高三数学 复习函数的奇偶性和周期性课件

合集下载

高三数学复习课件【函数的奇偶性及周期性】

高三数学复习课件【函数的奇偶性及周期性】

f(x)=- x,4x02≤+x2<,1,-1≤x<0, 则 f 32=________. 解析:∵f(x)是定义在 R 上的周期为 2 的函数,
且 f(x)=-x,4x02≤+x2<,1,-1≤x<0, ∴f 32=f -12=-4×-122+2=1. 答案:1
返回 2.已知定义在 R 上的函数满足 f(x+2)=-f1x,x∈(0,2]时,f(x)
关 于 _原__点_ 对称
f(x)就叫做奇函数
返回 2.函数的周期性 (1)周期函数
对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)=f(x) ,那么就称函数 f(x)为周期函数,称 T 为这个函数的周期. (2)最小正周期 如果在周期函数 f(x)的所有周期中存在一个 最小的正数 , 那么这个 最小正数 就叫做 f(x)的最小正周期.
关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项
定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数也
不是偶函数. 答案:B
返回
3.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b
的值是
()
A.-13
B.13
C.12
D.-12
解ห้องสมุดไป่ตู้:∵f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,∴a-
奇函数,所以 f 121=f -12=-f 12=123=18. 答案:B
返回
5.函数 f(x)在 R 上为奇函数,且 x>0 时,f(x)=x+1,则当 x<0 时,f(x)=________. 解析:∵f(x)为奇函数,x>0 时,f(x)=x+1, ∴当 x<0 时,-x>0,f(x)=-f(-x)=-(-x+1), 即 x<0 时,f(x)=-(-x+1)=x-1. 答案:x-1

