吉林省镇赉县第一中学2017届高三上学期第二次阶段测试数学(理)试题 扫描版含答案.doc

合集下载

吉林省吉林市普通中学2017届高三毕业班第二次调研测试试题(扫描版)

吉林省吉林市普通中学2017届高三毕业班第二次调研测试试题(扫描版)

吉林省吉林市普通中学2017届高三政治毕业班第二次调研测试试题(扫描版)第二次调研测试政治参考答案一、选择题:BCAAB DDCCB CBDBA CBBAC DAAD二、主观题25(1)(劳动者角度)①劳动者具有享受社会保险和福利的权利,大病保险全面覆盖,有利于维护劳动者的权益,保障劳动者主人翁地位,充分调动和发挥劳动者的积极性、创造性。

(4分)(分配角度)②公平是提高经济效率的保证。

全面实施城乡居民大病保险,有利于促进社会公平,维护劳动者权益,激发劳动者发展生产、提高经济效率的积极性。

(3分)③大病保险全面覆盖,有利于再分配更加注重公平,增加低收入者收入;有利于缩小城乡、区域、行业收入分配差距。

(3分)(财政角度)④国家财政是促进社会公平,改善人民生活的物质保障。

大病保险全面覆盖,有利于保障和提高人民的生活水平,促进社会的稳定和谐。

(4分)(2)①政府具有履行加强社会建设的职能。

通过简政放权,减少行政审批有利于完善服务质量,打造服务型政府。

②通过简政放权,减少行政审批有利于政府转变职能,充分发挥市场经济的优点,激发经济发展活力,进一步提高政府为经济社会发展服务,为人民服务的能力和水平.③政府的工作原则是对人民负责。

通过简政放权,减少行政审批有利于坚持求真务实的工作作风,提高行政管理水平和效率,更好的为人民服务,对人民负责④政府必须审慎行使权力,坚持科学决策、民主决策、依法决策。

有利于防止行政权力的缺失和滥用,提高行政管理水平,提高政府的权威。

⑤权力的行使需要监督,通过简政放权,减少行政审批,才能防止滥用权力,防止以权谋私、权钱交易等腐败行为,保证清正廉洁。

(每点3分,任答四点即可)26.(1)①有利于培育、践行社会主义核心价值观,团结协作,增强社会主义意识形态的的吸引力、凝聚力。

(3分)②自强不息精神作为中华民族的内在气质,有利于树立高度的文化自觉、文化自信。

(3分)③无私奉献、弘扬爱国主义为核心的民族精神;(2分)艰苦创业,锐意进取,弘扬改革创新为核心的时代精神。

吉林省吉林市普通中学2017届高三数学毕业班第二次调研测试试题理(扫描版)

吉林省吉林市普通中学2017届高三数学毕业班第二次调研测试试题理(扫描版)

吉林省吉林市普通中学2017届高三数学毕业班第二次调研测试试题理(扫描版)吉林市普通中学2016—2017学年度高中毕业班第二次调研测试数 学(理科)参考答案与评分标准一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13. [0,2];2n 三、解答题17解:(1)由图象知A=1, 54(),2126T πππω=-== ----------------------------------------------------3分将点(,1)6π代入解析式得sin()1,3πϕ+=因为||2πϕ<,所以6πϕ=所以()sin(2)6f x x π=+ --------------------------------------------------------------------------5分(2)由(2)cos cos a c B b C -=得: (2sin sin )cos sin cos A C B B C -= 所以2sin cos sin(),2sin cos sin A B B C A B A =+=因为(0,)A π∈,所以sin 0A ≠,所以12cos ,,233B B A C ππ==+= -------------------------------8分25()sin(),0,263666A f A A A πππππ=+<<<+<,所以1sin()(,1]62A π+∈所以1()(,1]22A f ∈ ------------------------------------------------------------------------10分18.(本小题满分12分)解:(Ⅰ)设数列{a n }的公比为q ,当1q =时,符合条件,133a a ==,a n =3 -----------------------------------2分当1q ≠时,21313(1)91a q a q q ⎧=⎪⎨-=⎪-⎩所以21213(1)9a q a q q ⎧=⎪⎨++=⎪⎩,解得1112,2a q ==- ----5分 1112()2n n a -=⨯-综上:a n =3或1112()2n n a -=⨯- ---------------------------------------------------6分注:列方程组21211139a q a a q a q ⎧=⎪⎨++=⎪⎩求解可不用讨论 (Ⅱ)证明:若a n =3,则b n =0,与题意不符;222231112()3()22n n n a ++=⨯-=⨯,222233log log 22n n n b n a +=== -----------------8分 14111(1)1n n n c b b n n n n +===-++ ----------------------------------------------------10分123111111(1)()()1122311n c c c c n n n ++++=-+-++-=-<++ ---------12分19.(本小题满分12分)解 (Ⅰ) 由题意可知,这20名工人年龄的众数是30, --------------------------------2分这20名工人年龄的平均数为x =120(19+3×28+3×29+5×30+4×31+3×32+40)=30,------------------------------4分(Ⅱ) 这20名工人年龄的茎叶图如图所示:------------------------------------------7分(Ⅲ) 记年龄为24岁的三个人为A 1,A 2,A 3;年龄为26岁的三个人为B 1,B 2,B 3则从这6人中随机抽取2人的所有可能为{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2}, {A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B ,3},{A 3,B 1},{A 3,B 2},{A ,3,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3}共15种。

