甲醇翻译
甲醇知识大全
甲醇中文名称:甲醇英文名称:Methanol中文别名:木精; 木醇; 木酒精; 精甲醇; 甲醇(精); 甲醇(无水); 无水甲醇;甲基醇英文别名:Carbinol; colonial spirit; columbian spirit; columbian spirits; Methanol; methyl hydroxide; Methylol; monohydroxymethane; pyroxylic spirit; Wood alcohol; wood naphtha; wood spirit; Methanol,refined; Methyl alcohol,refined; Methanol,anhydrous; methanol hydrate (1:1); MethanolInChI:InChI=1/CH4O.H2O/c1-2;/h2H,1H3;1H2物竞编号:01ET分子式:CH4O分子量:32.04甲醇性质与稳定性1、无色透明易燃挥发性的极性液体。
纯品略带乙醇气味,粗品刺鼻难闻。
甲醇的溶解性能比乙醇好,能溶解多种无机盐,例如磺化钠、氯化钙、硝醇胺、硫酸铜、硝酸银、氯化铵和氯化钠等。
蒸气与空气形成爆炸性混合物,爆炸极限6.0%-36.5%(体积)。
甲醇对金属特别是黄铜和青铜有轻微的腐蚀性。
空气和水分能加速其腐蚀作用。
2、化学性质:具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。
例如:①与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成BaO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;②与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2⑤与锌粉一起蒸馏,发生分解,生成CO和H2O。
纸业专业英语词汇翻译(M2)
纸业专业英语词汇翻译(M2)纸业专业英语词汇翻译(M2)纸业专业英语词汇翻译(M2)maple (acer) 槭树(属)margin of safety 安全界限,安全系数maritime pine (pinus maritima poir.) 海岸松mark 标志;标记;限度,界线;痕,印marker 标签;标志marker research 市场研究marketing 推销marking 标印marking device 标印装置marking felt 标志毛毯marking press 雕印压榨marking press felt 带标志的压榨毛毯marking roll 水印辊;雕印辊marron red 褐红色,棕红色染料marshall drive with longitudinal shaft 纵轴式单电机总轴传动marshall drive with parallel shaft 平行轴式单电机总轴传动masking 隐匿,遮蔽masking agent 隐匿剂mass 质量;物质;大量;集中,聚集mass spectroscopy 质谱(学);质谱测定(法)mass transfer 质量传递mass transfer coefficient 质量传递系数masson's pine (pinus massoniana lamb.) 马尾松master serew 标准螺丝match 火柴matching 对比material 物料,材料;物质material balance 物料平衡,物料衡算material consumption 物料消耗,材料消耗material test 材料试验materials handling 物料搬运mathematical model 数学模型mathematics model 数学模型matrix 字型纸板;字型塑料板;矩阵;(磨石用)粘合材料;模压制品matt(ed) finish 无光泽装饰mature tree 成材的树mature wood 成熟材maturing 成熟;纸张凋湿(处理)maule reaction 材种反应试验maximum capacity 最大容量;最大能力;最大生产力maximum cooking pressure (最高)蒸煮压力maximum cooking temperature (最高)蒸煮温度maximum deckle 最大有效网宽maximum deviation 最大误差maximum peak load 最大极限负荷mead-bauer refiner 实验室用磨浆机mead-bauer recovery system mead nssc 废液回收系统mean activity 平均热容means of conveyance 运送方法means of transprotation 运输方法measure 测量;尺寸,分量;措施measurement 测量;尺寸,分量measuring bottle 量瓶measuring cylinder 量筒measuring device 量测工具measuring flask 容量瓶measuring instrument 量测仪measuring point 量测点measuring tank 计量槽measuring tape 卷尺meat wrapper 肉食包装纸mechanical adhesion 机械胶粘mechanical barking 机械去皮mechanical breakdown 机械事故mechanical classifier 机械筛分器mechanical degradation 机械降解mechanical drive 机械传动mechanical feed dresser 机械进刀刻石器mechanical foam breaker 机械消沫器mechanical measurement 机械法测量mechanical properties 机械特性mechanical pyrites bruner 硫铁矿焙烧机械炉mechanical sereenings 机械木浆筛渣,磨木浆筛渣mechanical shear aerator 机械切变充气器mechanical strain gage 机械应变仪mechanical strength 机械强度mechanical tints 含磨木浆的薄页纸mechanical wear 机械磨损mechanics 力学mechanism 机构;机理,作用原理mechanism of pulping 蒸煮机理mechanization 机械化machanized line 机械化作业线medium 介质;中间;中等;(纸板)芯层;英国纸张标准的一种medium burring 中等刻石medium fast sweep 中速扫描medium finish 中等光泽装饰medium oil varnish 中等油漆medium size grit 中粒度medium tolerance limit 半数生存极限浓度,50%致死环境浓度medulla 髓(心)medullary cavity 髓腔medullary spot 髓斑medullary ray 髓射线medullary ray cell 髓射线细胞melamine 密胺,三聚氰(酰)胺melamine formaldehyde resin 三聚氰胺甲醛树脂melamine resin 三聚氰胺树脂melt 熔化,熔解,熔融;熔态;熔液melt index 软化指数;熔融指数melting heat 熔解热melting point 熔点,熔化温度melting tank 熔化槽membrane 薄膜;隔膜memory 存储;存储器;记忆memory element 存储元件mensuration 量法;求积法menzie's spruce (picea sitchensis mayer.) 北美云杉mercaptan 硫醇mercapto lignin 疏基木素,氢疏基木素mercaptolysis 硫醇解mercerization 丝光化(作用)mercerized cellulose 丝光化纤维素mercerizing solution 丝光化溶液mercury 汞,水银mercury cathode cell 汞阴极电池mercury column 汞柱,水银柱mercury electrode 汞电极merger 混合;合并meristem 分生meristem tissue 分生组织merulirs (merulius lacrymans) 泪菌(木材褐腐菌之一种)mersize 强化松香胶(美国monsanto chemicals产品,商业名称)mesh 网目mesh analysis 筛析mesomorphous cellulose 介晶态纤维素message blank 通讯用纸messing amp; durkee inclined digester 斜管连续蒸查器messing cone press 双锥辊挤浆机metacellulose 介纤维素metal dirt 金属尘埃(纸病)metal fiber 金属纤维metal finishing 金属装饰metal foil 金属箔metallization 敷金属(法)metallio coating 金属粉涂布metallio ink 青铜色油墨metallography 金相学metanil/yellow (酸性)间胺黄metasaccharinic acid 偏糖酸meter 米;量器;计,表;计量,量度meter panel (检测)仪表板metering device 计量装置metering equipment 计量装置metering pump 计量泵metering relay 计量继电器metering roll 计量辊metering system 计量系统metering tank 计量槽methacrylate 丙烯酸(甲)酯methacrylic acid 甲基丙烯酸,异丁烯酸methane 甲烷,沼气methanol 甲醇,木精methan hiol 甲(烷)硫醇methods engineering 方法工程学methoxyl content 甲氧基含量methoxyl group 甲氧基methyl acetate 醋酸甲酯methyl acrylate 丙烯酸甲酯methyl alcohol 甲醇,木精methyl alcohol column 木精塔methyl benzene 甲苯methyl cellulose 甲基纤维素methyl ethyl ketone 甲(基)乙(基)酮methyl glucoside 甲基葡萄糖甙methyl group 甲基methyl mercaptan 甲(烷)硫醇methyl methacrylate 甲基丙烯酸甲酯,异丁烯酸甲酯methyl orange 甲基橙methyl pentosan 甲基戊聚糖methyl phenoxide 苯甲醚methyl sulfate 硫酸二甲酯methyl sulfide 二甲硫,甲硫醚methyl violet 甲基紫methylate 甲基化;甲基化产物methylating agent 甲基化剂methylation 甲基化methylene blue (碱性)亚甲蓝metric system 公制,米制metric ton 公制吨m.f. former 真空多圆网成形器m.g. cylinder 光泽烘缸m.g. machine 单面光造纸机m.g. pressure roll (大烘缸)托辊m.g. sulfite wrapping 单面光亚硫酸盐浆包装纸mica 云母micel(la) 胶束,胶粒micellar structure 胶束结构micelle 胶粒,胶束microanalysis 微量分析microbe 微生物microbiology 微生物学micro-capsule 微囊microcomputer 微型电子计算机microcrystalline cellulose 微晶纤维素microcrystalline wax 微晶石蜡micro-clectrophoretic technique 微电泳技术micro-encapsulated chemicals 微囊化学药剂microfibril 微纤维,微纤丝microfiche 缩微胶卷,缩微软片micro-film 缩微胶卷,缩微软片micro-floc press 微絮聚挤压机micrometer 厚度计,测微计microorganism 微生物microorganism bod test 微生物生化需氧量试验microorganism control 微生物控制microporosity 微透气性能microprocessor 微(型信息)处理机microscope 显微镜microspore 小孢子microstructure 显微结构microtome (显微镜用)切片机microturbulencd 微湍流microwave 微波microwave absorption moisture gage 微波(水分含量)测定仪microwave spectroscopy 微波光谱仪midboard 中墙middle lamella 胞间层mid-feather 中墙mid-riff 中墙mid-wall 中墙migration 迁移,徒动,移动mil 密耳(相等于千分之一英寸)))mildew 霉;发霉,生霉milk carton 奶瓶用纸板milk of lime 石灰乳milk of lime system 石灰乳吸收塔系统milk of magnesia 氧化镁乳液mill blank 双面白色纸板mill brand 工厂商标mill bristol 卡纸板mill broke 车间损纸mill count 车间(产量)统计,工厂(产量)统计mill cull 工厂废料mill cut 切纸机纸边mill edge 切纸机纸边mill effluent 工厂废水mill finish(ed) 机上装饰mill manager 工厂经理;工厂管理人mill ream (手抄纸)令mill roll 未加工纸卷mill size 自制施胶剂mill test 工厂试验mill waste 工厂废料mill waste water 工厂废水mill wrapper 自用包装纸mille 1000张纸milled wood lignin 磨木木素milling machine 铣床millwright 安装工milpac 聚乙烯衬里纸袋(商业名称)mimeo bond 蜡纸原纸mimeograph 油印版;复写版mineral 矿物mineral acid 无机酸mineral deposit 太床mineral dyestuff 矿物颜料mineral ether 石油醚mineral fiber 矿物纤维mineral filler 矿物填料mineral matter 矿物质,矿质mineral pitch 地沥青,柏油mineral size 矿物胶mineral white 矿物白;石膏minicomputer 小型计算机minidrinier 留着率测定仪minton dryer 真空干燥装置minute structure 微细结构miraplast 高密度聚乙烯合成纸(日本三菱人绢产品,商业名称)mirror side 镜面;光面miscible 可溶(混)的mist (烟)雾mist separator 湿气分离器m.i.t. folding (endurance)tester 耐折度测定仪mix 混合mixed 混合的,混合物mixed base liquor 混合基蒸煮液mixed bases 混合碱mixed rags 杂色破布mixed species 混合材种mixed stands 混合材种幼树mixed stock 混合浆(料)mixed whites 白色杂布mixed wood 混合材种mixer 混合器mixidene 防潮食品包装纸(聚乙烯、聚氯乙烯复合纸,商业名称)mixing 混合mixing beater 混合打浆机mixing box 混合箱mixing chest 混合槽mixing engine 混合机mixing pump 混合浆泵mixing tank 混合槽mixing tank for coating colors 涂料混和槽;混料槽纸业专业英语词汇翻译(M2) 相关内容:。
甲醇的MSDS
性状:无色透明液体,有刺激性气味
熔点/℃:-97.8
沸点/℃:64.7
相对密度(水=1):0.79
相对密度(空气=1):1.1
饱和蒸气压/kPa:12.3(20℃)
燃烧热(kJ/mol):723
临界温度/℃:240
临界压力/MPa:7.95
临界闪点/℃:12
引燃温度/℃:464
爆炸极限(体积分数)/% 6~36.5
灭火方法:用抗溶性泡沫、干粉、二氧化碳、砂土灭火。
灭火注意事项及措施:消防人员必须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。容器突然发出异常声音或出现异常现象,应立即撤离。
健康
危害
侵入途径:吸入、食入、经皮吸收。
急性中毒:大多数为饮用掺有甲醇的酒或饮料致口服中毒。短时内吸入高浓度甲醇蒸汽或容器破裂泄漏经皮吸收大量甲醇溶液亦可引起急性或亚急性中毒。中枢神经系统损伤轻者表现为头痛、眩晕、乏力、嗜睡和轻度意识等。重者出现昏迷和癫痫样抽搐。少数严重口服中毒者在急性期或恢复期可有锥体外系损害或帕金森综合症的表现。眼部最初表现为眼前黑影、飞雪感、闪光感、视物模糊、眼球疼痛、羞明、幻视等。重者视力急剧下降,甚至失明。视神经损害严重者可出现神经萎缩。引起代谢性酸中毒。高浓度对眼和上呼吸道轻度刺激症状。口服中毒者恶心、呕吐和上腹部疼痛等胃肠道症状较明显,并发急性胰腺炎的比例较高,少数可伴有心、肝、肾损害。
泄漏
应急
处理
消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴自给正压式呼吸器,穿防毒服、防静电服,戴橡胶手套。作业时所使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源,防止泄漏物进入水体、下水道、地下室或限制性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用抗溶性泡沫覆盖,减少蒸发。喷水雾能减少蒸发,但不能降低泄漏物在限制性空间的易燃性。用防爆泵转移至槽车或专用收集器内,喷雾状水驱散蒸气、稀释液体泄漏物。
甲醇知识大全
甲醇中文名称:甲醇英文名称:Methanol中文别名:木精; 木醇; 木酒精; 精甲醇; 甲醇(精); 甲醇(无水); 无水甲醇;甲基醇英文别名:Carbinol; colonial spirit; columbian spirit; columbian spirits; Methanol; methyl hydroxide; Methylol; monohydroxymethane; pyroxylic spirit; Wood alcohol; wood naphtha; wood spirit; Methanol,refined; Methyl alcohol,refined; Methanol,anhydrous; methanol hydrate (1:1); MethanolInChI:InChI=1/CH4O.H2O/c1-2;/h2H,1H3;1H2物竞编号:01ET分子式:CH4O分子量:32.04甲醇性质与稳定性1、无色透明易燃挥发性的极性液体。
纯品略带乙醇气味,粗品刺鼻难闻。
甲醇的溶解性能比乙醇好,能溶解多种无机盐,例如磺化钠、氯化钙、硝醇胺、硫酸铜、硝酸银、氯化铵和氯化钠等。
蒸气与空气形成爆炸性混合物,爆炸极限6.0%-36.5%(体积)。
甲醇对金属特别是黄铜和青铜有轻微的腐蚀性。
空气和水分能加速其腐蚀作用。
2、化学性质:具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。
例如:①与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成BaO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;②与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2⑤与锌粉一起蒸馏,发生分解,生成CO和H2O。
制药专业英语词汇完整翻译版
medicinal药品,药物, 药的,药用的,治疗的 medical 医学的,医术的pharmaceutical 药学的,制药的,药品 be split into 分成,分为alkaloid 生物碱 enzyme 酶polysaccharide 多糖,多聚糖 precursor 前体steroid 甾体 peptide 肽hormone 激素 gall 胆汁insulin 胰岛素 pancreas胰腺 serum/sera血清,浆液vaccine 疫苗 cholesterol 胆固醇gelatine 骨胶,明胶 antibiotic 抗生素,抗菌的interferon 干扰素 antibody 抗体fermentation 发酵 therapy 治疗/ therapeutic治疗的therapeutic margin caffeine咖啡因dopamine多巴胺 yeast 酵母mucous membrane粘液的,分泌粘液的 plasma 血浆,淋巴液,等离子体penicillin 青霉素 penicillium 青霉菌derivative衍生物 sterile无菌的,不能生育的aerobic 需氧的 oxygen氧,氧气feedstuff 饲料 lymph淋巴,淋巴液starch 淀粉 regiospecific reaction区域专一性反应stereospecific reaction立体专一性反应 glucose葡萄糖immobilize 固定 heterogeneous 不均匀的,多相的contamination污染 genetic 创始的,遗传学的hygienic 卫生学的,卫生的 intermediate中间体extraction 萃取 recrystallization 重结晶/ crystal 晶体,晶体的xylene 二甲苯 toluene 甲苯ether 醚 benzene苯/ chlorobenzene氯苯synthetic, 合成的,人造的;化学合成品 semisynthetic,半合成的synthesis [复syntheses] 综合,综合物,合成(法) synthesize vt 综合,合成 lead structure先导结构preparation 制备,制剂 isolate使分离,使离析 / isolation heart glycoside tocopherol 生育酚hydrolysis水解/hydrolysate水解产物/hydrolyze水解hydroxylation 羟基化 dextran 葡聚糖,代血浆wool 羊毛 ーlactamβ-内酰胺amino acid 氨基酸/ amino 氨基的 penicilamine 青霉胺ammonia 氨 ammonium 铵 / ammonium sulfate硫酸铵amine 胺 amide酰胺microorganism 微生物 micro b iological微生物学的mutant 变异的;突变型,突变体 starting material 起始原料natural source天然来源 organ器官/target organ 靶器官pancreas 胰腺 natural product 天然产物mould 霉,霉菌;发霉 high performance 高效bacterial 细菌的 protein 蛋白质degradation 降解 metabolism新陈代谢 / metabolize metabolite代谢物molecule n. 分子;微小颗粒/molecular weight分子量food additive 食品添加剂organic有机(体)的;有组织的,系统的;器官的;根本的lactic acid乳酸 citric acid 柠檬酸tetracycline 四环素 carbon dioxide 二氧化碳carbohydrate 碳水化合物 saccharide 糖/多糖polysaccharide nitrogen 氮 urea 尿素phosphate 磷酸盐 optimal 优化的,最佳的separate vt 分离 Food additiveabsorption 吸收 absorb vt. 吸收filtration 过滤 filtrate 滤液filte 过滤(vt),过滤器(n) recombinant 重组的,重组子purification 纯化 encode vt. 把(电文等)译成电码(或密码), 编码calcium 钙 chromatographic procedure 色谱操作步骤isomerization异构化 /isomeric phenol 酚fructose 果糖 fumaric acid 富马酸countless test 非计数的 diagnose诊断 diagnosticprotease 蛋白酶analysis分析/analyze 分析vt / analyst分析家/ analytical分析的Ingredient 成分 in combination with 结合Digestion 消化。
英文-甲醇
2002-01-2743 High Efficiency and Low Emissions from a Port-InjectedEngine with Neat Alcohol Fuels Matthew Brusstar, Mark Stuhldreher, David Swain and William PidgeonU. S. Environmental Protection Agency Copyright © 2002 Society of Automotive Engineers, Inc.ABSTRACTOngoing work with methanol- and ethanol-fueled engines at the EPA’s National Vehicle and Fuel Emissions Laboratory has demonstrated improved brake thermal efficiencies over the baseline diesel engine and low steady state NOx, HC and CO, along with inherently low PM emissions. In addition, the engine is expected to have significant system cost advantages compared with a similar diesel, mainly by virtue of its low-pressure port fuel injection (PFI) system. While recognizing the considerable challenge associated with cold start, the alcohol-fueled engine nonetheless offers the advantages of being a more efficient, cleaner alternative to gasoline and diesel engines.The unique EPA engine used for this work is a turbocharged, PFI spark-ignited 1.9L, 4-cylinder engine with 19.5:1 compression ratio. The engine operates unthrottled using stoichiometric fueling from full power to near idle conditions, using exhaust gas recirculation (EGR) and intake manifold pressure to modulate engine load. As a result, the engine, operating on methanol fuel, demonstrates better than 40% brake thermal efficiency from 6.5 to 15 bar BMEP at speeds ranging from 1200 to 3500 rpm, while achieving low steady state emissions using conventional aftertreatment strategies. Similar emissions levels were realized with ethanol fuel, but with slightly higher BSFC due to reduced spark authority at this compression ratio. These characteristics make the engine attractive for hybrid vehicle applications, for which it was initially developed, yet the significant expansion of the high-efficiency islands suggest that it may have broader appeal to conventional powertrain systems. With further refinement, this clean, more efficient and less expensive alternative to today’s petroleum-based IC engines should be considered as a bridging technology to the possible future of hydrogen as a transportation fuel.INTRODUCTIONAlternative fuels, especially alcohol fuels, offer potential to mitigate national security and economic concerns over fuel supplies as well as environmental concerns over tailpipe emissions and resource sustainability. As a result, there has been continuing interest in alternative fuels, heightened recently over proposed legislation that would mandate increases in the use of renewable transportation fuels. Over the last thirty years of automotive research, a variety of alcohol fuels—primarily methanol, ethanol and blends with hydrocarbon fuels—have demonstrated improved