数学函数的奇偶性与周期性课件

数学函数的奇偶性与周期性课件

数学知识点:函数的奇偶性与周期性一、考纲目标1.结合具体函数,了解函数奇偶性的含义;2.运用函数图像,理解和研究函数的奇偶性;3.了解函数的奇偶性、最小正周期的含义,会判断、应用简单函数的周期性;二、知识梳理(一)函数的奇偶性1.定义:如果对于函数 f (x)的定义域内的任意一个x,都有f(x)=f(-x)(f(-x)=f(x)),那么这个函数就是偶(奇)函数;2.性质及一些结论:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;(3)为偶函数(4)若奇函数的定义域包含,则因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;(6)断函数的奇偶性有时可以用定义的等价形式:,(7)设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇(8)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(二)函数的周期性1.定义:若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期2.简单理解:一般所说的周期是指函数的最小正周期,周期函数的定义域一定是无限集,但是我们可能只研究定义域的某个子集三、考点逐个突破1.奇偶性辨析例1.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是A.1 B.2 C.3 D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误奇函数的图象关于原点对称,但不一定经过原点,因此②不正确若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零例2.判断下列函数的奇偶性:(1)f(x)=|x|(x2+1);(2)f(x)=x+1 x ;(3)f(x)=x-2+2-x;(4)f(x)=1-x2+x2-1;(5)f(x)=(x-1)1+x1-x.解析 (1)此函数的定义域为R.∵f(-x)=|-x|[(-x)2+1]=|x|(x2+1)=f(x),∴f(-x)=f (x),即f(x)是偶函数.(2)此函数的定义域为x>0,由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(3)此函数的定义域为{2},由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(4)此函数的定义域为{1,- 1},且f(x)=0,可知图像既关于原点对称,又关于y 轴对称,故此函数既是奇函数又是偶函数.(5)定义域:⎩⎨⎧1-x≠01+x1-x ≥0⇒-1≤x<1是关于原点不对称区间,故此函数为非奇非偶函数. 2.奇偶性的应用 例3.已知函数对一切,都有,(1)求证:是奇函数;(2)若,用表示解:(1)显然的定义域是,它关于原点对称.在中,令,得,令,得,∴,∴,即, ∴是奇函数(2)由,及是奇函数,得例4.(1)已知是上的奇函数,且当时,,则的解析式为(2)已知是偶函数,,当时,为增函数,若,且,则 ()例5设为实数,函数,(1)讨论的奇偶性; (2)求 的最小值解:(1)当时,,此时为偶函数;当时,,,∴此时函数既不是奇函数也不是偶函数(2)①当时,函数,若,则函数在上单调递减,∴函数在上的最小值为;若,函数在上的最小值为,且②当时,函数,若,则函数在上的最小值为,且;若,则函数在上单调递增,∴函数在上的最小值综上,当时,函数的最小值是,当时,函数的最小值是,当,函数的最小值是3.函数周期性的应用例6.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).解 (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x -x 2, ∴f(x)=x 2+2x.又当x ∈[2,4]时,x -4∈[-2,0], ∴f(x -4)=(x -4)2+2(x -4). 又f(x)是周期为4的周期函数,∴f(x)=f(x -4)=(x -4)2+2(x -4)=x 2-6x +8. 从而求得x ∈[2,4]时,f(x)=x 2-6x +8. (3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 011)=0. 4.单调性与奇偶性的交叉应用例7.已知定义域为R 的函数f(x)=-2x +b2x +1+a 是奇函数.①求a 、b 的值;②若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围. 解:①∵f(x)是定义在R 上的奇函数,∴f(0)=0, 即b -1a +2=0,∴b =1,∴f(x)=1-2x a +2x +1, 又由f(1)=-f(-1)知1-2a +4=-1-12a +1,解得a =2.②由①知f(x)=1-2x 2+2x +1=-12+12x +1,易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(k -2t 2),∵f(x)为减函数,∴由上式得t 2-2t>k -2t 2,即对任意的t ∈R 恒有:3t 2-2t -k>0,从而Δ=4+12k<0,∴k<-13.一、选择题1.(2012·高考陕西卷)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |解析:选D.由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知y =f (x +1)是偶函数,则函数y =f (x )的图象的对称轴是( ) A .x =1 B .x =-1C .x =12D .x =-12解析:选A.∵y =f (x +1)是偶函数,∴f (1+x )=f (1-x ),故f (x )关于直线x =1对称.3.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2 解析:选B.f (a )=a 3+sin a +1,①f (-a )=(-a )3+sin(-a )+1=-a 3-sin a +1,② ①+②得f (a )+f (-a )=2, ∴f (-a )=2-f (a )=2-2=0.4.函数f (x )=1-21+2x(x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数解析:选D.∵f (x )=1-21+2x =2x -12x +1,∴f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ).又其定义域为R ,∴f (x )是奇函数.5.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),且当x ∈(0,1]时单调递增,则( )A .f ⎝ ⎛⎭⎪⎫13<f (-5)<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5)C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫13<f (-5)D .f (-5)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52解析:选B.∵f (x +2)=f (x ),∴f (x )是以2为周期的函数,又f (x )是偶函数,∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12,f (-5)=f (5)=f (4+1)=f (1), ∵函数f (x )在(0,1]上单调递增,∴f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f (1),即f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5).二、填空题6.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x+a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-17.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -18.(2013·大连质检)设f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且f (x +3)·f (x )=-1,f (-4)=2,则f (2014)=________.解析:由已知f (x +3)=-1f x,∴f (x +6)=-1f x +3=f (x ),∴f (x )的周期为6.∴f (2014)=f (335×6+4)=f (4)=-f (-4)=-2. 答案:-2 三、解答题9.判断下列函数的奇偶性: (1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎨⎧x 2-2x +3 x >0,0 x =0,-x 2-2x -3x <0.解:(1)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0.∴f (-1)=f (1)且f (-1)=-f (1), ∴f (x )既是奇函数又是偶函数. (2)①当x =0时,-x =0,f (x )=f (0)=0,f (-x )=f (0)=0, ∴f (-x )=-f (x ). ②当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ). ③当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由①②③可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.10.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴有⎩⎨⎧-2≤1-m ≤2-2≤1-m 2≤2,解得-1≤m ≤3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.一、选择题1.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.2.(2011·高考山东卷)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 解析:选B.令f (x )=x 3-x =0, 即x (x +1)(x -1)=0, 所以x =0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2. 因为f (x )是R 上最小正周期为2的周期函数, 所以2≤x <4,4≤x <6上也分别有两个零点, 由f (6)=f (4)=f (2)=f (0)=0, 知x =6也是函数的零点,所以函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 二、填空题3.若f (x )=12x -1+a 是奇函数,则a =________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,得:2a =1,a =12.答案:124.(2013·长春质检)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定:其中正确命题的序号为________.①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. 解析:∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-(-f (x +2+2))=f (x +4), 即f (x )的周期为4,②正确.∵f (x )为奇函数,∴f (4)=f (0)=0,即①正确. 又∵f (x +2)=-f (x )=f (-x ),∴f (x )的图象关于x =1对称,∴③正确, 又∵f (1)=-f (3),当f (1)≠0时,显然f (x )的图象不关于x =2对称,∴④错误.答案:①②③ 三、解答题5.已知函数f (x )=x 2+|x -a |+1,a ∈R . (1)试判断f (x )的奇偶性;(2)若-12≤a ≤12,求f (x )的最小值.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ), 此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )既不是奇函数,也不是偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝⎛⎭⎪⎫x -122+a +34,∵a ≤12,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时,函数f (x )=x 2+x -a +1=⎝⎛⎭⎪⎫x +122-a +34,∵a≥-12,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-12≤a≤12时,函数f(x)的最小值为a2+1.。