2017届高三第二次模拟考试 数学理 (含答案)word版

2017届高三第二次模拟考试 数学理 (含答案)word版

2017年高考考前适应性训练数学(理工农医类)本试卷共4页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数ii ++113的虚部是A.i -B.1-C.iD.12.设集合⎭⎬⎫⎩⎨⎧=+=143422y x x A ,{}2x y y B ==,则B A ⋂=A.[]2,2-B.[]2,0C.0.4D.0.83.在某项测量中,测量结果ξ服从正态分布()(σσ2,1N >)0,若ξ在(0.2)内取值的概率为0.8,则ξ在()1,0内取值的概率为 A.0.1B.0.2C.0.4D.0.84. 已知两条直线 a ,b 与两个平面α、αβ⊥b ,,则下列命题中正确的是 ①若,//αa 则b a ⊥;②若b a ⊥,则a//α;③若β⊥b ,则βα// ; ④若βα⊥,则b//β. A. ①③B.②④C.①④D.②③5.已知点P 在圆522=+y x 上,点Q (0,—1),则线段PQ 的中点的轨迹方程是 A.022=-+x y xB.0122=-++y y x C.0222=--+y y xD.022=+-+y x y x6.已知a x x p ≥-+-910:的解集为R ,aq 1:<1,则⌝p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表: 附:参考公式及数据: (1)卡方统计量()()()()()22122111222112112211222112n n n n n n n n n n n n n x ++++-=(其中)22211211n n n n n +++=;(2)独立性检验的临界值表:则下列说法正确的是A.有99%的把握认为环保知识测试成绩与专业有关B.有99%的把握认为环保知识测试成绩与专业无关C.有95%的把握认为环保知识测试成绩与专业有关D.有95%的把握认为环保知识测试成绩与专业无关8.函数()(()⎩⎨⎧≤++-=0142ln 2x x x x x x x f 的零点个数为A.0B.1C.2D.39.如图为某个几何体的三视图,则该几何体的侧面积为 A.π416+ B.π412+ C.π816+ D.π812+10.已知函数()x f 的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,()()[]()1212x x x f x f --<0恒成立,设()()3,2,21f c f b f a ==⎪⎭⎫ ⎝⎛-=,则a 、b 、c 的大小关系为 A.c >a >bB.c >b >aC.a >c >bD.b >a >c11.已知双曲线154:22=-y x C 的左、右焦点分别为F 1、F 2,P 为C 的右支上一点,且212F F PF =,则21PF ⋅等于A.24B.48C.50D.5612.对于定义域为D 的函数()x f ,若存在区间[](a D b a M ⊆=,<)b ,使得(){}M M x x f y y =∈=,,则称区间M 为函数()x f 的“等值区间”.给出下列四个函数:①();2xx f =②();3x x f =③();sin x x f =④().1log 2+=x x f则存在“等值区间”的函数的个数是A.1个B.2个C.3个D.4个>)0第II 卷(非选择题 共90分)注意事项:1.将第II 卷答案用0.5mm 的黑字签字笔答在答题纸的相应位置上。

