八年级数学上册 第二章 自我检测卷(二)(扫描版,无答案) (新版)苏科版
2021年苏科版八年级数学上册第二章试卷轴对称图形单元检测题 含答案
轴对称图形单元测试题学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.自新冠肺炎疫情发生以来,全国人民共同抗疫,十堰市张湾区积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D.2.三角形的三条()的交点到三个顶点的距离相等.A.中线B.角平分线C.高线D.边的垂直平分线3.如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm4.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处5.下列条件能判定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.AB=5,AC=12,BC=13C.∠A:∠B:∠C=3:4:5 D.∠A=50°,∠B=80°6.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠P AQ=40°,则∠BAC的度数是()A.110°B.100°C.120°D.70°7.如图所示,在△ABC中,∠ACB=90°,CD平分∠ACB,在BC边上取点E,使EC=AC,连接DE,若∠A=50°,则∠BDE的度数是()A.10°B.20°C.30°D.40°8.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P,Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,下列结论:①AQ=CP;②∠CMQ的度数等于60°;③当△PBQ为直角三角形时,t=秒.其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(共8小题)9.如图,△ABC中,边BC的垂直平分线分别交AB、BC于点E、D,AC=5,△AEC的周长为12,则AB=.10.已知一个等腰三角形的一个内角为40°,则它的顶角等于.11.在五边形ABCDE中,△ACD为等边三角形.若AB=DE,BC=AE,∠E=125°,则∠BAE的度数为.12.如图,若△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE=.13.已知在等腰三角形ABC中,D为BC的中点AD=12,BD=5,AB=13,点P为AD边上的动点,点E为AB边上的动点,则PE+PB的最小值为.14.如图,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同侧.①△ACD≌△BCE;②△ACP≌△BCQ;③△DCP≌△ECQ;④∠ARB=60°;⑤PQ∥AE;⑥△CPQ是等边三角形.上述结论正确的有.15.如图,在等边△ABC中,AB=12,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.16.如图,AD是△ABC的高,且AB+BD=DC,∠BAD=40°,则∠C的度数为.三、解答题(共9小题)17.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小;(3)四边形BCC1B1的面积为.18.已知:如图,点P是等边△ABC内的一点,连接P A、PB、PC,以PB为边作等边△BPD,连接CD.(1)求证:AP=CD;(2)若∠APB=150°,PD=10,CD=15,求△APB的面积.19.如图,在△ABC中,点E、F分别在AB、AC上,AD是EF的垂直平分线,DE⊥AB,DF⊥AC,EF交AD于点G.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,求证:DE=2DG.20.如图,C为线段AB上任意一点(不与A、B重合)分别以AC、BC为一边在AB的同侧作等边△ACD和等边△BCE,连接AE交CD于点M,连接BD交CE于点N.AE与BD交于点P.连接PC.试说明:(1)△ACE≌△DCB.(2)∠APD的度数.(3)∠APC=∠BPC.21.已知:在Rt△ABC中,∠ACB=90°,D为线段CB上一点且满足CD=CA.连接AD.过点C作CE⊥AB于点E.(1)如图1,∠B=30°,CD=2,AD与CE交于点P,求∠CPD的度数及线段AE的长;(2)如图2,若点F是线段CE延长线上一点,连接FD.若∠F=45°,求证:AE=FE.22.如图1,点M为直线AB上一动点,△P AB,△PMN都是等边三角形,连接BN(1)求证:AM=BN;(2)分别写出点M在如图2和图3所示位置时,线段AB、BM、BN三者之间的数量关系(不需证明);(3)如图4,当BM=AB时,证明:MN⊥AB.23.