 1上,∴代入得:,解得:k=﹣2,c=﹣3,∴直线l 1的解析式为y=﹣2x ﹣3;(2)∵将点C 先向左平移3个单位长度,再向上平移6个单位长度得到点D ,C (﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D 的坐标为(﹣5,7),代入y=﹣2x ﹣3时,左边=右边,即点D 在直线l 1上;(3)把B 的坐标代入y=x+b 得:3=﹣3+b ,解得:b=6,∴y=x+6,∴E 的坐标为(0,6),∵直线y=﹣2x ﹣3与y 轴交于A 点,∴A 的坐标为(0,﹣3),∴AE=6+3=9,∵B试卷第16页,共17页(﹣3,3),∴△ABE 的面积为×9×|﹣3|=13.5. 考点:一次函数与几何综合.25、若如图,已知AD ∥BC ,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD 的平分线AP ,交BC 于点P . (2)在(1)的基础上,若∠APB=55°,求∠B 的度数.(3)在(1)的基础上,E 是AP 的中点,连接BE 并延长,交AD 于点F ,连接PF .求证:四边形ABPF 是菱形.【答案】见解析. 【解析】试题分析:(1)解:如图,AP 为所作;(2)解:∵AD ∥BC ,∴∠DAP=∠APB=55°,∵AP 平分∠DAB ,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°;(2)证明:∵∠BAP=∠APB ,∴BA=BP ,∵BE=FE ,AE 平分∠BAF ,∴△ABF 为等腰三角形,∴AB=AF ,∴AF=BP ,而AF ∥BP ,∴四边形ABPF 是平行四边形,∵AB=BP ,∴四边形ABPF 是菱形. 考点:菱形的性质与判定.26、请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y 的值; (2)若1◎1=8,4◎2=20,求x 、y 的值.【答案】(1)y=﹣2;(2)x=2,y=6.【解析】试题分析:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,②﹣①得:x=2,把x=2代入得:y=6.考点:定义新概念及程序.。
2016年河北省中考数学模拟试卷1
2016年河北省中考数学模拟试卷一、选择题(16小题,每小题2分,7-16小题,每小题2分,共42分)1.2014年在进入12月份后又迎来了大幅降温天气,12月5日哈尔滨、沈阳、石家庄、济南的最高气温分别为﹣12℃、﹣7℃、6℃、5℃,则这四个城市中在这天的最高气温最高的是()A.哈尔滨B.沈阳 C.石家庄D.济南2.下列四个腾讯软件图标中,属于轴对称图形的是()A.B. C.D.3.下列无理数中,不是介于﹣3与2之间的是()A.﹣B.C.﹣D.4.(2分)(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°5.已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围在数轴上的表示正确的是()A.B.C.D.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.207.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD 的面积为()A.7.5 B.8 C.15 D.无法确定8.已知a=+2,b=﹣2,则(﹣)÷的值为()A.1 B.C.D.9.若一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,则a+3b的值为()A.136 B.268 C.D.10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m11.已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画弧,交OB于点D,连接CD;②以点A为圆心,OC长为半径画弧MN,交OA于点M;③以点M为圆心,CD长为半径画弧,交弧MN于点E,连接ME,操作结果如图所示,下列结论不能由上述操作结果得出的是()A.CD∥ME B.OB∥AE C.∠ODC=∠AEM D.∠ACD=∠EAP12.王芳将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()A.m1,m4B.m2,m3C.m3,m6D.m4,m513.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A.125°B.130°C.135°D.140°14.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×101715.如图,在△ABC中,BC=5,D、E分别是AB、AC上的点,连接DE,有DE=3且DE∥BC,现有将△ABC沿BC平移一段距离得到△A′B′C′,A′B′与AC交于点F,并测得∠A′FE=131°,D,E的对应点分别是D′,E′,3S四边形B′CED′=S四边形BC′E′D,则下列说法不正确的是()A.∠A=49°B.四边形CC′E′E是平行四边形C.B′C=DE D.S△ABC=5S△D′FE16.如图,两双曲线y=与y=﹣分别位于第一、四象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于点D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,﹣);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共4个小题,每小题3分,共12分)17.已知一组数据1,3,a,6,6的平均数为4,则这组数据的方差为.18.若M=(2015﹣1985)2,O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2,则M+N﹣2O的值为.19.如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.20.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D 处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是.三、解答题(本题共6小题,共66分)21.已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.22.某校为了选拔省教委组织的以“爱我省会•让节能环保称为时尚”为主题的参赛作品,现在本校组织了一次“以爱我家乡•让节能环保成为时尚”的作品征集活动,现从所收集上来的作品中随机爱抽取了一部分,按A,B,C,D四个等级进行评选,并根据评选结果绘制了如图所示的条形统计图,已知等级C的作品的所抽取作品中占25%.(1)求所抽取的作品的总份数及等级C的作品的份数,并补全条形统计图;(2)若该校供征集到800份作品.①请你估计出等级为A的作品约有多少份?②若等级为A的作品中有100份是七年级组的作品,剩下的为八、九年级组的作品,现要将这两个组的作品再进行分组来选择参赛用的作品,已知这两个组所分的组数相同,且七年级组中每组的作品比八、九年级组中每组的作品少4份,请问这两个年级组的作品中每组各多少份?23.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.24.如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,C是线段AB的中点,连接OC,并过点A作OC的垂线,垂足为D,交x轴于点E,已知tan∠OAD=.(1)求2∠OAD的正切值;(2)若OC=.①求直线AB的解析式;②求点D的坐标.25.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.26.某公司对工作五年及以上的员工施行新的绩效考核制度,现拟定工作业绩W=P+1200,其中P的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由部分的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由两部分的和组成,一部分与x2成正比,另一部分与nx成正比,在试行过程中得到了如下两组数据:①工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;②工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元.(1)试用含x和n的式子表示W;(2)若某员工的工作业绩为4080元,工作数量为40单位,求该员工的工作年限;(3)若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为多少单位?此时他的工作业绩为多少元?2016年河北省中考数学模拟试卷参考答案与试题解析一、选择题(16小题,每小题2分,7-16小题,每小题2分,共42分)1.2014年在进入12月份后又迎来了大幅降温天气,12月5日哈尔滨、沈阳、石家庄、济南的最高气温分别为﹣12℃、﹣7℃、6℃、5℃,则这四个城市中在这天的最高气温最高的是()A.哈尔滨B.沈阳 C.石家庄D.济南【解答】解:∵﹣12,﹣7是负数,∴﹣12<0,﹣7<0;∵6>5>0,∴这四个城市中在这天的最高气温最高的是石家庄.故选C.2.下列四个腾讯软件图标中,属于轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.下列无理数中,不是介于﹣3与2之间的是()A.﹣B.C.﹣D.【解答】解:A、﹣3<﹣<﹣2,故介于﹣3与2之间,不合题意;B、2<<3,不介于﹣3与2之间,符合题意,C、﹣2<﹣<﹣1,故介于﹣3与2之间,不合题意;D、1<<2,故介于﹣3与2之间,不合题意;故选;B.4.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【解答】解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°;故选:C.5.已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围在数轴上的表示正确的是()A.B.C.D.【解答】解:∵l与半径为2的⊙O的位置关系是相离,∴点O到直线l的距离的取值范围d>2.故选A.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.20【解答】解:设有20元的红包x个,根据题意得:=,解得:x=16,故选C.7.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD 的面积为()A.7.5 B.8 C.15 D.无法确定【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BC•DE=×5×3=7.5.故选:A.8.已知a=+2,b=﹣2,则(﹣)÷的值为()A.1 B.C.D.【解答】解:原式===;∵a﹣b==4,∴原式=;故选:B.9.若一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,则a+3b的值为()A.136 B.268 C.D.【解答】解:∵9x2﹣12x﹣39996=0,∴9(x﹣)2=40000,∴x1=,x2=﹣66,∵一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,∴a=﹣66,b=,a+3b=﹣66+202=136.故选A.10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选:C.11.已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画弧,交OB于点D,连接CD;②以点A为圆心,OC长为半径画弧MN,交OA于点M;③以点M为圆心,CD长为半径画弧,交弧MN于点E,连接ME,操作结果如图所示,下列结论不能由上述操作结果得出的是()A.CD∥ME B.OB∥AE C.∠ODC=∠AEM D.∠ACD=∠EAP【解答】解:在△OCD和△AME中,,∴△OCD≌△AME(SSS),∴∠DCO=∠EMA,∠O=∠OAE,∠ODC=∠AEM.∴CD∥ME,OB∥AE.故A、B、C都可得到.∵△OCD≌△AME,∴∠DCO=∠AME,则∠ACD=∠EAP不一定得出.故选D.12.王芳将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()A.m1,m4B.m2,m3C.m3,m6D.m4,m5【解答】解:∵抛物线y=ax2﹣6ax﹣3的开口向上,∴a>0,∵y=ax2﹣6ax﹣3=a(x﹣3)2﹣3﹣9a,∴抛物线的对称轴为直线x=3,∴应选择的y轴为直线m4;∵顶点坐标为(3,﹣3﹣9a),抛物线y=ax2﹣6ax﹣3与y轴的交点为(0,﹣3),而﹣3﹣9a<﹣3,∴应选择的x轴为直线m1,故选A.13.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A.125°B.130°C.135°D.140°【解答】解:如图,连接AA′.