高考一轮复习函数的奇偶性与周期性课件

高考一轮复习函数的奇偶性与周期性课件

常见周期函数的举例
正弦函数和余弦函数是常见的周期函 数。例如,y=sin(x)的最小正周期为 2π,y=cos(x)的最小正周期为2π。
函数y=sin(ax)和y=cos(ax)的周期为 2π/a,其中a是常数。
函数y=tan(x)也是周期函数,它的最 小正周期为π。
函数y=tan(ax)的周期为π/a,其中a 是常数。
举一反三
通过练习多种形式的题目, 提高对奇偶性和周期性问 题的应变能力。
反思提高
反思自己在解题过程中的 不足,针对性地加强薄弱 环节的训练。
THANKS.
02
与性
周期函数的定 义
周期函数的定义
如果存在一个非零常数T,对于函数f(x)的定义域内的任意x,都有f(x+T)=f(x), 则称f(x)为周期函数,T称为这个函数的周期。
周期函数的定义还可以表述为
如果存在一个非零常数T,对于函数f(x)的定义域内的任意x,当x增加T时,函数 值重复出现,即f(x+T)=f(x),则称f(x)为周期函数,T称为这个函数的周期。
高考一复函数的奇 偶性与周期性件
• 函数奇偶性的定义与性质 • 函数周期性的定义与性质 • 奇偶性与周期性的应用 • 高考真题解析 • 复习建议与策略
函数奇偶性的定
01
与性
奇函数与偶函数的定 义
奇函数
如果对于函数$f(x)$的定义域内任 意一个$x$,都有$f(-x)=-f(x)$, 则称$f(x)$为奇函数。
偶函数
如果对于函数$f(x)$的定义域内任 意一个$x$,都有$f(-x)=f(x)$, 则称$f(x)$为偶函数。
奇偶函数的性 质
01
奇函数在原点有定义, 即$f(0)=0$。

函数的奇偶性对称性周期性课件共19张PPT

函数的奇偶性对称性周期性课件共19张PPT

(2)已知 f (x) 是奇函数,且当 x 0 时,f (x) eax .若 f (ln 2) 8 ,则a ___-_3______.
(3)(2020·海南 8)若定义在 R 的奇函数 f(x)在(, 0) 单调递减,且 f(2)=0,则满足
xf (x 1) 0 的 x 的取值范围是( D )
A.13
B. 2
C.
13 2
D.123
专题三:函数的周期性
变式 5:(1)设定义在 R 上的函数 f x 满足 f x 2 f x ,若 f 1 2 ,则 f 99 _-_2__.
(2)(2022·湖北模拟)定义在 R 上的函数 f x 满足 f x 1 f x 2 ,则下列是周期函数的是 ( D )A. y f x x B. y f x x C. y f x 2x D. y f x 2x
叫做偶函数 一般地,设函数f(x)的定义域为I,如果∀x∈I, 奇函数 都有-x∈I,且_f_(-__x_)_=__-__f_(x_)_,那么函数f(x) 关于_原__点__对称 就叫做奇函数
复习回顾 2.周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且_f_(_x+__T__)=__f_(x_)_,那么函数y=f(x) 就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最_小___的正数, 那么这个_最__小__正__数__就叫做f(x)的最小正周期.
课堂小结
函数的性质
奇偶性
判断 求解析 求参数
对称性
轴对称: 中心对称:
周期性
求值 求解析 比较大小
祝同学们前程似锦!