如图,在△ABC中,AB=AC=20cm,BC=16cm,点D是AB边的中点,点P是BC边上的动点,以3cm/秒的速度从点B向点C运动;点Q是AC边上的动点,同时从点C向点A运动.设运动时间为t 秒.(1)若点Q运动的速度与点P运动的速度相等,当运动时间t=2秒时,求证:△DBP≌△PCQ.(2)若点Q运动的速度与点P运动的速度不相等,是否存在某一时刻,使△DBP与△PCQ全等?若存在,求出Q运动的时间t的值;若不存在,请说明理由.24.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.25.如图,在△ABC中,B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?轴对称图形单元测试题参考答案一、单选题(共8小题)1.【答案】B【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.2.【答案】D【解答】解:∵点到三角形一边两端点的距离相等,∴这个点在这边的垂直平分线上,同理可知,三角形的三条边的垂直平分线的交点到三个顶点的距离相等,故选:D.3.【答案】A【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为16,∴AB+BD+AD=AB+BD+DC=AB+BC=16,∴△ABC的周长=AB+BC+AC=16+10=26(cm),故选:A.4.【答案】D【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.5.【答案】D【解答】解:A、当∠A=30°,∠B=60°时,∠C=90°,△ABC不是等腰三角形,故本选项不合题意;B、当AB=5,AC=12,BC=13时,52+122=132,所以△ABC是直角三角形,不是等腰三角形,故本选项不合题意;C、当∠A:∠B:∠C=3:4:5时,△ABC不是等腰三角形,故本选项不合题意;D、当A=50°,∠B=80°,∠C=50°,△ABC是等腰三角形,故本选项符合题意.故选:D.6.【答案】A【解答】解:∵PM、QN分别是线段AB、AC的垂直平分线,∴P A=PB,QA=QC,∴∠P AB=∠B,∠QAC=∠C,∴∠P AB+∠QAC=∠B+∠C,∵∠P AB+∠B+∠P AQ+∠QAC+∠C=180°,∴∠P AB+∠QAC=70°,∴∠BAC=∠P AB+∠QAC+∠P AQ=110°,故选:A.7.【答案】A【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣∠A=40°,∵CD平分∠ACB,∴∠ECD=∠ACD,在△CDE和△CDA中,,∴△CDE≌△CDA(SAS),∴∠CED=∠A=50°,又∵∠CED=∠B+∠BDE,∴∠BDE=∠CED﹣∠B=50°﹣40°=10°,故选:A.8.【答案】C【解答】解:∵△ABC是等边三角形,∴∠B=∠CAP=60°,AB=AC,根据题意得:AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),∴AQ=CP,故①正确;∵△ABQ≌△CAP,∴∠AQB=∠CP A,∵∠BAQ+∠APC+∠AMP=180°,∠BAQ+∠B+∠AQB=180°,∴∠AMP=∠B=60°,∴∠CMQ=60°,故②正确;当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,∴4﹣t=2t,解得,t=,当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,∴t=2(4﹣t),解得,t=,综合以上可得△PBQ为直角三角形时,t=或t=.故③不正确.故选:C.二、填空题(共8小题)9.【答案】7【解答】解:∵DE是线段BC的垂直平分线,∴EB=EC,∵△AEC的周长为12,∴AC+AE+EC=12,∴AC+AE+EB=AC+AB=12,∴AB=12﹣5=7,故答案为:7.10.【答案】40°或100°【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.11.【答案】115°【解答】解:∵∠E=125°,∴∠EDA+∠EAD=180°﹣∠E=180°﹣125°=55°,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ABC和△DEA中,∴△ABC≌△DEA(SSS),∴∠B=∠E=125°,∠BAC=∠EDA,∠ACB=∠EAD,∴∠BAE=∠CAD+∠BAC+∠EAD=60°+∠ADE+∠EAD=60°+55°=115°,故答案为:115°.12.【答案】9【解答】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD是∠ABC的平分线,∴AD=CD=AC,∠DBC=∠ABC=30°,∵CE=CD,∴CE=AC=3,∴BE=BC+CE=6+3=9.故答案为:9.13.