由题意得:AC=A′C,A′B′=AB,∠ACA′=90°,∴∠AA′C=45°,AA′2=22+22=8;∵AB′2=32=9,A′B′2=12=1,∴AB′2=AA′2+A′B′2,∴∠AA′B′=90°,∠A′=135°,故选C.14.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×1017【解答】解:根据题意得:第⑧个式子为5555555552﹣4444444452=(555555555+444444445)×(555555555﹣444444445)=1.1111111×1017.故选D.15.如图,在△ABC中,BC=5,D、E分别是AB、AC上的点,连接DE,有DE=3且DE∥BC,现有将△ABC沿BC平移一段距离得到△A′B′C′,A′B′与AC交于点F,并测得∠A′FE=131°,D,E的对应点分别是D′,E′,3S四边形B′CED′=S四边形BC′E′D,则下列说法不正确的是()A.∠A=49°B.四边形CC′E′E是平行四边形C.B′C=DE D.S△ABC=5S△D′FE【解答】解:∵△ABC沿BC平移一段距离得到△A′B′C′,∴AC∥A′C′,∠A=∠A′,∴∠A′+∠A′FE=180°,∴∠A′=180°﹣131°=49°,∴∠A=49°,所以A选项的说法正确;∵DE∥BC,∴四边形CC′E′E是平行四边形,所以B选项的说法正确;设BB′=x,DE与BC的距离为h,则DD′=x,B′C=5﹣x,BC′=5+x,DE′=3+x,D′E=3﹣x,∵3S四边形B′CED′=S四边形BC′E′D,∴3•(3﹣x+5﹣x)•h=(3+x+5+x)•h,解得x=2,∴B′C=5﹣2=3,∴B′C=DE,所以C选项的说法正确;设点F与DE的距离为h′,点A到BC的距离为h1,∵D′E∥B′C,∴===,∴h=6h′,∵DE∥BC,∴==,∴h=h1,∴h1=6h′,即h′=h1,∴===,所以D选项的说法错误.故选D.16.如图,两双曲线y=与y=﹣分别位于第一、四象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于点D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,﹣);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个【解答】解:①∵双曲线y=在第一象限,∴k>0,∴在每个象限内,y随x的增大而减小,故①正确;②∵点B的横坐标为3,∴y=﹣=﹣1,∴BD=1,∵4BD=3CD,∴CD=,∴点C的坐标为(3,),故②错误;③设点B的坐标为(x,﹣),∵4BD=3CD,即BD=,则DC=,∴C点坐标为:(x,),∴k=x•=4,故③正确;④设B点横坐标为:x,则其纵坐标为:﹣,故C点纵坐标为:,则BC=+=,则△ABC的面积为:×x×=3.5,故此选项错误.故选:B.二、填空题(本题共4个小题,每小题3分,共12分)17.已知一组数据1,3,a,6,6的平均数为4,则这组数据的方差为 3.6.【解答】解:∵数据1,3,a,6,6的平均数为4,∴(1+3+a+6+6)÷5=4,∴a=4,∴这组数据的方差为:[(1﹣4)2+(3﹣4)2+(4﹣4)2+(6﹣4)2+(6﹣4)2]=3.6;故答案为:3.6.18.若M=(2015﹣1985)2,O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2,则M+N﹣2O的值为4.【解答】解:∵M=(2015﹣1985)2,O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2,∴M+N﹣2O=(2015﹣1985)2﹣2(2015﹣1985)×(2014﹣1986)+(2014﹣1986)2=[(2015﹣1985)﹣(2014﹣1986)]2=4.故答案为:4.19.如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为6﹣3.【解答】解:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴GH=,BH=2,设OG=OE=x,则EH=2﹣3,OH=﹣x,在RT△OEH中,EH2+OE2=OH2,即(2﹣3)2+x2=(﹣x)2解得x=6﹣3∴⊙O的半径为6﹣3.故答案为:6﹣3.20.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D 处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是AD=BD.【解答】解:如图,连接CD;由题意得:∠EDF=∠ECF,∴∠EDF+∠ECF=180°,∴D、E、C、F四点共圆,∴∠DEF=∠DCF;而∠DEF=∠A,∴∠DCF=∠A(设为α),DA=DC;∵∠B+α=∠BCD+α=90°,∴∠B=∠BCD,∴DB=DC,DA=DB,故答案为:AD=BD.三、解答题(本题共6小题,共66分)21.已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【解答】解:(1)∵(1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,或者∠A=45°,∠B=120°,∠C=180°﹣45°﹣120°=15°,∴△ABC是锐角三角形或钝角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1,=.22.某校为了选拔省教委组织的以“爱我省会•让节能环保称为时尚”为主题的参赛作品,现在本校组织了一次“以爱我家乡•让节能环保成为时尚”的作品征集活动,现从所收集上来的作品中随机爱抽取了一部分,按A,B,C,D四个等级进行评选,并根据评选结果绘制了如图所示的条形统计图,已知等级C的作品的所抽取作品中占25%.(1)求所抽取的作品的总份数及等级C的作品的份数,并补全条形统计图;(2)若该校供征集到800份作品.①请你估计出等级为A的作品约有多少份?②若等级为A的作品中有100份是七年级组的作品,剩下的为八、九年级组的作品,现要将这两个组的作品再进行分组来选择参赛用的作品,已知这两个组所分的组数相同,且七年级组中每组的作品比八、九年级组中每组的作品少4份,请问这两个年级组的作品中每组各多少份?【解答】解:(1)根据题意得:(36+48+6)÷(1﹣25%)=120(份);等级C的作品的份数为30份,补全统计图,如图所示;(2)①根据题意得:800×=240(份),则等级A的作品约有240份;②设七年级组分成的组中有x份,八、九年级每组有(x+4)份,根据题意得:=,解得:x=10,则七年级组的作品每组有10份,八、九年级组的作品有14份.23.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【解答】(1)证明:过F作FH⊥BE,∵四边形ABCD为正方形,∴∠ABC=∠BCD=90°,∴∠FHB=∠HBC=∠BCF=90°,∴四边形BCFH为矩形,∴BH=CF,又∵BF=EF,∴BE=2BH,∴BE=2CF;(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.24.如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,C是线段AB的中点,连接OC,并过点A作OC的垂线,垂足为D,交x轴于点E,已知tan∠OAD=.(1)求2∠OAD的正切值;(2)若OC=.①求直线AB的解析式;②求点D的坐标.【解答】解:(1)设DE=k.∵∠AOE=∠ADO=90°,∴∠OAD=∠DOE=90°﹣∠AOD,∴tan∠OAD=tan∠DOE=,∴==,∴OD=2DE=2k,AD=2OD=4k.在Rt△AOD中,由勾股定理得OA===2k,∵tan∠OAD==,∴OE=OA=k.∵在Rt△AOB中,C是线段AB的中点,∴OC=AB=BC,∴∠COB=∠OBC,∴∠OAD=∠DOE=∠COB=∠OBC,∴∠ACD=∠COB+∠OBC=2∠OAD.∵在Rt△AOB中,tan∠OBA=tan∠OAD=,∴=,∴OB=2OA=4k,∴AB===10k,∴OC=AB=5k,∴CD=OC﹣OD=5k﹣2k=3k,∴tan(2∠OAD)=tan∠ACD===;(2)①∵OC=5k=,∴k=,∴OA=2k=2,OB=2OA=4,∴A(0,2),B(4,0).设直线AB的解析式为y=mx+n,则,解得,∴直线AB的解析式为y=﹣x+2;②如图,过D作DF⊥x轴于点F.∵DF∥AO,∴==,即==,∴DF=k=×=,EF=k=×=,∴OF=OE﹣EF=k﹣=×﹣=,∴点D的坐标为(,).25.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.【解答】解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.26.某公司对工作五年及以上的员工施行新的绩效考核制度,现拟定工作业绩W=P+1200,其中P的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由部分的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由两部分的和组成,一部分与x2成正比,另一部分与nx成正比,在试行过程中得到了如下两组数据:①工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;②工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元.(1)试用含x和n的式子表示W;(2)若某员工的工作业绩为4080元,工作数量为40单位,求该员工的工作年限;(3)若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为多少单位?此时他的工作业绩为多少元?【解答】解:(1)∵P由两部分的和成,一部分与x2成正比,另一部分与nx成比,∴设w=k1x2+k2•nx+1200,∵工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元,∴,解得:,∴w=﹣x2+5nx+1200;(2)由题意得:4080=﹣×402+5n×40+1200,解得:n=16,∴该员工的工作年限为16年;(3)当n=10时,w=﹣x2+5×10x+1200=﹣(x﹣125)2+4325,所以若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为125单位,此时他的工作业绩为4325元.参与本试卷答题和审题的老师有:ZJX;caicl;gbl210;wdzyzmsy@;wd1899;sjzx;dbz1018;lantin;zhjh;上善若水;sjw666;sks;gsls;sd2011;守拙;522286788;HJJ;zcx (排名不分先后)菁优网2016年4月9日。
河北省张家口市 中考数学一模试卷
河北省张家口市2015届中考数学一模试卷一、选择题(共16小题,每小题2分,满分42分)1.(2分)5的倒数为()A.B.5C.D.﹣52.(2分)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°3.(2分)方程2x+1=0的解是()A.B.C.2D.﹣24.(2分)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°或75°B.75°C.45°或75°或15°D.60°5.(2分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短6.(2分)如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是()A.x>1 B.﹣1<x<0 C.﹣1<x<0或x>1 D.x<﹣1或0<x<1 7.(3分)化简分式的结果是()A.2B.C.D.﹣28.(3分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°9.(3分)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A. B. C. D.10.(3分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A .B .C .D .11.(3分)一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是()A .B .C .D .12.(3分)如图,用尺规作出∠OBF=∠AOB ,作图痕迹是()A . 以点B 为圆心,OD 为半径的圆 B . 以点B 为圆心,DC 为半径的圆 C . 以点E 为圆心,OD 为半径的圆 D . 以点E 为圆心,DC 为半径的圆 13.(3分)如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的,那么点B ′的坐标是()A . (﹣2,3)B . (2,﹣3)C . (3,﹣2)或(﹣2,3)D . (﹣2,3)或(2,﹣3)14.(3分)现定义运算“★”,对于任意实数a ,b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是() A . ﹣1 B . 