emissions of oxides of nitrogen (NOx) and particulate matter (PM) as well as moderately improved brake thermal efficiency [1-4]. Despite this, infrastructure barriers as well as technical challenges, notably cold starting, have limited the widespread use of neat alcohol-fueled vehicles.The benefits and challenges of neat alcohol fuels in PFI applications have been demonstrated in numerous earlier works. Benefits such as higher efficiency and specific power and lower emissions may be realized with alcohols: their high octane number gives the ability to operate at higher compression ratio without preignition [5]; their greater latent heat of vaporization gives a higher charge density [1-3, 6]; and their higher laminar flame speed allows them to be run with leaner, or more dilute, air/fuel mixtures [7]. In addition, alcohols generally give lower fuel heat release rates, resulting in lower NOx emissions and reduced combustion noise [2]. The engine described in the present work uses these inherent advantages of alcohol fuels as the basis for its design and control, thereby enabling attainment of efficiency levels exceeding that of the diesel, with low emissions.One of the main challenges with neat alcohol fuels is cold start emissions, especially in PFI engines [8]. In such applications, the low vapor pressure and lowcetane number must be overcome with higher-energy ignition systems or higher compression ratio [9]. Further, the increased wetting of the intake manifold, cylinder walls and spark plugs must be addressed in the design of the combustion chamber and in the control of transient fueling during startup [8, 10]. Because of these issues, earlier works with PFI SI methanol engines commonly report starting problems below ambient temperatures of about 10o C [8, 11]. With extended periods of cold cranking (i.e., 60 seconds or more), successful starting has been achieved at ambient temperatures as low as –6.5o C [12]. However, these studies were generally performed with lower compression ratio engines, derived from their gasoline counterparts, which are therefore not necessarily optimized for use with neat alcohol fuels. The ongoing work at EPA with high-compression ratio single cylinder PFI SI engines [13], for example, demonstrates the ability to fire on neat methanol during relatively brief cranking at higher speeds, at temperatures as low as 0o C.Earlier work at EPA with alcohol-fueled multi-cylinder engines examined both PFI and DI configurations, generally demonstrating improvements in fuel economy and power, as well as promising cold start emissions. Initial work with a methanol-fueled PFI SI engine [14, 15] yielded fuel economy and emissions that were similar to, but not significantly better than, the baseline gasoline engine. Cold starting was not addressed in that early program, but was instead examined in a follow-on project with a turbocharged, DI, glow-plug-ignited, stratified charge engine [16], based on earlier works showing good cold start performance down as low as –29o C [17]. This project was largely successful, demonstrating good startability and driveability down to –29o C, and producing low FTP emissions of NOx (0.3 g/mi), HC (<0.01 g/mi), CO (0.2 g/mi), PM (0.02 g/mi) and aldehydes (0.002 g/mi) while running lean with a single-stage oxidation catalyst. The measured fuel economy was between 7%-22% better than the baseline gasoline engine, but still slightly lower than the turbocharged diesel.The ongoing PFI alcohol work presented here builds on our earlier experience, and demonstrates better steady state efficiency than the baseline diesel and low emissions with conventional aftertreatment systems, at a significantly lower cost than the diesel. The engine described below runs unthrottled over most of its load range, much like the diesel, but operates with high EGR dilution ratios at stoichiometric fueling, rather than lean and stratified. This strategy takes advantage of the favorable dilute flammability limits of alcohol fuels to operate with lower pumping losses, and uses the high levels of EGR to control knock at high compression ratio. As a result, the engine demonstrates its potential as an efficient, lower cost, renewable fuels alternative to the diesel.EXPERIMENTAL SETUPThe research described below is being conducted under EPA’s Clean Automotive Technology Program, in order to demonstrate feasibility of cleaner, more efficient technologies. The primary focus of the work is on methanol fuel, since it represents the limiting case of oxygenated fuels, at 50% oxygen by mass. Also, its physical properties lend some performance advantages over other alcohols, discussed below. For comparison, however, brake thermal efficiency data with ethanol fuel is also given below, demonstrating similar benefits. ENGINE AND TEST DESCRIPTIONThe engine designed for this work is derived from the 1.9L Volkswagen TDI automotive diesel engine, modified suitably to accommodate port fuel injectors and spark plugs. The stock inlet ports give a swirl ratio of about 2.0, a factor that has been demonstrated to reduce the tendency for knock [18]. Knock was further reduced by modifying the stock combustion chamber to eliminate potential preignition sites. A range of compression ratios from 17:1 to 22:1 were tested in this engine with methanol fuel, although the results reported below were conducted at a nominal compression ratio of 19.5:1. Intake manifold pressure was maintained with a variable geometry turbocharger, which, in turn, also varied the exhaust backpressure on the engine. EGR was metered from the low-pressure side of the turbine to the low-pressure side of the compressor, using a variable backpressure device in the exhaust. The EGR temperature was reduced with a stock Volkswagen water-to-air cooler before the compressor, and the EGR and fresh air were cooled after the compressor with a stock air-to-air intercooler. Together, these compact heat exchangers were able to maintain intake manifold temperatures in the vicinity of 30o C.At least four different types of port fuel injectors were evaluated for measured engine brake thermal efficiency as well as spray characteristics with methanol, verified with high-speed planar laser imaging. The best-atomizing injectors among the group were racing-style, 36 lb/hr, 12-hole port fuel injectors manufactured by Holley, operating at 4 bar rail pressure. For best startup and transient performance, the injector tip was targeted at the back of the intake valve, from a distance of approximately 80 mm.The ignition system consisted of a production Toyota coil with a Champion dual electrode, recessed gap spark plug. High load operation, with a combination of high cylinder pressures and smaller spark advance, placed great demand on both the plugs and coils. Together with higher corrosive properties of methanol, spark plug durability was somewhat of an issue in this testing, as had been witnessed in earlier works [9].Table 1: EPA alcohol engine specifications Engine Type 4 cyl., 4-stroke Combustion Type PFI, SI Displacement 1.9L Valves per cylinder2 Bore79.5 mm Stroke95.6 mm Compression Ratio19.5:1 IVO-344o ATDC* IVC-155 o ATDC* EVO152 o ATDC* EVC341 o ATDC* Bowl Volume18 cc Clearance volume26.4cc Swirl Ratio 2.0 Injectors Holley, 36 lb/hr, 12-holenozzle Rail Pressure 4 bar Spark Plugs Champion recessedgap, dual electrode Turbocharger type Variable geometryExhaust Aftertreatment Ford FFV 2-stage, three-way catalyst*-relative to fired TDCThe engine was run with anhydrous chemical-grade methanol and ethanol fuels, and batch chemical analyses were performed to verify the heating value and density. NOx emissions were measured with a chemiluminescent NOx analyzer, while CO emissions were measured with a non-dispersive infrared analyzer. Unburned hydrocarbon (HC) emissions were measured with a heated flame ionization detector calibrated with propane, but corrected separately for response to methanol and ethanol. A two-stage, three-way Ford FFV catalyst was used for exhaust aftertreatment, and was aged approximately 10 hours at high, variable load prior to testing.ENGINE CONTROLS DESCRIPTIONThe engine controller was a Rapid Prototype Engine Control System (RPECS) provided under contract from Southwest Research Institute. The EPA operating strategy was based on three fundamental principles: (1) High compression ratio, in order to give an expanded dilute operating range; (2) Turbocharging with high levels of EGR, for primary load control and low NOx emissions; (3) Stoichiometric fueling (based on oxygen to fuel), to permit operation with a three-way catalyst. The performance and/or emissions benefits of individual components of this strategy have been demonstrated in earlier works, discussed below. Taken together, however, the present strategy is unique, and presents a path for attaining high levels of efficiency and low emissions in a practical, feasible system.Methanol and ethanol have relatively high octane numbers compared with gasoline; published RON values for methanol and ethanol are between 105-109, compared with about 91-99 for gasoline [19, 20]. As a result, they may be run at a much higher compression ratio, thereby yielding higher engine thermal efficiency. Earlier works with single-cylinder SI methanol engines [5], for example, showed 16% improvement in brake efficiency when raising the compression ratio from 8.0 to 18.0, while still achieving minimum best torque (MBT) spark timing with only light knock. A compression ratio of 19.5:1 was chosen for this work based on earlier experience with a wider range of compression ratios, which showed this to be the best compromise between full spark authority without knock at high load and dilute combustion range at light load. The full spark authority at high load is enabled partly by the relatively high levels of EGR, which has been shown in earlier works to suppress knock at higher compression ratio [21]. Light load stability, meanwhile, is improved by the high compression ratio, which raises the temperature of compression and enhances the already comparatively high flame propagation velocities of the alcohol fuels. As a result, earlier works [21, 22] have demonstrated the ability to operate satisfactorily with as much of 33%-40% EGR with methanol, even with a relatively low compression ratio of 8-8.5. Using a higher compression ratio, the present work was able to achieve nearly 50% EGR without unacceptable cycle-to-cycle combustion variability, using a production spark ignition system.The main objective of the engine load control strategy was to exploit the physical properties of the alcohol fuels in order to run unthrottled, and therefore more efficiently, over a relatively wide range of loads. Methanol-fueled engines using high levels of EGR to modulate load [21-23] have demonstrated efficiency gains of greater than 10% over throttled engines, while giving considerably lower NOx emissions. Combining variable EGR rates with variable intake manifold pressure allows for a wider range of load control. This strategy has also been shown as an effective means of achieving NOx levels below 1.0 g/kW-hr and peak efficiency around 42% in DI, lean stratified-charge methanol engines [23] and similar improvements in PFI lean burn methanol engines [24]. In the present engine, EGR and boost levels are maintained to achieve the best NOx and efficiency, and still enabling MBT (or near MBT) spark timing at high loads. Manifold absolute pressure (MAP) was varied between 1.0-1.5 bar, while the maximum dilution level was limited to about 50% EGR. Throttling, meanwhile, was used only to achieve near-idle loads.The engine is controlled to stoichiometric fueling, enabling use of a three-way catalyst for attainment of emissions at the levels required to achieve Federal Tier II LDV standards. Earlier experience operating lean with an oxidation catalyst [16] showed the ability to achieve Tier II-level emissions on a methanol vehicle for all but NOx, pointing to the need for a three-way catalyst.Operating at stoichiometric has the added benefit of enabling a higher specific power than a similar lean,stratified engine.This strategy was successfully employed to achieve the steady state efficiency and emissions results shown below.RESULTS AND DISCUSSIONGiven below are efficiency and emissions test results for the engine operating with methanol and ethanol.Following this, a brief overview of preliminary cold start testing with methanol is presented.BRAKE THERMAL EFFICIENCY (BTE)The measured BTE of the engine operating with methanol fuel is given below in Figure 1, which may be compared with the BTE of the baseline diesel engine,given in Figure 2.34363840424224681012141650010001500200025003000350040004500B M E P (b a r )RPMFigure 1. Methanol: BTE (%) as a function of BMEP, RPM.The methanol engine exhibits peak efficiency of nearly 43%, and maintains over 40% efficiency over a much wider range of speeds and loads as compared to the diesel engine shown in Figure 2. This region of high efficiency, at levels normally associated with the diesel,extends from 6.5 to more than 15 bar BMEP, from 1200to 3500 rpm. Despite high levels of EGR dilution at light load, combustion variability did not dramatically affect BTE at the BMEP levels shown. In addition, the engine was nearly able to achieve MBT without heavy knock at high loads, due to relatively high dilution with cooled EGR and higher manifold pressure (i.e., higher charge air mass). As a result, the COV of IMEP for the engine operating normally with methanol was less than 3% over the entire range of speeds and loads.Unlike Figure 2, Figure 1 does not show measured BTE for low BMEP, since the