高考数学复习全套课件 第二章 第四节 函数的奇偶性与周期性

高考数学复习全套课件 第二章  第四节  函数的奇偶性与周期性

F(-x)=f(-x)+f(x),则F(-x)=F(x),所以 为偶函数 - = - + , 为偶函数. - = ,所以f(x)为偶函数 答案: 答案:D
2.对任意实数 ,下列函数中的奇函数是 对任意实数x, 对任意实数 A.y=2x-3 = - C.y=ln5x = B.y=- 2 =-3x =- D.y=- =-|x|cosx =-
1.周期函数问题,在考题中常有两类表现形式:一类是研 周期函数问题,在考题中常有两类表现形式: 周期函数问题 究三角函数的周期性;一类是研究抽象函数的周期性 究三角函数的周期性;一类是研究抽象函数的周期性. 抽象函数的周期常常应用定义f(T+x)=f(x)给予证明, 给予证明, 抽象函数的周期常常应用定义 + = 给予证明 证明时多从中心对称、轴对称所产生的数学等式出发, 证明时多从中心对称、轴对称所产生的数学等式出发, 推导满足周期定义的等式, 推导满足周期定义的等式,从而在证明函数为周期函 数的同时求出周期. 数的同时求出周期
是非奇非偶函数. ∴f(x)是非奇非偶函数 是非奇非偶函数
判断(或证明 抽象函数的奇偶性的步骤 判断 或证明)抽象函数的奇偶性的步骤 或证明 (1)利用函数奇偶性的定义,找准方向(想办法出现 -x), 利用函数奇偶性的定义,找准方向 想办法出现 想办法出现f(- , 利用函数奇偶性的定义 f(x)); ; (2)巧妙赋值,合理、灵活变形配凑; 巧妙赋值,合理、灵活变形配凑; 巧妙赋值 (3)找出 -x)与f(x)的关系,得出结论 找出f(- 与 的关系 得出结论. 的关系, 找出
解析: =-f(x), 是奇函数. 解析:∵f(-x)=- ,∴f(x)是奇函数 - =- 是奇函数 可知f(x)关于直线 对称, 由f(1+x)=f(1-x)可知 关于直线 =1对称, + = - 可知 关于直线x= 对称 =-f(- =- =-f(2+ ∴f(x)=- -x)=- +x) =- =-[-f(4+x)]=f(x+4), =- - + = + , 即f(x)=f(x+4), = + , 的一个周期, ∴4为f(x)的一个周期, 为 的一个周期 =-f(1)=- ∴f(-2009)=f(-1)=- =- 3=- - = - =- =-1 =-1. 答案: 答案:-1

第三章 第三节 函数的奇偶性及周期性 课件(共55张PPT)

第三章 第三节 函数的奇偶性及周期性  课件(共55张PPT)

是奇函数.]
3.设 f(x)为定义在 R 上的奇函数,当 x≥0 时,f(x)=3x-7x+2b(b 为常
数),则 f(-2)=( )
A.6
B.-6
C.4
D.-4
A [∵f(x)为定义在 R 上的奇函数,且当 x≥0 时,
f(x)=3x-7x+2b,
∴f(0)=1+2b=0,
∴b=-12 .
∴f(x)=3x-7x-1,
(2)因为函数 f(x)=3x+4sin x-1,f(-a)=5,所以-3a+4sin (-a)-1= 5,则 3a+4sin a=-6,所以 f(a)=3a+4sin a-1=-6-1=-7.
答案: (1)D (2)-7
已知函数奇偶性可以解决的 3 个问题 (1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性 求出解析式. (3)求解析式中的参数:利用待定系数法求解,根据 f(x)±f(-x)=0 得到 关于参数的恒等式,由系数的对等性得参数的方程或方程(组),进而得出参 数的值.
1.函数奇偶性常用结论 (1)如果函数 f(x)是偶函数,那么 f(x)=f(|x|). (2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的 区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶= 偶,奇×偶=奇.
2.函数周期性常用结论 对 f(x)定义域内任一自变量的值 x: (1)若 f(x+a)=-f(x),则 T=2a(a>0). (2)若 f(x+a)=f(1x) ,则 T=2a(a>0). (3)若 f(x+a)=-f(1x) ,则 T=2a(a>0).

