福州十八中2018-2019九年级上学期半期考数学试试卷答案

合集下载

2018-2019学年度福州市九年级第一学期质量调研数学参考答案

2018-2019学年度福州市九年级第一学期质量调研数学参考答案

2018-2019学年度福州市九年级第一学期质量调研数学试题答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂) 1.D 2.D 3.A 4.D 5.B 6.C 7.A 8.B 9.C 10.B二、填空题(共6小题,每小题4分,满分24分,请在答题卡的相应位置作答) 11.14 12.3- 13.83π14.35 15.22(3)722x x π+-= 161三、解答题(共9小题,满分86分,请在答题卡的相应位置作答) 17.(本小题满分8分)解法一:x 2+4x =-2, ················································································································· 1分 x 2+4x +22=-2+22, ······································································································ 3分(x +2)2=2. ··················································································································· 4分x +2x =-2 ················································································································ 6分即x 1=-2x 2=-2 ······················································································· 8分 解法二:a =1,b =4,c =2. ········································································································· 1分Δ=b 2-4ac =42-4×1×2=8>0. ····················································································· 3分 方程有两个不等的实数根x ············································································································ 4分= -2 ································································································· 6分即x 1=-2x 2=-2 ······················································································· 8分 【注:学生未判断Δ,直接用求根公式计算,并获得正确可得满分.】 18.(本小题满分8分)证明:①当m =0时,函数y =x 是一次函数,与x 轴只有一个公共点.······································· 1分②当m ≠0时,函数y =mx 2+(2m +1)x +m 是二次函数. ∵函数图象与x 轴只有一个公共点,∴关于x 的方程mx 2+(2m +1)x +m =0有两个相等的实数根, ∴Δ=0. ··········································································································· 3分又Δ=(2m +1)2-4×m ×m ···················································································· 4分=4m 2+4m +1-4m2=4m +1, ···································································································· 6分 ∴4m +1=0, ····································································································· 7分 m =14-, ··········································································································· 8分综上所述,当m =0或14-时,函数图象与x 轴只有一个公共点.19.(本小题满分8分)解:(1······························ 4分 方法二(画树状图法):根据题意,可以画出如下的树状图:·············· 4分(2)由(1)知,所有可能出现的结果共有16种,且这些结果出现的可能性相等. ·················· 6分其中他们“心灵相通”的结果有4种. ····································································· 7分 ∴P (心灵相通)=4=14. ················································································· 8分∴他们“心灵相通”的概率是14.【注:第二问的考查在于“可能性相等”,“共有结果数”,“满足条件的结果数”,题中能体现即可得3分】 20.(本小题满分8分)证明:连接O C . ······································································ 1分∵OA =OB ,CA =CB , ····················································· 3分 ∴OC ⊥AB , ··································································· 6分 又AB 经过⊙O 半径的外端点C , ········································ 7分∴直线AB 是⊙O 的切线. ················································· 8分【7分点提及“OC 是半径”,“点C 在⊙O 上”即可得分】 21.(本小题满分8分)解:(1)···························· 2分则△ADE 为所画的三角形. ··································· 3分(2)延长ED ,BC 交于点F .∵△ABC 绕点A 旋转得到△ADE ,∴△ABC ≌△ADE ,·············································· 4分∴∠ACB =∠AED ,∠CAE =120°, ························· 5分 ∵∠ACB +∠ACF =180°, ∴∠AEF +∠ACF =180°. ····································· 6分 在四边形ACFE 中, 4 3 2 1 小武(x ) 小明(y ) B AEDA E D∠AEF +∠CFE +∠ACF +∠CAE =360°, ∴∠CAE +∠CFE =180°, ····················································································· 7分 ∴∠CFE =60°,∴直线BC 与直线DE 相交所成的锐角是60°. ··························································· 8分22.(本小题满分10分)解:(1)答案不唯一:△CEF ∽△DHF ,△AHG ∽△CEG ,△ABC ∽△ADC . ······························ 4分 (2)连接AE .∵四边形ABCD 是正方形, ∴AB =AD ,∠ABE =∠ADC =∠BCD =∠BAD =90︒, ∴∠ADF =90︒=∠ABE . ················································· 5分 ∵DF =BE ,∴△ABE ≌△ADF ,∴AE =AF ,∠BAE =∠DAF , ··········································· 7分∴∠EAF =∠EAD +∠DAF =∠EAD +∠BAE =∠BAD =90︒, ∴∠AFE =45︒. ····························································· 8分∵AC 是对角线,∴∠ACD =45︒=∠AFE , ∴ △AFG ∽△ACF , ···························································································· 9分 ∴AF AC = AG AF ,∴AF 2=AG ·A C .······························································································ 10分【注:(1)中写出正确的一对相似三角形得2分,两对即得4分.】 23.(本小题满分10分)解:(1)将点A (6,m )代入y =13x ,得m =13×6=2, ································································································ 1分∴A (6,2). ······································································································ 2分 将点A (6,2)代入y =k x ,得2=6k ,解得k =12. ······································································································· 4分 (2)解法一:过点A 作关于直线y =x 的对称点B ,过点A 作AC ⊥x 轴于点C ,交直线y =x 于点D ,连接OB ,AB ,过点B 作BE ⊥y 轴于点E , ∴∠ACO =∠BEO =90°. ∵A (6,2),∴C (6,0),AC =2,OC =6. 将x =6代入y =x ,得y =6,∴D (6,6), ∴OC =DC =6, ∴∠COD =45°, ····················································································· 5分 ∵∠COE =90°, ∴∠EOD =45°=∠COD .∵点A ,B 关于直线y =x 对称, ∴OD 垂直平分AB , ∴OB =OA ,∴∠BOD =∠AOD , ∴∠EOB =∠COA , ················································································· 6分 ∴△OAC ≌△OBE (AAS ), ······································································· 7分 ∴BE =AC =2,OE =OC =6, ∴B (2,6). ·························································································· 8分 ∵2×6=12=k , ······················································································ 9分A D F HG∴点B在双曲线y=12x上. ····································································· 10分解法二:过点A作关于直线y=x的对称点B,过点A作AC⊥x轴于点C,交直线y x于点D,连接DB并延长交y轴于点E,连接AB,∴∠ACO=90°.∵A(6,2),∴C(6,0),AC=2.将x=6代入y=x,得y=6,∴D(6,6),∴OC=DC=6,∴DA=DC-AC=4,∠CDO=45°.····························································5分∵点A,B关于直线y=x对称,∴OD垂直平分AB,∴DB=DA=4,∴∠BDO=∠ADO=45°, ·········································································6分∴∠ADB=90°.∵∠OCD=∠COE=90°,∴四边形COED是矩形, ··········································································7分∴∠BEO=90°,OE=CD=6,ED=OC=6,∴BE⊥x轴,BE=ED-DB=2,∴B(2,6).··························································································8分由(1)得双曲线的解析式是y=12x,把x=2代入,得y=122=6,·····································································9分∴点B在双曲线y=12x上. ····································································· 10分【注:该B点坐标求解过程满分为4分,若只是直接由点A关于直线y=x对称得到点B的坐标是(2,6),只给该过程的结论分1分.】24.(本小题满分12分)(1)证明:∵BC=BC,∴∠BAC=∠BEC. ·························································································1分∵BF⊥AC于点F,CE⊥AB于点D,∴∠BF A=∠BDG=∠BDE=90°. ······································································2分∴∠ABF=∠ABE,··························································································3分∴∠BGD=∠BEC,(等角的余角相等) ·······························································4分∴BE=BG.···································································································5分(2)解:连接OB,OE,AE,CH.∵BH⊥AB,∴∠ABH=90°=∠BDE,∴BH∥CD. ··············································· 6分∵四边形ABHC内接于⊙O,∴∠ACH+∠ABH=180°,∴∠ACH=90°=∠AFB,∴BF∥CH,∴四边形BGCH是平行四边形,············································································7分∴CG=BH=4.∵BE=OB=OE,∴△OBE是等边三角形,∴∠BOE=60°. ································································································8分∵BE=BE,∴∠BAE=12∠BOE=30°.。