4 C . ﹣1或4 D .1或﹣415.(3分)如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为()A.cm2B.cm2C.cm2D.cm216.(3分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8B.5C.D.3二、填空题(共4小题,每小题3分,满分12分)17.(3分)若,,则a+b的值为.18.(3分)计算﹣|﹣3|﹣(﹣π)0+2014的值为.19.(3分)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)20.(3分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为.三、解答题(共6小题,满分66分)21.(10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?22.(10分)我市某中学七、2014-2015学年八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、2014-2015学年八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中2014-2015学年七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率2014-2015学年七年级6.7 m 3.41 90% n2014-2015学年八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说2014-2015学年七年级的合格率、优秀率均高于2014-2015学年八年级,所以2014-2015学年七年级队成绩比2014-2015学年八年级队好,但也有人说2014-2015学年八年级队成绩比2014-2015学年七年级队好.请你给出两条支持2014-2015学年八年级队成绩好的理由.23.(11分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.(11分)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?25.(11分)某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.26.(13分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.河北省张家口市2015届中考数学一模试卷参考答案与试题解析一、选择题(共16小题,每小题2分,满分42分)1.(2分)5的倒数为()A.B.5C.D.﹣5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:5的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(2分)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°考点:平行线的性质;三角形的外角性质.专题:计算题.分析:由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.解答:解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=40°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=10°.故选:D.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.3.(2分)方程2x+1=0的解是()A.B.C.2D.﹣2考点:解一元一次方程.专题:计算题;压轴题.分析:先移项,再系数化1,可求出x的值.解答:解:移项得:2x=﹣1,系数化1得:x=﹣.故选B.点评:解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.4.(2分)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°或75°B.75°C.45°或75°或15°D.60°考点:含30度角的直角三角形;等腰三角形的性质.专题:分类讨论.分析:分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.解答:解:①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=BC,∴AD=AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=BC,AB=BC,∴AD=AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°;故选C.点评:此题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.5.(2分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:常规题型.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.(2分)如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是()A.x>1 B.﹣1<x<0 C.﹣1<x<0或x>1 D.x<﹣1或0<x<1考点:反比例函数与一次函数的交点问题.分析:把A的坐标代入函数的解析式求出函数的解析式,解由两函数解析式组成的方程组,求出方程组的解,得出B的坐标,根据A、B的坐标,结合图象即可得出答案.解答:解:∵把A(1,2)代入y1=得:k1=2,把A(1,2)代入y2=k2x得:k2=2,∴y1=,y2=2x,解方程组得:,,即B的坐标是(﹣1,﹣2),∴当y1<y2时,自变量x的取值范围是﹣1<x<0或x>1,故选:C.点评:本题考查了用待定系数法求反比例函数和一次函数的解析式,反比例函数和一次函数的交点问题等知识点的应用,主要考查学生的计算能力和观察图象的能力.7.(3分)化简分式的结果是()A.2B.C.D.﹣2考点:分式的混合运算.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:=÷[+]=÷=2.故选:A.点评:本题主要考查分式的化简求值,把分式化到最简是解答的关键,通分、因式分解和约分是基本环节.8.(3分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°考点:直角三角形的性质.专题:常规题型.分析:根据直角三角形两锐角互余解答.解答:解:由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:C.点评:本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.9.(3分)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A. B. C. D.考点:动点问题的函数图象.专题:数形结合.分析:利用勾股定理列式求出AC,再根据勾股定理列式表示出y与x的函数关系式,然后判断出函数图象即可得解.解答:解:由勾股定理得,AC===4m,竹杆顶端A下滑x米时,底端B便随着向右滑行y米后,AC=4﹣x,BC=3+y,∴y+3==,∴y=﹣3,当x=0时,y=0,当A下滑到点C时,x=4,y=2,由函数解析式可知y与x的变化不是直线变化.故选:A.点评:本题考查了动点问题的函数图象,主要利用了勾股定理,列出y与x的函数关系式是解题的关键,难点在于正确区分A、B选项.10.(3分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选:B.点评:此题主要考查了三视图的概念.根据俯视图得出每一组小正方体的个数是解决问题的关键.11.(3分)一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.考点:列表法与树状图法;根的判别式.专题:计算题.分析:列表得出所有等可能的情况数,找出满足关于x的方程x2+px+q=0有实数根的情况数,即可求出所求的概率.解答:解:列表如下:﹣2 1 4﹣2 ﹣﹣﹣(1,﹣2)(4,﹣2)1 (﹣2,1)﹣﹣﹣(4,1)4 (﹣2,4)(1,4)﹣﹣﹣所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2﹣4q≥0的情况有4种,则P==.故选:D点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆考点:作图—基本作图.分析:根据作一个角等于已知角的作法进行解答即可.解答:解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选D.点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.13.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)考点:相似多边形的性质;坐标与图形性质.分析:由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC 面积的,利用相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比为1:2,又由点B的坐标为(﹣4,6),即可求得答案.解答:解:∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC,∵矩形OA′B′C′的面积等于矩形OABC面积的,∴位似比为:1:2,∵点B的坐标为(﹣4,6),∴点B′的坐标是:(﹣2,3)或(2,﹣3).故选:D.点评:此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用.14.(3分)现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是()A.﹣1 B.4C.﹣1或4 D.1或﹣4考点:解一元二次方程-因式分解法.专题:新定义.分析:原式根据题中的新定义,进行列式计算即可得到结果.解答:解:∵对于任意实数a,b,都有a★b=a2﹣3a+b,∴x★2=x2﹣3x+2,即:x2﹣3x+2=6,∴x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,∴x1=4,x2=﹣1.故选:C.点评:此题考查了用因式分解的方法解一元二次方程,解答本题关键是明确新定义的运算符号所代表的运算法则,属于基础题.15.(3分)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.16.(3分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8B.5C.D.3考点:方差;算术平均数.分析:根据平均数的计算公式先求出a的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x2],代数计算即可.n﹣)解答:解:∵6、4、a、3、2的平均数是5,∴(6+4+a+3+2)÷5=5,解得:a=10,则这组数据的方差S2=[(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;故选:A.点评:本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].二、填空题(共4小题,每小题3分,满分12分)17.(3分)若,,则a+b的值为.考点:平方差公式.专题:计算题.分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.解答:解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.(3分)计算﹣|﹣3|﹣(﹣π)0+2014的值为2015.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算即可得到结果.解答:解:原式=5﹣3﹣1+2014=2015,故答案为:2015点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(3分)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为(5+5)m (结果保留根号)考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:作CE⊥AB于点E,则△BCE和△BCD都是直角三角形,即可求得CE,BE的长,然后在Rt△ACE中利用三角函数求得AE的长,进而求得AB的长,即为大树的高度.解答:解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).点评:本题考查解直角三角形的应用﹣仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.20.