focus of the present work was to explore the boundaries of the control strategy outlined earlier in this work. Extending the efficiency map to lower BMEPs with the current engine requires a throttlingdevice, though one that is less restrictive than that for conventional PFI gasoline engines.262830303234363840246810121416B M E P (b a r )RPMFigure 2. Baseline stock 1.9L VW TDI Diesel: BTE (%) as a function of BMEP, RPM.The baseline diesel efficiencies given in Figure 2 were obtained at EPA using a Volkswagen stock TDI engine control unit and stock hardware. The figure shows slightly lower peak efficiency than the PFI methanol engine, and a more rapid drop-off in efficiency with decreasing load. The two major factors that possibly account for this difference are: 1) the parasitic losses of the high-pressure diesel fuel system, and 2) the considerable differences existing in the combustion and heat transfer processes, illustrated clearly by the cylinder pressure versus crank angle comparison given in Figure 3. The figure shows typical pressure traces for the engine operating with diesel and methanol fuel, at 11.5bar BMEP, 2000 rpm, 1.5 bar intake manifold pressure (absolute) and 19.5:1 compression ratio.020*********120-90-60-300306090C y l i n d e r P r e s s u r e (b a r )CAD ATDCMethanol DieselFigure 3. Comparison of cylinder pressure versus crank angle for diesel and methanol engines; 11.5 bar BMEP, 2000 rpm, 1.5 bar intake manifold pressure, 19.5:1 compression ratio.The figure shows that the compression work with methanol is reduced considerably, due to the intense charge cooling resulting from methanol vaporization.Also, the methanol engine exhibits a slower rate of combustion heat release, leading to comparatively lower heat losses.The measured BTE with ethanol fuel is shown below in Figure 4. Both the peak efficiency and the load and speed range with higher efficiency are comparable to that of the diesel in Figure 2. However, the engine was not able to achieve levels of BTE as high as methanol.This was mainly due to knock sensitivity at high load and high speed with ethanol, which prevented the engine from achieving MBT.343638384024681012141650010001500200025003000350040004500B M E P (b a r )RPMFigure 4. Ethanol: BTE (%) as a function of BMEP, RPM.Moreover, the engine experienced greater levels of combustion variability at light load and at higher speeds,as witnessed by the high COV of IMEP shown in Figure 5, which, in turn, reduced the BTE under these conditions. Some of the BTE differential demonstrated here, however, may be recovered by optimizing the compression ratio and calibration for ethanol fuel.BRAKE-SPECIFIC EMISSIONS FOR METHANOL The figures below show NOx and HC emissions for the engine operating with methanol. Similar results are expected for ethanol [25], but are not included.Brake-specific NOx emissions as a function of BMEP and RPM are shown in Figure 6. The high EGR dilution,combined with the slower heat release of methanol yields low levels of NOx, at 0.1-0.2 g/kW-hr over much of the operating map. The NOx emissions increase at lower speed, partly due to the inability of the turbocharger to maintain the intake manifold pressure at a level sufficient to permit higher rates of EGR.2468824681012141650010001500200025003000350040004500B M E P (b a r )RPMFigure 5. Ethanol: COV of IMEP (%) as a function of BMEP, RPM.0.10.20.20.30.40.20.124681012141650010001500200025003000350040004500B M E P (b a r )RPMFigure 6. Brake-specific NOx emissions (g/kW-hr) as a function of speed and load for methanol.Figure 7 below shows brake-specific HC emissions as a function of speed and load. HC emissions are controlled to less than 0.2 g/kW-hr over most of the map, indicating the effectiveness of the aftertreatment system.Brake specific CO measurements are not specifically shown in this work, since they were consistently very low, at less than 0.2 g/kW-hr over the entire map. PM and aldehyde emissions were not measured, though earlier work at EPA with DI methanol engines [16]demonstrated the ability to control these to very low levels with a conventional oxidation catalyst.0.050.10.150.150.224681012141650010001500200025003000350040004500B M E P (b a r )RPMFigure 7. Brake-specific HC emissions (g/kW-hr) as a function of load for methanol.COLD STARTING IN A SINGLE-CYLINDER ENGINE WITH METHANOLThe ongoing research at EPA includes work with single-cylinder engines that simulate closely the characteristics of the multi-cylinder engine. The single-cylinder results presented below were for a PFI SI configuration with 19.5:1 compression ratio and identical cam timings,displacement, bore/stroke ratio, and intake manifold geometry as the multi-cylinder engine described earlier in this work. It was run naturally aspirated and lean, to simulate early stages of the open-loop startup strategy used in the multi-cylinder engine.Cold starting with the single cylinder was examined atambient temperatures from 20o C down to 0oC [13]. The initial fueling and ignition timing sequences were varied to determine optimal combinations to ignite the charge and sustain combustion during the first ten firing cycles.The engine was ramped quickly up to speeds ranging between 1000 rpm to 2000 rpm, simulating conditions commonly seen during startup on the EPA hydraulic hybrid chassis. This higher cranking speed results in a higher compression temperature, and therefore improved low-temperature ignition [26]. Fueling with neat methanol was initiated such that the end of the injection event occurred just prior to intake valve closure.Startability, quantified by the measured IMEP during thefirst ten firing cycles, was very good at 20o C. At 0oC, the measured IMEP and in-cylinder wall temperatures indicated that significant quenching had occurred during the first few firing cycles, yet the engine was able to sustain combustion and achieve load. A more detailed exposition of this topic is planned for a later work.In summary, the results above with methanol- and ethanol-fueled engines exhibit equal or greater efficiency than the comparable diesel engine, and low emissions of NOx, CO and HC. Moreover, preliminary work with cold starting in a single cylinder engine exhibits goodcombustion down at 0oC. These studies are part of theClean Automotive Technology Program at EPA to demonstrate feasibility of clean technologies, and to develop attractive alternatives to conventional-fueled engines.CONCLUSIONThe present work describes a PFI, SI, turbocharged,high compression ratio engine operating with relatively high EGR dilution rates, operating on neat alcohol fuels.From the steady state results presented above, it is concluded that:1. The present engine, optimized for alcohol fuels,exceeds the performance of current conventional-fueled engines, and has potential as a lower-cost alternative to the diesel.2. Brake thermal efficiency levels better than acomparable turbocharged diesel are demonstrated.The engine operating with methanol fuel showed peak BTE of nearly 43%, and a broader high-efficiency operating range than the baseline diesel.3. Emissions of NOx, CO and HC using a conventionalaftertreatment system were shown to be extremely low with methanol, enabling attainment of emissions at the levels required to achieve Federal Tier II LDV standards.4. Brake thermal efficiency with ethanol fuel is alsofavorable compared to that of the baseline diesel engine.5. The present engine offers the potential for a lower-cost renewable fuel alternative to the diesel, by virtue of its less-complex PFI fuel system.ACKNOWLEDGMENTSThe authors appreciate the support of the Laboratory Operations Division at EPA, especially Ron Nicolaus and Aaron Boehlke, for their enthusiastic assistance and maintenance of the test engine.REFERENCES1. M. N. Nabi, et al., “Ultra Low Emission and HighPerformance Diesel Combustion with Highly Oxygenated Fuel”, SAE Paper 2000-01-0231, 2000.2. N. Miyamoto, et al., “Smokeless, Low NOx, HighThermal Efficiency, and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel,SAE Paper 980506, 1998.3. R. Baranescu, et al., “Prototype Development of aMethanol Engine for Heavy-Duty Application-Performance and Emissions”, SAE Paper 891653,1989.4. B. Dhaliwal, et al., “Emissions Effects of AlternativeFuels in Light-Duty and Heavy-Duty Vehicles”, SAE Paper 2000-01-0692, 2000.5. N. D. Brinkman, “Effect of Compression Ratio onExhaust Emissions and Performance of a Methanol-Fueled Single-Cylinder Engine”, SAE Paper 770791, 1977.6.P. Mohanan, M. K. Gajendra Babu, “A SimulationModel for a Methanol-Fueled Turbocharged Multi-Cylinder Automotive Spark Ignition Engine”, SAE Paper 912417, 1991.7.T. Ryan, S. Lestz, "The Laminar Burning Velocity ofIsooctane, N-Heptane, Methanol, Methane and Propane at Elevated Temperatures and Pressures in the Presence of a Diluent", SAE Paper 800103, 1980.8.V. Battista, et al., “Review of the Cold StartingPerformance of Methanol and High Methanol Blends in Spark Ignition Engines: Neat Methanol”, SAE Paper 902154, 1990.9.K. Hikino, T. Suzuki, “Development of MethanolEngine with Autoignition for Low NOx Emission and Better Fuel Economy”, SAE Paper 891842, 1989. 10.L. G. Dodge, et al., “Development of an Ethanol-Fueled Ultra-Low Emissions Vehicle”, SAE 981358, 1998.11.K. Iwachidou, M. Kawagoe, “Transient UnburnedMethanol and Formaldehyde Emission Characteristics in Cold Operation of a SI Engine Powered by High-Methanol-Content Fuels”, VIII Int.Symp. On Alcohol Fuels, pp. 443-448, Nov. 13-16, 1988.12.N. Iwai, et al., “A Study on Cold Startability andMixture Formation of High-Percentage Methanol Blends”, SAE Paper 880044, 1988.13.D. M. Swain, D. Yerace, Cold-Start HydrocarbonReduction Strategy for Hybrid Vehicles, M. S.Thesis, University of Michigan, 2002.14.W. Clemmens, “Performance of Sequential Port FuelInjection on a High Compression Ratio Neat Methanol Engine”, SAE Paper 872070, 1987.15.C. D. de Boer, et al., “The Optimum Methanol Enginewith Electronic Control for Fuel Efficiency and LowEmissions”, VIII Int. Symp. On Alcohol Fuels, pp.425-430, Nov. 13-16, 1988.16.R. I. Bruetsch, K. H. Hellman, “Evaluation of aPassenger Car Equipped with a Direct Injection Neat Methanol Engine”, SAE Paper 920196, 1992.17.R. M. Siewert, E. G. Groff, “Unassisted Cold Starts to–29 o C and Steady-State Tests of a Direct-Injection Stratified-Charge (DISC) Engine Operated on Neat Alcohols, SAE Paper 872066, 1987.18.W. H. Haight III, P. C. Malte, “Methanol PreignitionTemperature Behavior”, SAE Paper 912414, 1991. 19.R. L. Bechtold, Alternative Fuels Guidebook, SAEInternational, 1997.20.J. B. Heywood, Internal Combustion EngineFundamentals, McGraw-Hill, 1988.21.C. DePetris, et al., “High Efficiency StoichiometricSpark Ignition Engines”, SAE Paper 941933, 1994.22. G. R. Neame, et al., “Improving the Fuel Economyof Stoichiometrically Fuelled S.I. Engines by Means of EGR and Enhanced Ignition—A Comparison of Gasoline, Methanol and Natural Gas”, SAE Paper 952376, 1995.23.Y. Sato, et al., “Combustion and NOx EmissionCharacteristics in a DI Methanol Engine Using Supercharging with EGR”, SAE Paper 971647, 1997.24.G. M. Pannone, R. T. Johnson, “Methanol as a Fuelfor a Lean Turbocharged Spark Ignition Engine”, SAE Paper 8904535, 1989.25.B. Bartunek, et al., “Influence of the Methanol FuelComposition on Performance and Exhaust Emissions of Diesel-Derived Alcohol Engines”, SAE 881197, 1988.26.D. P. Gardiner, M. F. Bardon, “The Effect ofCranking Speed on Cold Starting Performance with Methanol Fuels”, VII Int. Symp. On Alcohol Fuels, pp. 191-195, 1986.。
甲醇的理化性质及危险特性
与泄漏处理
储运条件:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持容器密封。应于氧化剂、酸类、碱金属等分开存放,切忌婚储。采用防爆型照明、通风设施。运时应轻装轻卸,防止包装和容器损坏。泄漏处理:隔离泄漏污染区,限制出入。切断火源。应急处理人员应戴自给式呼吸器,穿一般消防防护服。不要直接接触泄漏物,在确保安全情况下堵漏。用砂土、蛭石或其它惰性材料吸收,然后收集运到废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。
甲醇的理化性质及危险特性
标识
中文名:甲醇(俗名:木酒精)
危险化学品序列号:1022
英文名:methanol
UN编号:1230
分子式:
分子量:
CAS号:67-56-1
理化性质
外观与性状
无色透明液体,有刺激性气味。
熔点(℃)
-97.8
相对密度(水=1)
0.79
相对密度(空气=1)
1.1
沸点(℃)
64.7
饱和蒸气压(kPa)
12.3(20℃)
溶解性
溶于水,可混溶与醇类、乙醚等多数有机溶剂。
毒性及健康危害
侵入途径
吸入、食入、经皮吸收
毒性
LD50 5628mg/kg(大鼠经口);15800mg/kg(兔经皮)LC50 83776mg/m3,4小时(大鼠吸入)
健康危害
对中枢神经系统有麻醉作用:对视神经和视网膜有特殊选择作用,引起病变,可致代射性酸中毒。急性中毒:短时大量吸入出现轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。慢性影响:神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等。皮肤出现脱脂、皮炎等。
甲醇英文翻译Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs
Design of a MEA with multi-layer electrodes for high concentration methanol DMFCsYoung-Chul Park a ,Dong-Hwi Kim a ,b ,Seongyop Lim a ,b ,Sang-Kyung Kim a ,b ,Dong-Hyun Peck a ,Doo-Hwan Jung a ,b ,*a Korea Institute of Energy Research (KIER),71-2Jangdong,Yuseong,305-343Daejeon,Republic of Korea bAdvanced Energy Technology,University of Science &Technology (UST),Daejeon,Republic of Koreaa r t i c l e i n f oArticle history:Received 11February 2011Received in revised form 1April 2011Accepted 14April 2011Available online 4May 2011Keywords:Passive direct methanol fuel cell High concentration methanol operationMethanol crossover Water crossover Cell performancea b s t r a c tAccording to the conventional MEA test,methanol and water crossover are the main factors to determine performance of a passive DMFC.Thus,to ensure the high cell performance of a passive DMFC using high concentration methanol of 50e 95vol%,the MEA in this study introduces the barrier layer to limit the crossover of high concentration methanol,a hydrophobic layer to reduce water crossover,and a hydrophilic layer to enhance the water recovery from the cathode to the anode.The functional layers of the MEA have the effect of improving the performance of the passive DMFC by decreasing the methanol and water crossover.In spite of the operation with 95vol%methanol,the MEA with multi-layer electrodes for high concentration methanol DMFCs shows a maximum power density of 35.1mW cm À2and maintains a high power density of 30mW cm À2(0.405V)under constant current operation.Copyright ª2011,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rightsreserved.1.IntroductionIn recent years,the passive direct methanol fuel cell (DMFC)based on passive fuel feeding (anode)and an air-breathing (cathode)has attracted a considerable amount of attention as a promising power source for portable devices such as telecommunications devices,laptops and other consumer electronic devices [1e 15],as it does not require external balance-of-plant (BOP)devices such as liquid pumps,air blowers,or heat exchangers,thereby eliminating parasitic power loss and resulting in a higher volumetric power density and overall efficiency of the fuel cell system [16].A passive DMFC simply consists of an anode connected to a liquid fuel reservoir and a cathode exposed directly to the ambientatmosphere.In a passive DMFC,high concentration fuel is supplied by the diffusion from a built-in fuel reservoir,and an oxidant is supplied by natural convection and diffusion from the ambient air.However,passive DMFC technology is hindered by several challenging issues,one of which is the problem of methanol crossover [17].A DMFC is usually operated with a low concentration methanol of 0.75M e 1.5M to reduce irreversible performance loss due to methanol crossover through a membrane (e.g.,a Nafion membrane,DuPont).Although high performance can be achieved under low concentration operation,operating a DMFC in this manner dramatically reduces the high specific energy efficiency of the DMFC system and requires a large volume in the fuel reservoir.*Corresponding author .Korea Institute of Energy Research (KIER),71-2Jangdong,Yuseong,305-343Daejeon,Republic of Korea.Tel.:þ82428603577;fax:þ82428603739.E-mail address:doohwan@kier.re.kr (D.-H.Jung).A v a i l a b l e a t w w w.s c i e n c e d i r e c t.c o mj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /h ei n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 37(2012)4717e 47270360-3199/$e see front matter Copyright ª2011,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.ijhydene.2011.04.112According to Zhao and Yang et al.[18],the specific energy of the DMFC system can be higher than that of conventional Li-ion batteries only when9.0M methanol is fed in the fuel cartridge(assuming that the overall efficiency of the fuel cell system is20%).This fact suggests that it is desirable to operate the passive DMFC with a high concentration methanol of above10.0M(about41vol%methanol)to maximize its energy content.Thus,one of the keys to operate a passive DMFC with high efficiency is to reduce the crossover rate of methanol so that the mixed potential arising from methanol crossover is minimized.In addition,a passive DMFC system requires water management to complete the methanol oxidation reaction (MOR)of high concentration methanol at the anode and to prevent waterflooding at the cathode arising from electro-osmotic drag and water crossover,the main factors deter-mining the overall cell performance.Wang emphasized the importance of water management in a DMFC by introducing the concept of low alpha membrane electrode assembly(MEA) for a DMFC[19e21].To overcome these difficulties of a passive DMFC and to improve the cell performance,Lu et al.[22]altered the anode backing structure by adding a compact microporous layer (MPL)that serves as an additional transport barrier for methanol,thereby reducing methanol crossover through the membrane.Chang et al.[23]examined the effect of the fuel delivery configuration on the performance of a passive DMFC. Yuan et al.[24]added carbon nanotubes(CNTs)into the anodic MPL of the membrane electrode assembly(MEA)to improve the performance of a passive DMFC.Kim[25] proposed a vapour fed passive DMFC to achieve a high energy density with pure methanol.Abdelkareem et al.[26] employed a porous carbon plate with high transfer resis-tance between the fuel reservoir and the anodeflowfield to limit the methanol delivery rate.Song et al.[27]studied varying structural variables of MEA,such as the existence of MPL in the cathode diffusion layer,the hydrophobicity of cathode backing layer,and the membrane thickness.Wang et al.[20,21]demonstrated that a microporous layer on the cathode builds up hydraulic pressure on the cathode side and that a thin membrane promotes the water fromflowing back under this hydraulic pressure difference,resulting in lower water crossover.These approaches are based on the fact that to operate a passive DMFC with high concentration methanol,a new MEA design is required to reduce methanol crossover and to improve water management.To meet these requirements, a MEA with multi-layer electrodes was proposed for a passive DMFC in this study.It was designed to limit methanol cross-over,water diffusion and hydraulic permeation,as methanol crossover and water transport in the MEA take place by diffusion,hydraulic permeation and electro-osmotic drag [28e30].The MEA includes a fuel control layer to reduce the methanol crossover rate in the anode,a hydrophobic layer to limit water crossover in the anode and a hydrophilic layer to absorb produced or transported water in the cathode.The novel MEA was operable in a high concentration of methanol of50vol%(about12.2M),even with95vol%methanol(about 23.2M).The MEA with various functional layers was tested under passive operation conditions,and the results were discussed.2.Experimental2.1.Preparation of conventional MEACommercial Nafion115was used as a polymer membrane for a conventional MEA.PtRu/C(HISPEC12100,Johnson Matthey, UK)was a catalyst for the anode,and the catalyst of the cathode was Pt/C(HISPEC13100,Johnson Matthey,UK).The gas diffusion layer(GDL)of the anode was Toray carbon paper (TGP-H-060,Toray Carbon,Japan)treated with5wt%PTFE, and the GDL of the cathode was SGL carbon paper with microporous layers(MPL)(ÒSIGRACET GDL25BC,SGL Carbon, Germany),respectively.The catalysts,Nafion solution (Dupont,5wt%),distilled water,isopropyl alcohol,and one propanol were mixed to prepare catalyst slurry,and the mixture was homogenized with an ultrasonic processor (UP100H,Hielscher,Germany).The catalyst slurry was coated on the GDLs using a bar-coating method to form the catalyst layers of the MEA.The Pt loading of the catalyst layers was 2mg cmÀ2for the anode and the cathode,respectively.The hot pressing process for the MEA was performed at150 C and 27kg cmÀ2for1min.2.2.Preparation of multi-layer MEAAs given in Fig.1and Table1,the multi-layer MEA for high concentration methanol DMFCs consisted of a fuel distribu-tion layer,a fuel control membrane,a hydrophobic layer in the anode,a hydrophilic layer in the cathode,a MPL in the cathode and a GDL.A raw Toray TGP060carbon paper(Toray Co., Japan)was used as a fuel distribution layer to absorb and supply high concentration methanol from the reservoir.The Nafion115membrane was utilized as a fuel control membrane to reduce methanol crossover rate in anode.Toray TGP060carbon paper treated with polytetrafluoroethylene (PTFE)of60wt%was applied to a hydrophobic layer to limit water crossover from the anode to the cathode.AhydrophilicFig.1e Multi-layer MEA for high concentration methanol DMFCs.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y37(2012)4717e4727 4718layer in the cathode was made with a mixture of Nafion and Vulcan XC-72.The Nafion content in the Vulcan XC-72was 50wt%.The hydrophilic layer was introduced to absorb produced or transported water in the cathode and to induce water back diffusion from the cathode to the anode.Carbon black was utilized as the MPL in the cathode,and25AA carbon paper(SGL,Germany)was used for the GDL in the cathode. Additionally,25BC carbon paper(SGL,Germany)treated with 5wt%PTFE was tested for a hydrophobic MPL and GDL.The Pt loading of the catalyst layers was2mg cmÀ2for the anode and 2mg cmÀ2for the cathode.The novel MEA with an active area of9cm2was assembled by a Laboratory Press(Model M, Carver,USA)at150 C and50kg cmÀ2for1min.2.3.Passive cell structureThe passive DMFC cell consisted of end plates,a fuel reservoir, a porous media,current collectors,a MEA and gaskets,as shown in Fig.2.The MEA was held together by two end plates. High concentration methanol was placed in a reservoir built in the anode end plate,and air was diffused into the cathode through the openings of the cathode plate.Gold-coated stainless steel was used as a current collector for the passive cell as this ensured a very low and homogeneous contact resistance distribution.Silicon gaskets were used as a sealing material to prevent fuel leakage and short-circuiting between the electrodes.The gaskets were attached to the current collectors and the edged membrane of the MEA.2.4.Measurement of methanol crossover and water crossoverIn this study,methanol and water crossover were measured with a complete cell at current densities of50,100and 150mA cm2.While assuming that the quantity of methanol consumed at the anode depends on the applied current and that the methanol generates a complete oxidation reaction, methanol crossoverflux can be expressed by the following equation:J MC¼N A;in;MeOHÀN A;out;MeOHtAÀJ A;MOR;MeOH(1) Here,J MC is the methanol crossoverflux(mol cmÀ2sÀ1);N A,in, MeOHand N A,out,MeOH are the methanol mole(mol)amounts atFig.2e Schematic of the passive DMFC cell:(a)an anode end plate and a fuel reservoir,(b)a porous media,(c)an anode current collector,(d)an anode gasket,(e)a MEA,(f)a cathode gasket,(g)a cathode current collector,and(h)a cathode end plate.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y37(2012)4717e47274719the anode inlet and outlet,respectively;J A,MOR,MeOH is the methanolflux(mol cmÀ2sÀ1)consumed through the meth-anol oxidation reaction(MOR)at the anode;t is the time(s); and A is the active area of the MEA(cm2).In equation(1),J A,MOR,MeOHcan be calculated by the current density(I, A cmÀ2sÀ1)and the Faraday constant(F,96485C molÀ1),J A;MOR;MeOH¼I6F(2)and N A,out,MeOH can be calculated by methanol molar concentration(mol LÀ1)and fuel weight(g)at the anode outlet.The fuel weight(g)at the anode outlet ism A;out;Surplus¼m A;out;MeOHþm A;out;Water(3)and the methanol molar concentration(mol LÀ1)at the anode outlet can be expressed as:m A;out;MeOHM MeOHm A;out;MeOH r MeOH þm A;out;Water¼C A;out1000(4)Here,m A,out,Surplus is the fuel weight(g)at the anode outlet; m A,out,MeOH is the methanol weight(g)at the anode outlet;m A,out,wateris the water weight(g)at the anode outlet;M MeOH is the mole weight of methanol(32.04g molÀ1);and r MeOH is the specific gravity of methanol(0.78);C A,out is methanol concentration(mol LÀ1).Thus,substituting equation(3)to(4) and dividing the combination equation by the mole weight of methanol(M MeOH),N A,out,MeOH can be obtained:N A;out;MeOH¼m A;out;Surplus1000C A;outÀM MeOH1À1r MeOH(5)From this measurement system,the water crossoverflux can also be expressed by the equationJ WC¼J C;out;WaterÀJ C;ORR;WaterÀJ C;MOR;Water(6)where J WC is the water crossoverflux(mol cmÀ2sÀ1)from the anode to the cathode;J C,out,Water is the waterflux at the cathode outlet;J C,ORR,Water is the waterflux produced through ORR at the cathode;and J C,MOR,Water is the waterflux produced through MOR at the cathode.Here,J C,ORR,Water can be calcu-lated byJ C;ORR;Water¼I2F(7)and J C,MOR,Water can be calculated byJ C;MOR;Water¼2ÀJ MCÀJ C;out;MeOHÁ(8)where J MC is the methanol crossoverflux(mol cmÀ2sÀ1)and J C,out,MeOH is the methanolflux at the cathode outlet.To conduct these measurements,methanol and air were supplied by a syringe pump(KDS100,KD Scientific A) and a massflow controller(TSC-120,MKP,Korea)at constant stoichiometry levels of6.0l(6M MeOH e5.6ml hÀ1)and6.5l (100ml minÀ1),respectively.The concentration and weight of the methanol were measured by a refractometer(RX-5000a, ATAGO CO.,LTD.Japan)and a mass balance(CP2245,Sarto-rius,Germany),respectively.2.5.Performance test of MEAPerformance tests of the passive DMFC were performed using an electrochemical measurement system(WonA Tech Ltd., Korea)that recorded the voltage,current and temperature of the cell.The results of the cell performance were character-ized by polarization curves(I e V curve)and voltage vs.time (I e t)plotting under constant current operation.All experi-ments were conducted in a completely passive condition with ambient air under ambient conditions of23e25 C at1atm. Methanol solutions of different concentrations were fed into the fuel reservoir of the anode compartment using a micro liquid pump.Prior to the performance test,the MEA was activated in an active cell for6h at25 C.During the activation period,1.0M methanol was fed at aflow rate of0.6cc minÀ1, and dry air was supplied under atmospheric pressure at aflow rate of100cc minÀ1.After the activation,the MEA was dried to remove the1.0M methanol that was in the MEA.3.Results and discussion3.1.Passive DMFC tests of the conventional MEATests of the passive DMFC werefirst conducted with a conventional MEA without any functional layers.Fig.3 exhibits the polarization curves of the passive DMFC with the conventional MEA for1M,6M and10M methanol oper-ations.According to the I e V curves shown in Fig.3,the open circuit voltages(OCV)of the passive DMFC decreased with an increase in the methanol concentration.Under operation with 1M methanol,the OCV of the passive DMFC exceeded0.7V, whereas the OCVs dropped to0.632V and0.488V under operation with6M and10M methanol,respectively.The decrease in the OCVs was ascribed to an increase in the mixed potentials at the cathode,as caused by the crossover of the high concentration methanol in the passive DMFC.Together with the decrease in the OCV,the performance of the passive DMFC also decreased with an increase in the methanol concentration.While operating with1M,6M and10M methanol,the maximum power densities of the passiveDMFCFig.3e Polarization curves of the passive DMFC with the conventional MEA for operation with1M,6M and10M methanol.