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。

2017-2018年福建省福州十八中九年级(上)期中数学试卷和答案

2017-2018年福建省福州十八中九年级(上)期中数学试卷和答案

2017-2018学年福建省福州十八中九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)23.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m 的值为()A.6 B.﹣6 C.12 D.﹣124.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1 C.m<1 D.m≤16.(4分)已知圆锥的底面面积为9π cm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18π cm2D.27π cm27.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.108.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步 B.6步 C.8步 D.10步10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是个.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤.17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是时,有y1>y2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.24.(12分)如图,点A是反比例函数y1=(x>0)图象上的任意一点,过点A 作AB∥x轴,交另一个比例函数y2=(k<0,x<0)的图象于点B.的面积等于3,则k是=;(1)若S△AOB(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2=(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.2017-2018学年福建省福州十八中九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形【解答】解:A、是必然事件,故A符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:A.2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2【解答】解:A、y=x2对称轴为x=0,此选项不符合题意;B、y=x2+1对称轴为x=0,此选项不符合题意;C、y=(x﹣1)2对称轴为x=1,此选项符合题意;D、y=(x+1)2对称轴为x=﹣1,此选项不符合题意;故选:C.3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m 的值为()A.6 B.﹣6 C.12 D.﹣12【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选:A.4.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1 C.m<1 D.m≤1【解答】解:根据题意得△=(﹣2)2﹣4m≥0,解得m≤1.故选:D.6.(4分)已知圆锥的底面面积为9π cm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18π cm2D.27π cm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:C.7.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选:B.8.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S=BC•AE=AB2,菱形ABCDS阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选:A.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步 B.6步 C.8步 D.10步【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,=AC•BC=×8×15=60,∴S△ABC设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,△ABC∴20r=60,解得r=3,∴内切圆的直径为6步,故选:B.10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3【解答】解:方程x2+2x﹣1=0的实数根可以看作函数y=x+2和y=的交点坐标.函数大体图象如图所示:A.由图可得,第三象限内图象交点的横坐标小于﹣2,故﹣1<x0<0错误;B.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故0<x0<1正确;C.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故1<x0<2错误;D.当x=2时,y1=2+2=4,y2=,而4>,根据函数的增减性可知,第一象限内的交点的横坐标小于2,故2<x0<3错误.故选:B.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.【解答】解:∵从数﹣2,﹣1,2,5,8中任取一个数记作k,有5种情况,其中使反比例函数的图象经过第二、四象限的k值只有2种,即k=﹣1和k=﹣2,∴满足条件的概率为.故答案为:.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是12个.【解答】解:根据题意得:20×(1﹣0.1﹣0.3)=12(个),答:袋中白色球的个数很可能是12个;故答案为:12.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,=OB•PD=(OD+BD)•PD=,∴S△POB故答案是:.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为7.5.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为5,∴AB=OA=OB=5,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:5×2=10,∴GE+FH的最大值为:10﹣=7.5.故答案为:7.5.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤.17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.【解答】解:设这个反比例函数的解析式为y=(k≠0),依题意得:﹣2=,∴k=﹣8,这个反比例函数解析式为y=﹣.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.【解答】解:连接OC,如图∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.【解答】解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是﹣1<x<0或x>2时,有y1>y2.【解答】解:(1)∵M、N在反比例函数的图象上,∴m==2,﹣4=,解得n=﹣1,∴m的值为2,n的值为﹣1;(2)当y1>y2时,即一次函数图象在反比例函数图象的上方,结合图象可知﹣1<x<0或x>2,故答案为:﹣1<x<0或x>2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.【解答】(1)证明:连接OC,如图,∵DE为切线,∴OC⊥DE,而AD⊥EF,∴OC∥AD,∴∠OCA=∠CAD,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠CAD;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵∠B=30°,∴AC=AB=×12=6.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴DC=BC=×6=3,FC=AC=3.∵∠EDC=30°,∴EC=DC=.∴FE=FC﹣EC=3﹣=1.5.24.(12分)如图,点A是反比例函数y1=(x>0)图象上的任意一点,过点A 作AB∥x轴,交另一个比例函数y2=(k<0,x<0)的图象于点B.的面积等于3,则k是=﹣4;(1)若S△AOB(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2=(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.【解答】解:(1)如图1,设AB交y轴于点C,∵点A是反比例函数y1=(x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S=×2=1,△AOC=3,∵S△AOB∴S=2,△BOC∴k=﹣4;故答案为:﹣4;(2)∵点A的横坐标是1,∴y==2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA==,OB==2,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2=上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC=,∴BE=OC=a,DE=AC=,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=|﹣|=a,即﹣=a,∴k=﹣4.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.【解答】解:(1)当m=t=0时,y=﹣nx2+nx﹣n,△=n2﹣4×n×(﹣n)=﹣n2,∵y关于x的二次函数,∴n≠0,当n≠0时,△<0,该函数图象与x轴没有交点;(2)若n=t=3m,抛物线的解析式为:y=(m﹣3m)x2+3mx=﹣mx2+3mx=﹣m (x﹣)2+,当﹣m>0,即m<0时,所以当x=时,函数有最小值为,当﹣m<0,即m>0时,所以当x=时,函数有最大值为;(3)y=(m﹣n)x2+nx+t﹣n,△=n2﹣4×(m﹣n)(t﹣n)=﹣n2+2(m+t)n﹣2mt,设w=﹣n2+2(m+t)n﹣2mt,如图,∵该函数图象和x轴有交点,且﹣1<0,∴w≥0,开口向下,∵n的最大值和最小值分别为8和4,∴新二次函数w与n轴有两个交点为(4,0)和(8,0),则w=﹣(n﹣4)(n﹣8)=﹣n2+12n﹣32,∴,,此方程组无实数解,∴不存在实数m和t,使该函数图象和x轴有交点.。

福州第十八中学2018-2019学年第一学期期中考试卷九年级数学-答题卡

福州第十八中学2018-2019学年第一学期期中考试卷九年级数学-答题卡

第2页 共4页
23. ​(1)旋转中心是 ______ 点,旋转了 ______ 度. (3)圆O的半径为______; (4)点C与圆O的位置关系是___________。
25. ​
24.(1)②用等式表示 与 之间的数量关系:__________.
第3页 共4页
第4页 共4页
成绩查询:登录或扫描二维码下载App (用户名和初始密码均为准考证号)
福州第十八中学2018-2019学年第一学期期中考试卷 九年级数学
姓名: 考场/座位号:
班级:
注意事项
1.答题前请将姓名、班级、考场、准考证号填写清楚。 2.客观题答题,必须使用2B铅笔填涂,修改时用橡皮擦干净。 3.主观题答题,必须使用黑色签字笔书写。 4.必须在题号对应的答题区域内作答,超出答题区域书写无,共24分)​
11.
12.
13.
14.
15.
16.
三、解答题 (本大题共9小题,共86分,解答应写出必要的文字说明,证明过程和演算步骤)​
17. ​
18. ​
19. ​
20. ​(1)请估计摸到白球的概率将会接近 .
21. ​ ​ 22. ​
第1页 共4页
正确填涂
缺考标记
准考证号
[0] [0] [0] [0] [0] [0] [0] [0] [1] [1] [1] [1] [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [5] [5] [5] [5] [5] [5] [5] [5] [6] [6] [6] [6] [6] [6] [6] [6] [7] [7] [7] [7] [7] [7] [7] [7] [8] [8] [8] [8] [8] [8] [8] [8] [9] [9] [9] [9] [9] [9] [9] [9]

2018-2019学年度九年级上期中数学试题及答案

2018-2019学年度九年级上期中数学试题及答案

第一学期期中阶段性诊断九年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内。

1.一元二次方程2810x x --=配方后可变形为 A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=2.如图是由6个同样大小的正方体摆成的几何体.将 正方体①移走后,所得几何体 A .主视图改变,左视图改变 B .俯视图不变,左视图不变 C .俯视图改变,左视图改变 D .主视图改变,左视图不变 3.已知四边形ABCD ,下列说法正确的是A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形 C .当AC=BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是正方形 4.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系用图象刻画出来,大致图象是5.在平行四边形ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为A .6或8B .4或10C .5或9D .76.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( ) A .6 B .5.5 C .5 D .4.5第2题图 第4题图 第9题图第8题图第6题图7.方程0413)2(2=+---x m x m 有两个实数根,则m 的取值范围 A .25>m B .25≤m 且2≠m C .3≥m D .3≤m 且2≠m 8.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于A .36米B .6米C .33米D .3米9.如图,以点O 为位似中心,将△ABC 放大得到△DEF .若AD=OA ,则△ABC 与△DEF 的面积之比为A .1:2B .1:4C .1:5D .1:610.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=A .14B .15C .16D .17 11.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A .94 B .31 C .61D .9112.如图,已知△ABC 的面积是12,BC=6,点E 、I 分别在边AB 、AC 上,在BC 边上依次作了n 个全等的小正方形DEFG ,GFMN ,…,KHIJ ,则每个小正方形的边长为 A .1112 B .3212+n C .512D .3212-n二、填空题:本题共6小题,每小题填对得4分,共24分。