(3分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为27.考点:规律型:图形的变化类.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故答案为:27.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.三、解答题(共6小题,满分66分)21.(10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?考点:分式的混合运算;解二元一次方程组;一元一次不等式组的整数解.专题:新定义.分析:(1)①已知两对值代入T中计算求出a与b的值;②根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;(2)由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.解答:解:(1)①根据题意得:T(1,﹣1)==﹣2,即a﹣b=﹣2;T=(4,2)==1,即2a+b=5,解得:a=1,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有3个整数解,即m=0,1,2,∴2<≤3,解得:﹣2≤p<﹣;(2)由T(x,y)=T(y,x),得到=,整理得:(x2﹣y2)(2b﹣a)=0,∵T(x,y)=T(y,x)对任意实数x,y都成立,∴2b﹣a=0,即a=2b.点评:此题考查了分式的混合运算,解二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键.22.(10分)我市某中学七、2014-2015学年八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、2014-2015学年八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中2014-2015学年七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率2014-2015学年七年级6.7 m 3.41 90% n2014-2015学年八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说2014-2015学年七年级的合格率、优秀率均高于2014-2015学年八年级,所以2014-2015学年七年级队成绩比2014-2015学年八年级队好,但也有人说2014-2015学年八年级队成绩比2014-2015学年七年级队好.请你给出两条支持2014-2015学年八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持2014-2015学年八年级队成绩好的理由即可.解答:解:(1)根据题意得:解得a=5,b=1;(2)2014-2015学年七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)2014-2015学年八年级平均分高于2014-2015学年七年级,方差小于2014-2015学年七年级,成绩比较稳定,故2014-2015学年八年级队比2014-2015学年七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.23.(11分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD 是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.(11分)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.专题:压轴题;分类讨论.分析:(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c 的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.解答:解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.点评:本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.25.(11分)某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,。
河北省张家口市中考数学一模考试试卷
河北省张家口市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2018九上·洛宁期末) 化简的结果是()A .B .C .D .2. (2分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .B .C .D .3. (2分)有2011个同学站成一排报数,报到奇数的退下,偶数的留下,留下的同学位置不动继续报数,报到奇数的退下,偶数的留下,…,如此继续,最后留下一个同学,则最后留下的这个同学第一次站的位置是第()个A . 256B . 512C . 1024D . 20104. (2分)如图,⊙O的直径AB的长是12,CD是⊙O的弦,AB⊥CD,垂足为E,如果∠BOC=60°,则BE的长度为()A . 3B . 3.5C . 4D . 55. (2分)若一个多边形每一个外角都与它的相邻的内角相等,则这个多边形的边数是()A . 6B . 5C . 4D . 36. (2分) (2015九上·新泰竞赛) 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得:()A .B .C .D .7. (2分) (2018九上·安定期末) 某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C . 抛一个质地均匀的正六面体骰子,向上的面点数是5D . 抛一枚硬币,出现反面的概率8. (2分)下列计算中,正确的是()A . x3•x2=x6B . x3﹣x2=xC . (﹣x)2•(﹣x)=﹣x3D . x6÷x2=x39. (2分) (2016九上·永登期中) 已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A . k>且k≠2B . k≥ 且k≠2C . k>且k≠2D . k≥ 且k≠210. (2分) (2017七下·梁子湖期中) 如图,在直角坐标系中,设一动点自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设Pn(xn , yn),n=1,2,3,…则x1+x2+…+x99+x100=()A . 0B . ﹣49C . 50D . ﹣5011. (2分)解不等式组的解集在数轴上表示正确的是()A .B .C .D .12. (2分)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是()A .B .C .D .13. (2分)(2019·萧山模拟) 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A .B .C .D .14. (2分)如图,⊙O的半径为3厘米,点B为⊙O外一点,OB交⊙O于点A,且AB=OA,动点P从点A出发,以π厘米/秒的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为()秒时,直线BP与⊙O相切.A . 1B . 5C . 0.5或5.5D . 1或515. (2分)(2016·自贡) 二次函数y=ax2+bx+c的图象如图,反比例函数y= 与正比例函数y=bx在同一坐标系内的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)16. (1分) (2020七上·五华期末) 若单项式与是同类项,则(-m)n=________17. (1分)在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0 , b0 ,c0 ,记为G0=(a0 , b0 , c0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为G0=(a0 , b0 , c0).(1)若G0=(4,7,10),则第________ 次操作后游戏结束;(2)小明发现:若G0=(4,8,18),则游戏永远无法结束,那么G2015=________18. (1分)数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣1)(b﹣2).现将数对(m,1)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是________ .(结果要化简)19. (1分)(2018·德州) 如图。
2016年河北张家口中考数学试卷及答案
2016年河北张家口中考数学试卷及答案本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考题时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=( D )A.±1 B.-2 C.-1 D.12.计算正确的是( D )A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a3.下列图形中,既是轴对称图形,又是中心对称图形的是( A )A B C D4.下列运算结果为x-1的是( B )A.11x-B.211x xx x-•+C.111xx x+÷-D.2211x xx+++5.若k≠0,b<0,则y=kx+b的图象可能是( B )6.关于ABCD的叙述,正确的是( C )A.若AB⊥BC,则ABCD是菱形B.若AC⊥BD,则ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD,则ABCD是正方形7.关于12的叙述,错误..的是( A )A.12是有理数 B.面积为12的正方形边长是12C.12=23D.在数轴上可以找到表示12的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是( A )图1 图2第8题图A.○1B.○2C.○3D.○49.图示为4×4的网格图,A,B,C,D,O均在格点上,点O是( B )第9题图A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是( A )第10题图 A .BH 垂直分分线段ADB .AC 平分∠BADC .S △ABC =BC ·AHD .AB =AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图 甲:b -a <0;乙:a +b >0;丙:|a |<|b |;丁:0ba>. 其中正确的是( C ) A .甲乙B .丙丁C .甲丙D .乙丁12.在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( C ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x=+ 13.如图,将ABCD 沿对角线AC 折叠,使点B 落在点B ’处.若∠1=∠2=44°,则∠B 为( C )第13题图A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( B )[源: A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( D )第16题图A.1个B.2个C.3个D.3个以上卷II(非选择题,共78分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根为____2___.18.若mn=m+3,则2mn+3m-5nm+10=___1___.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.第19题图当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__76___°若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___6____°三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)请你参照黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15)-999×31185.21.(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图22.(本小题满分9分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(本小题满分9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.图1 图2第23题图如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(本小题满分10分)某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:第1个第2个第3个第4个…第n个调整前单价x(元)x1x2=6 x3=72 x4…x n调整后单价x(元)y1y2=4 y3=59 y4…y n已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为_x,_y,猜想_y与_x的关系式,并写出推导出过.25.(本小题满分10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ (弧)上且不.与A点重合,但Q点可与B点重合.发现AP(弧)的长与QB(弧)的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求AP(弧)的长.(注:结果保留π,cos 35°=63,cos 55°=33)第25题图备用图26.(本小题满分12分)如图,抛物线L: 1()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线(0,0)ky k x x=>>于点P ,且OA ·MP =12.(1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t 的取值范围.第26题图。