高三数学课件:第六讲 函数的奇偶性与周期性

高三数学课件:第六讲 函数的奇偶性与周期性
于星期日:二十二点 四十八分。
知识回顾
1.偶函数概念: 对函数f(x)定义域内的任意一个x,都有
f(-x)=f(x)成立.偶函数的图像关于y轴对 称.
2.奇函数概念:
对函数f(x)定义域内的任意一个x,都有 f(-x)=-f(x)成立.奇函数的图像关于
原点对称.
原点对称是函数是奇函数或偶函数的必
要条件;
2、如果函数的定义域关于原点对称,则 判断f(x)与f(-x)之间的关系.
第八页,编辑于星期日:二十二点 四十八分。
例1、P24例1
第九页,编辑于星期日:二十二点 四十八分。
例2 已知f(x)是定义在R上不恒为 零的函数,且对任意实数a,b,都有
f (ab) af (b) bf (a) 成立,试确定
第二页,编辑于星期日:二十二点 四十八分。
3.若f(x)既是奇函数又是偶函数,则 f(x) =0,且这样的函数有无数个.
第三页,编辑于星期日:二十二点 四十八分。
4.奇函数、偶函数的性质 ①函数具有奇偶性的必要条件是
“定义域关于原点对称”,
②奇函数在两个对称区间上的单调性相同, 偶函数在两个对称区间上的单调性相反.
第十五页,编辑于星期日:二十二点 四十八分。
每一个值时,都有f(x+T)=f(x)成立,T为
函数的周期.
第六页,编辑于星期日:二十二点 四十八分。
基础自测
1、A
2、C
3、B
4、B
x2 x 1(x 0)
5、 f (x) 0(x 0)
x2 x 1(x 0)
第七页,编辑于星期日:二十二点 四十八分。
题型一、判断函数的单调性
1、首先求函数的定义域,定义域关于
函数f(x)的奇偶性.

高三第一轮复习函数的奇偶性课件

高三第一轮复习函数的奇偶性课件
2 x1 a
是奇函数.
(1)求a,b的值; (2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒
成立,求k的取值范围. 解 (1)因为f(x)是奇函数,所以f(0)=0,
即1b0,解 2a
得 b1.从
而f(有 x)2x21xa1.
又 由 f(1)f(1)知21121,解 得 a2. 4a 1a
(2)由(1)知 f(x)2 x2 1 x 2 11 22x11. 由上式易知f(x)在(-∞,+∞)上为减函数. 又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k). 因f(x)是减函数,由上式推得t2-2t>-2t2+k. 即对一切t∈R有3t2-2t-k>0. 从而判别式Δ=4+12k<0,解得k< 1 .
又f (x) lg1 x lg(1x)1 1x 1 x
lg1x f (x), 1 x
故原函数是奇函数.
(2) 1 x ≥0且1-x≠0 -1≤x<1, 1 x
定义域关于原点不对称,故原函数是非奇非偶函数.
探究提高 判断函数的奇偶性,其中包括两个必备条 件: 一是定义域关于原点对称,这是函数具有奇偶性的 必要不充分条件,所以首先考虑定义域对解决问题是 有利的; 二是判断f(x)与f(-x)是否具有等量关系.在判断奇 偶性的运算中,可以转化为判断奇偶性的等价等量关 系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函 数))是否成立.
3.奇、偶函数的性质 (1)奇函数在关于原点对称的区间上的单调性__相__同__,