(完整word版)2018-2019学年度福州市九年级第一学期质量调研数学试卷

(完整word版)2018-2019学年度福州市九年级第一学期质量调研数学试卷

准考证号: 姓名:(在此卷上答题无效)2018-2019学年度福州市九年级第一学期质量调研数 学 试 卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1A C 2.气象台预报“本市明天降水概率是83%”.对此信息,下列说法正确的是 A .本市明天将有83%的时间降水B .本市明天将有83%的地区降水C .本市明天肯定下雨D .本市明天降水的可能性比较大 3.在平面直角坐标系中,点(2,6)关于原点对称的点的坐标是 A .(2-,6-) B .(2-,6)C .(6-,2)D .(6,2)4.如图,测得120BD =m ,60DC =m ,50EC =m ,则小河宽AB 的长是 A .180 m B .150 mC .144 mD .100 m5.若两个正方形的边长比是3∶2,其中较大的正方形的面积是18,则较小的正方形的面积是 A .4 B .8C .12D .166.如图,O 的半径OC 垂直于弦AB ,D 是优弧AB 上的一点(不与点A , B 重合),若50BOC ∠=︒,则ADC ∠等于 A .40° B .30° C .25° D .20° 7.下列抛物线平移后可得到抛物线2(1)y x =--的是B A DOA .2y x =-B .21y x =-C .2(1)1y x =-+D .2(1)y x =-8.已知关于x 的方程20x ax b ++=有一个非零根b ,则a b +的值是 A .2- B .1-C .0D .19.如图,矩形ABCD 的对角线BD 过原点O点C 在反比例函数31k y x+=的图象上.若点A 的坐标是(2-,2-),则k 的值是A .-1B .0C .1D .410.已知二次函数22y ax ax c =-+,当3-<x <2-时,y >0;当3<x <4时,y <0.则a 与c 满足的关系式是 A .15c a =- B .8c a =- C .3c a =- D .c a =第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 二、填空题(本题共6小题,每小题4分,共24分)11是 .12.二次函数2(2)3y x =---的最大值是 . 13.在半径为4的圆中,120°的圆心角所对的弧长是 . 14.已知2350x x +-=,则(1)(2)(3)x x x x +++的值是 .15.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池.丈量田地待耕犁,恰好三分在记.池面至周有数,每边三步无疑.内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池.测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形边长和圆的直径,那么你的计算水平就是第一了.设正方形的边长是x 步,则列出的方程是 .16.如图,等边三角形ABC 中,D 是边BC 上一点,过点C 作AD 的垂线段,垂足为点E ,连接BE ,若2AB =,则BE 的最小值是 .三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分) 解方程:2420x x ++=. 18.(本小题满分8分)已知函数2(21)y mx m x m =+++(m 为常数)的图象与x 轴只有一个公共点,求m 的值. 19.(本小题满分8分)AE小明和小武两人玩猜想数字游戏.先由小武在心中任意想一个数记为x ,再由小明猜小武刚才想的数字.把小明猜的数字记为y ,且他们想和猜的数字只能在1,2,3,4这四个数字中. (1)用列表法或画树状图法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通”,求他们“心灵相通”的概率. 20.(本小题满分8分)如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =.求证:直线AB 是⊙O 的切线.21.(本小题满分8分)如图,ABC △,将ABC △绕点A 逆时针旋转120°得到ADE △,其中点B 与点D 对应,点C 与点E 对应.(1)画出ADE △;(2)求直线BC 与直线DE 相交所成的锐角的度数.22.(本小题满分10分)如图,点E 是正方形ABCD 边BC 上的一点(不与点B ,C 重合),点F 在CD边的延长线上.连接EF 交AC ,AD 于点G ,H .(1)请写出2对相似三角形(不添加任何辅助线);(2)当DF BE =时,求证:2AF AG AC =⋅.23.(本小题满分10分)如图,在平面直角坐标系中,点A (6,m )是直线13y x =与双曲线k y x=的一个交点.(1)求k 的值;(2)求点A 关于直线y x =的对称点B 的坐标,并说明点B 在双曲线上.A DF H GB A24.(本小题满分12分)如图,AB ,AC 是⊙O 的弦,过点C 作CE AB ⊥于点D ,交⊙O 于点E ,过点B 作BF AC ⊥于点F ,交CE 于点G ,连接BE . (1)求证:BE BG =;(2)过点B 作BH AB ⊥交⊙O 于点H ,若BE 的长等于半径,4BH =,AC =,求CE 的长.25.(本小题满分14分)已知二次函数2y ax bx c =++图象的对称轴为y 轴,且过点(1,2),(2,5). (1)求二次函数的解析式;(2)如图,过点E (0,2)的一次函数图象与二次函数的图象交于A ,B 两点(A 点在B 点的左侧),过点A ,B 分别作AC x ⊥轴于点C ,BD x ⊥轴于点D . ①当3CD =时,求该一次函数的解析式;②分别用1S ,2S ,3S 表示ACE △,ECD △,EDB △的面积,问是否存在实数t ,使得2213S t S S =都成立?若存在,求出t 的值;若不存在,说明理由.2018-2019学年度福州市九年级第一学期质量调研数学试题答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂) 1.D 2.D 3.A 4.D 5.B 6.C 7.A 8.B 9.C 10.B二、填空题(共6小题,每小题4分,满分24分,请在答题卡的相应位置作答) 11.1412.3- 13.83π14.35 15.22(3)722x x π+-= 161三、解答题(共9小题,满分86分,请在答题卡的相应位置作答) 17.(本小题满分8分)解法一:x 2+4x =-2, ················································································································· 1x 2+4x +22=-2+22, (3)(x +2)2=2. (4)x +2x =-2 (6)即x 1=-2x 2=-2. ······················································································ 8解法二:a =1,b =4,c =2. ········································································································ 1Δ=b 2-4ac =42-4×1×2=8>0. ···················································································· 3方程有两个不等的实数根x (4)= -2, (6)即x 1=-2x 2=-2. ······················································································ 8【注:学生未判断Δ,直接用求根公式计算,并获得正确可得满分.】18.(本小题满分8分)证明:①当m=0时,函数y=x是一次函数,与x轴只有一个公共点. (1)②当m≠0时,函数y=mx2+(2m+1)x+m是二次函数.∵函数图象与x轴只有一个公共点,∴关于x的方程mx2+(2m+1)x+m=0有两个相等的实数根,∴Δ=0. (3)又Δ=(2m+1)2-4×m×m (4)=4m2+4m+1-4m2=4m+1, (6)∴4m+1=0, (7)m=14-, (8)综上所述,当m=0或14-时,函数图象与x轴只有一个公共点.19.(本小题满分8分)解:(1 (4)方法二(画树状图法):根据题意,可以画出如下的树状图: (4)(2)由(1)知,所有可能出现的结果共有16种,且这些结果出现的可能性相等. (6)其中他们“心灵相通”的结果有4种. (7)∴P(心灵相通)=416=14. (8)∴他们“心灵相通”的概率是14.【注:第二问的考查在于“可能性相等”,“共有结果数”,“满足条件的结果数”,题中能体现即可得3分】20.(本小题满分8分)证明:连接O C. ····································································· 1分∵OA=OB,CA=CB, ···················································· 3分∴OC⊥AB, ·································································· 6分又AB经过⊙O半径的外端点C, ······································· 7分∴直线AB是⊙O的切线. ················································ 8分【7分点提及“OC是半径”,“点C在⊙O上”即可得分】21.(本小题满分8分)解:(1)4321小武(x)小明(y)···························· 2分则△ADE 为所画的三角形. ··································· 3分(2)延长ED ,BC 交于点F .∵△ABC 绕点A 旋转得到△ADE ,∴△ABC ≌△ADE , ·············································· 4分∴∠ACB =∠AED ,∠CAE =120°, ························· 5分 ∵∠ACB +∠ACF =180°, ∴∠AEF +∠ACF =180°. ····································· 6分 在四边形ACFE 中, ∠AEF +∠CFE +∠ACF +∠CAE =360°, ∴∠CAE +∠CFE =180°, ···················································································· 7∴∠CFE =60°,∴直线BC 与直线DE 相交所成的锐角是60°. (8)22.(本小题满分10分)解:(1)答案不唯一:△CEF ∽△DHF ,△AHG ∽△CEG ,△ABC ∽△ADC . ····························· 4(2)连接AE .∵四边形ABCD 是正方形, ∴AB =AD ,∠ABE =∠ADC =∠BCD =∠BAD =90︒, ∴∠ADF =90︒=∠ABE . ················································· 5分 ∵DF =BE ,∴△ABE ≌△ADF ,∴AE =AF ,∠BAE =∠DAF , ·········································· 7分∴∠EAF =∠EAD +∠DAF =∠EAD +∠BAE =∠BAD =90︒, ∴∠AFE =45︒. ···························································· 8分∵AC 是对角线,∴∠ACD =45︒=∠AFE , ∴ △AFG ∽△ACF , ··························································································· 9∴AF AC = AG AF , ∴AF 2=AG .A C . (10)【注:(1)中写出正确的一对相似三角形得2分,两对即得4分.】 23.(本小题满分10分)解:(1)将点A (6,m )代入y =13x ,得m =13×6=2, (1)∴A (6,2). (2)BAEDA D F HGB A E D将点A(6,2)代入y=kx ,得2=6k,解得k=12. (4)(2)解法一:过点A作关于直线y=x的对称点B,过点A作AC⊥x轴于点C,交直线y=x于点D,连接OB,AB,过点B作BE⊥y轴于点E,∴∠ACO=∠BEO=90°.∵A(6,2),∴C(6,0),AC=2,OC=6.将x=6代入y=x,得y=6,∴D(6,6),∴OC=DC=6,∴∠COD=45°, (5)∵∠COE=90°,∴∠EOD=45°=∠COD.∵点A,B关于直线y=x对称,∴OD垂直平分AB,∴OB=OA,∴∠BOD=∠AOD,∴∠EOB=∠COA, (6)∴△OAC≌△OBE(AAS), (7)∴BE=AC=2,OE=OC=6,∴B(2,6). (8)∵2×6=12=k, (9)∴点B在双曲线y=12x上. (10)解法二:过点A作关于直线y=x的对称点B,过点A作AC⊥x轴于点C,交直线y=x于点D,连接DB并延长交y轴于点E,连接AB,∴∠ACO=90°.∵A(6,2),∴C(6,0),AC=2.将x=6代入y=x,得y=6,∴D(6,6),∴OC=DC=6,∴DA=DC-AC=4,∠CDO=45°. (5)∵点A,B关于直线y=x对称,∴OD垂直平分AB,∴DB=DA=4,∴∠BDO=∠ADO=45°, (6)∴∠ADB=90°.∵∠OCD=∠COE=90°,∴四边形COED是矩形, (7)∴∠BEO=90°,OE=CD=6,ED=OC=6,∴BE⊥x轴,BE=ED-DB=2,∴B(2,6). (8)由(1)得双曲线的解析式是y=12x ,把x=2代入,得y=122=6, (9)∴点B在双曲线y=12x上. (10)【注:该B点坐标求解过程满分为4分,若只是直接由点A关于直线y=x对称得到点B的坐标是(2,6),只给该过程的结论分1分.】24.(本小题满分12分)(1)证明:∵BC=BC,∴∠BAC=∠BEC. (1)∵BF⊥AC于点F,CE⊥AB于点D,∴∠BF A=∠BDG=∠BDE=90°. (2)∴∠ABF=∠ABE, (3)∴∠BGD=∠BEC,(等角的余角相等) (4)∴BE=BG. (5)(2)解:连接OB,OE,AE,CH.∵BH⊥AB,∴∠ABH=90°=∠BDE,∴BH∥CD. ··············································· 6分∵四边形ABHC内接于⊙O,∴∠ACH+∠ABH=180°,∴∠ACH=90°=∠AFB,∴BF∥CH,∴四边形BGCH是平行四边形, (7)∴CG=BH=4.∵BE=OB=OE,∴△OBE是等边三角形,∴∠BOE=60°. (8)∵BE=BE,∴∠BAE=12∠BOE=30°.∵∠ADE=90°,∴DE=12AE. (9)设DE=x,则AE=2x,∵BE=BG,AB⊥CD,∴DG=DE=x,∴CD=x+4,在Rt△ADE中,AD. (10)在Rt△ADC中,AD2+CD=AC,即)2+(x+4)2=()2,解得x1=1,x2=-3<0(舍去),∴DG=1, (11)∴CE=CG+GD+DE=6.············································································ 12分25.(本小题满分14分)解:(1)依题意,得022425b a a b c a b c ⎧-=⎪⎪++=⎨⎪++=⎪⎩,,,解得101a b c =⎧⎪=⎨⎪=⎩,,, (3)∴二次函数的解析式为21y x =+. (4)【注:a ,b ,c 求对一个得1分,若a ,b ,c 未求全对,所列方程对两个以上(含两个)可再加1分.】(2)设过点E (0,2)的一次函数的解析式为y kx m =+(0k ≠),则20k m =⋅+, ∴m =2,即该一次函数的解析式为2y kx =+(0k ≠). (5)设A (1x ,1y ),B (2x ,2y )(1x <2x ),则C (1x ,0),D (2x将2y kx =+代入21y x =+,得221kx x +=+, 即210x kx --=,解得x =, ∴1x =2x =.①依题意,得CD =21x x -= ················································· 6∵CD =3, ∴24k +=9, ·································································································· 7解得k =±,∴该一次函数的解析式是2y =+或2y =+. (9)②依题意,得112S AC OC =⋅111111||22y x x y =⋅=-, (10)212S CD OE =⋅21211()22x x x x =-⋅=-,3221122S BD OD x y =⋅=, (11)∴222221()4S x x k =-=+,1311221212111(2)(2)224S S x y x y x x kx kx =-⋅=-++21212121[2()4]4x x k x x k x x =-+++. (12)∵1x =2x =∴12x x k +=,121x x =-,∴2131(1)[(1)24]4S S k k k =-⨯-⨯⨯-+⋅+2114k =+21(4)4k =+, (13)∴22134S S S =, (14)九年级数学 — 11 — (共 4页) 故存在实数4t =,使得2213S tS S =成立.。