吉林吉林市2017届高考数学二模试卷(理科) 含解析

吉林吉林市2017届高考数学二模试卷(理科) 含解析

2017年吉林省吉林市高考数学二模试卷(理科)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.1.已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},则(∁U M)∩N=()A.{x|2≤x≤3} B.{x|2<x≤3}C.{x|x≤﹣1,或2≤x≤3} D.{x|x<﹣1,或2<x≤3}2.如果复数z=,则()A.|z|=2 B.z的实部为1C.z的虚部为﹣1 D.z的共轭复数为1+i3.下列关于命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“a=2"是“函数f(x)=log a x在区间(0,+∞)上为增函数"的充分不必要条件C.若命题P:∃n∈N,2n>1000,则﹣P:∀n∈N,2n≤1000 D.命题“∃x∈(﹣∞,0),2x<3x”是真命题4.△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=3,c=2,则∠A=( )A.30°B.45°C.60°D.90°5.函数f(x)=+ln|x|的图象大致为()A.B.C.D.6.阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2 B. C.﹣1 D.27.设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于( )A.﹣10 B.﹣5 C.0 D.58.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π9.已知f(x)=sinxcosx﹣sin2x,把f(x)的图象向右平移个单位,再向上平移2个单位,得到y=g(x)的图象,若对任意实数x,都有g(α﹣x)=g(α+x)成立,则g(α+)+g()=( )A.4 B.3 C.2 D.10.在等腰直角△ABC中,AC=BC,D在AB边上且满足:,若∠ACD=60°,则t的值为()A.B. C.D.11.已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是()A.32 B.16 C.8 D.412.已知函数,若关于x的方程f2(x)﹣3f(x)+a=0(a∈R)有8个不等的实数根,则a的取值范围是( )A.B.C.(1,2)D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知O是坐标原点,点A(﹣1,1).若点M(x,y)为平面区域上的一个动点,则的取值范围是.14.已知||=2,||=2,与的夹角为45°,且λ﹣与垂直,则实数λ=.15.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.16.艾萨克•牛顿(1643年1月4日﹣1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线"的方法求函数f(x)零点时给出一个数列{x n}:满足,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{x n}为牛顿数列,设,已知a1=2,x n>2,则{a n}的通项公式a n= .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值范围.18.(12分)已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.19.(12分)某车间20名工人年龄数据如表:年龄(岁)19242630343540合计工人数(人)133543120(Ⅰ)求这20名工人年龄的众数与平均数;(Ⅱ) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ) 从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.20.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF 与平面AEF所成的二面角的正弦值.21.(12分)如图,椭圆E:,点P(0,1)在短轴CD上,且(Ⅰ)求椭圆E的方程及离心率;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.22.(12分)设函数f(x)=(x+b)lnx,g(x)=alnx+﹣x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.(1)求b的值;(2)若对任意x≥1,都有g(x)>,求a的取值范围.2017年吉林省吉林市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.1.已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},则(∁U M)∩N=()A.{x|2≤x≤3} B.{x|2<x≤3}C.{x|x≤﹣1,或2≤x≤3} D.{x|x<﹣1,或2<x≤3}【考点】补集及其运算;交集及其运算.【分析】利用补集的定义求出集合M的补集;借助数轴求出(C u M)∩N【解答】解:∵M={x|﹣l≤x≤2},∴C u M={x|x<﹣1或x>2}∵N={x|x≤3},∴(C u M)∩N={x|x<﹣1,或2<x≤3}故选D.【点评】本题考查利用数轴求集合间的交集、并集、补集运算.2.如果复数z=,则()A.|z|=2 B.z的实部为1C.z的虚部为﹣1 D.z的共轭复数为1+i【考点】复数代数形式的乘除运算;复数的基本概念.【分析】直接利用复数的除法运算化简,求出复数的模,然后逐一核对选项即可得到答案.【解答】解:由z==,所以,z的实部为﹣1,z的虚部为﹣1,z的共轭复数为﹣1+i,故选C.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.下列关于命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0"B.“a=2"是“函数f(x)=log a x在区间(0,+∞)上为增函数”的充分不必要条件C.若命题P:∃n∈N,2n>1000,则﹣P:∀n∈N,2n≤1000 D.命题“∃x∈(﹣∞,0),2x<3x”是真命题【考点】特称命题;全称命题.【分析】选项A是写一个命题的逆否命题,只要把原命题的结论否定当条件,条件否定当结论即可;选项B看由a=2能否得到函数f(x)=log a x在区间(0,+∞)上为增函数,反之又是否成立;选项C、D是写出特称命题的否定,注意其否定全称命题的格式.【解答】解:因为命题“若x2﹣3x+2=0,则x=1"的逆否命题为“若x≠1,则x2﹣3x+2≠0",所以A正确;由a=2能得到函数f(x)=log a x在区间(0,+∞)上为增函数,反之,函数f(x)=log a x在区间(0,+∞)上为增函数,a不一定大于2,所以“a=2"是“函数f(x)=log a x在区间(0,+∞)上为增函数"的充分不必要条件,所以选项B正确;命题P:∃n∈N,2n>1000,的否定为¬P:∀n∈N,2n≤1000,所以选项C正确;因为当x<0时恒有2x>3x,所以命题“∃x∈(﹣∞,0),2x<3x”为假命题,所以D不正确.故选D.【点评】本题考查了特称命题的否定,特称命题的否定为全称命题,注意命题格式的书写,属基础题.4.△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=3,c=2,则∠A=( )A.30°B.45°C.60°D.90°【考点】余弦定理.【分析】根据题意和余弦定理求出cosA的值,由A的范围求出角A的值.【解答】解:∵a=,b=3,c=2,∴由余弦定理得,cosA===,又由A∈(0°,180°),得A=60°,故选:C.【点评】本题考查了余弦定理的应用,属于基础题.5.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【考点】函数的图象.【分析】当x<0时,函数f(x)=,由函数的单调性,排除CD;当x>0时,函数f(x)=,此时,代入特殊值验证,排除A,只有B正确,【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A 的最小值为2,故可排除A,只有B正确,故选:B.【点评】题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力.6.阅读如图的程序框图,运行相应的程序,输出的结果为( )A.﹣2 B. C.﹣1 D.2【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得:i=0,A=2执行循环体,i=1,A=,不满足条件i>2016,执行循环体,i=2,A=﹣1;不满足条件i>2016,执行循环体,i=3,A=2;不满足条件i>2016,执行循环体,i=4,A=,…循环下去,而20116=3×672,i=2017时,与i=4输出值相同,即A=.