函数的奇偶性与周期性课件

函数的奇偶性与周期性课件
若 a若>-a>12-,12则,函则数函数f(x)f在(x)[在a,[a+,∞+)∞上)单上调单递调增递,增,
∴函∴数函数f(xf)(在x)在[a,[a,++∞∞)上)上的的最最小小值值f(af()a=)=a2a+2+1.1.
综综上上,,当当 aa≤≤--1212时时,,函函数数f(fx(x)的)的最最小小值值是是34-34-a,a,当当--21<21a<≤a≤21时21时,,函函数数 ff((xx))的的最最小小值值是是aa22++11,,当当aa>>1212,,函函数数f(fx()x的)的最最小小值值是是a+a+34 34
C
0, 1 2,
2
D
0, 1 1 ,2 8 2
例:设 f x 、 gx分别是定义在 R 上的奇函数
和偶函数,当 x 0 时, f xg(x) f (x)g(x) 0
且 g(3) 0 ,则不等式 f (x)g(x) 0 的解集是
( D)
A (3,0) (3,) B (3,0) (0,3)
是奇函数,则a=________
解⇒析1-2:x2解 ⇒fx(+-析 1-2a: xx=2)=fx(+ --2a-x=2)x1= -x- -121- 1+2x+1- x- 1aa=11+⇒+1a-a22=xa2⇒=1x- +221xa2-a=x1,+21x- af-(1,-21xfx- (-- 2)=x12x-2x)-== x2xf- 1= (x. f)1(x. )
3.(2008年上海卷)设函数f(x)是定义在R上的
奇函数,若当x∈(0,+∞)时,f(x)=lg x,则 满足f(x)>0的x的取值范围(-1是,0_)_∪__(_1__,+∞)
函数奇偶性的判断

高考复习课件:函数的奇偶性与周期性

高考复习课件:函数的奇偶性与周期性

图像与原 若奇函数f(x)在原点有 0 点的关系 意义,则f(0)=__
2.周期性 (1)周期函数:若T为函数f(x)的一个周期,则需满足的条件: ①T≠0; f(x+T)=f(x) ②____________对定义域内的任意x都成立. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个 最小的正数 最小的正数 ___________,那么这个___________就叫做它的最小正周期. (3)周期不唯一:若T是函数y=f(x)(x∈R)的一个周期,则 nT(n∈Z,且n≠0)也是f(x)的周期.
1.已知函数y=f(x)是奇函数,则函数y=f(x+1)的图像的对称中 心是( ) (B)(-1,0) (C)(0,1) (D)(0,-1)
f(x)的图像关于点(0,0)对称,函数
y=f(x+1)的图像可由y=f(x)的图像向左平移1个单位得到,故
函数y=f(x+1)的图像的对称中心为(-1,0).
此时x-2<0,|x-2|-2=-x,≨ f x
2
lg 1 x 2 x
2
.
lg[1 x ] lg 1 x 又≧ f x x x ≨函数f(x)为奇函数.
f x ,
(3)显然函数f(x)的定义域为:
(-≦,0)∪(0,+≦),关于原点对称, ≧当x<0时,-x>0,则f(-x)=-(-x)2-x =-x2-x=-f(x);当x>0时,-x<0, 则f(-x)=(-x)2-x=x2-x=-f(x). 综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立, ≨函数f(x)为奇函数.
【变式训练】(1)若函数f(x)=3x+3-x与 g(x)=3x-3-x的定义域

《函数的奇偶性》复习课件

《函数的奇偶性》复习课件

46
f(-x)+g(-x)=-x1-1, 即f(x)-g(x)=x+1 1.② 联立①②得 f(x)=x2-x 1,g(x)=x2-1 1.
47
利用函数奇偶性求解析式的方法 1“求谁设谁”,既在哪个区间上求解析式,x就应在哪个区间上 设. 2要利用已知区间的解析式进行代入. 3利用fx的奇偶性写出-fx或f-x,从而解出fx. 提醒:若函数fx的定义域内含0且为奇函数,则必有f0=0,但若 为偶函数,未必有f0=0.
(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).
20
(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题. [解] (1)如图所示
(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).
21
巧用奇、偶函数的图象求解问题 1依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称. 2求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画 出奇偶函数图象的问题.
31
当堂达标 固双基
32
1.思考辨析
[答案]
(1)函数f(x)=x2,x∈[0,+∞)是偶函数.( ) (1)× (2)×
(2)对于函数y=f(x),若存在x,使f(-x)=-f(x), (3)× (4)×
则函数y=f(x)一定是奇函数.( )
(3)不存在既是奇函数,又是偶函数的函
数.( )
(4)若函数的定义域关于原点对称,则这个函数不
x-1,x<0,
(4)f(x)=0,x=0, x+1,x>0.
12
[解] (1)函数的定义域为R,关于原点对称.
又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),