2018—2019学年上期期中联考答案

2018—2019学年上期期中联考答案

22. 解: (1) 证明: ∵AF⊥DE 于点 F, AG⊥BC 于点 G, ∴∠AFE=90°, ∠AGC=90°, ∴∠AEF=90°-∠EAF,∠C=90°-∠GAC, 又∵∠EAF=∠GAC,∴∠AEF=∠C 又∵∠DAE=∠C,∴△ADE∽△ABC; ....5 分 (2)∵△ADE∽△ABC;∴∠C;
AN EM AM ∴ 2 0.35 42 EM
.....
4分
....2 分
解得:EM=7.35, ∴EF=EM+MF-1.75=7.3 答:城楼的高度为 7.3 米. ....1 分 ....1 分
20. 解: (1)四边形 ADEF 是平行四边形 ....1 分 .理由如下: ∵△ABD 和△EAC 都是等边三角形 ∴∠ABD=∠EBC=60° BD=AB BE=BC ∴∠ABD-∠EBA =∠EBC-∠EBA 即∠DBE =∠ABC ∴△DBE≌△ABC ....2 分 ∴DE=AC ∵△ACF 是等边三角形,AC=AF ∴DE=AF ...1 分 同理:EF=AD ∴四边形 ADEF 是平行四边形 ....1 分
4 1 概率为 12 3
2分
17.
(1)如图所示..........3 分 (2) (1,0)..........3 分 10..........3 分
18.1 a 2 4a 2 a 2 4a 8 a 2 4a 4 4 a 2 4
2
a 2 0 0
2
不论a取何实数,该方程都有 两个不相等的实数根
2将x 1带入方程x 2 ax a 2 0
1 a a 2 0, 解得,a 1 2
所以此方程为 x 解得 x

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ).A .B .(2,2)C .D .(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A.20cmB .18cmC .D .10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ).A .12-B .C .2-D . 二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 22(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.P22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?23.(本题满分8分)受益于国家支付新能源汽车发展和“一带一路”发展战略等多重因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =,由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,x =∴P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴BC ,OC ,故(B ,代入2y ax =中得:6a =,a =.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+. 17.±218.3三、解答题(共76分)19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷03)32=+--x x ( 3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,AC =BC = ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,AF ,AF AB AE AC =EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-, ∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

2018-2019学年九年级上期中考试数学试卷(含答案)

2018-2019学年九年级上期中考试数学试卷(含答案)

第4题图 第5题图 第6题图 第7题图O C A B · C A D B ' B ' 1 D' B C O D A 2018-2019学年上学期期中考试九年级数学试卷 本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。

注意事项:1.答卷前将密封线左侧的项目填写清楚。

2.答案须用蓝色、黑色钢笔或圆珠笔书写。

卷I (选择题,共42分)一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的)1.用配方法解方程x 2-23x -1=0时,应将其变形为( ) A .(x -13)2=89 B .(x+13)2=109 C .(x -23)2=0 D .(x -13)2=109 2.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上 雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构 的图案中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D . 3.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上 4.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α< 90°).若∠1=112°,则∠α的大小是( ) A .68° B .20° C .28° D .22° 5.如图,BC 是⊙O 的弦,OA ⊥BC ,∠AOB=70°,则∠ADC 的度数是( ) A .70° B .35° C .45° D .60° 6.如图,在△ABC 中,∠C=90°,AB=4,以C 点为圆心,2为半径作⊙C ,则AB 的中 点O 与⊙C 的位置关系是( ) A .点O 在⊙C 外 B .点O 在⊙C 上 C .点O 在⊙C 内 D .不能确定 7.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始 至结束所走过的路径长度为( )A .32πB .43πC .4D .2+32π第9题图第10题图第12题图ABC10203040506070 80 90100110120130140150160170180CDA BE ·第14题图第15题图第16题图8.定义运算“※”为:a※b=⎩⎨⎧)(-)(≤bab>bab22,如:1※(-2)=-1×(-2)2=-4.则函数y=2※x)9.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为88°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°10.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm11.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.391πcm2 12.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.1313.河北省某市2018年现有森林和人工绿化面积为20万亩,为了响应十九大的“绿水青山就是金山银山”,现计划在两年后将本市的绿化面积提高到24.2万亩,设每年平均增长率为x,则列方程为()A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.214.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°15.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1 时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个16.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为()A.23πB.23π-1 C.43π+1 D.43π第18题图卷II (非选择题,共78分)二、填空题(本大题共3个小题;共12分。