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.7.设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于()A.﹣10 B.﹣5 C.0 D.5【考点】等差数列的前n项和.【分析】设出等差数列的首项和公差,把已知等式用首项和公差表示,得到a1+a10=0,则可求得数列的前10项和等于0.【解答】解:设等差数列{a n}的首项为a1,公差为d(d≠0),由,得,整理得:2a1+9d=0,即a1+a10=0,∴.故选:C.【点评】本题考查了等差数列的通项公式,考查了等差数列的前n 项和,是基础的计算题.8.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π【考点】球内接多面体;球的体积和表面积.【分析】由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,根据三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,求出半径即可求出球的表面积.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,r==,球的表面积4πr2=4π×=π.故选:B.【点评】本题考查了由三视图求三棱柱的外接球的表面积,利用棱柱的几何特征求外接球的半径是解题的关键.9.已知f(x)=sinxcosx﹣sin2x,把f(x)的图象向右平移个单位,再向上平移2个单位,得到y=g(x)的图象,若对任意实数x,都有g(α﹣x)=g(α+x)成立,则g(α+)+g()=() A.4 B.3 C.2 D.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【分析】由条件利用三角函数的恒等变换求得g(x)的解析式,再根据题意可得g(x)的图象关于直线x=α对称,再根据正弦函数的图象的对称性求得α的值,可得g(α+)+g()的值.【解答】解:∵f(x)=sinxcosx﹣sin2x=sin2x﹣=sin(2x+)﹣,把f(x)的图象向右平移个单位,可得函数y=sin[2(x﹣)+]﹣=sin2x﹣的图象;再把所得图象向上平移2个单位,得到y=g(x)=sin2x﹣+2=sin2x+的图象.若对任意实数x,都有g(α﹣x)=g(α+x)成立,则g(x)的图象关于直线x=α对称,∴2α=kπ+,求得α=+,k∈z,故可取α=,∴g(α+)+g()=sin(+)++sin+=4,故选:A.【点评】本题主要考查三角函数的恒等变换及化简求值,正弦函数的图象的对称性,属于基础题.10.在等腰直角△ABC中,AC=BC,D在AB边上且满足:,若∠ACD=60°,则t的值为()A.B. C.D.【考点】平面向量的基本定理及其意义.【分析】易知A,B,D三点共线,从而建立坐标系,从而利用坐标运算求解即可.【解答】解:∵,∴A,B,D三点共线,∴由题意建立如图所示坐标系,设AC=BC=1,则C(0,0),A(1,0),B(0,1),直线AB的方程为x+y=1,直线CD的方程为y=x,故联立解得,x=,y=,故D(,),故=(,),=(1,0),=(0,1),故t+(1﹣t)=(t,1﹣t),故(,)=(t,1﹣t),故t=,故选:A.【点评】本题考查了平面向量坐标运算的应用,考查平面向量基本定理,属于中档题.11.已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是()A.32 B.16 C.8 D.4【考点】双曲线的简单性质.【分析】求得双曲线C1的离心率,求得双曲线C2一条渐近线方程为y=x,运用点到直线的距离公式,结合勾股定理和三角形的面积公式,化简整理解方程可得a=8,进而得到双曲线的实轴长.【解答】解:双曲线的离心率为,设F2(c,0),双曲线C2一条渐近线方程为y=x,可得|F2M|==b,即有|OM|==a,由,可得ab=16,即ab=32,又a2+b2=c2,且=,解得a=8,b=4,c=4,即有双曲线的实轴长为16.故选:B.【点评】本题考查双曲线的方程和性质,注意运用点到直线的距离公式和离心率公式,考查化简整理的运算能力,属于中档题.12.已知函数,若关于x的方程f2(x)﹣3f(x)+a=0(a∈R)有8个不等的实数根,则a的取值范围是()A.B.C.(1,2)D.【考点】根的存在性及根的个数判断.【分析】画出函数的图象,利用函数的图象,判断f(x)的范围,然后利用二次函数的性质求解a的范围.【解答】解:函数,的图象如图:关于x的方程f2(x)﹣3f(x)+a=0(a∈R)有8个不等的实数根,f(x)必须有两个不相等的实数根,由函数f(x)图象可知f(x)∈(1,2).令t=f(x),方程f2(x)﹣3f(x)+a=0化为:a=﹣t2+3t,t∈(1,2),a=﹣t2+3t,开口向下,对称轴为:t=,可知:a的最大值为:﹣()2+3×=,a的最小值为:2.a∈(2,].故选:D.【点评】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知O是坐标原点,点A(﹣1,1).若点M(x,y)为平面区域上的一个动点,则的取值范围是[0,2] .【考点】简单线性规划;平面向量数量积的坐标表示、模、夹角.【分析】先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入分析比较后,即可得到的取值范围.【解答】解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,=﹣1×1+1×1=0当x=1,y=2时,=﹣1×1+1×2=1当x=0,y=2时,=﹣1×0+1×2=2故和取值范围为[0,2]故答案为:[0,2].【点评】本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.14.已知||=2,||=2,与的夹角为45°,且λ﹣与垂直,则实数λ=.【考点】平面向量数量积的运算.【分析】根据向量λ﹣与向量垂直⇔(λ﹣)•=0再结合两向量数量积的定义即可求解.【解答】解:解:∵向量λ﹣与向量垂直,∴(λ﹣)•=0∴λ•﹣•=0∵||=2,||=2,与的夹角为45°∴λ•2•2•cos45°﹣22=0∴λ=故答案为:.【点评】本题主要考察了平面向量的垂直的判定,属常考题,较易.解题的关键是熟记两向量垂直的等价条件⊥⇔•=0和向量数量积的定义.15.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.【考点】抛物线的简单性质.【分析】由抛物线方程求出抛物线的焦点坐标,设出直线l的方程,和抛物线方程联立,化为关于y的一元二次方程后利用根与系数的关系得到A,B两点纵坐标的和与积,结合|AF|=3|BF|,转化为关于直线斜率的方程求解.【解答】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1),由,消去x得.设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4①.∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,消去y2得k2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.16.艾萨克•牛顿(1643年1月4日﹣1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)零点时给出一个数列{x n}:满足,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{x n}为牛顿数列,设,已知a1=2,x n>2,则{a n}的通项公式a n= 2n.【考点】数列递推式.【分析】由已知得到a,b,c的关系,可得f(x)=ax2﹣3ax+2a,求导后代入,整理可得,两边取对数,可得是以2为公比的等比数列,再由等比数列的通项公式求导答案.【解答】解:∵函数f(x)=ax2+bx+c(a>0)有两个零点1,2,∴,解得:.∴f(x)=ax2﹣3ax+2a.则f′(x)=2ax﹣3a.则==,∴,则是以2为公比的等比数列,∵,且a1=2,∴数列{a n}是以2为首项,以2为公比的等比数列,则,故答案为:2n.【点评】本题考查数列递推式,考查了等比关系的确定,属中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2017•吉林二模)已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值范围.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的【分析】(1)根据图象求出A,ω 和φ,即可求函数f(x)的解析式;(2)利用正弦定理化简,求出B,根据三角内角定理可得A的范围,利用函数解析式之间的关系即可得到结论【解答】解:(1)由图象知A=1,,∴ω=2,∴f(x)=sin(2x+φ)∵图象过(),将点代入解析式得,∵,∴故得函数.