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y37(2012)4717e4727 4720under the three aforementioned operation conditions were 15.2,10.7and6.9mW cmÀ2,respectively.The higher methanol concentration of10M lowered the maximum power density by55%.As reported in previous works[31,32],this result indicates that the higher methanol crossover arising from a high concentration methanol operation led to lower OCV and cell performance of the passive DMFC.The higher crossover of the high concentration methanol can be confirmed in the images shown in Fig.4.As shown in Fig.4,methanol crossover in the passive DMFC was dominated by the supplied methanol concentrations(1M and6M)and the applied currents(OCV and50mA cmÀ2)due to the molecular diffusion driven by the gradient of methanol concentration across the membrane and the electro-osmotic drag that carries water and methanol molecules in the solvating envelope of protons.Under operation with6M methanol,significant methanol crossover was observed,especially at the OCV state by diffusion.This type of methanol crossover at the OCV brought about an increase of the mixed potential at the cathode,leading to the lower OCV.Furthermore,operation with6M methanol showed much greater methanol crossover at the current densities of50,100and150mA cmÀ2compared to when1M methanol was used.The quantified methanol crossoverflux(J MC)under operation with6M methanol was higher by more than ten times compared to operation with1M methanol,as presented in Fig.5(a).This demonstrates that the lower cell performance of the passive DMFC using the high concentration methanol can be ascribed to the higher methanol crossover.Considering that the effect of electro-osmotic drag is proportional to the applied currents and that the change in the methanol concentration at the anode is smaller for a higher concentration of methanol,the higher crossover of the high concentration methanol appears to be mainly determined by the diffusion rate of the methanol.For the water crossover,the water crossoverflux(J WC)under operation with6M methanol(Fig.5(b))was also higher than operation with1M methanol.Although it is not clearly understood for the present,this appears to be ascribed to temperature effects on diffusion coefficient and diffusion kinetics.Under operation with6M methanol,the higher methanol crossover could bring about the higher water production rate in the cathode due to both oxygen reduction reaction(ORR)and the additional methanol oxidation reaction (MOR)by methanol crossover.This phenomenon may result in decrease of the water gradient between the anode and cathode, and thereby the water crossoverflux from the anode to cathode may be lower.However,it should be noted that water concentration in the anode catalyst layer with6M methanol is still higher than in the cathode catalyst layer.In addition,the higher methanol crossover generates a significant amount of heat by the following equation:Q rxn¼iðE thÀE cellÞþi xover E th(9)where Q rxn is the heat generated by the reactions,i the load current,i xover the methanol crossover current,E th the theo-retical voltage(w1.21V)and E cell the cell voltage.As theresult,Fig.4e Methanol crossover in the passive DMFC depending upon the methanol concentration and the applied current: (a)OCV at1M methanol operation,(b)50mA cm L2at1M methanol operation,(c)OCV at6M methanol operation and50mA cm L2at6M methanol operation.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y37(2012)4717e47274721the inner temperature of the cell with 6M methanol is higher than the cell with 1M methanol.The higher cell temperature can increase diffusion coefficient and diffusion kinetics on water crossover flux in the cell with 6M methanol.This phenomenon causes severe water flooding in the cathode,thus blocking the air supply to the cathode catalysts.It also leads to water loss in the anode,which increases the meth-anol concentration.Thus,these results represent that meth-anol and water crossover in a MEA must be minimized to ensure high performance of a passive DMFC using a high concentration methanol.3.2.Effects of the membrane thickness anda microporous layer for methanol and water crossoverThe driving force to diffuse methanol (and water)from an anode to a cathode is generally expressed by Fick’s law:J D ¼D effC CE ÀC AEd Mem(10)Here,C CE and C AE are the methanol concentration at the anode electrode and the cathode electrode,respectively;D eff is the effective diffusivity of methanol (and water)through the membrane;and d Mem is the thickness of the membrane.From the Fick’s law,the membrane is an important factor in the methanol crossover problem.Methanol crossover can beaffected by the thickness and permeability of the membrane.A thicker membrane can lead to a low diffusion rate of methanol.Such an effect of the membrane thickness for methanol crossover was investigated using Nafion 115(t ¼128m m)and Nafion 1110(t ¼258m m),as shown in Fig.6.In Fig.6,the effect of the membrane thickness can be divided into two distinct regions.For the 2M,4M and 6M methanol concentrations,Nafion 1110showed lower methanol cross-over flux than Nafion 115,whereas for the 8M and 10M methanol concentrations,the methanol crossover flux of Nafion 115and Nafion 1110had similar values.The effect of the thicker membrane for methanol crossover was highly insignificant when the concentration methanol exceeded 8M.This result indicates that the use of a thicker membrane cannot be a solution to methanol crossover problems in a passive DMFC using a high concentration of methanol that exceeds 10M.In contrast,a thicker membrane generates higher internal cell resistance and leads to a decrease in the cell performance.Like the membrane thickness,a microporous layer (MPL)deserves consideration in research that addresses the meth-anol and water crossover problem.It has been reported [33e 36]that the MPL increases the catalyst utilization and the overall fuel cell performance depending on the structure.In addition,a MPL in a passive DMFC may play a role as a barrier to limit the diffusion rate of methanol or as an intermediate to control the methanol concentration in the catalyst layers.Fig.7shows the changes in the cell performance (Fig.7(a),voltage x the current density),the methanol crossover flux (Fig.7(b))and the water crossover flux (Fig.7(c))depending on the existence of a MPL in the anode or the cathode.These tests were conducted with 6M methanol at current densities of 50,100and 150mA cm 2.A MPL on Toray 060was prepared by carbon black of 40wt%and polytetrafluoroethylene (PTFE)of 60wt%.First,in the case of the cell performance,the MEAs with a MPL on the cathode exhibited better performance than MEAs without a MPL on the cathode at all current densities.As shown in Fig.7(a),the MEA only with a MPL on the cathode exhibited the highest cell performance of 34mW cm À2,and the MEA with a MPL on both sides also showed a high cell performance of 30mW cm À2.On the other hand,in the absence of a MPL on the cathode of the MEA,thecellFig.5e Methanol crossover flux (J MC )(Fig.5(a))and water crossover flux (J WC )(Fig.5(b))during operation with 1M and 6M methanol at the current densities of 50,100and 150mA cm 2.Fig.6e Effects of membrane thickness of Nafion 115(t [128m m)and Nafion 1110(t [258m m)for methanol crossover in the DMFC.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 37(2012)4717e 47274722performance decreased dramatically.The limiting current of the MEAs was reduced to 50and 100mA cm À2,respectively.In particular,the cell performance of the MEA without a MPL on both sides was difficult to measure due to lower OCV and the higher methanol crossover.These results indicate that with regard to the cell performance,the existence of a MPL on the cathode is more effective.From Fig.7(b)and (c),however,the MEA only with the MPL on the cathode exhibited higher methanol and water cross-over than the other MEAs.Particularly,the water crossover flux (J WC )of the MEA increased significantly with the incre-ment of the current density.This phenomenon can be ascribed to the function of the MPL.According to Weber and Newman [37],a MPL acts as a valve that pushes water awayfrom the GDL to flow channels to minimize water flooding.Based on their suggestion,the MPL of the cathode quickly releases produced or transported water out of the cathode,which induces additional water crossover from the anode.These properties are highly beneficial for an active DMFC owing to the inhibition of water flooding and the improve-ment in the electrochemical kinetics in the cathode.On the other hand,for a passive DMFC using air-breathing,the properties make water management very difficult because the cathode in a passive DMFC is directly exposed to the ambient atmosphere.Considering the methanol and water crossover,MEAs with a MPL on the anode were better than a MEA without a MPL on the anode at all current densities.In the absence of a MPL on the anode,severe methanol and water crossover occurred in the MEA.This shows that the MPL of the anode served as a barrier to reduce methanol and water crossover from the anode to the cathode.It should be noted that the MEA with a MPL on both sides showed lower methanol and water crossover and that a MPL on the anode was more effective for water crossover than for methanol crossover.These experi-mental results indicate that a MEA for a passive DMFC using high concentration methanol has to include a barrier layer in the anode to limit the crossover of high concentration meth-anol,a hydrophobic layer in the anode to reduce water crossover,and a water management layer in the cathode to enhance the water recovery from the cathode to the anode.For high concentration methanol fuel cells,Wang et al.[38]utilizes an anode transport barrier between a backing layer and a hydrophobic MPL to block methanol and water diffu-sion.The anode transport barrier facilitates the use of high concentration methanol by hindering methanol and water diffusion between the flow channel and the anode catalyst layer.In addition,they introduce a hydrophobic MPL on the anode.The hydrophobic MPL with higher hydrophobicity,lower permeability,and greater thickness acts to reduce the amount of water crossover to the cathode [39].Thus,it is very important to optimize the structural parameters of a passive DMFC to ensure high cell performance.3.3.Effects of a hydrophilic layer on the cathode for water management and performance improvementFor a passive DMFC,an effective method of managing water enhances the water back diffusion to the anode from the cathode,as the methanol oxidation reaction (MOR)at the anode always requires a high water concentration at the anode electrode.This water back diffusion can occur when the water concentration level at the cathode is high.A high water concentration at the cathode leads to a higher liquid pressure in the cathode,thus inducing the water back diffusion.A high water concentration at the cathode can be obtained by intro-ducing a hydrophilic layer to absorb water produced by elec-trochemical reactions as well as transported water from the anode.Fig.8shows a MPL on the cathode (Fig.8(a))and the hydrophilic layer that formed on the MPL (Fig.8(b)).The hydrophilic layer consisted of Vulcan XC-72of 50wt%and Nafion of 50wt%.As seen in Fig.8(b),the thickness of the hydrophilic layer was about 23m m.The hydrophilic layer was uniformly formed on the MPL,and it had a porousstructure.Fig.7e Cell performance (Fig.7(a)),methanol crossover flux (Fig.7(b))and water crossover flux (Fig.7(c))depending on existence of a MPL on the anode or the cathode.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 37(2012)4717e 47274723。
常见化学试剂英文翻译