2018-2019学年福建省九年级(上)期中数学试卷

2018-2019学年福建省九年级(上)期中数学试卷

2018-2019学年福建省九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列手机手势解锁图案中,是中心对称图形的是()A. B. C. D.【答案】B【解析】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.根据中心对称图形的概念判断.本题考查的是中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列关于x的方程是一元二次方程的是()A. x2−2x+1=x2+5B. ax2+bx+c=0C. x2+1=−8D. 2x2−y−1=0【答案】C【解析】解:A、是一元一次方程,故A不符合题意;B、a=0时是一元一次方程,故B不符合题意;C、是一元二次方程,故C符合题意;D、是二元二次方程,故D不符合题意;故选:C.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.用配方法解方程:x2−4x+2=0,下列配方正确的是()A. (x−2)2=2B. (x+2)2=2C. (x−2)2=−2D. (x−2)2=6【答案】A【解析】解:把方程x2−4x+2=0的常数项移到等号的右边,得到x2−4x=−2,方程两边同时加上一次项系数一半的平方,得到x2−4x+4=−2+4,配方得(x−2)2=2.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.方程x2=3x的解是()A. x=3B. x1=0,x2=3C. x1=0,x2=−3D. x1=1,x2=3【答案】B【解析】解:x2=3x,x2−3x=0,x(x−3)=0,x=0,x−3=0,x1=0,x2=3,故选:B.移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.5.抛物线y=(x+2)2−3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位【答案】B【解析】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2−3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.根据“左加右减,上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AB=1,∠B=60∘,则CD的长为()A. 0.5B. 1.5C. √2D. 1【答案】D【解析】解:∵∠BAC=90∘,∠B=60∘,∴BC=2AB=2,∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,∴AD=AB,而∠B=60∘,∴△ABD为等边三角形,∴BD=AB=1,∴CD=BC−BD=2−1=1.故选:D.利用含30度的直角三角形三边的关系得到BC=2AB=2,再根据旋转的性质得AD=AB,则可判断△ABD为等边三角形,所以BD=AB=1,然后计算BC−BD即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.我县九州村某梨园2016年产量为1000吨,2018年产量为1440吨,求该梨园梨产量的年平均增长率,设该梨园梨产量的年平均增长量为x,则根据题意可列方程为()A. 1440(1−x)2=1000B. 1440(1+x)2=1000C. 1000(1−x)2=1440D. 1000(1+x)2=1440【答案】D【解析】解:设该梨园梨产量的年平均增长量为x,根据题意得:1000(1+x)2=1440.故选:D.设该梨园梨产量的年平均增长量为x,根据该梨园2016年及2018年的产量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.已知二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),则关于x的方程x2+x+c=0的两实数根分别是()A. 1和−1B. 1和−2C. 1和2D. 1和3【答案】B【解析】解:y=x2+x+c,−b2a =−12,即二次函数图象的对称轴是直线x=−12,设二次函数y=x2+x+c的图象与x轴的另一个交点的横坐标是a,∵二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),∴1−(−12)=−12−a,解得:a=−2,∴关于x的方程x2+x+c=0的两实数根分别是1和−2,故选:B.先求出二次函数图象的对称轴,根据对称性求出二次函数图象和x轴的另一个交点的坐标,即可得出答案.本题考查了抛物线与x轴的交点、二次函数的性质等知识点,能熟记二次函数的性质是解此题的关键.9.若函数y=x2−2x+b的图象与坐标轴有三个交点,则b的取值范围是()A. b<1且b≠0B. b>1C. 0<b<1D. b<1【答案】A【解析】解:∵函数y=x2−2x+b的图象与坐标轴有三个交点,∴{b≠0△=(−2)2−4b>0,解得b<1且b≠0.故选:A.抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.本题考查了抛物线与x轴的交点.该题属于易错题,解题时,往往忽略了抛物线与y轴有交点时,b≠0这一条件.10.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x−m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为−3,则点D的横坐标最大值为()A. −3B. 1C. 5D. 8【答案】D【解析】解:当点C横坐标为−3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选:D.当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.能够正确地判断出点C横坐标最小、点D横坐标最大时抛物线的顶点坐标是解答此题的关键.二、填空题(本大题共6小题,共24.0分)11.已知y=(k−2)x k2−2是二次函数,则k=______.【答案】−2【解析】解:依题意得:k2−2=0且k−2≠0,解得k=−2.故答案是:−2.根据二次函数的定义得到k2−2=0且k−2≠0,由此求得k的值.本题考查了二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.12.菱形的两条对角线长分别是方程x2−14x+48=0的两实根,则菱形的面积为______.【答案】24【解析】解:x2−14x+48=0x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为:24.先解出方程的解,根据菱形面积为对角线乘积的一半,可求出结果.本题考查菱形的性质,菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.13.已知m是关于x的方程x2−2x−3=0的一个根,则2m2−4m=______.【答案】6【解析】解:∵m是关于x的方程x2−2x−3=0的一个根,∴m2−2m−3=0,∴m2−2m=3,∴2m2−4m=6,故答案为:6.根据m是关于x的方程x2−2x−3=0的一个根,通过变形可以得到2m2−4m值,本题得以解决.本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.14.已知抛物线y=a(x+1)2+k(a>0)经过点(−4,y1),(1,y2),则y1______y2(填“>”,“=”,或“<”).【答案】>【解析】解:抛物线y=a(x+1)2+k(a>0,a,k为常数)的对称轴为直线x=−1,所以点(−4,y1),(1,y2),到直线x=−1的距离分别为5和2,所以y1>y2.故答案为:>.先根据顶点式得到抛物线y=a(x+1)2+k(a>0,a,k为常数)的对称轴为直线x=−1,然后二次函数的性质和点离对称轴的远近进行判断.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.15.如图,在平面直角坐标系中,点A在抛物线y=x2−6x+17上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为______.【答案】8【解析】解:∵y=x2−6x+17=(x−3)2+8,∴抛物线的顶点坐标为(3,8).∴AC的最小值为8.∴BD的最小值为8.故答案为:8.先依据配方法确定出抛物线的最小值,依据矩形的对角线相等可得到BD=AC,然后确定出AC的最小值即可,本题主要考查的是矩形性质,配方法求二次函数的最值,求得AC的最小值是解题的关键.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2−4ac4a >0;③ac−b+1=0;④OA⋅OB=−ca.其中正确结论的序号是______.【答案】①③④【解析】解:观察函数图象,发现:开口向下⇒a<0;与y轴交点在y轴正半轴⇒c>0;对称轴在y轴右侧⇒−b2a>0;顶点在x轴上方⇒4ac−b24a>0.①∵a<0,c>0,−b2a>0,∴b>0,∴abc<0,①成立;②∵4ac−b24a>0,∴b2−4ac4a<0,②不成立;③∵OA=OC,∴x A=−c,将点A(−c,0)代入y=ax2+bx+c中,得:ac2−bc+c=0,即ac−b+1=0,③成立;④∵OA=−x A,OB=x B,x A⋅x B=ca,∴OA⋅OB=−ca,④成立.综上可知:①③④成立.故答案为:①③④.观察函数图象,根据二次函数图象与系数的关系找出“a<0,c>0,−b2a>0”,再由顶点的纵坐标在x轴上方得出4ac−b24a >0.①由a<0,c>0,−b2a>0即可得知该结论成立;②由顶点纵坐标大于0即可得出该结论不成立;③由OA=OC,可得出x A=−c,将点A(−c,0)代入二次函数解析式即可得出该结论成立;④结合根与系数的关系即可得出该结论成立.综上即可得出结论.本题考查了二次函数图象与系数的关系以及根与系数的关系,解题的关键是观察函数图象逐条验证四条结论.本题属于基础题,难度不大,解决该题型题目时,观察函数图形,利用二次函数图象与系数的关系找出各系数的正负是关键.三、计算题(本大题共1小题,共12.0分)17.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】解:(1)设y=kx+b,22k+b=36,把(22,36)与(24,32)代入得:{24k+b=32k=−2,解得:{b=80则y=−2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:(x−20)y=150,则(x−20)(−2x+80)=150,整理得:x2−60x+875=0,(x−25)(x−35)=0,解得:x1=25,x2=35,∵20≤x≤28,∴x=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x−20)(−2x+80)=−2x2+120x−1600=−2(x−30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,w随x的增大而增大,即当x=28时,w最大=−2(28−30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=150,进而求出答案;(3)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.四、解答题(本大题共8小题,共74.0分)18.解方程(1)x2+4x−5=0(2)3x(x−2)=2(x−2)【答案】解:(1)因式分解得(x+5)(x−1)=0,∴x+5=0或x−1=0,∴x1=−5,x2=1;(2)3x(x−2)−2(x−2)=0,(x−2)(3x−2)=0,∴x−2=0或3x−2=0,∴x1=2,x2=2.3【解析】根据解一元二次方程的方法−因式分解法解方程即可.本题考查了解一元二次方程−因式分解法,熟练掌握因式分解法是解题的关键.19.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1,并写出A1,B1,C1的坐标;(2)请画出△ABC绕点B逆时针旋转90∘后的△A2B2C2.【答案】解:(1)如图所示:△A1B1C1,即为所求,A1(−2,−4);(2)如图所示:△A2B2C2,即为所求【解析】(1)直接利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而得出答案.此题主要考查了旋转变换,正确得出对应点位置是解题关键.20.观察下列一组方程:①x2−x=0;②x2−3x+2=0;③x2−5x+6=0;④x2−7x+12=0;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.【答案】解:(1)由题意可得:k=−15,则原方程为:x2−15x+56=0,则(x−7)(x−8)=0,解得:x1=7,x2=8;(2)第n个方程为:x2+(2n−1)x+n(n−1)=0,(x−n)(x−n+1)=0,解得:x1=n−1,x2=n.【解析】(1)直接利用连根一元二次方程得出k的值;(2)利用因式分解法得出符合题意的值.此题主要考查了一元二次方程的解法以及新定义,正确得出规律是解题关键.21.已知关于x的方程kx2+(3k+1)x+3=0,求证:不论k取任何实数,该方程都有实数根.【答案】证明:①当k=0时,方程为x+3=0解得x=−3方程有实数根;②当k≠0时,△=(3k=1)2−4k×3=(3k−1)2≥0方程有两个实数根,综上所述,方程总有实数根.【解析】①当该方程是一元一次方程时,解方程即可;②当该方程是一元二次方程时,根据已知方程的根的判别式的符号进行判定该方程的根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了解方程的方法和整数的整除性质.22.已知抛物线的顶点为(1,4),与y轴交点为(0,3)(1)求该抛物线的解析式,并画出抛物线的草图(无需列表,要求标出抛物线与坐标轴的交点坐标).(2)观察图象,写出当y<0时,自变量x的取值范围.【答案】解:(1)设抛物线的解析式为y=a(x−1)2+4,将点(0,3)代入,得a+4=3.解得a=−1,抛物线的解析式为y=−(x−1)2+4,其函数图象如下:(2)由函数图象知,y<0时x的范围即为抛物线位于x轴下方部分对应的x的范围,∴x<−1或x>3.【解析】(1)根据顶点坐标设其顶点式,再将(0,3)代入求解可得;(2)根据函数图象知,y<0时x的范围即为抛物线位于x轴下方部分对应的x的范围,据此可得.本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握待定系数法求函数解析式及二次函数与一元二次不等式间的关系.23.参与两个数学活动,再回答问题:活动①:观察下列两个两位数的积(两个乘数的十位上的数都是9,个位上的数的和等于10),猜想其中哪个积最大?91×99,92×98,93×97,94×96,95×95,96×94,97×93,98×92,99×91.活动②:观察下列两个三位数的积(两个乘数的百位上的数都是9,十位上的数与个位上的数组成的数的和等于100),猜想其中哪个积最大?901×999,902×998,903×997,…,997×903,998×902,999×901.(1)分别写出在活动①、②中你所猜想的是哪个算式的积最大?(2)对于活动①,请用二次函数的知识证明你的猜想.【答案】(1)解:①∵91×99=9009,92×98=9016,93×97=9021,94×96=9024,95×95=9025,…∴95×95的积最大;②由①中规律可得950×950的积最大;(2)证明:将①中的算式设为(90+x)(100−x)(x=1,2,3,4,5,6,7,8,9),(90+x)(100−x)=−x2+10x+9000=−(x−5)2+9025∵a<0,∴当x=5时,有最大值9025,即95×95的积最大.【解析】(1)①的结果可根据整数乘法的运算法则,计算出大小在比较;②的结果由①的规律可得结果;(2)可将①中的算式设为(90+x)(100−x)的形式(x=1,2,3,4,5,6,7,8,9),利用二次函数的最值证得结论.本题主要考查了根据已知归纳规律和二次函数的最值问题,发现规律,运用二次函数的最值证明是解答此题的关键.24.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90∘,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45∘,将△ABM绕点A逆时针旋转90∘至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3√2,求AG,MN的长.【答案】解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL).∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=1∠BAD=45∘.2(2)MN2=ND2+DH2.∵∠BAM=∠DAH,∠BAM+∠DAN=45∘,∴∠HAN=∠DAH+∠DAN=45∘.∴∠HAN=∠MAN.又∵AM=AH,AN=AN,∴△AMN≌△AHN.∴MN=HN.∵∠BAD=90∘,AB=AD,∴∠ABD=∠ADB=45∘.∴∠HDN=∠HDA+∠ADB=90∘.∴NH2=ND2+DH2.∴MN2=ND2+DH2.(3)由(1)知,BE=EG,DF=FG.设AG=x,则CE=x−4,CF=x−6.在Rt△CEF中,∵CE2+CF2=EF2,∴(x−4)2+(x−6)2=102.解这个方程,得x1=12,x2=−2(舍去负根).即AG=12.在Rt△ABD中,∴BD=√AB2+AD2=√2AG2=12√2.在(2)中,MN2=ND2+DH2,BM=DH,∴MN2=ND2+BM2.设MN=a,则a2=(12√2−3√2−a)2+(3√2)2.即a2=(9√2−a)2+(3√2)2,∴a=5√2.即MN=5√2.【解析】(1)根据高AG与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设出线段的长,结合方程思想,用数形结合得到结果.本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.25.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=−1时,直线y=−2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M(1,0),∴a +a +b =0,即b =−2a ,∴y =ax 2+ax +b =ax 2+ax −2a =a(x +12)2−9a 4, ∴抛物线顶点D 的坐标为(−12,−9a4);(2)∵直线y =2x +m 经过点M(1,0),∴0=2×1+m ,解得m =−2,∴y =2x −2,则{y =ax 2+ax −2a y=2x−2,得ax 2+(a −2)x −2a +2=0,∴(x −1)(ax +2a −2)=0,解得x =1或x =2a −2,∴N 点坐标为(2a −2,4a −6),∵a <b ,即a <−2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =−a 2a =−12,∴E(−12,−3),∵M(1,0),N(2a −2,4a −6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =12|(2a −2)−1|⋅|−9a 4−(−3)|=274−3a −278a ,(3)当a =−1时,抛物线的解析式为:y =−x 2−x +2=−(x +12)2+94,有{y =−2x y=−x 2−x+2,−x 2−x +2=−2x ,解得:x 1=2,x 2=−1,∴G(−1,2),∵点G 、H 关于原点对称,∴H(1,−2),设直线GH 平移后的解析式为:y =−2x +t ,−x2−x+2=−2x+t,x2−x−2+t=0,△=1−4(t−2)=0,t=9,4当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=−2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<9.4【解析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。