高考数学一轮复习函数的奇偶性对称性与周期性课件

高考数学一轮复习函数的奇偶性对称性与周期性课件

(2)定义域关于原点对称是函数具有奇偶性的一个必要条件.
()
(3)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.
()
(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称. ( )
(5)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )
和f(-1),所得出结果一定不可能的是
()
A.4和6 B.3和1
C.2和4
D.1和2
【解析】选D.因为f(x)=asin x+bx+c,所以f(1)+f(-1)=2c,又因为c∈Z,所以
f(1)与f(-1)之和应为偶数.
A.f(x)=x-1
B.f(x)=x2+x
C.f(x)=2x-2-x
D.f(x)=2x+2-x
【解析】选D.D中,f(-x)=2-x+2x=f(x),所以f(x)为偶函数.其余A、B、C选项均不
满足f(-x)=f(x).
2.(必修1P49练习AT1改编)下列函数中为偶函数的是
()
A.y=x2sin x
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=
f
1
x
,则T=2a(a>0).
(3)若f(x+a)=
f
1
x
,则T=2a(a>0).
【知识点辨析】
(正确的打“√”,错误的打“×”)
(1)偶函数图象不一定过原点,奇函数的图象一定过原点. ( )
图象特点 关于_y_轴__对称

函数的奇偶性、周期性与对称性+课件-2025届高三数学一轮复习

函数的奇偶性、周期性与对称性+课件-2025届高三数学一轮复习

常用结论
函数周期性的常用结论
设函数 y = f ( x ), x ∈R, a >0, a ≠ b .
(1)若 f ( x + a )=- f ( x ),则2 a 是函数 f ( x )的周期;
1
(2)若 f ( x + a )=±
,则2 a 是函数 f ( x )的周期;
()
(3)若 f ( x + a )= f ( x + b ),则| a - b |是函数 f ( x )的周期.
于直线 x = a 对称.
(2)若函数 y = f ( x + b )是奇函数,则 f ( x + b )+ f (- x + b )=0,函数 y = f ( x )的图
象关于点( b ,0)中心对称.
2. 函数的周期性
(1)周期函数
一般地,设函数 f ( x )的定义域为 D ,如果存在一个非零常数 T ,使得对每一个 x ∈
∈[4,6)时, f ( x )= x 2-12 x +32.

, )
2
2

2
对称.
对称.
(1)奇、偶函数的图象平移之后对应的函数不一定有奇偶性,但其图象一定有
对称性.(2)注意区分抽象函数的周期性与对称性的表示,周期性的表示中,括号内 x
的符号相同,对称性的表示中,括号内 x 的符号相反.
常用结论
函数 f ( x )图象的对称性与周期的关系
(1)若函数 f ( x )的图象关于直线 x = a 与直线 x = b 对称,则函数 f ( x )的周期为2| b -
0 .

(2)若函数在关于原点对
称的区间上单
称的区间上有最值,则
调性⑤ 相同 .

课件5:2.3 函数的奇偶性与周期性

课件5:2.3 函数的奇偶性与周期性

• (2)图像法:
提醒:(1)确定函数的奇偶性时,必须先判定函数定义域是 否关于原点对称.若对称,再验证 f(-x)=±f(x)或其等价形式 f(-x)±f(x)=0 是否成立.
(2)分段函数奇偶性的判断,要注意定义域内 x 取值的任意 性,应分段讨论,讨论时可依据 x 的范围取相应的解析式化简, 判断 f(x)与 f(-x)的关系,得出结论,也可以利用图像作判断.
即时训练 2 (1)已知 f(x)是定义在实数集 R 上的奇函数,
对任意的实数 x,f(x-2)=f(x+2),当 x∈(0,2)时,f(x)=-x2,
则 f(123)=( )
A.-94
B.-14
1
9
C.4
D.4
(2)已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x
<2 时,f(x)=x3-x,则函数 y=f(x)的图像在区间[0,6]上与 x 轴
②f(x+a)=f1x(a≠0),则函数 f(x)必为周期函数,2|a|是它
的一个周期.
③f(x+a)=-
1 ,则函数 fx
f(x)必为周期函数,2|a|是它的
一个周期.
提醒:应用函数的周期性时,应保证自变量在给定的区间
内.
(3)函数周期性的重要应用 利用函数的周期性,可将其他区间上的求值,求零点个数, 求解析式等问题,转化为已知区间上的相应问题,进而求解.