河北省张家口市中考数学一模试卷
河北省张家口市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·安陆月考) 在有理数-4,0,-1,3中,最小的数是()A . -4B . 0C . -1D . 32. (2分)(2017·蒙自模拟) 2016年9月15日,我国在酒泉卫星发射中心用长征二号FT2火箭将天宫二号空间实验室发射升空.大约经过10分钟后,成功进入远地点350000米的初始轨道.将数据350000用科学记数法可表示为()A . 35×104B . 350×103C . 3.5×105D . 0.35×1063. (2分)下列四个几何体中左视图与俯视图相同的几何体是()A . ①②B . ①③C . ②③D . ③④4. (2分)(2012·苏州) 若3×9m×27m=321 ,则m的值为()A . 3B . 4C . 5D . 65. (2分) (2020·昆明) 下列判断正确的是()A . 北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B . 一组数据6,5,8,7,9的中位数是8C . 甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D . 命题“既是矩形又是菱形的四边形是正方形”是真命题6. (2分)下列方程中,有两个不相等实数根的是()A . x2-2x-1=0B . x2-2x+3=0C . x2=2x-3D . x2-4x+4=07. (2分)如图,AB∥CD,∠A=50°,则∠1的大小是()A . 50°B . 120°C . 130°D . 150°8. (2分)(2017·兰山模拟) 如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A .B .C .D .9. (2分)(2020·张家港模拟) 若关于x的一元一次不等式组的解集是x a,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A . 0B . 1C . 4D . 610. (2分)(2019·深圳) 如图,已知AB=AC,AB=5,BC=3,以AB两点为圆心,大于 AB的长为半径画圆弧,两弧相交于点M、N,连接MN与AC相交于点D,则△BDC的周长为()A . 8B . 10C . 11D . 1311. (2分)(2020·梅列模拟) 如图,点 A.B.P是⊙O上的三点,若=50°,则的度数为()A . 100°B . 50°C . 40°D . 25°12. (2分) (2019八下·滦南期末) 如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A . ②③B . ②⑤C . ①③④D . ④⑤二、填空题 (共5题;共7分)13. (1分)若是一个完全平方式,则k=________.14. (1分) (2018八上·嘉峪关期末) 分解因式 ________.15. (1分)当x________ 时,分式有意义.16. (2分)在Rt△ABC中,∠C=90°.如果∠A=45°,AB=12,那么BC=________ .17. (2分) (2020八下·温州月考) 如图,已知矩形ABCD中,AB=6,BC=8,点E为BC边上的一个动点,EF∥BD 交CD于点F,作点C关于EF的对称点C',连接C'E,C'F,以EC'为直径作⊙O,当⊙O与矩形ABCD的边相切时,CE的长为________。
张家口市中考数学一模试卷
张家口市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是()A . 1B . 2C . 3D . 42. (2分)下列计算结果正确的是()A . (mn)6÷(mn)3=mn3B . (x+y)6÷(x+y)2·(x+y)3=x+yC . x10÷x10=0D . (m-2n)3÷(-m+2n)3=-13. (2分)(2014·钦州) 不等式组的整数解共有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2020八下·哈尔滨月考) 若方程有两个不等的实数根,则m的取值范围是()A . m=1B .C . 且D . 且5. (2分) (2016八下·固始期末) 数据2,3,5,5,4的众数是()A . 2B . 3C . 4D . 56. (2分)(2018·抚顺) 如图,菱形ABCD的边AD与x轴平行,A,B两点的横坐标分别为1和3,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积是()A . 4B . 4C . 2D . 27. (2分)(2020·嘉兴·舟山) 已知二次函数y=x²,当a≤x≤b时m≤y≤n,则下列说法正确的是()A . 当n-m=1时,b-a有最小值B . 当n-m=1时,b-a有最大值C . 当b-a=1时,n-m无最小值D . 当b-a=1时,n-m有最大值8. (2分) (2017八下·兴化期末) 对于反比例函数,下列说法不正确的是()A . 点(-2,-1)在它的图像上B . 它的图像在第一、三象限C . 当时,y随x的增大而增大D . 当时,y随x的增大而减小二、填空题 (共10题;共11分)9. (2分)的相反数是________;的平方根是________.10. (1分) (2016八上·平南期中) 0.0000208用科学记数法表示为________.11. (1分)若,则的值等于________12. (1分)(2019·金堂模拟) 已知实数m满足x2-3x+1=0,则代数式的值等于________.13. (1分)(2016·郓城模拟) 正比例函数y1=mx(m>0)的图象与反比例函数y2= (k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是________.14. (1分)(2017·和平模拟) 一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是________.15. (1分) (2018九上·江阴期中) 如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°,则∠ABD=________°.16. (1分)(2013·常州) 如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=________.17. (1分)如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2 ,则△ABC的面积是________cm2 .18. (1分)如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F ,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④ FG∥AC ;⑤EF=FG.其中正确的结论是________。
张家口市中考数学一模试卷
张家口市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·姜堰期中) 在-7 ,,,-,,0.010010001…(每两个1之间依次多一个0)中,无理数的个数有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2016九上·越秀期末) 将两个全等的直角三角形纸片构成如图的四个图形,其中属于中心对称图形的是()A .B .C .D .3. (2分)解决下列问题,比较容易用全面调查方式的是()A . 了解一天大批产品的次品率情况B . 了解某市初中生体育中考的成绩C . 了解某城市居民的人均收入情况D . 了解某一天离开某市的人口数量4. (2分) (2017七下·揭西期末) 下列运算中,正确的是()A .B .C .D .5. (2分) (2019·乌鲁木齐模拟) 如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A . 2B . 3C .D . 1+6. (2分)下列各式中,能用提公因式分解因式的是()A . x2-yB . x2+2xC . x2+y2D . x2-xy+17. (2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A .B . x<3C .D . x>38. (2分) (2015八上·宜昌期中) 到三角形三个顶点距离相等的点是()A . 三条边的垂直平分线的交点B . 三条高线的交点C . 三条边的中线的交点D . 三条角平分线的交点9. (2分) (2019八下·北流期末) 若直角三角形的两条直角边的长分别为6和8,则斜边上的中线长是()A . 6B . 5C . 7D . 不能确定10. (2分)(2017·磴口模拟) 如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)把( -2) 根号外的因式移到根号内后,其结果是________.12. (1分)(2017·武汉模拟) 如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是________.13. (1分) (2019七上·吉水月考) 圆心角为45°的扇形的面积是它所在圆面积的 .(________)14. (1分) (2019八下·睢县期中) 如图,正方形OABC的边长为6,点A、C分别在x轴,y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为________.15. (1分) (2017八下·江都期中) 如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC= ,OC= ,则另一直角边BC的长为________.三、解答题 (共8题;共80分)16. (5分)(2017·大冶模拟) 先化简,再求代数式(﹣)÷ 的值,其中a=2sin60°+tan45°.17. (11分)(2018·河南模拟) 中考科目已经发生变革,继中考增加体育实验之后,从2019年开始河南中考开始增设生物和地理科目,针对于此学校教务处王老师负责调查学生对此变革是否有压力,设置问题答案如下(A:大,B:一般,C:无),再将调查结果制成两幅不完统计图(如图所示),请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图和扇形统计图补充完整;(3)为了缓解学生压力,王老师从被调查的A类和B类学生中分别选取一名学生进行详细心理调查,请用合适的方法恰好选中一名男生和一名学生的概率.18. (10分)(2018·襄阳) 如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4 ,求图中阴影部分的面积.19. (5分)某过天桥的设计图是梯形ABCD(如图所示),桥面DC与地面AB平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的距离(精确到0.1米)sin23°=0.3907,cos23°=0.9205,tan23°=0.424520. (10分)(2018·阜新) 在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?21. (15分) (2019九下·长兴月考) 如图,在平面直角坐标系xOy中,已知矩形OABC的边OA,OC都在坐标轴上,点B的坐标为(12,16).点D以每秒5个单位的速度从点C向点A运动(不与A,C重合),反比例函数y= (x>0)的图象经过点D,与AC的另一个交点为E,与AB,BC分别交于点FG,连结EF.设点D的运动时间为t.(1)当t=1时,求反比例函数y= (x>0)的解析式;(2)点D在运动过程中,①求证:当线段AF的长度取最大值时,点D恰好为AC的中点;②是否存在这样的t,使得△AEF为等腰三角形?若存在,请求出此时点D的坐标;若不存在,请说明理由;(3)连结FG,将△BFG沿着FG所在直线翻折,当点B落在y轴左侧时,请直接写出t的取值范围.22. (9分)(2017·西城模拟) 在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1 , y1),B(x2 ,y2),C(x3 , y3),对于△ABC的横长、纵长、纵横比给出如下定义:将|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,称为△ABC的横长,记作Dx;将|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,称为△ABC的纵长,记作Dy;将叫做△ABC的纵横比,记作λ= .例如:如图1,△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(﹣1,﹣2),则Dx=|2﹣(﹣1)|=3,Dy=|3﹣(﹣2)|=5,所以λ= = .(1)如图2,点A(1,0),①点B(2,1),E(﹣1,2),则△AOB的纵横比λ1=________△AOE的纵横比λ2=________;②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标________;③点M是双曲线y= 上一个动点,若△AOM的纵横比为1,求点M的坐标________;(2)如图3,点A(1,0),⊙P以P(0,)为圆心,1为半径,点N是⊙P上一个动点,直接写出△A ON的纵横比λ的取值范围.23. (15分)(2017·松江模拟) 如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共80分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