最新-福建省福州市2018届九年级数学上学期期中试题 新

最新-福建省福州市2018届九年级数学上学期期中试题 新

2018-2018学年第一学期期中考试 九年级数学试卷(完卷时间:120分钟 总分:150分)一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项) 1.下列图形中,是中心对称图形的是( ).2.下列各式中是最简二次根式的是( ). A . 3a BCD3.如图⊙O 的直径为10cm ,弦AB 长为8cm ,则点O 到AB 的距离OP 为( ) A.2B.3C. 4D. 54.一元二次方程0412=++x x 的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定5.如图,AB 为⊙O 的直径,点C 在⊙O 上,若16C ∠=︒, 则BOC ∠的度数是( )A.74︒B. 48︒C. 32︒D. 16︒6.天气预报明天连江地区下雨的概率为70%,则下列理解正确的是( ) A .明天70%的地区会下雨 B .明天出行不带雨伞被淋湿的可能性很大 C .明天出行不带雨伞一定会被淋湿 D .明天70%的时间会下雨7.关于x 的一元二次方程x 2-mx -2=0的一个根为-1,则另一个根为( ) (A)1(B)-1(C)2(D)-28.已知相交两圆的半径分别在4和7,则它们的圆心距可能是( ) A.2 B. 3 C. 6 D. 119.用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=10.如图,D 是半径为R 的⊙O 上一点,ABC D过点D 作⊙O 的切线交直径AB 的延长 线于点C ,下列四个条件:①AD =CD ; ②∠A =30°;③∠ADC =120°;④DC =3R . 其中,使得BC =R 的有( )A .①②③B .①②④C .③④D .①②③④ 二、填空题(共5小题,每小题4分,满分20分)11.若根式12-x 有意义,则x 的取值范围是 .12.在平面直角坐标系中,点(2,-1)关于原点对称的点的坐标是 . 13.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是______.14.在△ABC 中,∠C=90°,AC=4,BC=3,以直线AC 为轴旋转一周所得到几何体的表面积是 .15..如图,在△ABC 中,已知∠A=90°,AB =AC =2,O 为BC 的中点,以O 为圆心的圆弧分别与AB 、AC 相切于点D 、E ,则图中阴影部分的面积是 .BD EA三、解答题(共90分)16.计算或解方程(每小题6分,共24分)(1))1258()1845(--+ (2) )212(8-⨯ (3) 04)52=--x ( (4) 01522=--x x17. (本题满分10分)如图7所示,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (-1,1),C (-1,3)。