或方程(组),进而得出参数的值.
比较函数值 利用奇、偶函数的图像特征或根据奇函数在对称区 的大小或解 间上的单调性一致,偶函数在对称区间上的单调性 函数不等式 相反,转化到同一单调区间上求解.
求函数解析 将待求区间上的自变量转化到已知区间上,再利用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知 能




∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,




聚 焦
∴f(x)=f(x-2)=f(2-x)=2-x+1=3-x.
考 场
·
·
















·
·


别 关 注
5.函数f(x)对于任意实数x满足条件
f
x

2

f
1,
x
密 高 考
基 若f(1)=-5,则f(f(5))=_____.
第三节 函数的奇偶性与周期性
点击进入相应模块








·
·
















·
·
















·
·
















·
·
















·
·
















·
·
















·
·

















·
·
















·
·
















·
·












点 击
函数奇偶性的判定
研 究
·
·
特 别
【例1】判断下列函数的奇偶性:
解 密


注 (1)f(x)=lgx2+lg 1 ;
1.奇偶函数的有关性质
解 密




(1)函数的定义域关于原点对称是函数具有奇偶性的必要不




盘 点
充分条件;
考 题
·
·


示 (2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称; 能




反之亦然;




聚 焦
(3)若奇函数f(x)在x=0处有定义,则f(0)=0.
考 场
·
·




典 考


·
·
警 示
【解析】选C.由奇函数定义知,函数②、③、④都是奇函数,
知 能


醒 函数①既不是奇函数又不是偶函数,因此C选项正确.









·
·








考 纲
3.若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是
考 题


击 ·
()
究 ·




关 注
(A)单调递减的偶函数



·
·
















·
·
















· 特
1.“函数f(x)为奇函数”是“f(0)=0”的( )
· 解




注 (A)充分不必要条件



础 盘
(B)必要不充分条件
典 考


· 警
(C)充要条件
· 知




醒 (D)既不充分又不必要条件



向 聚
【解析】选D.f(x)= 1为奇函数,但f(0)不存在;对函数
题 研


·
·
















·
·










向 聚
注意:以上结论是在两函数的公共定义域内才成立;并且只
拟 考


·
·
典 例
能在选择题、填空题中直接应用,解答题须先证明再利用.
实 战












·
·






注 3.既是奇函数又是偶函数的函数的个数



础 盘





盘 (2)若函数f(x)关于点(a,0)和点(b,0)对称,则函数f(x)必



·
·
警 示
为周期函数,2|a-b|是它的一个周期;
知 能




(3)若函数f(x)关于点(a,0)和直线x=b对称,则函数f(x)必




聚 为周期函数,4|a-b|是它的一个周期.



·
·






(B)单调递减的奇函数
高 考
基 础
(C)单凋递增的偶函数
(D)单调Hale Waihona Puke 增的奇函数经 典盘



· 【解析】选B.
·




提 醒
∵f(x)=x3在其定义域上为奇函数,
检 验
考 向
∴y=f(-x)在其定义域上也为奇函数.
模 拟




· 典
∵f(x)=x3在其定义域上为增函数,
· 实


精 讲
∴y=f(-x)在其定义域上为减函数.
演 练




点 4.已知函数f(x)是以2为周期的偶函数,且当x∈(0,1)时, 研


·
·
特 别
f(x)=x+1,则函数f(x)在(1,2)上的解析式为( )
解 密



(A)f(x)=3-x
(B)f(x)=x-3





盘 (C)f(x)=1-x
(D)f(x)=x+1



·
·
警 示
【解析】选A.当1<x<2时,-1<x-2<0,






·
·




关 注
奇偶函数的定义域有什么特点?它是函数具有奇偶性的
高 考
基 础
什么条件?
经 典




·
提示:定义域关于原点对称.定义域关于原点对称是函数
·




提 醒
具有奇偶性的必要不充分条件.
检 验








·
·
















·
·













既是奇函数又是偶函数的函数有无穷多个,即f(x)=0,定义
典 考


· 警
域是关于原点对称的任意一个数集.
· 知



相关文档
最新文档