甲醇methanol ['mɛθənɔl] MeOH methyl alcohol ['mɪθɪl] ['ælkəhɔl]乙醇ethanol EtOHe thyl alcohol二氯甲烷methylene dichloride CH2Cl2 dichloromethanemethylene chloridedichlormethane三氯甲烷(氯仿)chloroform CHCl3 trichloromethane丙酮acetone['æsɪton] H3CCOCH3乙酸acetic acid [ə'sitɪk] ['æsɪd]乙酸乙酯ethyl acetate [ˈɛθəl ˈæsɪˌtet] EA 石油醚petroleum ether [pə'trolɪəm] ['iθɚ] PE 乙醚diethyl ether [daɪ'ɛθəl]乙腈acetonitrile[æsɪtoʊ'naɪtrɪl]乙酰丙酮acetylacetone[,æsitil'æsitəun]Diacetone[daɪ'æsɪtoʊn]N,N-二甲基甲酰胺N,N-Dimethylformamide[daɪmeθɪl'fɔ:mæmaɪd] DMF 二甲亚砜dimethylsulfoxide[daɪ,mɛθəlsʌl'fɑksaɪd]DMSO 二甲氧基乙烷DME 三乙胺triethylamine[traɪ,ɛθəl'læmɪn]正己烷hexane[hɛk'sen]四氢呋喃tetrahydrofuran ['tɛtrə,haɪdro'fjʊ'ræn] THF 嘧啶pyrimidine [pɪ'rɪmɪdiːn]吡啶pyridine ['pɪrɪ,din]苯benzene ['bɛnzin]甲苯methylbenzene三氟乙酸Trifluoroacetic Acid盐酸hydrochloric acid浓盐酸concentrated hydrochloric acid稀盐酸diluted hydrochloric acid[daɪ'lutɪd]硝酸nitric acid浓硝酸concentrated nitric acidaqua fortis硫酸sulfuric acid [sʌl'fjʊrɪk]浓硫酸concentrated sulfuric acid氢氧化钠sodium hydroxide氨水ammonium hydroxideammonia solution甲基吡咯烷酮N-Methylpyrrolidone NMP容器类:量杯measuring cup烧杯beaker 不锈钢杯stainless-steel beaker量筒measuring flask/measuring cylinder 量筒graduated flask/measuring cylinder 坩埚crucible 坩埚钳crucible clamp 坩埚crucible pot, melting pot试管test tube 试管架test tube holder漏斗funnel 分液漏斗separatory funnel烧瓶flask 锥形瓶conical flask塞子stopper洗瓶plastic wash bottle滴定管burette玻璃活塞stopcock冷凝器condenser试剂瓶reagent bottles玻棒glass rod 搅拌棒stirring rod蒸馏烧瓶distilling flask碘量瓶iodine flask表面皿watch glass蒸发皿evaporating dish容量瓶volumetric flask/measuring flask移液管(one-mark) pipette刻度移液管graduated pipettes称量瓶weighing bottle吸液管pipette滤管filter天平balance/scale分析天平analytical balance台秤platform. balance游码crossbeams and sliding weights酒精灯alcohol burner酒精喷灯blast alcohol burner搅拌装置stirring device洗耳球rubber suction bulb研磨钵mortar 研磨棒pestle 玛瑙研钵agate mortar瓷器porcelain白细口瓶flint glass solution bottle with stopper滴瓶dropping bottle 小滴管dropper蒸馏装置distilling apparatus蒸发器evaporator试验用器材:升降台lab jack铁架台iron support万能夹extension clamp蝴蝶夹double-buret clamp双顶丝clamp regular holder止水夹flatjaw pinchcock圆形漏斗架cast-iron ring移液管架pipet rack试管架tube rack沸石boiling stone橡胶管rubber tubing药匙lab spoon镊子forceps坩埚钳crucible tong剪刀scissor打孔器stopper borer石棉网asbestos-free wire gauze电炉丝wire coil for heater脱脂棉absorbent cottonphph试纸universal ph indicator paper滤纸filter paper称量纸weighing paper擦镜纸wiper for lens秒表stopwatch量杯glass graduates with scale白滴定管(酸)flint glass burette with glass stopcock棕色滴定管(酸)brown glass burette with glass stopcock 白滴定管(碱)flint glass burette for alkali棕色滴定管(碱)brown glass burette for alkali比重瓶specific gravity bottle水银温度计mercury-filled thermometerph计ph meter折光仪refractometer真空泵vacuum pump冷、热浴bath离心机centrifuge口罩respirator防毒面具respirator、gasmask磁力搅拌器magnetic stirrer电动搅拌器power basic stirrer烘箱oven闪点仪flash point tester马弗炉furnace电炉heater微波炉电热套heating mantleBunsen burner 本生灯product 化学反应产物apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵化学反应:analysis 分解fractionation 分馏endothermic reaction 吸热反应exothermic reaction 放热反应precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的仪器中英文对照Aging Property Tester 老化性能测定仪Amino Acid Analyzer 氨基酸组成分析仪Analyzer for Clinic Medicine Concentration 临床药物浓度仪Atomic Absorption Spectroscopy 原子吸收光谱仪Atomic Emission Spectrometer 原子发射光谱仪Atomic Fluorescence Spectroscopy 原子荧光光谱仪Automatic Titrator 自动滴定仪Basic Physics 基本物理量测定Biochemical Analyzer 生化分析仪Biochemicalanalysis 生物技术分析Bio-reactor 生物反应器Blood-gas Analyzer 血气分析仪Centrifuge 离心机ChemiluminescenceApparatus 化学发光仪CHN Analysis 环境成分分析仪CO2 Incubators CO2培养箱Combustion PropertyTester 燃烧性能测定仪Conductivity Meter 电导仪Constant Temperature Circulator 恒温循环泵Direct Current Plasma Emission Spectrometer 直流等离子体发射光谱仪DNA Sequencers DNA测序仪DNA synthesizer DNA合成仪Electrical Property Tester 电性能测定仪Electro Microscopy 电子显微镜Electrolytic Analyzer 电解质分析仪Electron Energy Disperse Spectroscopy 电子能谱仪Electron Paramagnetic ResonanceSpectrometer 电子顺磁共振波谱仪Electrophoresis 电泳Electrophoresis System 电泳仪ELIASA 酶标仪Energy Disperse Spectroscopy 能谱仪Fermenter 发酵罐Flow Analytical and Process AnalyticalChemistry 流动分析与过程分析Fraction Collector 部分收集器FreezeDrying Equipment 冻干机FT-IR Spectrometer 傅里叶变换红外光谱仪FT-Raman Spectrometer 傅里叶变换拉曼光谱仪Gas Analysis 气体分析Gas Chromatograph 气相色谱仪GC-MS 气相色谱-质谱联用仪Gel PermeationChromatograph 凝胶渗透色谱仪HighPressure/Performance Liquid Chromatography 高压/效液相色谱仪Hybridization Oven 分子杂交仪ICP-MS ICP-质谱联用仪Inductive Coupled Plasma Emission Spectrometer 电感偶合等离子体发射光谱仪Instrument for Nondestructive Testing 无损检测仪Instrument for Polymerase Chain Reaction PCR仪Inverted Microscope 倒置显微镜Ion Chromatograph 离子色谱仪Isotope X-Ray Fluorescence Spectrometer 同位素X荧光光谱仪LC-MS 液相色谱-质谱联用仪Mass Spectrometer 质谱仪Mechanical Property Tester 机械性能测定仪Metal/material elemental analysis 金属/材料元素分析仪Metallurgical Microscopy 金相显微镜Microwave Inductive Plasma Emission Spectrometer 微波等离子体光谱仪Nuclear Magnetic Resonance Spectrometer 核磁共振波谱仪Optical Microscopy 光学显微镜Optical PropertyTester 光学性能测定仪Other/Miscellaneous 其他Particle Size Analyzer 粒度分析仪PCR Amplifier PCR仪Peptide synthesizer 多肽合成仪pH Meter pH计PhysicalProperty Analysis 物性分析Polarograph 极谱仪Protein Sequencer 氨基酸测序仪Rheometer 流变仪Sample Handling 样品处理Scanning Probe Microscopy FG|8oU 扫描探针显微镜Sensors 传感器Sequencers and Synthesizers for DNA and Protein DNA及蛋白质的测序和合成仪Shaker 摇床Size Exclusion Chromatograph 体积排阻色谱Surface Science 表面科学SurfaceAnalyzer 表面分析仪Thermal Analyzer 热分析仪Thermal Physical Property Tester 热物理性能测定仪Ultrahigh Purity Filter 超滤器Ultra-low Temperature Freezer 超低温冰箱Ultrasonic Cell Disruptor 超声破碎仪Ultraviolet Detector 紫外检测仪UltravioletLamp 紫外观察灯Urine Analyzer 尿液分析仪UV-Visible Spectrophotometer 紫外-可见光分光光度计Viscometer 粘度计Voltammerter 伏安仪Water Test Kits 水质分析仪X-Ray Fluorescence Spectrometer X射线荧光光谱仪X-RayDiffractomer X射线衍射仪磁力搅拌器magnetic stirrer电动搅拌器power basic stirrer烘箱oven闪点仪flash point tester马弗炉furnace电炉heater微波炉电热套heating mantle Bunsen burner本生灯product化学反应产物apparatus设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass卵形瓶litmus石蕊litmus paper石蕊试纸burette滴定管retort曲颈甑still蒸馏釜cupel烤钵化学反应:analysis分解 fractionation分馏 endothermic reaction吸热反应exothermic reaction放热反应precipitation沉淀to precipitate沉淀to distil,to distill蒸馏distillation蒸馏to calcine煅烧to oxidize氧化alkalinization碱化to oxygenate,to oxidize脱氧,氧化to neutralize中和to hydrogenate氢化to hydrate水合,水化to dehydrate脱水fermentation发酵solution溶解combustion燃烧fusion,melting熔解alkalinity碱性isomerism,isomery同分异物现象hydrolysis水解electrolysis电解electrode电极anode阳极,正极cathode阴极,负极catalyst催化剂catalysis催化作用oxidization,oxidation氧化reducer还原剂dissolution分解synthesis合成reversible可逆的仪器中英文对照Aging Property Tester老化性能测定仪Amino Acid Analyzer氨基酸组成分析仪Analyzer for Clinic Medicine Concentration临床药物浓度仪Atomic Absorption Spectroscopy原子吸收光谱仪Atomic Emission Spectrometer原子发射光谱仪Atomic Fluorescence Spectroscopy原子荧光光谱仪Automatic Titrator自动滴定仪Basic Physics基本物理量测定Biochemical Analyzer生化分析仪Biochemicalanalysis生物技术分析Bio-reactor生物反应器Blood-gas Analyzer血气分析仪Centrifuge离心机ChemiluminescenceApparatus化学发光仪CHN Analysis环境成分分析仪CO2 Incubators CO2培养箱Combustion PropertyTester燃烧性能测定仪Conductivity Meter电导仪Constant Temperature Circulator恒温循环泵Direct Current Plasma Emission Spectrometer直流等离子体发射光谱仪DNA Sequencers DNA测序仪DNA synthesizer DNA合成仪Electrical Property Tester电性能测定仪Electro Microscopy电子显微镜Electrolytic Analyzer电解质分析仪Electron Energy Disperse Spectroscopy电子能谱仪Electron Paramagnetic ResonanceSpectrometer电子顺磁共振波谱仪Electrophoresis电泳Electrophoresis System电泳仪ELIASA酶标仪Energy Disperse Spectroscopy能谱仪白细口瓶flint glass solution bottle with stopper滴瓶dropping bottle 小滴管dropper蒸馏装置distilling apparatus蒸发器evaporator试验用器材:升降台lab jack铁架台iron support万能夹extension clamp蝴蝶夹double-buret clamp双顶丝clamp regular holder止水夹flatjaw pinchcock圆形漏斗架cast-iron ring移液管架pipet rack试管架tube rack沸石boiling stone橡胶管rubber tubing药匙lab spoon镊子forceps 坩埚钳crucible tong剪刀scissor打孔器stopper borer石棉网asbestos-free wire gauze 电炉丝wire coil for heater脱脂棉absorbent cottonph ph试纸universal ph indicator paper滤纸filter paper称量纸weighing paper擦镜纸wiper for lens秒表stopwatch量杯glass graduates with scale白滴定管(酸)flint glass burette with glass stopcock棕色滴定管(酸)brown glass burette with glass stopcock白滴定管(碱)flint glass burette for alkali棕色滴定管(碱)brown glass burette for alkali比重瓶specific gravity bottle 水银温度计mercury-filled thermometer ph计ph meter折光仪refractometer真空泵vacuum pump冷、热浴bath离心机centrifuge口罩respirator防毒面具respirator、gasmask 磁力搅拌器magnetic stirrer电动搅拌器power basic stirrer烘箱oven闪点仪flash point tester马弗炉furnace电炉heater微波炉电热套heating mantle Bunsen burner本生灯product化学反应产物apparatus设备 PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass卵形瓶litmus石蕊litmus paper石蕊试纸burette滴定管retort曲颈甑still蒸馏釜cupel烤钵化学反应:analysis分解fractionation分馏endothermic reaction吸热反应exothermic reaction放热反应precipitation沉淀to precipitate沉淀to distil,to distill蒸馏distillation蒸馏to calcine煅烧to oxidize氧化alkalinization碱化to oxygenate,to oxidize脱氧,氧化to neutralize中和to hydrogenate氢化to hydrate水合,水化to dehydrate脱水fermentation发酵solution溶解combustion燃烧fusion, melting熔解alkalinity碱性isomerism,isomery同分异物现象hydrolysis水解electrolysis电解。
常见物性参数表
常见物性参数表常用溶剂一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1) 分子式 C2H6O(2) 相对分子质量 46.07(3) 结构式 CH3CH2OH,(4) 外观与性状:无色液体,有酒香。
(5) 熔点(?):-114.1(6) 沸点(?):78.3溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记 7(易燃液体);主要用途:用于制酒工业、有机合成、消毒以用作溶剂不同压力下乙醇物性参数变化表压液态密比热容气体密蒸发分子粘度沸度度热量点 MPa Kg/m? KJ/Kg*K Kg/m? KJ/Kg g/mol MPa*s ? 0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.65 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.35 -0.02 759.50 2.711 1.2984 865.76 46.07 0.66 72.8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.69 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.82 -0.08 774.37 2.5560.3559 916.51 46.07 0.83 42.4二、甲醇(methyl alcohol,Methanol)CAS No.:67-56-1 (1) 分子式 CH4O(2) 相对分子质量32(04(3) 结构式 CH3O,(4) 外观与性状:无色澄清液体,有刺激性气味。
常见物性参数表
常见物性参数表常用溶剂一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1) 分子式 C2H6O(2) 相对分子质量 46.07(3) 结构式 CH3CH2OH,(4) 外观与性状:无色液体,有酒香。
(5) 熔点(?):-114.1(6) 沸点(?):78.3溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记 7(易燃液体);主要用途:用于制酒工业、有机合成、消毒以用作溶剂不同压力下乙醇物性参数变化表压液态密比热容气体密蒸发分子粘度沸度度热量点 MPa Kg/m? KJ/Kg*K Kg/m? KJ/Kg g/mol MPa*s ? 0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.65 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.35 -0.02 759.50 2.711 1.2984 865.76 46.07 0.66 72.8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.69 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.82 -0.08 774.37 2.5560.3559 916.51 46.07 0.83 42.4二、甲醇(methyl alcohol,Methanol)CAS No.:67-56-1 (1) 分子式 CH4O(2) 相对分子质量32(04(3) 结构式 CH3O,(4) 外观与性状:无色澄清液体,有刺激性气味。
化学及化工专业词汇英语翻译(j-o)2
化学及化工专业词汇英语翻译(J-O)2- -maximum current 最大电流maximum deflection 最大偏转maximum effective work 最大有效功maximum fiber stress 最大纤维应力maximum flexural strength 最大抗挠强度maximum load 最大负荷maximum output 最高产率maximum permissible dose 最大允许剂量maximum phenomenon 极大现象maximum suppressor 畸峰抑制剂maximum thermometer 最高温度计maximum wave 极大波maximum work 最大功maxivalence 最高价maxwell boltzmann statistics 麦克斯韦玻耳兹曼统计maxwell boltzmann's law of energy distribution 麦克斯韦玻耳兹曼能量分布定律maxwell boltzmann's law of velocity distribution 麦克斯韦玻尔兹曼速度分配定律mazout 重油meal 粉状物mean activity 平均活度mean boiling point 平均沸点mean degree of polymerization 平均聚合度mean deviation 平均偏差mean dispersion 平均分散mean error 平均误差mean free path 平均自由程mean life 平均寿命mean temperature difference 均温差mean value 平均值measurable set 可测集measurement 测定measurement deviation 测定偏差measurement error 测量误差measurement of molecular weight 分子量测定measurement of radioactivity 放射能测定measuring 测定measuring accuracy 测量精度measuring apparatus 计量仪器measuring bottle 量瓶measuring cylinder 量筒measuring flask 量瓶measuring glass 量杯measuring instrument 计量仪器measuring pipet 莫尔吸量管measuring tank 量槽mecazine 密哌嗪mechanical draft 机械通风mechanical energy 机械能mechanical equivalent of heat 热功当量mechanical impedance 机械阻抗mechanical mixture 机械混合物mechanical properties 机械性能mechanical pulp 机碎木浆mechanical rectifier 机械整流mechanical scrubber 机械滤净器mechanical test 机械试验mechanical weathering 机械风化mechanization 机械化mechanochemistry 机械化学meconic acid 袂康酸meconine 袂康宁meconium 鸦片mediasilicic rock 中硅质岩medical chemistry 医化学medical durable yeast 医药耐久酵母medicated soap 药用皂medium 介质medium boiler 中沸溶剂medium oil 中油medium oil varnish 中油清漆medium tone 中间色调meker burner 梅克尔灯melamine 蜜胺melamine resin 蜜胺尸melamine resin varnish 三聚氰胺尸清漆melanin 黑素melanogen 黑素原melibiase 蜜二糖酶melibiose 蜜二糖melinite 苦味酸melissic acid 蜂花酸melissyl alcohol 蜂花醇melitose 棉子糖mellic acid 苯六酸mellitate 苯六甲酸酯mellophanic acid 苯偏四甲酸melt 溶融物melt spinning 熔体纺丝melt spinning device 熔融纺丝装置melt viscosity 熔解粘度melting 熔融melting heat 熔化热melting method 熔融法melting point 熔点melting point diagram 熔点线图melting zone 熔化带membrane 隔膜membrane electrode 膜电极membrane equilibrium 膜平衡membrane filter 薄膜过滤器membrane potential 膜电位membrane simulation 膜模拟memory 存储器menadiole 甲萘二酚menadione 甲萘醌mendelev periodic law of elements 门捷列夫元素周期律mendelevium 钔meniscus 弯液面menshutkin reaction 门秀金反应menthadiene 薄荷二烯menthane 薄荷烷menthol 薄荷醇menthone 薄荷酮menthyl acetate 三萜醇乙酸酯mepazine 密哌嗪mephobarbital 普罗米那mephosfolan 二噻磷meralluride 汞鲁来merbromin 汞溴红mercaptal 缩硫醛mercaptan 硫醇mercaptide 硫醇盐mercaptobenzothiazole 巯基苯并噻唑mercaptoethanol 巯基乙醇mercaptol 缩硫醇mercaptopurine 巯基嘌呤mercaptothiazoline 巯基噻唑啉mercerization 丝光处理mercerizing assistant 丝光加工助剂mercerizing machine 丝光处理机mercocresol 汞甲酚剂mercuration 汞化mercurial barometer 水银气压计mercurial column 水银柱mercurial ointment 汞制油膏mercuric arsenate 砷酸汞mercuric chloride 氯化正汞mercuric compound 正汞化合物mercuric cyanide 氰化汞mercuric fluoride 氟化汞mercuric nitrate 硝酸汞mercuric oleate 油酸汞mercuric oxide 氧化汞mercuric oxide electrode 氧化汞电极mercuric salt 正汞盐mercuric stearate 硬脂酸汞mercuric sulfate 硫酸汞mercuric sulfide 硫化汞mercurimetric titration 汞液滴定法mercurimetry 汞液滴定法mercurochrome 汞溴红mercurol 核酸汞mercurometric titration 亚汞滴定法mercurometry 亚汞滴定法mercurous nitrate 硝酸亚汞mercurous salt 亚汞盐mercury 汞mercury arc rectifier 汞汽整流mercury bridge 水银电桥mercury cathode cell 汞阴极电池mercury cell 水银电池mercury chloride 氯化汞mercury cyanide 氰化汞mercury electrode 水银电极mercury fulminate 雷酸汞mercury iodide 碘化汞mercury lamp 水银灯mercury manometer 水银压力计mercury nitrate 硝酸汞mercury oxide 氧化汞mercury pool 水银槽mercury process 水银法mercury pump 水银真空泵mercury rash 汞皮疹mercury thermometer 水银温度表mercury vapour rectifier 汞汽整流mercury volumeter 汞容积计meromyosin 酶解肌球蛋白meroplankton 暂时性浮游生物mesaconic acid 甲基反丁烯二酸mescaline 墨斯卡灵mesh 筛眼mesityl oxide 异丙叉丙酮mesitylene 均三甲基苯meso form 内消旋式mesobilirubin 中胆红素mesobilirubinogen 中胆红原mesobiliverdin 中胆绿素mesochemistry 介子化学mesocolloid 近胶体mesomeric effect 内消旋效应mesomerism 稳变异构mesomorphic phase 中间相mesomorphism 液晶态meson 介子mesophase 中间相mesorcin 均三甲苯二酚mesotartaric acid 内消旋酒石酸mesothorium 新钍mesoxalic acid 中草酸mesoxalylurea 中草酰脲messenger ribonucleic acid 信使核糖核酸meta acid 偏酸metaarsenic acid 偏砷酸metabiosis 后继共生metabolism 代谢酌metabolite 代谢物metaboric acid 偏硼酸metachemistry 超化学metachromasia 异染色metachromasy 异染色metachromatic stain 异染性染料metachromatism 变色现象metadiazine 嘧啶metaisomerism 位变异构现象metal alkyl 金属烷基metal analysis 金属分析metal arc 金属电弧metal bath 金属浴metal carbonyl 羰络金属metal cluster 金属团簇metal complex 金属络合盐metal complex dye 金属配位染料metal encased brick 铁皮砖metal film resistor 金属薄膜电阻器metal fog 金属雾metal glass 金属玻璃metal indicator 金属指示剂metal line 液面线metal mist 金属雾metal nonmetal transition 金属非金属过渡metal plating 金属镀层metal spray gun 金属喷雾器metal spraying 金属喷涂metalation 金属化metaldehyde 多聚乙醛metallic block calorimeter 金属热量计metallic bond 金属键metallic complex salt 金属络合盐metallic element 金属元素metallic luster 金属光泽metallic oxide 金属氧化物metallic paint 金属涂料metallic poison 金属毒metallic powdery pigment 金属粉末颜料metallic soap 金属皂metallic thermometer 金属温度计metallic tin 金属锡metallocene 