(完整)2018-2019学年福州市九年级(上)期末数学试调研卷(含答案),推荐文档

(完整)2018-2019学年福州市九年级(上)期末数学试调研卷(含答案),推荐文档

BE BC BE ABC ∠ADC OC D -1 C . D .2018-2019 学年度福州市fh 年级第一学期质量调研AB .数 学 试 卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间 120 分钟,满分 150 8. 已知关于 x 的方程 A .-2 C .0 有一个非零根 B . D .1,则 a + b 的值是y分.注意事项:9. 如图,矩形的对角线 过原点 O ,各边分别平行于坐标轴,点 DC1. 答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.C 在反比例函数 的图象上.若点 A 的坐标是( -2 , -2 ) x考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名 则 k 的值是是否一致.2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,A .-1B .0A B C .1 D .4用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑. 4. 考试结束,考生必须将试题卷和答题卡一并交回.10.已知二次函数 y = ax 2 - 2ax + c , 当-3 < x < -2 时, 则 a 与 c 满足的关系式是A . C .>0;当 3< x <4 时, <0.第Ⅰ卷注意事项:第Ⅱ卷一、选择题(本题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形是中心对称图形的是1. 用 0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2. 作图可先用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑. 二、填空题(本题共 6 小题,每小题 4 分,共 24 分)11. 如图,在平行四边形纸片上作随机扎针试验,针头扎在阴影区域内的概率是 .B C D12. 二次函数 的最大值是 .2. 气象台预报“本市明天降水概率是 83%”.对此信息,下列说法正确的是 A .本市明天将有 83%的时间降水 B .本市明天将有 83%的地区降水C .本市明天肯定下雨 D .本市明天降水的可能性比较大3. 在平面直角坐标系中,点(2,6)关于原点对称的点的坐标是A A .( -2 , -6 )B .( -2 ,6)C .( -6 ,2)D .(6,2)小河13. 在半径为 4 的圆中,120°的圆心角所对的弧长是. 14.已知x 2 + 3x - 5 = 0 ,则 x (x + 1)(x + 2)(x + 3) 的值是. 15.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池.丈量田地待耕犁,恰好三分在记.池面至周有数,每边三步无疑.内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池.测量出除水池外圆内可耕地的面 4. 如图,测得BD = 120 m , DC = 60 m , EC = 50 m ,则小河宽AB 的长是B DC 积恰好 72 平方步,从水池边到圆周,每边相距 3 步远.如果你能求出正 A .180 m B .150 m EC .144 mD .100 m方形边长和圆的直径,那么你的计算水平就是第一了.设正方形的边长 是 x 步,则列出的方程是 .A5. 若两个正方形的边长比是 3∶2,其中较大的正方形的面积是 18,则较小的正方形的面积是 16.如图,等边三角形 中, 是边上一点,过点 作 AD 的垂线段, A .4 B .8 垂足为点 E ,连接 ,若 AB = 2 ,则 的最小值是. C .12 D .16三、解答题(本题共 9 小题,共 86 分.解答应写出文字说明、证明过程或演算步骤) 6. 的半径 垂直于弦 AB , D 是优弧 上的一点(不与点 A , B 重合),若E 17.(本小题满分 8 分),则 等于D B. 0° 解方程: x 2 + 4x + 2 = 0 . BDCC. 5°D. 0° O7. 下列抛物线平移后可得到抛物线 y = -(x - 1)2 的是AB C18.(本小题满分 8 分)y y B . c = -8a D . c = a x333 3O, x y = 3k + 1 y = -(x - 2)2 - 3 c = -3a c = -15aABCD b y = (1 - x )2y = x 2 - 1AB C BD y = -x 2y = (x - 1)2 + 1x 2 + ax + b = 0 如图, O ∠BOC = 50︒AB AB CD = 3 S 2 = t S S21 3A k H C EF BC BC △ADE CE ⊥ AB AC AB CE H 已知函数 (m 为常数)的图象与 x 轴只有一个公共点,求m 的值.19.(本小题满分 8 分)小明和小武两人玩猜想数字游戏.先由小武在心中任意想一个数记为 x ,再由小明猜小武刚才想的数字.把小明猜的数字记为 y ,且他们想和猜的数字只能在1,2,3,4 这四个数字中. (1) 用列表法或画树状图法表示出他们想和猜的所有情况; (2) 如果他们想和猜的数字相同,则称他们“心灵相通”,求他们“心灵相通”的概率.24.(本小题满分 12 分)如图, , 是⊙的弦,过点 C 作 于点 D ,交⊙ O 于点 E ,过点 B 作 BF ⊥ AC 于 点F ,交 于点 G ,连接BE . (1) 求证:20.(本小题满分 8 分)如图,直线经过⊙ O 上的点 C ,并且 OA = OB , CA = CB . 求证:直线 是⊙O 的切线. (2) 过点 B 作BH ⊥ AB 交⊙ O 于点 ,若的长.的长等于半径, BH = 4 , AC = 2 7 ,求C21.(本小题满分 8 分)如图, △ABC ,将△ABC 绕点 A 逆时针旋转 120°得到△ADE ,其中点B 与点 D 对应,点C 与点 E 对应.(1) 画出 ; (2) 求直线与直线 DE 相交所成的锐角的度数.E25.(本小题满分 14 分)已知二次函数 y = ax 2 + bx + c 图象的对称轴为 y 轴,且过点(1,2),(2,5).(1) 求二次函数的解析式;(2) 如图,过点 E (0,2)的一次函数图象与二次函数的图象交于 A , B 两点( A 点在B 点的左侧),过点 A , B 分别作 AC ⊥ x 轴于点 C , BD ⊥ x 轴于点 D .22.(本小题满分 10 分)如图,点 E 是正方形 ABCD 边 上的一点(不与点 B , 重合),点 ①当 时,求该一次函数的解析式;在 CD 边的延长线上.连接 交 AC , AD 于点 G ,. F ②分别用 S 1 , S 2 , S 3 表示△ACE , △ECD , △EDB 的面积,问是否存在实数 t ,使得(1) 请写出 2 对相似三角形(不添加任何辅助线);(2) 当DF = BE 时,求证: AF 2= AG ⋅ AC . AD都成立?若存在,求出的值;若不存在,说明理由.23.(本小题满分 10 分)如图,在平面直角坐标系中,点A (6,(1) 求 的值;B E C)是直线 y = 1x 与双曲线 y = k 的一个交点.3 x (2) 求点 关于直线 y = x 的对称点 B 的坐标,并说明点 B 在双曲线上.m t HGF yy =xAOxHOFAGD ByA EBC OD xOBE y = mx 2 + (2m + 1)x + m O CE BE = BG ;2 2 2 4 42018-2019 学年度福州市fh 年级第一学期质量调研数学试题答案及评分标准评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2. 对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数.选择题和填空题不给中间分. Δ=b 2-4ac =42-4×1×2=8>0. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 分x = ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分= = -2± ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分即+ ,2=-2- . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分【注:学生未判断Δ,直接用求根公式计算,并获得正确可得满分.】18.(本小题满分 8 分)证明:①当 m =0 时,函数 y =x 是一次函数,与 x 轴只有一个公共点. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 分②当 m ≠0 时,函数 y =mx 2+(2m +1)x +m 是二次函数. ∵函数图象与 x 轴只有一个公共点,∴关于 x 的方程 mx 2+(2m +1)x +m =0 有两个相等的实数根,∴Δ=0.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 分又 Δ=(2m +1)2-4×m ×m ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分=4m 2+4m +1-4m 2=4m +1,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分∴4m +1=0,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分m = - 1 , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分 4综上所述,当 m =0 或- 1 时,函数图象与 x 轴只有一个公共点.4一、选择题(共 10 小题,每小题 4 分,满分 40 分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂) 1.D 2.D 3.A 4.D 5.B 6.C 7.A 8.B 9.C 10.B二、填空题(共 6 小题,每小题 4 分,满分 24 分,请在答题卡的相应位置作答)19.(本小题满分 8 分)解:(1)方法一(列表法):根据题意,可以列出如下表格:11. 1 14.35 12. 15.( x + 3)2 - x 2 = 72213. 16. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分三、解答题(共 9 小题,满分 86 分,请在答题卡的相应位置作答)方法二(画树状图法):根据题意,可以画出如下的树状图:x 2+4x +22=-2+22, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 分 (x +2)2=2. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分4∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分 (2)由(1)知,所有可能出现的结果共有 16 种,且这些结果出现的可能性相等.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分4 种.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分 x +2=± x =-2± , ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分∴P (心灵相通)= ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分即 x 1=-2+ 解法二: ,x 2=-2- . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分 ∴他们“心灵相通”的概率是 1.【注:第二问的考查在于“可能性相等”,“共有结果数”,“满足条件的结果数”,题中能体现即可 a =1,b =4,c =2.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 得分3 分】-3 3 - 1832 16 4 =2 2 2 1 4 -b ± b 2 - 4ac 2a-4 ± 8 2 ⨯1小武(x )小明(y ) 1 2 3 41(1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) 17.(本小题满分 8 分)解法一: 小武 1 2 3 4 x 2+4x =-2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 分 小明 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3,6 k20.(本小题满分 8 分)证明:连接 O C . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 分∵OA =OB ,CA =CB , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 分 ∴OC ⊥AB , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分 ∴∠EAF =∠EAD +∠DAF =∠EAD +∠BAE =∠BAD =90︒,∴∠AFE =45︒.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分 ∵AC 是对角线,∴∠ACD =45︒=∠AFE ,∴ △AFG ∽△ACF , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9 分又 AB 经过⊙O 半径的外端点 C , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分 ∴直线 AB 是⊙O 的切线. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分∴ A F = ACAG ,AF 【7 分点提及“OC 是半径”,“点 C 在⊙O 上”即可得分】21.(本小题满分 8 分)解:(1)ED∴AF 2=AG ·A C . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 分【注:(1)中写出正确的一对相似三角形得 2 分,两对即得 4 分.】23.(本小题满分 10 分)解:(1)将点 A (6,m )代入 y =1 x , 3得 m =1 ×6=2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 分 3∴A (6,2). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 分将点 A (6,2)代入 y = k,得 2 x= 解得 k = 12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分 BC(2)解法一:过点 A 作关于直线 y =x 的对称点 B ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙E ∙∙∙∙ 2 分则△ADE 为所画的三角形. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 分(2)延长 ED ,BC 交于点 F . ∵△ABC 绕点 A 旋转得到△ADE ,∴△ABC ≌△ADE ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分 ∴∠ACB =∠AED ,∠CAE =120°,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 分 ∵∠ACB +∠ACF =180°, 过点 A 作 AC ⊥x 轴于点 C ,交直线 y = x 于点 D , 连接 OB ,AB ,过点 B 作 BE ⊥y 轴于点 E , ∴∠ACO =∠BEO =90°. ∵A (6,2), ∴C (6,0), AC =2,OC =6.将 x =6 代入y =x ,得 y =6,∴∠AEF +∠ACF =180°.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分在四边形 ACFE 中,∠AEF +∠CFE +∠ACF +∠CAE =360°,BCF∴D (6,6),∴OC =DC =6, ∴∠COD =45°, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 分 ∴∠CAE +∠CFE =180°,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分 ∴∠CFE =60°,∴直线 BC 与直线 DE 相交所成的锐角是 60°. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分22.(本小题满分 10 分)解:(1)答案不唯一:△CEF ∽△DHF ,△AHG ∽△CEG ,△ABC ∽△ADC . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分 (2)连接 AE .∵∠COE =90°, ∴∠EOD =45°=∠COD .∵点 A ,B 关于直线 y =x 对称,∴OD 垂直平分 AB , ∴OB =OA ,∴∠BOD =∠AOD ,∴∠EOB =∠COA ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分 ∴△OAC ≌△OBE (AAS ),∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分 ∵四边形 ABCD 是正方形,∴AB =AD ,∠ABE =∠ADC =∠BCD =∠BAD =90︒,∴∠ADF =90︒=∠ABE .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 分 ∵DF =BE ,A∴△ABE ≌△ADF ,∴AE =AF ,∠BAE =∠DAF ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分∴BE =AC =2,OE =OC =6,F ∴B (2,6). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分 ∵2×6=12=k ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9 分D∴点 B 在双曲线 y =12 上. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 分 x解法二:过点 A 作关于直线 y =x 的对称点 B ,过点 A 作 AC ⊥x 轴于点 C ,交直线 y = x 于点 D ,y y =xBECEBDAHGOA DyEBy =xDAOCxAAE 2 - DE 2C )(, y 2 y = kx + 2 122⎩ 连接 DB 并延长交 y 轴于点 E ,连接 AB , ∴∠ACO =90°. ∵A (6,2), ∴C (6,0),AC =2.将 x =6 代入 y =x ,得 y =6,∴D (6,6), ∴OC =DC =6,∴DA =DC -AC =4,∠CDO =45°. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 分 ∵点 A ,B 关于直线 y =x 对称, ∴OD 垂直平分 AB , ∴BF ∥CH ,∴四边形 BGCH 是平行四边形,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分∴CG =BH =4. ∵BE =OB =OE ,∴△OBE 是等边三角形, ∴∠BOE . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分∵B E = , ∴∠BAE ∠BOE =30°. ∵∠ADE =90°,∴DB =DA =4,1 ∴DE = .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9 分 ∴∠BDO =∠ADO =45°, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分 ∴∠ADB =90°.∵∠OCD =∠COE =90°,∴四边形 COED 是矩形,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分 ∴∠BEO =90°,OE =CD =6,ED =OC =6, ∴BE ⊥x 轴,BE =ED -DB =2, ∴B (2,6). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分2AE 设 DE =x ,则 AE =2x , ∵BE =BG ,AB ⊥CD , ∴DG =DE =x , ∴CD =x +4, 在 Rt △ADE 中,AD = = 在 Rt △ADC 中,AD 2+CD 2=AC 2,3 x . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 分 由(1)得双曲线的解析式是 y =12 , 即 ( 3 x )2+(x +4)2=(2 )2, x把 x =2 代入,得 y = =6, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9 分 上. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 分解得 x 1=1,x 2=-3<0(舍去),∴DG =1,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 分 ∴CE =CG +GD +DE =6.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 分∴点 B 在双曲线 y = 【注:该 B 点坐标求解过程满分为 4 分,若只是直接由点 A 关于直线 y =x 对称得到点 B 的坐标是(2,6), 只给该过程的结论分 1 分.】24.(本小题满分 12 分) (1) 证明:∵ B C = B C , 25.(本小题满分 14 分) 解:(1)依题意,得⎧a = 1,解得⎪ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 分∴∠BAC =∠BEC . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 分∵BF ⊥AC 于点 F ,CE ⊥AB 于点 D ,⎨b = 0, ⎪c = 1, ∴∠BFA =∠BDG =∠BDE =90°.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 分∴二次函数的解析式为 y = x 2 + 1 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分 ∴∠ABF =∠ABE , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙【∙∙∙∙注∙3 :分a ,b ,c 求对一个得 1 分,若 a ,b ,c 未求全对,所列方程对两个以上(含两个)可再加 1 ∴∠BGD =∠BEC ,(等角的余角相等)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙分∙∙∙∙.∙4】分 ∴BE =BG . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 分C(2) 解:连接 OB ,OE ,AE ,CH . ∵BH ⊥AB ,∴∠ABH =90°=∠BDE , ∴BH ∥CD . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分 ∵四边形 ABHC 内接于⊙O , (2)设过点 E (0,2)的一次函数的解析式为 y = kx + m ( k ≠ 0 ),∴m =2,即该一次函数的解析式为 ( k ≠ 0 ). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 分∴∠ACH +∠ABH =180°, ∴∠ACH =90°=∠AFB ,设 A ( x 1 , y 1 ), B ( x 2 将 y = kx + 2 代入),则 ( x 1 ,0), D ( x 2 ,0). y ,得 kx + 2 = x 2 +1 , BA E则 2 = k ⋅ 0 + m , ⎩ 4a + 2b + c = 5 7 HOFAGD B⎨ ⎪a +b +c = 2, ⎪ 2a ⎧- b = 0, y = x 2 + 1 x 2 < x 1 12 xB E = 12C OD x1 3 S = 4S S 22 k - k 2 + 4 4 1 2 1 2 = - 1 x x [k 2 x x + 2k (x + x ) + 4] 1 32 1 1 2 2 2 4 1 2 1 S S = - 1 x y ⋅ 1 x y = - 1 x x (kx + 2)(kx + 2) 2 2 1 S 2 = (x - x )2 = k 2 + 4 y = - 5x + 2 y = 5x + 2 5 ± k = k 2 + 4 = CD = x 2 - x 1 CD = 2 13 2得.,分∵3, ∴ 9, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 分解得, ∴该一次函数的解析式是 ②依题意,得 或 .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9 分 ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 分,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 分∴ ,∵ ∴x 1 + x 2 = k ∴ , x 1x 2 = -1 , .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 分 ∴ , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 分 故存在实数 t = 4 ,使得 S 2 = tS S 成立.即 , 解得 , ∴ , 2 x 1 =k - k 2 + 42x =k ± k 2+ 4 x 2 - kx - 1 = 0 4= 1 (k 2 + 4) 4 = 1 k 2 + 1 4 S 1S 3 = - 1 ⨯ (-1) ⨯[k 2 ⨯ (-1) + 2k ⋅ k + 4] 2S 3 = 1 BD ⋅ OD = 1 x 2 y 2 2 1 = 1 (x - x ) ⋅ 2 = x - x 2 S = 1 CD ⋅ OE 2 S 1 = 1 AC ⋅ O C 2= k + k 2 + 4 - k - k 2+ 4 , 22 x 2 = x 1 = k + k 2 + 41 22 2 1 22= 1 y ⋅ | x |= - 1x y 2 1 1 2 1 1= k 2 + 4 2k + k 2 + 4x 2 =2“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2018-2019半期考试数学试卷九年级(上)及参考答案