(2)由(2a﹣c)cosB=bcosC,根据正弦定理,得:(2sinA﹣sinC)cosB=sinBcosC∴2sinAcosB=sin(B+C),∴2sinAcosB=sinA.∵A∈(0,π),∴sinA≠0,∴cosB=,即B=∴A+C=,即那么:,故得.【点评】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.同时考查了正弦定理的运用化简.利用三角函数的有界限求范围,属于中档题.18.(12分)(2017•吉林二模)已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.【考点】数列的求和;等比数列的通项公式.【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解答】解:(Ⅰ)设数列{a n}的公比为q,则3(1++)=9,解得,q=1或q=﹣;故a n=3,或a n=3•(﹣)n﹣3;(Ⅱ)证明:若a n=3,则b n=0,与题意不符;故a2n+3=3•(﹣)2n=3•()2n,故b n=log2=2n,故c n==﹣,故c1+c2+c3+…+c n=1﹣+﹣+…+﹣=1﹣<1.【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.19.(12分)(2017•吉林二模)某车间20名工人年龄数据如表:年龄(岁)19242630343540合计工人数(人)133543120(Ⅰ)求这20名工人年龄的众数与平均数;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【分析】(Ⅰ)利用车间20名工人年龄数据表能求出这20名工人年龄的众数和平均数.(Ⅱ)利用车间20名工人年龄数据表能作出茎叶图.(Ⅲ)记年龄为24岁的三个人为A1,A2,A3;年龄为26岁的三个人为B1,B2,B3,利用列举法能求出这2人均是24岁的概率.【解答】(本小题满分12分)解(Ⅰ)由题意可知,这20名工人年龄的众数是30,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)这20名工人年龄的平均数为=(19+3×28+3×29+5×30+4×31+3×32+40)=30,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)这20名工人年龄的茎叶图如图所示:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅲ)记年龄为24岁的三个人为A1,A2,A3;年龄为26岁的三个人为B1,B2,B3,则从这6人中随机抽取2人的所有可能为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B,3},{A3,B1},{A3,B2},{A,3,B3},{B1,B2},{B1,B3},{B2,B3}共15种.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)满足题意的有{A1,A2},{A1,A3},{A2,A3}3种,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)故所求的概率为P=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查众数、平均数、概率的求法,考查茎叶图的作法,是基础题,解题时要认真审题,注意列举法的合理运用.20.(12分)(2017•吉林二模)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF 与平面AEF所成的二面角的正弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出AB∥CD,从而AB∥面PCD,由此能证明AB∥EF.(Ⅱ)取AD中点G,连接PG,GB,以G为原点,GA、GB、GP 所在直线为坐标轴建立空间直角坐标系G﹣xyz,利用向量法能求出平面PAF与平面AFE所成的二面角的正弦值.【解答】证明:(Ⅰ)∵底面ABCD是菱形,∴AB∥CD,又∵AB⊄面PCD,CD⊂面PCD,∴AB∥面PCD…(2分)又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,∴AB∥EF…(4分)解:(Ⅱ)取AD中点G,连接PG,GB,∵PA=PD,∴PG⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD…∴PG⊥GB,在菱形ABCD中,∵AB=AD,∠DAB=60°,G是AD中点,∴AD⊥GB,如图,以G为原点,GA、GB、GP所在直线为坐标轴建立空间直角由PA=PD=AD=2得,G(0,0,0),A(1,0,0),,,D(﹣1,0,0),…(7分)又∵AB∥EF,点E是棱PC中点,∴点F是棱PD中点,∴,,,设平面AFE的法向量为,则有,∴,不妨令x=3,则平面AFE的一个法向量为,…(9分)∵BG⊥平面PAD,∴是平面PAF的一个法向量,…(10分),…(11分)∴平面PAF与平面AFE所成的二面角的正弦值为:.…(12分)【点评】本题考查直线与直线平行的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(12分)(2017•吉林二模)如图,椭圆E:,点P (0,1)在短轴CD上,且(Ⅰ)求椭圆E的方程及离心率;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由已知可得点C,D的坐标分别为(0,﹣b),(0,b).结合•=﹣2列式求得b,则椭圆方程可求,进一步求出c可得椭圆的离心率;(Ⅱ)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B 的坐标分别为(x1,y1),(x2,y2).联立直线方程和椭圆方程,利用根与系数的关系可得A,B横坐标的和与积•+λ•,可知当λ=2时,•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB 即为直线CD,仍有•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.【解答】解:(Ⅰ)由已知,点C,D的坐标分别为(0,﹣b),(0,b).又点P的坐标为(0,1),且•=﹣2,即1﹣b2=﹣2,解得b2=3.∴椭圆E方程为.∵c==1,∴离心率e=;B的坐标分别为(x1,y1),(x2,y2).联立,得(4k2+3)x2+8kx﹣8=0.其判别式△>0,x1+x2=,x1x2=.从而,•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,体现了“设而不求"的解题思想方法,是中档题.22.(12分)(2017•吉林二模)设函数f(x)=(x+b)lnx,g(x)=alnx+﹣x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.(1)求b的值;(2)若对任意x≥1,都有g(x)>,求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)求出函数导数,由两直线垂直斜率之积为﹣1,解方程可得b;(2)求出导数,对a讨论,①若a≤,则≤1,②若<a<1,则>1,③若a>1,分别求出单调区间,可得最小值,解不等式即可得到所求范围.【解答】解:(1)直线x+2y=0的斜率为﹣,可得曲线y=f(x)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)又f′(x)=lnx++1,即ln1+b+1=2,所以b=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)g(x)的定义域为(0,+∞),g′(x)=+(1﹣a)x﹣1=(x﹣1).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①若a≤,则≤1,故当x∈(1,+∞)时,g′(x)>0,g(x)在(1,+∞)上单调递增.所以,对任意x≥1,都有g(x)>的充要条件为g(1)>,即﹣1>,解得a<﹣﹣1或﹣1<a≤﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)②若<a<1,则>1,故当x∈(1,)时,g′(x)<0;当x∈(0,1),(,+∞)时,g′(x)>0.f(x)在(1,)上单调递减,在(0,1),(,+∞)上单调递增.学必求其心得,业必贵于专精而g(x)=aln++>在<a<1上恒成立,所以<a<1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)③若a>1,g(x)在[1,+∞)上递减,不合题意.综上,a的取值范围是(﹣∞,﹣﹣1)∪(﹣1,1).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查导数的运用:求切线斜率和单调区间,考查不等式恒成立问题解法,注意运用分类讨论思想方法,考查化简整理运算能力,属于中档题.。