金属茂络合物metallocycle 金属循环物metalloenzyme 金属酶metallography 金属学metalloid 类金属metalloid element 类金属元素metalloprotein 金属蛋白质metallurgical chemistry 冶金化学metallurgical coke 冶金焦metallurgical microscope 冶金显微镜metallurgy 冶金metamer 位变异构体metamerism 位变异构性metamorphic deposit 变质矿床metamorphic rock 变质岩metamorphism 变形现象metanil yellow 间胺黄metanilic acid 间氨基苯磺酸metaphosphate 偏磷酸盐metaphosphoric acid 偏磷酸metaprotein 变性蛋白metasilicate 偏硅酸盐metasilicic acid 偏硅酸metastable atom 亚稳原子metastable equilibrium 亚稳定平衡metastable ion 亚稳定离子metastable phase 亚稳相metastable state 亚稳状态metastannic acid 偏锡酸metathesis 复分解metathetical salts 复分解盐meteoric iron 铁陨石meteorite 陨石meter oil 仪泼油metering pump 计量泵methabenzthiazuron 噻唑隆methacrylic acid 异丁烯酸methacrylonitrile 异丁烯腈methadone 美沙酮methallyl alcohol 甲代烯丙醇methanal 甲醛methane 甲烷methanoic acid 甲酸methanol 甲醇methanolysis 甲醇分解methanthiol 甲硫醇methemoglobin 正铁血红蛋白methene 甲叉methidathion 杀扑磷methide 甲基化物methionine 甲硫氨酸method of least squares 最小二乘法method of spin labeling 自旋标记法method of steady state 定常状态法method of steepest descent 最陡下降法method of substitution 取代法methoxide 甲醇盐methoxyacetic acid 甲氧基乙酸methoxybenzene 茴香醚methoxychlor 甲氧氯methoxyl group 甲氧基methyl acetate 醋酸甲酯methyl acetone 甲基丙酮methyl acrylate 丙烯酸甲酯methyl alcohol 甲醇methyl benzoate 苯甲酸甲酯methyl blue 甲基蓝methyl borate 硼酸甲酯methyl cellulose 甲基纤维素methyl chloride 甲基氯methyl ethyl diketone 乙酰丙酮methyl ethyl ketone 丁酮methyl furan 甲基呋喃methyl iodide 甲基碘methyl mercaptan 甲硫醇methyl methacrylate 甲基丙烯酸甲酯methyl myristate 十四烷酸甲酯methyl nitrate 硝酸甲酯methyl orange 甲基橙methyl parathion 甲基对硫磷methyl piperazine 甲基哌嗪methyl red 甲基红methyl rubber 甲基橡胶methyl salicylate 水杨酸甲酯methyl stearate 硬脂酸甲酯methyl vinyl ether 甲基乙烯基醚methyl vinyl ketone 甲基乙烯基酮methyl violet 甲基紫methylacetylene 丙炔methylal 甲缩醛methylallyl chloride 甲代烯丙基氯methylamine 甲胺methylate 甲醇盐methylated alcohol 甲基化酒精methylating agent 甲基化剂methylation 甲基化酌methylbenzene 甲苯methylbutynol 甲基丁炔醇methylcyclohexane 甲基环己烷;甲基溶纤剂methylcyclohexanol 甲基环己醇methylcyclohexanone 甲基环己酮methylcyclopentane 甲基环戊烷methylene 甲叉methylene blue 亚甲蓝methylene chloride 二氯甲烷methyleneaniline 亚甲基氨苯methylfumaric acid 甲基反丁烯二酸methylglyoxal 丙酮醛methylisobutylketone 甲基异丁酮methylnaphthalene 甲基萘methylol 亚甲醇methylolurea 羟甲基脲methylpentene 甲基戊烯methylphenol 甲酚methylpiperidine 哌可啉metol 米吐尔metribuzin 赛克津mezcaline 墨斯卡灵mica 云母mica capacitor 云母电容器mica condenser 云母电容器mica plate 云母板mica schist 云母片岩micaceous hematite 云母赤铁矿micaceous iron ore 云母赤铁矿micell formation 胶束形成micell weight 胶束量micellar space 胶束空间micelle 胶团michael reaction 迈克尔反应micro heterogeneity 微异质性micro porous rubber 微孔泡沫胶microanalysis 微量分析microanalytical reagent 微量分析试剂microanalyzer 微量分析器microbalance 微量天平microbattery 微电池microbe 微生物microbicide 杀菌剂microbioassay 微生物学测定法microbiological assay 微生物学测定法microbiological corrosion 微生物腐蚀microburet 微量滴定管microburner 微灯microcapsule 微胶囊microchemistry 微量化学microcoacervation 微凝聚microcolorimeter 做量比色计microcomponent 微量组分microcorrosion 微腐蚀microcosmic salt 磷盐microcrystal 微晶microcrystalline structure 微晶结构microelectrode 微电极microelectrolysis 微量电解microelement 微量元素microfilter 微量过滤器microhardness tester 显微硬度试验器microincineration 微量灰化microlite 细晶石micromanipulator 显微操阻备micrometer 测微计micrometer eyepiece 目镜测微计micron 微米micronitrometer 微氮量计micronutrient 微量养料microorganism 微生物microphotometer 显微光度计micropipet 微量吸移管micropore 微孔microporous barrier 微孔障碍microsample 微量试样microscope 显微镜microscopic analysis 显微镜分析microscopy 显微镜检查法microspectroscope 显微分光镜microstate 微观状态microstructure 微结构microthrowing power 微量布散能力microtitration 微量滴定microtome 切片机middle oil 中油middle tone 中间色调migration 迁移migration area 迁移面积migration current 迁移电流migration potential 迁移电位milk 牛奶milk fat 乳脂milk of lime 石灰乳milk of sulfur 乳硫milk powder 奶粉milk sugar 乳糖milky glass 乳白玻璃mill 磨粉机mill addition 球磨机添加物料mill grease 磨机用润滑脂milled rubber 捏炼橡胶milled soap 研制皂milliequivalent 毫当量millimol 毫克分子milling 捏炼milling machine 捏炼机milling ore 进厂矿石millon's base 米隆碱millon's reagent 米隆试剂mine air 矿井内空气mine fire 矿井内火灾mine gas 矿井内气体mine water 矿井水mineral 矿物mineral acid 无机酸mineral analysis 矿物分析mineral bath 矿泉浴mineral black 矿物黑mineral charcoal 天然木炭mineral chemistry 矿物化学mineral colloid 无机胶体mineral colza oil 重质灯油mineral deposit 矿床mineral dressing 选矿mineral dye 矿物染料mineral fertilizer 无机肥料mineral fiber 矿物纤维mineral oil 矿物油mineral pigment 矿物性颜料mineral processing 选矿mineral resin 矿物尸mineral rubber 矿物胶mineral seal oil 重质灯油mineral spirit 石油醚mineral substance 矿物质mineral water 矿泉水mineral wax 木炭mineral wool 矿棉mineralizer 矿化剂mineralogy 矿物学minimum 最小minimum content 最小含量minimum deviation 最小偏差minimum number of theoretical plates 最小理论板数minimum reflux ratio 最小回寥minimum thermometer 最低温度计minimum weight 最低重量minium 铅丹minivalence 最小化合价minor 子式mirabilite 芒硝;芒硝mirbane oil 硝基苯mirror glass 镜玻璃mirror image isomer 镜像异构体mirror point 镜像点mirror symmetry 镜面对称miscibility 混性miscibility gap 混溶隙miscible solvent 可混溶剂misfire 拒爆mispickel 砷黄铁矿mist 细雾mitomycin 丝裂霉素mix spinning 混合纺纱mixed acid 混酸mixed base crude oil 混合基原油mixed bed system 混合床系统mixed complex 混合络合物mixed cryoglobulin 混合冷沉球蛋白mixed crystal 混合晶体mixed fertilizer 混合肥料mixed gas 混合气体mixed glyceride 混酸甘油酯mixed indicator 混合指示剂mixed melting point 混合熔点mixed oxide 混合氧化物mixed paint 低涂料mixed solvent 混合溶剂mixed valence 混合原子价mixed valence complex 混合原子价复合体mixer 混合机mixing 混合mixing machine 混合机mixing mill 混合辊mixing proportion 混合比mixing ratio 混合比mixture 混合物mixture of gasoline and alcohol 汽油酒精混合剂mobile equilibrium 怜平衡mobile oil 猎油mobile phase 怜相mobility 迁移率mobilometer 淌度计model 型model enzyme 模型酵素model research 模型研究moderation 减速moderator 减速剂moderator coolant 减速冷却剂moderator lattice 慢化剂栅格modification 变态modified milk powder 改性牛奶粉modified rayon 变性人造纤维modified resin 改良尸modified wood 改性木材modifier 改良剂modifying agent 改良剂modulation 灯modulus 模数modulus of compression 压缩模量modulus of elasticity 弹性系数modulus of rupture 裂断模量mohr pipet 莫尔吸量管mohr's salt 莫尔盐mohs scale 莫氏硬度moiety 一部分moist adiabatic change 湿绝热变化moist air 湿空气moistener 润湿器moistening chamber 给湿室moisture 湿气moisture absorption 吸潮moisture ash free coal 无水无灰煤moisture barrier 防潮衬层moisture content 含水量moisture equivalent 含水当量moisture permeability 透湿性mol 克分子molal solution 克分子溶液molar absorption coeffcient 摩尔吸光系数molar concentration 克分子浓度molar conductivity 克分子电导率molar depression 分子降低molar depression of freezing point 克分子冰点降低molar elevation 克分子升高molar elevation of boiling point 摩尔沸点升高molar extinction coefficient 克分子消光系数molar fraction 克分子分数molar heat capacity 克分子热容molar polarization 分子极化molar refraction 分子折射molar rotation 克分子旋光度molar rotatory power 克分子旋光度molar solution 摩尔混液molar specific heat 摩尔比热molar susceptibility 摩尔磁化率molar volume 克分子体积molar weight 分子量molarity 克分子浓度molasses 废蜜mold 霉菌mold cure 模塑硫化mold goods 模制品mold lubricant 脱模剂mold releasing agent 脱模剂mold shrinkage 成型收缩molded laminate 模制品层压molding 模塑硫化molding plaster 塑造石膏molding powder 压塑粉molding press 造型机molding temperature 造型温度moldings 模制品mole 摩尔mole fraction 克分子分数molecular adsorption 分子吸附molecular arrangement 分子排布molecular association 分子缔合molecular asymmetry 分子不对称molecular attraction 分子引力molecular beam 分子束molecular collision 分子碰撞molecular colloid 分子胶体molecular compound 分子化合物molecular crystal 分子晶体molecular designing 分子设计molecular diagram 分子模型图molecular diffusion 分子扩散molecular dipole 分子偶极子molecular distillation 分子蒸馏molecular dynamics 分子动力学molecular elctroconductivity 分子电导率molecular evolution 分子演化molecular field 分子场molecular filter 分子过滤器molecular flexibility 分子柔性molecular force 分子力molecular formula 分子式molecular grating 分子晶格molecular heat capacity 摩尔热容molecular ion 分子离子molecular lattice 分子晶格molecular magnet 分子磁体molecular orbital 分子轨道molecular orbital method 分子轨道法molecular orientation 分子取向molecular reaction 分子反应molecular rearrangement 分子重排molecular relaxation 分子松弛molecular rotational energy 摩尔旋光能molecular rotatory power 分子旋光度molecular sieve 分子筛molecular solution 分子溶液molecular spectrum 分子光谱molecular still 分子蒸馏器molecular structure 分子结构molecular symmetry 分子对称molecular theory 分子说molecular volume 克分子体积molecular weight 分子量molecular weight determination 分子量测定molecular weight distribution curve 分子量分布曲线molecular weight distribution function 分子量分布函数molecule 分子molten slag 熔渣molten solvent 熔化溶剂molten state 熔融状态molting hormone 脱皮激素molybdate 钼酸盐molybdate orange 钼铬红molybdenite 辉钼矿molybdenum 钼molybdenum chloride 氯化钼molybdenum dioxide 二氧化钼molybdenum disulfide 二硫化钼molybdenum oxide 氧化钼molybdic acid 钼酸molybdite 钼华moment 力矩moment of inertia 惯性矩moment of momentum 动量矩momentum 动量monad 一价物monad radical 一价基monatomic 单原子的monatomicity 单原子性monazite 独居石mond gas 蒙德煤气mond process 蒙德法monoacetin 一醋精monoacidic base 一价碱monoaromatics 单芳香族化合物monoatomic molecule 单原子分子monobasic 一元的monobasic acid 一价酸monochloroacetic acid 一氯代醋酸monochlorobenzene 一氯代苯monochromatic light 单色光monochromatic temperature scale 单色温标monochromator 单色光镜monochrome 单色monoclinic sulphur 单斜硫monoclinic system 单斜晶系monodisperse sol 单分散溶胶monodisperse system 单分散系monoethanolamine 单乙醇胺monofilament 单丝monofunctional molecule 单功能分子monogenetic dyestuff 单色染料monoglyceride 甘油一酸酯monohydrate 一水化物monohydric alcohol 一元醇monolayer 单分子层monomer 单体monomer reactivity ratio 单体反应性比率monomolecular adsorption layer 单分子吸附层monomolecular film 单分子膜monomolecular layer 单分子层monomolecular membrane 单分子膜monomolecular reaction 单分子反应mononaphthene 单环烷monoolefine 单烯烃monosaccharide 单糖monose 单糖monosilane 甲硅烷monosodium glutamate 谷氨酸钠monostearin 甘油一硬脂酸酯monoterpene 单萜monotropy 单变现象monovalent 一价的monovariant equilibrium 单变平衡monovariant system 单变系monoxide 一氧化物montan wax 褐煤蜡montmorillonite 蒙脱石mooney plastometer 门尼塑度计mooney viscometer 门尼塑度计mooney viscosity 门尼粘度mordant 媒染剂mordant dye 媒染染料mordanting 媒染mordanting assistants 媒染助剂morin 桑色素morphine 吗啡morphine hydrochloride 盐酸吗啡morphine sulfate 硫酸吗啡碱morpholine 吗啉morphosan 吗啡散mortar 灰泥mosaic gold 镶嵌金mosaic structure 嵌镶结构moseley's law 摩斯利则moth proofing 防虫处理mother liquor 母液motor gasoline 动力汽油motor oil 汽车润滑油mottled paper 暗斑纸moulding machine 制模机moving bed 移动床moving bed catalytic cracking 移动床催裂化法moving bed reactor 移动床反应器moving catalyst bed 移动催化剂床moving phase 怜相mucic acid 粘酸mucilage 胶水mucin 粘液素mucin sugar 果糖mucoid 类粘蛋白muconic acid 粘康酸mucoprotein 粘蛋白mucosa 粘膜mucous fermentation 粘液发酵mucous membrane 粘膜mud 泥mud pump 泥浆泵mud removal acid 软泥除去酸mud sump 泥浆池muffle furnace 高温烘炉muffle kiln 高温烘炉mullite 莫来石mullite porcelain 莫来石质瓷mulser 乳化机multicellular glass 泡沫玻璃multicolored effect 多色染效应multicomponent distillation 多组分蒸馏multilayer adsorption 多层吸附multilayer film 多层膜multimolecular layer adsorption 多层吸附multimolecular reaction 多分子反应multinomial distribution 多项分布multiphase flow 多相流multiple bond 多重键multiple cage mill 粉碎机multiple effect evaporation 多效蒸发multiple effect evaporator 多效蒸发器multiplet 多重谱线multiplet splitting 多重线分裂multiplicity 多重性multistage compressor 多级压气机multistage pump 多级泵multivariant system 多变体系multivariate analysis 多元分析murexide 骨螺紫murexide reaction 骨螺紫反应murexide test 骨螺紫试验muriatic acid 盐酸muscarine 腐鱼毒muscone 香酮muscovite 白云母musk 香musk ketone 香酮mustard gas 芥气mustard oil 芥子油mutagen 诱变物质mutarotation 旋光改变mutton tallow 羊脂mutual exclusion rule 互斥现象则mutual induction 互感应mutual solubility 互溶度mutuality of phases 相的相互性mycoderma 菌皮myelin 髓磷脂myoglobin 肌红蛋白myokinase 肌激酶myosin 肌球朊myrcene 月桂烯myricetin 杨梅黄素myricyl alcohol 蜂花醇myristic acid 十四酸myristica oil 肉豆蔻油myrrh 没药nabam 代森钠nacre 珍珠母nacrolacquer 珍珠漆nandinine 南天竹碱napalm 凝汽油剂napalm bomb 汽油弹naphtha 石脑油naphtha cracking 石脑油裂解naphthacene 并四苯naphthaldehyde 萘醛naphthalene 萘naphthalene nucleus 萘环naphthalene oil 萘油naphthazarin 萘茜naphthenate 环烷酸盐naphthenate soap 环烷皂naphthene 环烷naphthene base crude oil 环烷基原油naphthenic acid 环酸naphthenic hydrocarbon 环烷烃naphthenic soap 环烷皂naphthionic acid 对氨基萘磺酸naphthoic acid 萘酸naphthoic aldehyde 萘醛naphthol 萘酚naphthol dye 萘酚染料naphthol green 萘酚绿naphthol phthalein 萘酸酞naphthol yellow 萘酚黄naphthology 石油科学naphtholsulfonic acid 萘酚磺酸naphthopicric acid 萘苦酸naphthoquinoline 萘喹啉naphthoquinone 萘醌naphthylamine 萘胺naples yellow 拿浦黄narceine 那碎因narcosis 麻醉narcotic 麻醉剂narcotic poison 致昏迷毒剂narcotine 那可汀narcotization 麻醉naringin 柚苷nascent hydrogen 初生氢nascent state 初生态native gold 自然金natural abrasive 天然磨料natural asphalt 天然沥青natural cement 天然水泥natural coke 天然焦natural color photography 天然色照相natural convection 自然对流natural cooling 自然冷却natural draft 自然通风natural dye 天然染料natural fiber 天然纤维natural gas 天然煤气natural gasoline 天然汽油natural graphite 天然黑铅natural heat convection 自然对粱热natural perfume 天然香料natural pigment 天然色素natural radioactivity 天然放射性natural resin 天然尸natural rubber 天然橡胶natural science 自然科学natural silk 天然丝natural soda 天然苏打nature 性质nauseants 呕吐剂navier stokes equation of motion 那维尔斯托克斯运动方程试near ultraviolet rays 近紫外线neat cement 净水泥neat soap 纯皂needle crystal 针状结晶needle valve 针阀negative 负片negative adsorption 负吸附酌negative catalysis 负催化negative catalyst 负催化剂negative colloid 阴性胶体negative effect 负效应negative electrode 阴极negative element 阴性元素negative ion 阴离子negative maximum 负极大negative plate 阴极板negative reaction 负反应negative substituent 阴性取代基neighboring group effect 邻基效应nematic liquid crystal 向列型液晶nematic phase 向列相nematic state 向列态nematocide 杀线虫剂neoarsenobenzene 新砷苯neoarsphenamine 新胂凡钠明neocupferron 新铜铁灵neodymium 钕neohexane 新己烷neomycin 新霉素neon 氖neon lamp 氖灯neopentane 新戊烷neopentyl alcohol 新戊醇neoprene 氯丁二烯橡胶neosalvarsan 新塞佛散neostigmine bromide 溴化新斯的明nepheline 霞石nepheline syenite 霞石正长岩nephelite 霞石nephelometer 比浊计nephelometric analysis 比浊法nephelometry 比浊法nephrite 软玉neptunium 镎neral 橙花醛nernst's heat theorem 能斯脱热定理nerol 橙花醇nerolidol 橙花叔醇nerolin 橙花醚nerve gas 神经毒气nerve narcotic 神经麻醉药nerve poison 神经毒剂nerve tonic 神经强壮剂nervonic acid 神经酸nesmeyanov reaction 内斯米羊诺夫反应nesosilicate 岛状硅酸盐nessler tube 奈斯勒比色管nessler's color comparison tube 奈斯勒比色管nessler's reagent 奈斯勒氏试剂net calorific value 净热值net plane 网平面net retention volume 净保留体积net weight 净重net working 网状结合network molecule 网络分子network structure 网状结构neuraminic acid 神经氨酸neurine 神经碱neurochemistry 神经化学neurokeratin 神经角蛋白neurotransmitter 神经传递介质neutral catalyst 中性催化剂neutral lipid 中性脂质neutral oxide 中性氧化物neutral point 中和点neutral potassium arsenite 中性亚砷酸钾neutral red 中性红neutral salt 中性盐neutral salt effect 中性盐效应neutral solution 中性溶液neutral species 无电荷化学种neutrality 中性neutralization 中和neutralization curve 中和曲线neutralization equivalent 中和当量neutralization indicator 中和指示剂neutralization number 中和值neutralization of waste water 废水的中和neutralization titration 中和滴定neutralization value 中和值neutralizing tank 中和槽neutrino 中微子neutron 中子neutron absorptiometry 中子吸收分析neutron absorption 中子吸收neutron activation analysis 中子活化分析neutron capture 中子俘获neutron degradation 中子减速neutron density 中子密度neutron diffraction 中子衍射。