2018-2019半期考试数学试卷九年级(上)及参考答案

2018-2019学年第一学期期中考试九年级数学试卷满分150分,时间120分钟一、 选择题(每小题4分,共40分)1. 下列方程中是关于x 的一元二次方程的是 ( )A .032=+x x B .y 2-2x +1=0 C . x 2-5x =2 D .x 2-2=(x +1)22如下是一种电子记分牌呈现的数字图形,既是轴对称图形又是中心对称图形的是()3.下面是关于抛物线 y=2x 2-3图象的描述,说法正确的是()A . 开口向下B .经过点(2,3)C .对称轴是直线x=1D .与x 轴有两个交点4.下列方程没有实数根的是()A .x 2-3x+4=0B .x 2=2xC .2x 2+3x-1=0D .x 2+2x+1=05.如图,将ΔABC 绕点A 逆时针旋转一定角度得到ΔADE ,此时点C 恰好在线段DE 上,若∠B=400,∠CAE=600,则∠DAC 的度数为()A .150B .200C .250D .3006.参加足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?共有x 个队参加比赛,那么依题意所列方程为()A .x 2=90B .x(x+1)=90C . x(x-1)=90D .x(x-1)=907.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一坐标系中的图象大致是()128.有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人()A.9 B.12 C.1331 D.109.某果园今年栽种果树200棵,现计划扩大栽种面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年的总栽种量为1400棵,求这个百分数.设这个百分数为x,则可列方程为( )abc>0 ③4ac-b2<0 ④9a+3b+c<0+bx+c+3=0有两个相等实数根其中正确的个数为().5分)是一元二次方程,则k的取值范围是先向下平移2个单位,再向右平移18.(10分)如图,在平面直角坐标系中,已知点B (4,2),BA ⊥x 轴于点A 。

福建省福州十八中学初三数学 12月月考试卷

福建省福州十八中学初三数学 12月月考试卷

18中2019——2019学年12月月考试题一、选择题:1. cos60°的值等于( ) A.21 B.22 C.23 D.12. 下列各组中的四条线段a 、b 、c 、d 为成比例线段的是()A.a=10,b=5,c=4,d=7B.a=1,b=3,c=6,d=2C.a=8,b=-4,c=4,d=2D.a=9,b=3,c=3,d=6 3. 如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的三角形与原三角形不相似的是( )4. 在Rt △ABC 中,∠C=90°,AB=4,AC=1,则sinB 的值是() A.415 B.41 C.15 D.45. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE=20m ,CE=10m ,CD=20m ,则河的宽度AB 等于( )A.60mB. 40mC. 30mD. 20m6. 如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1:2把△EFO 缩小,点E 的对应点的坐标( )A .(-2,1)B .(2,-1)C .(2,-1)或(-2,1)D .(8,-4)或(-8,4) 7. 如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:18. 如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,cosD=32,则AB 的长为( ) A. B. C. D.129. 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:10. ①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD=2.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个11. 因为sin30°=21,sin210°=21,所以sin210°=sin (180°+30°)=-sin30°;因为sin45°=,sin225°=,所以sin225°=sin (180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin (180°+α)=﹣sin α,由此可知:sin240°=()A .B .C .D .二、填空题:11. 如果在比例1:2019000的地图上,A ,B 两地的图上距离为3.8厘米,那么A ,B 两地的实际距离为 千米.12. 在△ABC 中,如果∠A 、∠B 满足021cos 1tan 2=⎪⎭⎫ ⎝⎛-+-B A 那么∠C= . 13. 如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB ,若AB=9,BD=3,BF=5,则FC 的长为 .14. 如图,正方形ABCD 的边长为4,AE=EB ,MN=2,线段MN 的两端在CB 、CD 上滑动,当CM= 时,△ADE 与△CMN 相似.15. 如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .16. 如图,在△AOB 中,∠AOB=90°,点A 的坐标为(2,1),BO=52,反比例函数xk y =的图象经过点B ,则k 的值为 .三、作图题:17.如图,点A 的坐标为(3,2),点B 坐标为(3,0).作如下操作:①以点A 为旋转中心,将△ABO 顺时针方向旋转90°,得到△AB 1O 1; ②以点O 为位似中心,将△ABO 放大,得到△A 2B 2O ,使相似比为1:2,且点A 2在第三象限.(1)在图中画出△AB 1O 1和△A 2B 2O ;(2)请直接写出点A 2的坐标: .四、解答题:18.计算:1230cos 260tan 45sin 2-︒+︒+︒.19. 如图,在△ABC 中,AB=6,BC=4,点D 在BC 的延长线上,且∠BAC=∠D ,求BD 的长.20. 已知:如图,在△ABC 中,AC=10,sinC=54,sinB=31,求AB. 21. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°.(1)求证:△ABD ∽△DCE ;(2)(2)若BD=3,CE=2,求△ABC 的边长.22. 阅读材料:一般地,当α,β为任意角时,tan (α+β)与tan (α-β)的值可以用下面的公式求得:.tan tan 1tan tan )tan(βαβαβα⋅±±=± 例如:().323333331133130tan 45tan 130tan 45tan 3045tan 15tan -=+-=⨯+-=︒⋅︒-︒-︒=︒-︒=︒ 根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A 处6米的C 处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC 为1.72米,请帮助小华求出文峰塔AB 的高度.(精确到1米,参考数据414.12,732.13≈≈).观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3分
(2)易求 C(0,1),即 OC=1
∴S=1
2
xA

OC
=
1 2
(3)0<x<1 或 x<-2
22、解:(1)连接 OC,
∵AB 与⊙O 相切于点 C
∴∠ACO=90°,Biblioteka 6分 8分由于CD=CE,
∴∠AOC=∠BOC,
2分
∴∠A=∠B
∴OA=OB,
4分
(2)∵∠A=30°,OA=4
∴OC=1OA=2
又∵AC=AD, ∴AB=AD, ∴∠ABD=∠ADB,
又∵∠ABD=∠ACF, ∴∠ACF=∠ADB.
(2)解:过点 D 作 DH⊥AO 于 H, ∵∠DAH+∠OAC=90°,∠DAH+∠ADH=90°, ∴∠OAC=∠ADH, 在△DHA 和△AOC 中
图2 3分

∴Rt△DHA≌Rt△AOC(AAS),
12.2
13.-4
14.70
15. 2 3 16. 3 1
三、解答题(本大题有 9 个小题,共 86 分)
17、解:(1)∵y 与 x 成反比例,
∴设
y

x
的函数关系式为
y
=
k,
x
2分
∵当 x=1,y=3 时,
∴3=
k 1
解得 k=3×1=3,
4分
∴反比例函数解析式为
y
=
3,
x
(2)当
x=2
时,则
∴DH=AO,AH=OC=3,
∵PG⊥BC,且 PG 为半径
∴∠ACO=90°
∴根据勾股定理得, r2=(r-2)2+32
解得
13
r= 4
∴AO=13-2=9=HD , HO=3+9=15
22
22
∴D(9 15)
22
(3)解: 的值不发生变化,
过点 D 作 DQ⊥BC 于 Q, 又∵BO=OC,
∴HO=AH+AO=OB+DH, 而 DH=OQ,HO=DQ, ∴DQ=OB+OQ=BQ, ∴∠DBQ=45°, 又∵DH∥BC, ∴∠HDE=45°, ∴△DHE 为等腰直角三角形,
(3)设需要往盒子里再放入 x 个白球;
根据题意得:10+x
30+x
=
1,
2
解得:x=20;
经检验:x=20 是原方程的根
答:需要往盒子里再放入 20 个白球.
8分
21、(1)把 A(m,2)和 B(-2, n )分别代入 y2=x+1,
得 m=1,n=-1
∴A(1,2) ,B(-2,-1 )
∴k=2
∴AB=2AC=2 3
4分
(2)连接 OB
∵OD⊥AB,且 OD 为半径
∴AD=BD
∴∠BOD=1∠AOD=50°
2
∴∠DEB=1∠BOD=1×50°=25°;
2
2
20. 解:(1)0.25;
6分
8分 2分
(2)40×0.25=10,40-10=30;
5分
答:盒子里白、黑两种颜色的球分别有 10 个、30 个;
3分
证明:依题意得 AE=AF, ∠ABF=∠ADC ,∠EAF=90°
∴△AEF 为等腰直角三角形 5 分
(3)画图略(方法不唯一,合理即可)
8分
10
10 分
(4)点 C 在圆 O 上
12 分
24.(1)①补全的图形如图 1 所示.
2分
② ∠NCE=2∠BAM.
4分
(2)当 45°<α<90°时, NCE=180 2BAM .
∵ CE⊥AM,
∴ ∠CEH=90°,∠3+∠5=90°.
又∵∠1+∠4=90°,∠4=∠5,
∴ ∠1=∠3.
∴ ∠3=∠2= 90 .
∵ 点 N 与点 M 关于直线 CE 对称,
∴ ∠NCE=∠MCE=∠2+∠3=180 2BAM .
10 分
(3) 2 1.
12 分
图1
25. (1)证明:∵OP⊥BC, ∴BO=CO, ∴AB=AC,
5分
证明:如图 2,连接 CM,设射线 AM 与 CD 的交点为 H.
∵ 四边形 ABCD 为正方形,
∴ ∠BAD=∠ADC=∠BCD=90°,直线 BD 为正方形 ABCD 的对称轴,
点 A 与点 C 关于直线 BD 对称.
∵ 射线 AM 与线段 BD 交于点 M,
∴ ∠BAM=∠BCM=α.
∴ ∠1=∠2= 90 .
∴ =,
∴ =.
5分 8分 9分
12 分
福州第十八中学 2018-2019 学年第一学期期中考试卷
九年级数学参考答案
一、选择题(本大题有 10 个小题,每小题 4 分,共 40 分)
1.C 2.A 3.D 4.B 5.B 6.C 7.C 8.B 9.B 10.D
二、填空题(本大题有 6 个小题,每小题 4 分,共 24 分)
11. 1 2
y
=
3 2
18、解: 1
2
3
6分 8分
/\
/\
/\
4 5 4 54 5
和5 6 6 7 7 8
4分
∵共有 6 种等可能的结果,两数和为 7 的有 2 种情况,
6分
∴两次都摸到相同颜色的小球的概率为:2
6
=
1.
3
8分
19、解:(1)∵OD⊥AB,且 OD 为半径
∴AB=2AC,∠ACO=90°
2分
∴根据勾股定理得,AC= OA2 − OC2= 22 − 12= 3,
2
∴勾股得 AC=2 3,
由(1)可知:△OAB 是等腰三角形
∴∠A=∠B= 30°,BC=AC=2 3
∴∠BOC=60°,
∴扇形 OCE 的面积为:60π×4=2π,
360 3
△OCB 的面积为:1×2 3×2=2 3
2
∴S 阴影=2 3-23π
23.(1)A,90
2分
6分
8分 9分
(2)△AEF 为等腰直角三角形。
相关文档
最新文档