【答案】12013【解答】解:∵AD=12,BD=5,AB=13,∴AB2=AD2+BD2,∴∠ADB=90°,∵D为BC的中点,BD=CD,∴AD垂直平分BC,∴点B,点C关于直线AD对称,过C作CE⊥AB交AD于P,则此时PE+PB=CE的值最小,∵S△ABC=AB•CE=BC•AD,∴13•CE=10×12,∴CE=,∴PE+PB的最小值为,故答案为:.14.【答案】①②③④⑤⑥【解答】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∠ACB=∠DCE=∠BCD=60°,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),故①正确;∴∠DAC=∠EBC,∠CEB=∠CDA,在△ACP和△BCQ中,,∴△ACP≌△BCQ(ASA),故②正确;∴CP=CQ,又∵∠BCD=60°,∴△PCQ是等边三角形,故⑥正确,∴∠CPQ=∠CQP=60°,∴∠ACB=∠CPQ,∴AC∥PQ,故⑤正确;∵∠DAC=∠EBC,∠APC=∠BPR,在△DCP和△ECQ中,,∴△DCP≌△ECQ(SAS),故选③正确;故答案为①②③④⑤⑥.15.【答案】4【解答】解:∵△ABC是等边三角形,∴BC=AB=12,∵BC=3BD,∴BD=BC=4,由旋转的性质得:△ACE≌△ABD,∴CE=BD=4.故答案为:4.16.【答案】25°【解答】解:在线段DC上取一点E,使DE=DB,连接AE,∵AD是△ABC的高,∴AD⊥BC,∴AD垂直平分BE,∴AB=AE,∴∠EAD=∠BAD=40°,∠AEB=∠B=90°﹣∠BAD=50°,∵AB+BD=DC,DE+CE=DC,∴AB=CE,∴AE=CE,∴∠EAC=∠C,∵∠AEB=∠EAC+∠C=2∠C,∴∠C=∠AEB=25°,故答案为:25°.三、解答题(共9小题)17.【答案】12【解答】解:(1)如图所示:;(2)如图所示:;(3)∵每小格均为边长是1的正方形,∴CC1=4+4=8,BB1=2+2=4,BB1和CC1之间的距离为2,∴四边形BCC1B1的面积为×(8+4)×2=12,故答案为:12.18.【解答】解:(1)∵△ABC和△BDP是等边三角形,∴∠ABC=∠PBD=60°,BA=BC,BP=BD,∴∠ABP=∠CBD,在△ABP和△CBD中,,∴△ABP≌△CBD(SAS),∴AP=CD;∵△BPD是等边三角形,∴BD=PD=10,∵△ABP≌△CBD,∴∠APB=∠BDC=150°,∴∠CDM=30°,∠M=90°,∴CM=CD=,∴S△APB=S△BCD=•BD•CM=×10×=.19.【解答】证明:(1)∵AD是EF的垂直平分线,∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC(2)∵∠BAC=60°,AD平分∠BAC,∴∠EAD=∠BAC=30°,∵DE⊥AB,DF⊥AC,∴∠EAD+∠AEG=∠DEG+∠AEG=90°,∴∠DEG=∠EAD=30°,∴DE=2DG.20.【解答】(1)证明:∵△ACD和△CBE都是等边三角形,∴AC=DC,CE=CB,∠ACD=∠ECB=60°,∴∠ACD+∠DCE=∠ECB+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS);(2)解:∵△ACE≌△DCB,∴∠CAE=∠BDC,∵∠ACD=∠BDC+∠CBD=60°,∴∠APD=∠CAE+∠CBD=60°;(3)证明:如图,过点C作CG⊥AE于G,作CH⊥BD于H,在△AGC和△DHC中,,∴△AGC≌△DHC(AAS),∴CG=CH,且CG⊥AE,CH⊥BD,∴PC平分∠APB,即∠APC=∠BPC.21.【解答】(1)解:如图1中,∵∠ACB=90°,∠B=30°,∵CA=CD=2,∴∠CAD=∠CDA=45°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣30°=60°,∴∠ACE=30°,∴AE=AC=1,∵∠CPD=∠ACP+∠CAP,∴∠CPD=75°.答:∠CPD的度数为75°,线段AE的长为1;(2)证明:如图2中,过点C作CJ⊥DF于J,交AB于T,设DF交AB于K.∵CF⊥AB,CT⊥DE,∠CFD=45°,∴∠FEK=∠CET=∠CJF=∠KJT=90°,∴∠FKE=∠TKJ=∠KTJ=∠ECT=45°,∵∠CAT+∠ACE=90°,∠ACE+∠DCF=90°,∴∠CAT=∠DCF,在△ACT和△CDF中,,∴△ACT≌△CDF(AAS),∴AT=CF,∵ET=CE,∴AE=EF.22.【解答】(1)证明:∵△P AB和△PMN是等边三角形,∴∠BP A=∠MPN=60°,AB=BP=AP,PM=PN=MN,∴∠BP A﹣∠MPB=∠MPN﹣∠MPB,∴∠APM=∠BPN.在△APM≌△PBN中,∴△APM≌△PBN(SAS),∴AM=BN.(2)解:图2中BN=AB+BM;图3中BN=BM﹣AB.(3)证明:∵△P AB和△PMN是等边三角形,∴∠ABP=∠PMN=60°,AB=PB,∴∠PBM=120°,∵BM=AB=PB,∴∠BMP=30°,∴∠BMN=∠PMN+∠BMP=90°,∴MN⊥AB.23.