吉林省白城市镇赉一中2017届高三上学期第一次月考数学试卷(理科)Word版含解析

吉林省白城市镇赉一中2017届高三上学期第一次月考数学试卷(理科)Word版含解析

2016-2017学年吉林省白城市镇赉一中高三(上)第一次月考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.函数f(x)=的定义域为()A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)2.已知集合A={y|y=x2﹣2x+3},B={x|y=},则A∩B=()A.[﹣2,0] B.{2}C.[0,2]D.[2,+∞)3.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x﹣2x+a(a∈R),则f(﹣2)=()A.﹣1 B.﹣4 C.1 D.44.关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根;其中假命题的个数是()A.0 B.1 C.2 D.35.已知集合M={x|y=},N={x||x+1|≤2},全集I=R,则图中阴影部分表示的集合为()A.{x|﹣≤x≤1}B.{x|﹣3≤x≤1}C.{x|﹣3≤x<﹣}D.{x|1≤x≤}6.函数f(x)=在点(x0,f(x0))处的切线平行于x轴,则f(x0)等于()A.﹣B.C.D.e27.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象大致为()A.B. C.D.8.函数f(x)=是奇函数,且在(0,+∞)上单调递增,则a等于()A.0 B.1 C.﹣1 D.±19.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.110.函数f(x)=lgx与g(x)=7﹣2x图象交点的横坐标所在区间是()A.(1,2)B.(2,3)C.(3,4)D.(1,5)11.设函数f′(x)=x2+3x﹣4,则y=f(x+1)的单调减区间为()A.(﹣4,1)B.(﹣5,0)C.D.12.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.曲线y=x2与直线y=x所围成图形的面积为.14.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是.15.已知函数f(x)=,(a>0,且a≠1)在R上单调递减.(1)a的取值范围是;(2)若关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是.16.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=.三、解答题(共6小题,满分70分)17.已知集合A={x|x2﹣3x﹣10≤0},B={x|m+1≤x≤2m﹣1},若A∪B=A,求实数m的取值范围.18.已知函数f(x)=k•a﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).(1)求实数k,a的值;(2)若函数,试判断函数g(x)的奇偶性,并说明理由.19.已知函数f(x)=x(k∈Z)且f(2)<f(3)(1)求实数k的值;(2)试判断是否存在正数p,使函数g(x)=1﹣pf(x)+(2p﹣1)x在区间[﹣1,2]上的值域为[﹣4,],若存在,求出这个p的值;若不存在,说明理由.20.已知集合A是函数y=lg(20+8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B,(Ⅰ)若A∩B=∅,求a的取值范围;(Ⅱ)若¬p是q的充分不必要条件,求a的取值范围.21.若函数f(x)=ax3﹣bx+4,当x=2时,函数f(x)有极值为,(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.22.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.2016-2017学年吉林省白城市镇赉一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.函数f(x)=的定义域为()A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)【考点】函数的定义域及其求法.【分析】由函数的解析式可得log2x≠0,即,由此求得函数的定义域.【解答】解:由函数的解析式可得log2x≠0,∴,故函数的定义域(0,1)∪(1,+∞),故选D.2.已知集合A={y|y=x2﹣2x+3},B={x|y=},则A∩B=()A.[﹣2,0] B.{2}C.[0,2]D.[2,+∞)【考点】交集及其运算.【分析】求出A中y的范围确定出A,求出B中x的范围确定出B,找出两集合的交集即可.【解答】解:由A中y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2≥2,得到A=[2,+∞),由B中y=,得到4﹣x2≥0,解得:﹣2≤x≤2,即B=[﹣2,2],则A∩B={2},故选:B.3.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x﹣2x+a(a∈R),则f(﹣2)=()A.﹣1 B.﹣4 C.1 D.4【考点】函数的值.【分析】根据奇函数的性质f(0)=0,求得a的值;再由f(﹣2)=﹣f(2)即可求得答案.【解答】解:∵f(x)为定义在R上的奇函数,∴f(0)=0,解得a=﹣1.∴当x≥0时,f(x)=3x﹣2x﹣1.∴f(﹣2)=﹣f(2)=﹣(32﹣2×2﹣1)=﹣4.故选B.4.关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根;其中假命题的个数是()A.0 B.1 C.2 D.3【考点】分段函数的应用.【分析】将方程的问题转化成函数图象的问题,画出可得.【解答】解:关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0可化为(x2﹣1)2﹣(x2﹣1)+k=0(x ≥1或x≤﹣1)(1)或(x2﹣1)2+(x2﹣1)+k=0(﹣1<x<1)(2)当k=﹣2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根当k=0时,方程(1)的解为﹣1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根故选A5.已知集合M={x|y=},N={x||x+1|≤2},全集I=R,则图中阴影部分表示的集合为()A.{x|﹣≤x≤1}B.{x|﹣3≤x≤1}C.{x|﹣3≤x<﹣}D.{x|1≤x≤}【考点】Venn图表达集合的关系及运算.