2016年河北省中考数学试题和答案
2016年河北省初中毕业升学文化课考试 数学试卷一、选择题(本大题有16个小题。
共42分。
1—10小题各3分;11—16小题各2分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.计算:-(—1)= ( )A.±1B.—2 C 。
—1 D.12.计算正确的是 ( )A 。
0)5(0=-B 。
532x x x =+C 。
5332)(b a ab = D.a a a 2212=⋅-3.下列图形中.既是轴对称图形。
又是中心对称图形的是( )A 。
B. C. D.4.下列运算结果为1-x 的是 ( ) A.x 11- B 。
112+⋅-x x x x C.111-÷+x x x D 。
1122+++x x x 5.若00<≠b k ,.则b kx y +=的图象可能是 ( )6.关于□ABCD 的叙述.正确的是 ( )A 。
若AB ⊥BC 。
则□ABCD 是菱形 B 。
若AC ⊥BD.则□ABCD 是正方形C 。
若AC=BD 。
则□ABCD 是矩形 D.若AB=AD 。
则□ABCD 是正方形7。
关于12的叙述。
错误..的是 ( ) A 。
12是有理数 B.面积为12的正方形边长是12C 。
3212= D.在数轴上可以找到表示12的点8.图1—1和图1-2中所有的正方形都全等.将图1-1的正方形放在图1-2中的①②③④某一位置。
所组成的图形不能围成正方体的位置是 ( )A 。
① B.② C.③ D 。
④9。
图2为4×4的网格图.A 。
B.C.D 。
O 均在格点上。
点O 是 ( )A.△ACD 的外心 B 。
△ABC 的外心 C.△ACD 的内心 D.△ABC 的内心 图1-1 ①③ ②④图1-210。
如图3.已知钝角△ABC.依下列步骤尺规作图。
并保留痕迹。
步骤1:以C 为圆心。
CA 为半径画弧①;步骤2:以B 为圆心.BA 为半径画弧②.点交弧①于点D;步骤3:连接AD.交BC 延长线于点H.下列叙述正确的是 ( )A.BH 垂直平分线段ADB.AC 平分∠BAD C 。
河北省张家口市中考一模数学考试试卷
河北省张家口市中考一模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣(﹣3)的相反数是()A .B .C . ﹣3D . 32. (2分) (2019七上·龙华期中) 钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为()A . 1.7×103B . 1.7×104C . 17×104D . 1.7×1053. (2分)下列如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A .B .C .D .4. (2分)甲、乙、丙、丁四名射击运动员参加了预选赛,他们射击成绩的平均环数及方差s2如表所示.如果选出一个成绩较好且状态稳定的运动员去参赛,那么应选()A . 甲B . 乙C . 丙D . 丁5. (2分)(2016·嘉兴) 一元二次方程2x2﹣3x+1=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根6. (2分)一次数学活动课上,聪聪将一副三角板按图中方式叠放,则∠α等于()A . 30°B . 45°C . 60°D . 75°7. (2分)不等式2x+3≥1的解集在数轴上表示为()A .B .C .D .8. (2分) (2018九下·湛江月考) 下面的计算正确的是()A . a3+a3=a6B . (a3)2=a5C . a2+a2=2a2D . 6a÷a=5a9. (2分)如图,△ABC中,∠C=90°,CD⊥AB,若AC=3,AB=4,则AD=()A . 1B .C .D . 510. (2分)如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A . ﹣3≤y≤3B . 0≤y≤2C . 1≤y≤3D . 0≤y≤3二、填空题 (共5题;共8分)11. (4分)(2017·花都模拟) 利用计算机设计了一个计算程序,输入和输出的数据如下表:________…12345…________……﹣当输入的数据是8时,输出的数据是________,当输入数据是n时,输出的数据是________.12. (1分) (2017七下·邗江期中) 如图,把一个的直角三角尺的直角顶点放在直尺的一边上,已知∠A=30°,则∠1+∠2=________°.13. (1分)(2017·武汉模拟) 在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率________.14. (1分)(2017·日照模拟) 如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC 绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是________.15. (1分)(2019·遵义) 如图,平行四边形纸片ABCD的边AB,BC的长分别是10cm和7.5cm,将其四个角向内对折后,点B与点C重合于点C',点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=________cm.三、解答题 (共8题;共98分)16. (5分)先化简,再求值:÷ ,其中a=﹣3.17. (15分)(2016·泉州) 我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD 分别交MN于点E、F,且PE=PF.(1)比较与的大小;(2)若OH=2 ,求证:OP∥CD;(3)设直线MN、CD相交所成的锐角为α,试确定cosα= 时,点P的位置.18. (13分)(2018·乌鲁木齐模拟) 某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.19. (5分)(2012·抚顺) 如图,距小明家楼下D点20米的B处有一根废弃的电线杆AB,经测得此电线杆与水平线DB所成锐角为60°,在小明家楼顶C处测得电线杆顶端A的俯角为30°,底部点B的俯角为45°(点A、B、D、C在同一平面内).已知在以点B为圆心,10米长为半径的圆形区域外是一休闲广场,有关部门想把此电线杆水平放倒,且B点不动,为安全起见,他们想知道这根电线杆放倒后,顶端A能否落在休闲广场内?请通过计算回答.(结果精确到0.1米,参考数据:≈1.414,≈1.732)20. (15分)(2018·淄博) 如图,直线y1=﹣x+4,y2= x+b都与双曲线y= 交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式 x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.21. (15分) (2016九下·十堰期末) 某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和1个B品牌的计算器共需122元;购买1个A品牌和2个B品牌的计算器共需124元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A品牌计算器按原价的九折销售,购买B品牌计算器超出10个以上超出的部分按原价的八折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.22. (15分) (2016八下·石城期中) 如图①,在正方形ABCD中,E是线段AB上一动点,点F在AD的延长线上运动,且DF=BE.(1)求证:CE=CF.(2)当点E在AB上运动时,在AD上取一点G,使∠GCE=45°,试判断BE、EG、GD三条线段的数量关系,并加以证明.(3)若连接图①中的BD,分别交CE、CG于点M、N,得图②,试根据(2)中的结论说明以线段BM、MN、DN为三边构成的是一个什么形状的三角形?23. (15分)(2016·连云港) 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共8分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共98分)16-1、17、答案:略18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
河北省张家口市数学中考一模试卷
河北省张家口市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分)(2020·锦江模拟) “蜀”你最好!疫情发生以来,四川累计派出1463名医护人员支援湖北.数字1463用科学记数法表示为()A . 0.1463×104B . 1.463×103C . 14.63×102D . 1.463×1042. (2分)(2017·乌鲁木齐模拟) 如图是一个台阶形的零件,两个台阶的高度和宽度都相等,则它的三视图是()A .B .C .D .3. (2分)(2019·惠安模拟) 不等式2x﹣3>﹣5的解集在数轴上表示正确的是()A .B .C .D .4. (2分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A . mB . 4 mC . mD . 8 m5. (2分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A . 3B . 4C . 2D .二、填空题 (共12题;共12分)6. (1分) (2018七上·梁子湖期中) ﹣2 和它的相反数之间的整数有________个.7. (1分) (2019七下·舞钢期中) 若,,则的值为________.8. (1分) (2020七下·江都期中) 已知10x=110° , 10y=3 ,则 ________.9. (1分) (2020七下·陇县期末) 如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为________.10. (1分)(2017·禹州模拟) 分解因式:a3﹣4a2b+4ab2=________.11. (1分)数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成统计图(如图所示),根据统计图,全班每位同学答对的题数所组成的一组数据的中位数为m ,众数为n ,则m+n=________.12. (1分) (2019八下·平潭期末) 确定一个b(b≠0)的值为________,使一元二次方程x2+2bx+1=0无实数根.13. (1分)(2017·姜堰模拟) 若圆锥的底面圆半径为4cm,高为5cm,则该圆锥的侧面展开图的面积为________cm2 .14. (1分) (2020八下·哈尔滨月考) 若平行四边形的周长为40cm ,对角线AC、BD相交于点O ,△BOC 的周长比△AOB的周长大2cm ,则AB=________cm .15. (1分)如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为________ °16. (1分)(2018·柳州模拟) 一次函数y=mx+n的图象经过一、三、四象限,则化简所得的结果________.17. (1分) (2020九上·川汇期末) 已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=________.