甲醇MSDS
产品:甲醇1 化学品及公司标识(Chemical product and identification) 【危化品名称】:甲醇【中文名】:甲醇【英文名】:methyl alcohol【分子式】:CH4O【相对分子量】:32.04【CAS号】:67-56-12 成分/性状信息(Composition/Characters Information)【主要成分】:纯品【外观与性状】:无色澄清液体,有刺激性气味。
【主要用途】:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。
3 危险性概述(Danger summarizing)【侵入途径】:吸入、食入。
【健康危害】:对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选择作用,引起病变;可致代射性酸中毒。
急性中毒:短时大量吸入出现轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。
视神经及视网膜病变,可有视物模糊、复视等,重者失明。
代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。
慢性影响:神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等。
皮肤出现脱脂、皮炎等。
4 急救措施(First-aid measures)【皮肤接触】:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。
【眼睛接触】:提起眼睑,用流动清水或生理盐水冲洗。
就医。
【吸入】:迅速脱离现场至空气新鲜处。
保持呼吸道通畅。
如呼吸困难,给输氧。
如呼吸停止,立即进行人工呼吸。
就医。
【食入】:饮足量温水,催吐。
用清水或1%硫代硫酸钠溶液洗胃。
就医。
5 燃爆特性与消防措施(Blasting characteristics and fire fighting measures)【闪点】:11【燃爆下限】:5.5【引燃温度】:385【爆炸上限】:44【危险特性】:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。
与氧化剂接触发生化学反应或引起燃烧。
纸业专业英语词汇翻译(W2)
纸业专业英语词汇翻译(W2)web calendered 纸幅压光,湿压光web embossing 纸幅印花web feeding 领纸web glazing 纸幅压光web guide 导纸web news 卷筒新闻纸web of paper 纸幅web of fiber 纤维幅web offset printing 轮转胶版印刷web profile 全幅均匀度;全幅质量web sizing 表面施胶web spreader 纸幅舒展辊web tension 纸幅张力web tension control 纸幅张力控制web threader 领纸纸条web transfer 递纸web turner 纸幅转向辊webing 纸条;交织weddings 高光泽卡片纸wedge 楔;楔入weddings bristol 高光泽卡片纸wedge method (for sampling pulp) (纸浆取样)楔取法weed tree 野生树weft 纬线weft wire 铜网纬线weft yarn 纬线weftless felt 无纬毛毯weigher 过秤员;衡重器weighing hopper 衡重漏斗weighing scale conveyer 称量传送带thermocouple pyrometer 热电偶高温计weight average 重量平均,重均weight of green wood 鲜材重量weight ratio 重量比weight scaling 按重量计算材积weightometer 重量计,自动秤weir 堰welded digester 焊接蒸煮锅welded joint 焊缝welding 焊接well-beaten stock 打浆优良的浆料well bufted 良好磨光well-closed formation 组织均匀well-conditioned 妥善调整well-formed sheet 组织均匀的纸页well sized 优质施胶Wellstatler lignin 氢氟酸木素welt 烂边(纸病)western hemlock (Tsuga heterophylla Sarg.) 加州铁杉western larch (Larix occidentalis Mutt.) 美国落叶松western red cedar (Jhuja plicata Don) 美国西部侧柏wet 湿的;粘状wet and dry bulb temperature 干湿球温度wet beaten 粘状打浆的wet beater 粘状打浆机wet beating 粘状打浆wet board former 湿抄机wet board former with twin cylinders 双圆网湿抄机wet board machine 湿式纸板机wet box (压光机)水槽wet broke 湿损纸wet bulb temperature 湿球温度wet bulb thermometer 湿球温度计wet bursting strength 湿纸耐破强度wet calender stack 湿式光泽机wet cleaning 湿法净化wet crepe 湿法起皱wet cyclone 湿式旋风除尘器wet disintegrator 湿浆离解机wet draw 湿部牵引力wet embossing 湿纸幅印花wet end 湿部wet end additive 湿部添加剂wet end chemistry 湿部化学wet end efficiency 湿部(生产)效率wet end finish 湿部装饰wet end furnish 湿部配比,浆料配比wet felt 湿毛毯,湿毯wet finish 湿部装饰wet fourdrinier (board) machine 长网湿抄机wet lapped 湿抄wet lay system 湿法制造wet machine 湿抄机wet machine tender 湿抄工,湿抄机操作工wet mat 湿磨木浆wet mechanical 湿磨木浆wet method 湿法wet method of depithing 湿法除髓wet modulus 湿弹性模量wet mullen 湿纸耐破度wet nonwoven fabrics 湿法无纺布wet paper web 湿纸幅wet part 湿部wet pick 润湿粘附性能wet pick-up (felt) 湿领纸(毛毯)wet pickup 湿涂层量wet press 湿压榨wet pressing 湿压榨wet printing 湿式印刷wet refining 精磨wet relief 放气分离液wet relief liquor 放气分离液wet room 精选工段wet room foreman 精选工长wet rub 湿润磨擦阻抗wet rub quality 湿耐磨性能wet rub resistance 湿耐磨性能wet rub strength 湿耐磨强度wet rub test 湿耐磨性测定wet sheet taker 领纸装置,湿纸幅承接器wet spinning 湿法纺丝wet steam 湿蒸汽wet streaks 湿条痕,湿筋(纸病)wet strength 湿强度wet strength agent 湿强度剂wet strength broke 湿强损纸wet strength paper sack 湿强纸袋wet strength retention 湿强度留着wet strengthening resin 增湿强树脂wet tensile (strength) 湿抗张强度wet tensile test 湿抗张强度试验wet tensile tester 湿抗张强度仪wet trim 湿纸边wet up 润湿wet web 湿纸幅wet web pickup 湿纸幅传递,领纸wet web strength 湿纸幅强度wet weight 湿重wet wood 湿材wet wrinkle 湿皱纹wetness 润湿度;粘状wteness tester 润湿度测定仪wettability 可湿性wetting 润湿wetting agent 润湿剂wetting time 润湿时间WFPL chip quality WFPL木片筛分性质wheat straw 麦草wheel pit 磨木机浆坑whipper 打水板whisk 刷;小帚white-alder (Almus incana Moohch.) 白桤木white bark pine (Pinus albicaulis) 美国白皮松white bark pine (Pinus burgeana Zucc.) 白皮松white birdch (Betula populifolia Marsh.) 白桦white box cover 白色箱面纸white carbon 白色复写纸white fir (Abies concolor) 白冷杉white fir (Abies grandis Lindl.) 大冷杉white groundwood 白色磨木浆white liquor 白液white liquor clarifier 白液澄清器white liquor mud 白泥white maple (Acer Saccharinum L.) 糖槭,银槭white mill blanks 白色纸边white mud 白泥,白液沉渣white mud thickener 白液沉渣洗涤器white oak (Quercus alba L.) 白栎white paper tag 白色标签纸white pine (Pinus strobus L.) 美国五叶松white poplar (Populus alba L.) 银白杨white rot 白色腐朽white size 白色(松香)胶white spruce (Picea alba Link.) 银白云杉white spruce (Picea glauca Voss.) 白云杉white tag riber 白色标签纸用纤维white vat-lined 白色挂面纸板white water 白水white water chest 白水槽,白水池white water clarifier 白液澄清器white water distributing head tank 白水分配高位槽white water pan 白水盘white water piping 白水管道white water pump 白水泵white water storage 白水槽,白水池white water tank 白水槽white water tray 白水盘white water treating equipment 白水处理装置white water treatment 白水处理whiteness 白度whitening 增白,显白whitening agent 增白剂whites 白色破布whiting 白垩whole log barker 长木剥皮机whole log chipper 长木削片机whole stuff 成浆wicking 毛细管现象wicking test 吸水试验wide angle refiner 大锥度磨浆机wide grained wood 横纹木材width 宽度;幅宽Wicner reaction 伟氏反应wild formation 云彩花wild-looking sheet 呈现云彩花的纸张wild sheet 呈现云彩花的纸张wildness 云彩花现象Williams freeness tester Williams游离度测定仪willow (Salix) 柳属willow 破布除尘器willower 破布除尘器willowing machine 破布除尘器Willstatter lignin 盐酸木素winch 绞车wind direction 风向wind fall 风倒木wind screen 筛分机winder 复卷机winder trim 复卷机切边winder welts 卷纸纵向折子(纸病)winder wet (复卷后出现)纵向皱纹(纸病)winder wrinkles 卷取皱纹(纸病)winderman 卷纸工winding 卷纸;复卷winding drum 卷纸缸winding machine 卷纸机winding off spindle (复卷机)卷取轴winding roll 卷纸辊winding shaft 卷纸轴winding tightener 复卷机张紧辊windlass 卷扬机,绞车window paster 糊窗纸windshield towel 汽车前窗试擦纸Winestock machine Winestock废纸脱墨装置wing duster 翼式除尘器wing nut 蝶式螺母wing roll 辊刀切纸机的翼辊Winkler-Oeman test W.O.亚硫酸盐蒸煮液总酸测试法wiper 拭擦器;拭擦布wite (铜)网,造纸网wite baling 铜网包装wite brush 刷网工具wite changing 换网wite cleaner 洗网装置wite cloth 铜网,造纸网wite-covered table roll 复网案辊wite direction 纵向wite dolly 铜网预张器wite draw 铜网牵引力wite drum 网鼓wite end 网部wite frame 网案架wite guide (roll) (铜网)校正辊wite guiding 校正铜网wite leading roll 导网辊wite life 铜网寿命wite life extender 铜网寿命延长剂wite loading 网上加填料wite lying machine 换网机;铜网接头机wite roll (换网用)撑网辊筒wite marks 网印,网痕(纸病)wite mesh 网目wite mould 网笼wite part 网部wite pit 网下白水坑wite return roll (铜网)转向辊wite roll 导网辊wite screen 网筛wite section 网部wite side 网面,反面wite sieve 滤网wite speed 网速wite spot 网痕(纸病)wite stitcher 缝网器wite stretch roll (铜网)张紧辊wite suction roll 网部真空吸水辊wite table 网案wite trimming roll 铜网导辊,导网辊wite tying machine 包线机wite washing shower 冲网喷水管wite welding 焊网wite width 网宽wood alcohol 甲醇,木醇,木精wood anatomy 木材解剖学wood assortment 材种wood block 木段wood cell 木材细胞wood cellulose 木材纤维素wood chemistry 木材化学wood chips 木片wood consumption 木材消耗量wood core 木芯,木筒芯wood depot 贮木场wood element 木材纤维细胞wood farm 林场wood fiber 木纤维wood fiberboard 木材纤维板wood filling 垫木;嵌木wood-free 不含磨木浆wood grain 木(材)纹(理)wood grinder 磨木机wood grm 树胶wood handing 原木运搬wood hydrolysis 木材水解wood land 林地,森林wood lot 小块林地wood manila 含磨木浆的马尼拉纸板wood meal 木粉wood measurement 木材量积wood parenchyma 木薄壁纤维wood particle 小木块wood pecker 除节机wood pile 原木垛wood plastic combination 塑料贴面木材wood preparation 备木,调木wood preparation department 备木车间wood preservation 木材防腐wood preservative 木材防腐剂wood preserving 木材防腐wood properties 木材性质wood products 木材制品wood pulp 木浆wood pulp wadding 木浆絮;木浆填充物wood ray 木射线wood refuse 废木料wood reservoir 水上贮木场wood resin 木材树脂wood room 调木车间wood rosin 木松香wood sorter 选木工wood species 材种wood spirit 木精,甲醇wood stack 原木垛wood stave 木制排气管wood stone interface 木石界面wood storage 贮木场wood structure 木材结构wood sugar 木(材)糖wood supply 木材供应wood tissue 木材组织wood tar 木焦油wood vinegar 木醋酸wood volume 材积wood waste 废材wood wool 木丝;上等锯末wood yard 贮木场wooden core 木芯wooden pipe 木管wooden plug 木栓,木钉wooden spoke 木制轮辐woody 木质的;含磨木浆的woody cell 木质细胞woody fiber 木质纤维woof 纬线wool 羊毛wool felt (羊毛织的)毛毯woolen 毛织品;呢绒;羊毛制的woolen dry felt 干燥毛毯work bench 工作台work pressure 操作压力work reliability 使用可靠性work safety 作用安全性work temperature 操作温度worm conveyer 螺旋运输机worm drive 蜗轮传动worm felt roll 毛毯伸展辊worm knotter 螺旋式除节机worm press 螺旋压榨机worm roll 舒展辊,麻花辊worming 条痕(纸病)wound heartwood 假心材wound roll 卷筒wound rotor (type) motor 绕线式电机wound wood 病害木材wove 织法;网印(纸病)wove dandy (roll) 网目水印辊wove dandy reel 网目水印纸卷thermocouple pyrometer 热电偶高温计wove mould 圆网笼woven felt 毛毯woves 布纹纸wrapper 包装纸wrapper roll 卷筒包装纸wrapping 包装wrapping machine 包装机wrapping manila 马尼拉包装纸wringer (roll) 挤水辊wrinkle 摺子(纸病)writing bristol 光泽厚书写纸writing quality 书写性能wrong side (纸幅)反面,(纸幅)网面WORLD PULP AND PAPER 《国际造纸》编辑部双月刊WVTR water vapor transmission rate 水蒸汽传递速度的缩略语WP wood pulp 木浆的缩略语WLC white-lined chipboard 白浆衬里的粗纸板的缩略语WL white ledger 白色账薄纸的缩略语WFMT wet fluorescent magnetic particle test 湿荧光磁粉实验的缩略语WAS waste-activated sludge 废活性污泥的缩略语WESTERN PULP 加拿大“西部纸浆”牌漂白硫酸盐针叶木浆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲醇精馏系统:过程分析与塔的设计孙金盛, 田玉峰 , 徐世敏, 丁辉 , 王涛 , 李新刚, 郑艳梅(1 天津大学, 化学工程与技术, 天津300072;2 精馏技术国家工程研究中心, 天津 300072)摘要:基于工业的研究和经验,对甲醇精馏过程进行了分析,最重要的是, 高压和低压浮选工艺流程这一新概念的定义。
新的流程有助于处理许多中国工厂在生产中碰到的问题,也指出了流程和塔内部结构之间的相互影响,推荐了新的塔内部设计了。
最后,工业例子说明如何结合工作和新概念,给解决工程问题提供更多的可能性过程。
关键词:甲醇精馏;双效蒸馏;高压和低压工艺流程;工艺流程分析;仿真与液压;塔内部设计作为一种在有机化工中非常重要的材料,甲醇广泛参与制造塑料材料、合成纤维、橡胶、染料、覆盖材料、香料、医药领域、农药等。
同时,它不仅对许多有机化合物是一种优良的溶剂,而且在许多国家作为一种成熟的替代汽油的绿色能源。
随着国民经济的快速发展,市场实际的或潜在的甲醇需求已大幅增加,从而加速了甲醇工业的发展和甲醇产量的增加。
目前,甲醇精馏技术已向大规模、低能源消耗和更环保的方向发展。
全世界这个行业的主要专利经销商拥有的设备为5000t/dEz。
但中国大陆没有什么高质量的单位的运行能力超过200kt/a(如O-M -232EUS)。
最近, 在天津大学的国家精馏技术工程研究中心已经做了很多技术和市场研究,包括模拟所有熟悉的工业流程和实验室的数据,特别是研究了两个甲醇精制塔之间的双效热传导传热影响。
作为我们工作的总结, 提出了高压过程和低压过程的3+1塔过程。
1 过程描述甲醇可以用许多材料合成,例如天然气、气油、燃料油、煤炭等。
除了不同催化剂、反应机理和甲醇浓度的初级产品以外,随后的蒸馏过程和设备是相似的,主要有三种分类:双塔过程,三塔过程和3+1塔过程。
双塔过程是由轻馏分塔和甲醇精馏塔或在100kt/A的工厂使用的提供简单的工艺、设备和较低投资的主要塔。
三塔过程是建立了轻馏分塔,加压甲醇精馏塔(PMRC)和常压甲醇精馏塔(AMRC),这个过程的特点是在AMRC和PMRC之间的双效蒸馏模式,这意味着AMRC的底部和PMRC的顶部的热量交换。
这种模式节省能源(30%~40%~)和冷却水的循环速度。
如果一个甲醇回收塔、汽提塔或水洗塔涉及到在低压甲醇精馏塔后提高废水质量,这个过程会变成3+1塔过程。
1.1轻馏分塔无论在2塔的过程,3塔过程还是3+1塔过程中,轻馏分塔(LEC)扮演着同样的角色。
一些在合成甲醇过程中致命的中轻组分产品在本塔中被清除,如甲酸甲酯(MFOR)、二甲醚(DME),C1~C6,以及丙酮和甲基乙基酮(MEK)。
一些书籍认为MFOR,DME和C1~C6为醇可溶杂质,同时DME和MEK为水溶杂质。
工业调查显示的基本清除操作措施包括大回流比和大的过程进水口或两者皆有。
原理分别采用不同的沸点或者相对挥发度来清除溶解性的组分。
作为一个常规方法、大回流比,比如说0.7 ~ 0.9(回流到塔),需要高的冷凝器温度去除高沸点的轻杂质,例如丙酮。
显然,这种方法伴随着高能源消耗。
因为上面的方法不能减少损失的甲醇,将工艺水添加到塔改变甲醇和水的浓度,以降低醇溶杂质在塔中液体混合物的溶解度。
工艺水通常通过三种方法加入塔中:进入第二冷凝器、塔顶或随着合成甲醇的原料进入。
为了在进口的位置获得同样的甲醇和水浓度,在第一种方式处理水的量大约为原料的5%,而其他的方式,为10%~20%。
在许多单元,用碱性溶液(~ 15%氢氧化钠)添加到塔中来调整适量pH值以精制粗甲醇。
1.2精馏塔/主塔工艺流程在靠近塔顶部的蒸馏段中,甲醇产品在占据了85%的有效长度。
在中间部分,这一段去除甲醇、乙醇、异丙醇、丙醇等,确保产出高纯度的废水(<100PPM甲醇)的产品。
当需要高质量的甲醇产品,在工厂中也称为乙醇段的那部分,就是打开底部高于进料口的塔板,以帮助减少甲醇产品中乙醇的浓度。
1.3 三塔工艺流程中的精馏塔在三种多效蒸馏类型FS,LFS和LSR,其中Lurgi的LSF双效是中国最欢迎的模式。
大约一半的轻关键组分(甲醇)以高纯度产品生成。
底部的产品,包含剩下的关键组分供给AMRC,在本塔之后提纯。
一个或两个方面线路将被用来帮助净化废水和精馏。
在这种情况下,热集成是质量流量的方向。
在高压力下,相对挥发度会降低。
这有助于解释为什么在很多工厂从PMRC中产出的甲醇比从AMRC中产出的甲醇包含更多的杂质,尽管在PMPC回流比比AMRC大。
其他的原因是泡点回流温度和剩余的轻组分的存在。
两种产品可以以不同的价格出售或混合后售出。
除此之外,缺点是注料压力的增加导致成本增加,塔高压力需要高壁厚的采购成本和更复杂的工艺流程操作成本。
但在许多情况下,与在沸腾和冷凝所大量投入的公共设施相比,这些增加很小。
由于在3塔流程中,顶部和底部废水中甲醇的纯度是有要求的,在AMRC的再沸器和PMRC 的冷凝器之间的流动对这些服务提供足够的热负荷。
通常,是由PMRC的操作压力,AMRC的压降决定的,而后者是由内部结构决定的.1.4 高压工艺流程在大型的甲醇精馏单位(比如说,300kt/a,通常3塔工艺流程)中,甲醇失去了AMRC利用高压力处理污水的能力是不能忽略的。
解决方案就是在3塔过程的基础上增加AMRC甲醇回收塔(或汽提塔)。
在这种情况下大多数净化的废水是从AMRC底部排出,另一个小部分,从第四塔排除。
这就需要更高的底部温度,来获得含有甲醇和其他轻有机杂质的废水。
因为这个塔再沸器的热资源主要为甲醇蒸汽在PMRC中维持正常的操作,甲醇精制塔的操作压力必须足够高,以提供换热的温度梯度(冷凝器和再沸器)。
1.5 低压工艺流程低压的配置过程与高压流程相比,不同的是甲醇回收塔的进料部分。
这定义了AMRC工艺流程少了对底部废水和塔四底部进料的产品(5% ~ 10%wt甲醇)的要求。
这方面的变化节省了AMRC无效部分的形式,使塔结构简单,而且最重要的是因为底部物质的改变得到较低温度变化的再沸器。
这种情况下,作为逻辑上的高压流程,相应地要求在PMRC中使用较低的操作温度、较高的蒸汽流和较低的操作压力。
1.6 HPF和LPF的比较PMRC的操作压力大约在850~ 900kpa,LPF的操作压力大约在是640~700ka。
乍一看起来很明显,这对进料泵和所要求的加热介质的条件花费大大增加。
同样,为获得高纯度甲醇和废水,HPF允许一个可选的甲醇回收塔,这意味着在大型单位的间歇性关闭或取消第四塔都是可忽略的,而LPF必须保证第四塔在运行。
另一个细微的变化是PMRC的甲醇纯度在同一回流比两个不同压力所引起的相对挥发度不同可能发生变化。
还有一个事实:由于第4塔的流量和进料比,在塔4中相同的产品需求下,很难分离蒸馏。
HPF工艺中塔径小、甲醇浓度更高、回流比较小。
因此,塔径小、甲醇浓度低、回流比大,尤其是在大型液体无效的部分做一个更大的塔时是不可避免的。
1.7回收塔和回收类型在运行单位,可以发现几种甲醇回收塔或者汽提塔的模式。
作为最简单的一个,汽提塔的顶部进料和底部产出蒸气。
主要作用是在底部物料流中除去甲醇,并自发地在顶部降低甲醇浓度。
该操作还直接除去一些蒸汽并把其中的一部分转变为废水。
一个回流汽提塔在塔的较低部分进料,能在顶部回收到90%浓度的甲醇,使工艺更加复杂。
显然,作为一个汽提塔,它仍然具有相同的问题。
在许多情况下,回收塔是HPF的AMRC塔的微缩模型,清除部分、蒸馏部分,一个或两个可选侧平,顶级产品的90%的甲醇或近合格的甲醇。
合格的甲醇,在PMRC和AMRC合并后,轻微的或几乎没有区别的成分差异,导致整个回收单元多达99.2%~ 99.5%。
在这种情况下,返回顶部生成甲醇的物料或流到其他塔是不必要的。
在HPF,第四塔中的污水含有更多的有机杂质与从AMRC出来的废水没有有任何区别。
由于顶部物料流中甲醇浓度远远不达标,AMRC、PMRC是增加总甲醇回收的一个更好方法工艺。
它的位置是由返回的物料流构成和条件决定的。
虽然回AMRC看起来更好,大多数工厂在中国更喜欢合成甲醇槽。
2 过程仿真对于设计来说,单元分析、故障排除、过程模拟都是最有效的方式。
了解详细的工艺流程图有助于建立镜像单元的软件和保持结果的合理性。
从2001年开始,NERCDT在普吕尔提供的基础上,对甲醇精馏进展开始逐步建立起仿真框架。
这些信息来自实验室研究、工业调查和在中国的经销商研究过程。
这个过程框架,或者说是一个简化的流程包,所涉及的不仅是这个过程的目的、部分的换热设备和泵,同时指定了塔内部的水力计算。
研究结果也有助于优化布置和设计塔的内部布置。
相比之下,与现场运行单元的数据相比,过程框架提出了合理的一致性。
它的运行时间,在不断改进,从2001年的3天,降低到(人工调整)30分钟的时间。
2.1软件的选择决定软件的选择因素包括用户的熟悉程度,更重要的是,描述涉及组分热力学行为的准确性,特别是跟踪对精制甲醇有致命影响致命的乙醇、甲基乙基酮等组分。
因为乙醇包只需要提供最微小的提供、最小的工作和适应性的调整,最终锁定。
2.2流程中塔的热力学的选择计划虽然我们发现乙醇是描述主塔、PMRC和AMRC,甚至甲醇回收满意的成份,但也存在问题:模拟LEC,尤其是移除轻的石蜡和轻微的误差为丙酮。
一些出版物指出UNIFAC是对于这个塔最好的热力学,在认证过程的帮助下,可以有效地去除水。
但是因为不同的国家之间的质量标准,几乎没有任何报告取消对关键光的组件,比如丙酮和MEK。
根据实验室和现场调查数据,相对于2组件NERCDT修正了UNIFAC模型中的一些参数,这个新模型描述塔令人满意。
在研究中,作者发现,尽管大的工艺用水帮助减少石蜡,MFOR和DME,但它对去除其他关键轻杂质,如丙酮和MEK却有相反的效果,因为他们都是水溶和醇溶的。
这项工作指出,拆卸两个水溶和醇溶的性杂质,有一个最佳的比例(水/甲醇)存在,它的功能是集中的两个水溶和醇溶的杂质。
2.3备注上面进行的流程仿真框架都有一些共同点:(1)在HPF或LPF中,一个伪流被提出作为加热媒体来加热AMRC再沸器,并在AMRC中给出了仅有的一个规格。
该方法避免了在模拟中人为决定的加热和提供了一个更准确的结果与工业数据。
在中国东部,一些工厂的故障排除工作被指定到在HPF中的一个较低的操作压力且不当的内部情况,模拟输出和现场数据显示,同样的,在AMRC中合格的产品和废水的数据不能同时得到。
在检查原始设计,一个错误的发现是设计师分别模拟了PMRC和AMRC,将AMRC和PMRC 的绝对数量的热负荷视为相同的。
(2)为了节能,除了AMRC塔的再沸器冷凝物,在反馈到锅炉系统之前,被收集起来并加热精制原料甲醇到沸点附近,随着废水和热甲醇产品从PMRC出来,甲醇的温度提高到67~69 度。