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于N但不属于M的元素构成,所以用集合表示为N∩(∁U M).则M={x|y=}={x|3﹣x2≥0}={x|﹣≤x≤},则∁U M={x|x>或x<﹣}.N={x||x+1|≤2}={x|﹣3≤x≤1},则N∩(∁U M)={x|﹣3≤x<﹣},故选:C6.函数f(x)=在点(x0,f(x0))处的切线平行于x轴,则f(x0)等于()A.﹣B.C.D.e2【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,再由f′(x0)=0求得x0,则f(x0)可求.【解答】解:由f(x)=,得,∴,由=0,得x0=e.∴f(x0)=.故选:B.7.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象大致为()A.B. C.D.【考点】指数函数的图象变换;函数的零点与方程根的关系.【分析】根据题意,易得(x﹣a)(x﹣b)=0的两根为a、b,又由函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a <1;根据函数图象变化的规律可得g(x)=a X+b的单调性即与y轴交点的位置,分析选项可得答案.【解答】解:由二次方程的解法易得(x﹣a)(x﹣b)=0的两根为a、b;根据函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,即函数图象与x轴交点的横坐标;观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;在函数g(x)=a x+b可得,由0<a<1可得其是减函数,又由b<﹣1可得其与y轴交点的坐标在x轴的下方;分析选项可得A符合这两点,BCD均不满足;故选A.8.函数f(x)=是奇函数,且在(0,+∞)上单调递增,则a等于()A.0 B.1 C.﹣1 D.±1【考点】奇偶性与单调性的综合.【分析】利用函数是奇函数,可得f(﹣x)=﹣f(x),结合在(0,+∞)上单调递增,即可求得a的值.【解答】解:∵函数是奇函数∴f(﹣x)=﹣f(x)∴=﹣[]∴1﹣a2=0∴a=±1a=1时,,f′(x)=1+0,∴函数在(0,+∞)上单调递增,a=﹣1时,,f′(x)=1﹣,∴函数在(0,1)上单调递减,在(1,+∞)上单调递增,综上知,a=1故选B.9.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.1【考点】定积分.【分析】利用回代验证法推出选项即可.【解答】解:若f(x)dx=﹣1,则:f(x)=x2﹣2,∴x2﹣2=x2+2(x2﹣2)dx=x2+2()=x2﹣,显然A不正确;若f(x)dx=,则:f(x)=x2﹣,∴x2﹣=x2+2(x2﹣)dx=x2+2()=x2﹣,显然B正确;若f(x)dx=,则:f(x)=x2+,∴x2+=x2+2(x2+)dx=x2+2()=x2+2,显然C不正确;若f(x)dx=1,则:f(x)=x2+2,∴x2+2=x2+2(x2+2)dx=x2+2()=x2+,显然D不正确;故选:B.10.函数f(x)=lgx与g(x)=7﹣2x图象交点的横坐标所在区间是()A.(1,2)B.(2,3)C.(3,4)D.(1,5)【考点】函数的零点与方程根的关系.【分析】本题即求函数h(x)=f(x)﹣g(x)=lgx+2x﹣7 的零点,根据h(3)h(4)<0,可得函数h(x)的零点所在区间.【解答】解:本题即求函数h(x)=f(x)﹣g(x)=lgx+2x﹣7 的零点,由于函数h(x)是连续函数,且h(3)=lg3﹣1<0,h(4)=lg4+1>0,故h(3)h(4)<0,故函数h(x)的零点所在区间是(3,4),故选C.11.设函数f′(x)=x2+3x﹣4,则y=f(x+1)的单调减区间为()A.(﹣4,1)B.(﹣5,0)C.D.【考点】利用导数研究函数的单调性.【分析】已知函数f′(x),可以求出f′(x+1),要求y=f(x+1)的单调减区间,令f′(x+1)<0即可,求不等式的解集;【解答】解:∵函数f′(x)=x2+3x﹣4,f′(x+1)=(x+1)2+3(x+1)﹣4=x2+5x,令y=f(x+1)的导数为:f′(x+1),∵f′(x+1)=x2+5x<0,解得﹣5<x<0∴y=f(x+1)的单调减区间:(﹣5,0);故选B.12.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】函数的单调性与导数的关系.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f (x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=x2与直线y=x所围成图形的面积为.【考点】定积分在求面积中的应用.【分析】先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx而∫01(x﹣x2)dx=(﹣)|01=﹣=∴曲边梯形的面积是故答案为:.14.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是m<﹣3或m>6.【考点】函数在某点取得极值的条件.【分析】求出函数f(x)的导函数,根据已知条件,导函数必有两个不相等的实数根,只须令导函数的判别式大于0,求出m的范围即可.【解答】解:∵函数f(x)=x3+mx2+(m+6)x+1既存在极大值,又存在极小值f′(x)=3x2+2mx+m+6=0,它有两个不相等的实根,∴△=4m2﹣12(m+6)>0解得m<﹣3或m>6故答案为:m<﹣3或m>6.15.已知函数f(x)=,(a>0,且a≠1)在R上单调递减.(1)a的取值范围是[,] ;(2)若关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是[,]∪{} .【考点】根的存在性及根的个数判断.【分析】(1)有减函数的定义可知f(x)在每一段上都是减函数,且在第一段上的最小值大于或等于第二段上的最大值,列出不等式解出a的范围;(2)由与y=2﹣x与|f(x)|的第二段图象必有一交点可知f(x)=2﹣x在(﹣∞,0)上必有一解,根据二次函数的性质列出不等式组解出a的范围.【解答】解:(1)∵f(x)是R上的单调递减函数,∴,解得≤a≤.(2)∵y=log a(x+1)+1是减函数,且f(0)=1,∴y=|log a(x+1)+1|与y=2﹣x在(0,+∞)上必有一解,∴y=x2+(4a﹣3)x+3a=2﹣x在(﹣∞,0)上必有一解.即x2+(4a﹣2)x+3a﹣2=0在(﹣∞,0)上有一解,∴或,解得a=或.故答案为:[,],[,]∪{}.16.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.