三、解答题 (共11题;共107分)18. (10分) (2020七下·武威期中) 计算(1) +|-5|+-(-1)2020(2)19. (10分)(2019·高台模拟)(1)计算:;(2)解不等式组,并写出该不等式组的最大整数解.20. (5分) (2018八上·南昌月考) 已知,如图,A、D、C、B在同一条直线上AD=BC,AE=BF,CE=DF,求证:DF∥CE21. (10分)(2016·铜仁) 在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋里搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号.(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果.(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?22. (12分)(2017·襄城模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是________;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是________;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为________;(3)请补全频数分布直方图.23. (10分) (2019八上·沛县期末) 如图,方格中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的周长;(2)请判断三角形ABC是否是直角三角形,并说明理由;(3)△ABC的面积;(4)点C到AB边的距离.24. (10分)某文具店四月份购进甲、乙两种文具共80件,分别用去400元、1200元,甲种文具每件的进价是乙种文具的.请解答下列问题:(1)求甲、乙两种文具每件的进价;(2)五月份文具店决定再次购进甲、乙两种文具共80件,进价不变,甲、乙文具每件售价分别是15元、40元.若80件文具全部售出,求销售甲乙文具获利y(元)与购进甲种文具x(件)之间的函数解析式;(3)在(2)的条件下,销售前文具店决定从这80件文具中拿出一部分,赠送给某校在“牡丹江首届汉字听写电视大赛”获一、二等奖的6名同学,作为奖品,其余文具全部售出.已知一等奖每人1件甲种文具,3件乙种文具;二等奖每人4件甲种文具,1件乙种文具,这些奖品总进价超过450元,文具店购进的80件文具仅获利30元.请直接写出文具店购进甲、乙两种文具的方案.25. (10分) (2019八上·哈尔滨月考) 如图,在等边△ABC中,点D、E分别在BC、AC上,且BD=CE,连接AD,BE交于点F;(1)求∠AFE的度数;(2)连接FC,若∠AFC=90°,BF=1,求AF的长.26. (15分)(2017·泰兴模拟) 如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.27. (10分) (2019九上·长春月考) 已知二次函数.(1)将二次函数化成顶点式为________;(2)当________时,随的增大而减小;(3)当时,的取值范围是________;(4)不等式的解集为________.28. (5分) (2018九上·平顶山期末) 在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△DBE.(1)当旋转成如图①,点E在线段CA的延长线上时,则∠CED的度数是________度;(2)当旋转成如图②,连接AD、CE,若△ABD的面积为4,求△CBE的面积;(3)点M为线段AB的中点,点P是线段AC上一动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点P′,连接MP′,如图③,直接写出线段MP′长度的最大值和最小值.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共12题;共12分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共11题;共107分)18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、27-4、28-1、28-2、28-3、。
216年河北省中考数学试题及答案
2016年河北省初中毕业升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1—10小题各3分;11—16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=()A.±1B.-2C.-1D.12.计算正确的是()A.0)5(0=-B.532x x x =+C.5332)(b a ab =D.a a a 2212=⋅-3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.下列运算结果为1-x 的是() A.x 11- B.112+⋅-x x x x C.111-÷+x x x D.1122+++x x x 5.若00<≠b k ,,则b kx y +=的图象可能是()6.关于□ABCD 的叙述,正确的是()A.若AB ⊥BC ,则□ABCD 是菱形B.若AC ⊥BD ,则□ABCD 是正方形C.若AC=BD ,则□ABCD 是矩形D.若AB=AD ,则□ABCD 是正方形7.关于12的叙述,错误..的是() A.12是有理数B.面积为12的正方形边长是12 C.3212= D.在数轴上可以找到表示12的点8.图1-1和图1-2中所有的正方形都全等,将图1-1的正方形放在图1-2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.图2为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是()A.△ACD 的外心B.△ABC 的外心C.△ACD 的内心D.△ABC 的内心10.如图3,已知钝角△ABC ,依下列步骤尺规作图,并保留痕迹.步骤1:以C 为圆心,CA 为半径画弧①;图 2①③ ②④ 图1-图1-步骤2:以B 为圆心,BA 为半径画弧②,点交弧①于点D ;步骤3:连接AD ,交BC 延长线于点H.下列叙述正确的是()A.BH 垂直平分线段ADB.AC 平分∠BADC.AH BC S ABC ⋅=∆D.AB=AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论: 甲:0<-a b ;乙:0>+b a ;丙:b a <;丁:0>ab .其中正确的是() A.甲乙B.丙丁C.甲丙D.乙丁12.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5,依上述情形,所列关系式成立的是() A.58131-=x x B.58131+=x x C.5831-=x x D.5831+=x x13.如图5,将□ABCD 沿对角线AC 折叠,使点B 落在点B ′处,若∠1-∠2=44°,则∠B 为()A.66°B.104°C.114°D.124°14.a ,b ,c 为常数,且222)(c a c a +>-,则关于x 的方程02=++c bx ax 根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.如图6,△ABC 中,∠A=78°,AB=4,AC=6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()16.如图7,∠AOB=120°,OP 平分∠AOB ,且OP=2,若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有()图6 图5 图 4图3A.1个B.2个C.3个D.3个以上二、填空题(本大题共3个小题,共10分,17-18小题各3分;19小题有2个空,每空2分,把答案写在题中横线上)17.8的立方根为18.若3+=m mn ,则=+-+10532mn m mn19.如图8,已知∠AOB=7°,一条光线从点A 发出后射向OB 边,若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB 边上的点1A 后,经OB 反射到线段AO 上的点2A ,易知∠1=∠2,若AO A A ⊥21,光线又会沿A A A →→12原路返回到点A ,此时∠A=°.……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=°三、解答题(本大题有7个小题,共68分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年河北省张家口市中考数学一模试卷一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分42分)1.的相反数是()A.﹣B.C.﹣2 D.22.河北省2016年普通高考报名工作已经结束,报名人数为42.31万人.42.31万用科学记数法表示为()A.42.31×106 B.4.231×105 C.42.31×108 D.42.31×1073.下列计算正确的是()A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b24.如图,下列水平放置的几何体中,俯视图是长方形的是()A.B.C.D.5.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20°B.50°C.70°D.110°6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°8.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④9.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx 的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣410.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.12.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥ D.m≤13.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤214.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.15.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)16.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3b﹣8ab=.18.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积为.19.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为.20.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是.三、解答题(共6小题,满分66分)21.先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.22.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉1(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.25.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元的门票.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?(2)求一年中进入该公园至少多少次,购买A类年票比较合算.26.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.2016年河北省张家口市中考数学一模试卷参考答案与试题解析一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分42分)1.的相反数是()A.﹣B.C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.2.河北省2016年普通高考报名工作已经结束,报名人数为42.31万人.42.31万用科学记数法表示为()A.42.31×106 B.4.231×105 C.42.31×108 D.42.31×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42.31万=423100,用科学记数法表示为:4.231×105.故选:B.3.下列计算正确的是()A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b2【考点】完全平方公式;合并同类项;同底数幂的乘法;同底数幂的除法.【分析】利用合并同类项、同底数幂的乘法、同底数幂的除法以及完全平方公式的知识求解,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、3a﹣2a=a,故本选项错误;B、a4•a6=a10,故本选项错误;C、a2÷a=a,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.4.