三、解答题(共6小题,满分70分)17.已知集合A={x|x2﹣3x﹣10≤0},B={x|m+1≤x≤2m﹣1},若A∪B=A,求实数m的取值范围.【考点】集合关系中的参数取值问题.【分析】分别解出集合A,B,根据A∪B=A,可得B⊆A,从而进行求解;【解答】解:∵A∪B=A,∴B⊆A 又A={﹣2≤x≤5},当B=∅时,由m+1>2m﹣1,解得m<2,当B≠∅时,则解得2≤m≤3,综上所述,实数m的取值范围(﹣∞,3].18.已知函数f(x)=k•a﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).(1)求实数k,a的值;(2)若函数,试判断函数g(x)的奇偶性,并说明理由.【考点】指数函数综合题;函数奇偶性的判断.【分析】(1)由函数f(x)=k•a﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),分别代入函数解析式,构造关于k,a的方程组,解方程组可得实数k,a的值;(2)由(1)求出函数的解析式,并根据指数的运算性质进行化简,进而根据函数奇偶性的定义,可得答案.【解答】解:(1)∵函数f(x)=k•a﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).∴k=1,且k•a﹣3=8解得k=1,a=(2)函数g(x)为奇函数,理由如下:由(1)得f(x)=﹣x=2x,∴函数=则g(﹣x)===﹣=﹣g(x)∴函数g(x)为奇函数19.已知函数f(x)=x(k∈Z)且f(2)<f(3)(1)求实数k的值;(2)试判断是否存在正数p,使函数g(x)=1﹣pf(x)+(2p﹣1)x在区间[﹣1,2]上的值域为[﹣4,],若存在,求出这个p的值;若不存在,说明理由.【考点】幂函数图象及其与指数的关系.【分析】(1)根据幂函数的性质,结合题意得﹣k2+k+2>0,从而求出k的值;(2)由k的值得出f(x)=x2,写出g(x)的解析式,配方后讨论对称轴的范围,从而求出g(x)的最值,得出值域,即可求出对应的p.【解答】解:(1)由f(2)<f(3),得﹣k2+k+2>0,即k2﹣k﹣2<0,又k∈Z,解得k=0或1;(2)k=0或1时,f(x)=x2,g(x)=1﹣pf(x)+(2p﹣1)x=﹣p+,当,即时,,解得p=2,g(﹣1)=﹣4,g(2)=﹣1;当时,∵p>0,∴这样的p不存在;当,即时,,这样的p不存在;综上得,p=2.20.已知集合A是函数y=lg(20+8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a >0)的解集,p:x∈A,q:x∈B,(Ⅰ)若A∩B=∅,求a的取值范围;(Ⅱ)若¬p是q的充分不必要条件,求a的取值范围.【考点】交集及其运算;复合命题的真假;必要条件、充分条件与充要条件的判断.【分析】(Ⅰ)分别求函数y=lg(20+8x﹣x2)的定义域和不等式x2﹣2x+1﹣a2≥0(a>0)的解集化简集合A,由A∩B=∅得到区间端点值之间的关系,解不等式组得到a的取值范围;(Ⅱ)求出¬p对应的x的取值范围,由¬p是q的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解a的范围.【解答】解:(Ⅰ)由条件得:A={x|﹣2<x<10},B={x|x≥1+a或x≤1﹣a}若A∩B=φ,则必须满足所以,a的取值范围的取值范围为:a≥9;(Ⅱ)易得:¬p:x≥10或x≤﹣2,∵¬p是q的充分不必要条件,∴{x|x≥10或x≤﹣2}是B={x|x≥1+a或x≤1﹣a}的真子集,则∴a的取值范围的取值范围为:0<a≤3.21.若函数f(x)=ax3﹣bx+4,当x=2时,函数f(x)有极值为,(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)先对函数进行求导,然后根据f(2)=﹣.f'(2)=0可求出a,b的值,进而确定函数的解析式.(2)根据(1)中解析式然后求导,然后令导函数等于0求出x的值,然后根据函数的单调性与其导函数的正负之间的关系确定单调性,进而确定函数的大致图象,最后找出k的范围.【解答】解:(Ⅰ)f′(x)=3ax2﹣b由题意;,解得,∴所求的解析式为(Ⅱ)由(1)可得f′(x)=x2﹣4=(x﹣2)(x+2)令f′(x)=0,得x=2或x=﹣2,∴当x<﹣2时,f′(x)>0,当﹣2<x<2时,f′(x)<0,当x>2时,f′(x)>0因此,当x=﹣2时,f(x)有极大值,当x=2时,f(x)有极小值,∴函数的图象大致如图.由图可知:.22.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a 的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f´(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.2016年12月7日。

【精选高中试题】吉林省普通中学高三第二次调研测试数学理Word版含答案

【精选高中试题】吉林省普通中学高三第二次调研测试数学理Word版含答案

吉林市普通中学2017—2018学年度高中毕业班第二次调研测试理科数学本试卷共22小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用0.5毫米黑色字迹的签字笔书写,字体工整、 笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。

4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。

1. 已知全集,{|(3)0},{|1}U R N x x x M x x ==+<=<-,则图中阴影部分表示的 集合是 A. {|31}x x -<<- B. {|30}x x -<<C. {|10}x x -≤<D. {|3}x x <-2. 设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为A. 1B. 1-C. 12D. 2-3. 已知,αβ表示两个不同平面,直线m 是α内一条直线,则“α∥β” 是“m ∥β”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 已知{}n a 是公差为4的等差数列,前n 项和为n S ,若515S =,则10a 的值是A. 11B. 20C. 29D.315. 《算法统宗》是中国古代数学名著,由明代数学家程大位 所著,该作完善了珠算口诀,确立了算盘用法,完成了由 筹算到珠算的彻底转变,该作中有题为“李白沽酒”“MNU是否李白街上走,提壶去买酒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档