如图,下列水平放置的几何体中,俯视图是长方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆,故A选项错误;B、圆锥的俯视图是带圆心的圆,故B选项错误;C、三棱柱的俯视图是三角形,故C选项错误;D、长方体的俯视图是长方形,故D选项正确;故选:D.5.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20°B.50°C.70°D.110°【考点】平行线的性质;对顶角、邻补角.【分析】首先根据对顶角相等可得∠1=∠3,进而得到∠3=70°,然后根据两直线平行,同位角相等可得∠2=∠3=70°.【解答】解:∵∠1=70°,∴∠3=70°,∵a∥b,∴∠2=∠3=70°,故选:C.6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm【考点】三角形中位线定理.【分析】由三角形的中位线定理可知,以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.【解答】解:如图,点D、E、F分别是AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∵原三角形的周长为36cm,则新三角形的周长为=18(cm).故选C.7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.8.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④【考点】全面调查与抽样调查;方差;随机事件;概率的意义.【分析】了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.【解答】解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式,故①错误;②若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故②错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,故③正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件,故④错误.故选:C.9.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx 的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.【解答】解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣=﹣1.故选:C.10.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+25=90%x﹣20,解得x=300.故选C.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.12.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥ D.m≤【考点】反比例函数图象上点的坐标特征.【分析】首先根据当x1<0<x2时,有y1<y2则判断函数图象所在象限,再根据所在象限判断1﹣3m的取值范围.【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.13.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2【考点】不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故选:C.14.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.【考点】算术平方根.【分析】根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.【解答】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.15.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)【考点】坐标与图形性质;正方形的性质.【分析】此题根据坐标符号即可解答.【解答】解:由图中可知,点B在第四象限.各选项中在第四象限的只有C.故选C.16.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.【考点】一元二次方程的应用.【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),而a=1,代入即可得到关于b的方程,解方程即可求出b.【解答】解:依题意得(a+b)2=b(b+a+b),而a=1,∴b2﹣b﹣1=0,∴b=,而b不能为负,∴b=.故选B.二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3b﹣8ab=2ab(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(a2﹣4)=2ab(a+2)(a﹣2),故答案为:2ab(a+2)(a﹣2).18.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积为24cm2.【考点】菱形的性质.【分析】根据菱形的对角线的长度即可直接计算菱形ABCD的面积.【解答】解:∵菱形的对角线长AC、BD的长度分别为8cm、6cm∴菱形ABCD的面积S=BD•AC=×6×8=24cm2.故答案为:24cm2.19.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为2.【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形面积是△ABE面积的2倍,求出边长,再在RT△BCE中利用勾股定理即可.【解答】解:设正方形边长为a,∵S△ABE=18,=2S△ABE=36,∴S正方形ABCD∴a2=36,∵a>0,∴a=6,在RT△BCE中,∵BC=6,CE=4,∠C=90°,∴BE===2.故答案为2.20.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是﹣2<b<2.【考点】反比例函数与一次函数的交点问题.【分析】根据双曲线的性质、结合图象解答即可.【解答】解:如图,∵直线y=﹣x+2与反比例函数y=的图象有唯一公点,双曲线是中心对称图形,∴直线y=﹣x﹣2与反比例函数y=的图象有唯一公点,∴﹣2<b<2时,直线y=﹣x+b与反比例函数y=的图象没有公共点,故答案为:﹣2<b<2.三、解答题(共6小题,满分66分)21.先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.【考点】分式的化简求值;解一元二次方程-因式分解法;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出m的值代入计算即可求出值.【解答】解:原式=﹣÷=﹣•=﹣==,方程m2+(5tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,解得:m=1(舍去)或m=﹣6,当m=﹣6时,原式=﹣.22.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.【考点】切线的性质;全等三角形的判定;等腰三角形的判定;圆周角定理.【分析】(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,则有∠OCB=30°,再结合CD时切线,可求∠BCD=60°,那么∠DCQ可求,即可得出△CDQ是等腰三角形;(2)可以假设AB=2,则OB=OA=OC=1,利用勾股定理可得BC=;由于△CDQ≌△COB,那么有CB=CQ,即可求出AQ的长;在直角三角形APQ中,利用30°所对的边等于斜边的一半,又可求AP,而OP=AP﹣OA,即可求OP,BP也就可求,从而得出BP:PO的值.【解答】(1)证明:由已知得∠ACB=90°,∠ABC=30°,∴∠Q=30°,∠BCO=∠ABC=30°;∵CD是⊙O的切线,CO是半径,∴CD⊥CO,∴∠DCQ=∠BCO=30°,∴∠DCQ=∠Q,故△CDQ是等腰三角形.(2)解:设⊙O的半径为1,则AB=2,OC=1,BC=.∵等腰三角形CDQ与等腰三角形COB全等,∴CQ=BC=.∴AQ=AC+CQ=1+,∴AP=AQ=,∴BP=AB﹣AP=,∴PO=AP﹣AO=,∴BP:PO=.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉1(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,当CD分为一组时,其实也表明AB在同一组;则小宇与小强两名男同学分在同一组的概率是.24.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.【考点】反比例函数与一次函数的交点问题;平移的性质.【分析】(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(,1)则2m=m+2,求出m的值即可.【解答】解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(,1),∵反比例函数y=的图象经过点A′及M,∴m×2=×1,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.25.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元的门票.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?(2)求一年中进入该公园至少多少次,购买A类年票比较合算.【考点】一元一次不等式的应用.【分析】(1)由题意可知:若直接买票可以买到100÷10=10张;若买A类票,则100<120,买不到;若买B类票,则剩余100﹣60=40元,可以买到40÷2=20张票;若买C类票,则剩余100﹣30=70元,可以买到70÷4≈17张;所以用100元花在公园门票上,买B类票次数最多;(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据购买A类年票才比较合算说明购B和C票花的钱多余购A票花的钱,购B票花的钱为60+2x,购C票花的钱为30+4x,列出不等式组,求出x的取值范围,即可得出答案.【解答】解:(1)①直接买票:100÷10=10张;②A类不够买120>100;③B类÷2=20(张);④C类÷4=,即可买17张.综上所述,用100元购买B类票使你进入该公园的次数最多;(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据题意得:,解得:x>30.答:一年中进入该公园至少31次,购买A类年票比较合算.26.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.【考点】菱形的性质;全等三角形的判定;等腰三角形的判定;解直角三角形.【分析】(1)①△ABN和△ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等.②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由①可得∠MDA=∠ABN,那么M到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可.(2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论.【解答】解:(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠1=∠2.又∵AN=AN,∴△ABN≌△ADN(SAS).②作MH⊥DA交DA的延长线于点H.由AD∥BC,得∠MAH=∠ABC=60°.在Rt△AMH中,MH=AM•sin60°=4×sin60°=2.∴点M到AD的距离为2.∴AH=2.∴DH=6+2=8.在Rt△DMH中,tan∠MDH=,由①知,∠MDH=∠ABN=α,∴tanα=;(2)∵∠ABC=90°,∴菱形ABCD是正方形.∴∠CAD=45°.下面分三种情形:(Ⅰ)若ND=NA,则∠ADN=∠NAD=45°.此时,点M恰好与点B重合,得x=6;(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°.此时,点M恰好与点C重合,得x=12;(Ⅲ)若AN=AD=6,则∠1=∠2.∵AD∥BC,∴∠1=∠4,又∠2=∠3,∴∠3=∠4.∴CM=CN.∵AC=6.∴CM=CN=AC﹣AN=6﹣6.故x=12﹣CM=12﹣(6﹣6)=18﹣6.综上所述:当x=6或12或18﹣6时,△ADN是等腰三角形.2016年6月6日。