【解答】(1)证明:当t=2秒时,CQ=BP=6cm,∵AB=AC=20cm,BC=16cm,点D是AB边的中点,∴∠B=∠C,BD=10(cm),CP=16﹣6=10(cm),∴BD=CP,在△DBP和△PCQ中∴△DBP≌△PCQ(SAS);(2)存在某一时刻t,使△DBP与△PCQ全等,理由如下:∵BP≠CQ,△BPD≌△CPQ,∠B=∠C,∴BP=PC=8(cm),CQ=BD=10(cm),∴点P,点Q运动的时间t==秒.24.【解答】(1)证明:①∵CE平分∠ACB,∴∠OCE=∠BCE,∴∠CFO=∠CFB=90°,在△OCF与△BCF中,,∴△OCF≌△BCF(ASA),∴OC=BC;②∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,,∴△OCE≌△BCE(SAS),∴∠EBC=∠EOC=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∠DAB=90°,AC=BD,∴OB=OC,∵OC=BC,∴OC=OB=BC,∴△OBC是等边三角形,∴∠OCB=60°,∴∠ECB=OCB=30°,∵∠EBC=90°,∴EB=EC,∵BE2+BC2=EC2,BC=3,∴EB=,EC=2,∵OE⊥AC,OA=OC,∴EC=EA=2,在Rt△ADE中,∠DAB=90°,25.【解答】解:(1)由题意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,当△PQB为等腰三角形时,则有BP=BQ,即16﹣t=2t,解得t=,∴出发秒后△PQB能形成等腰三角形;(2)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(秒),∴BC+CQ=22(秒),∴t=22÷2=11(秒).②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(秒),∴t=24÷2=12(秒).综上所述:当t为11秒或12秒时,△BCQ是以BC或BQ为底边的等腰三角形.1、三人行,必有我师。
2019年秋苏科版数学八年级上册同步分层自我综合评价(二)
自我综合评价(二)[测试范围:第2章轴对称图形时间:40分钟分值:100分]一、选择题(每小题4分,共20分)1.下面四个手机应用图标中是轴对称图形的是()图2-Z-12.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有三条对称轴3.已知:如图2-Z-2,在△ABC中,AB=AC,∠C=72°,BC=3,以点B为圆心,BC长为半径画弧,交AC于点D,则线段AD的长为()A.2 B.3 C.4 D.62-Z-24.如图2-Z-3,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE的度数为()2-Z-3A.15°B.30°C.45°D.60°5.如图2-Z-4,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于12AB长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AD=AC,∠B=25°,则∠C的度数为()图2-Z-4A.70°B.60°C.50°D.40°二、填空题(每小题4分,共28分)6.如图2-Z-5,P是∠AOB内任意一点,OP=5 cm,点P与点C关于射线OA对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F,当△PEF的周长是5 cm时,∠AOB的度数是________.图2-Z-57.一个等腰三角形的两边长分别为4 cm和9 cm,则它的周长为________cm.8.如图2-Z-6,在等边三角形ABC中,D是BC边的中点,则∠BAD=________°.2-Z-69.如图2-Z-7所示,在等腰三角形ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=2,则BC的长是________.2-Z-710.如图2-Z-8,AB∥CD,∠BAC和∠ACD的平分线相交于点O.若直线AB,CD 之间的距离为4 cm,则点O到直线AC的距离是________ cm.2-Z-811.如图2-Z-9,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连接AE,则∠BAE的度数等于__________°.2-Z-912.如图2-Z-10,已知点B在射线OM上,点P是射线BM上的一个动点(点P不与点B重合),∠AOB=30°,∠ABM=60°,当∠OAP=______________时,以A,O,B 中的任意两点和点P为顶点的三角形是等腰三角形.图2-Z-10三、解答题(共52分)13.(10分)在3×3的正方形网格中,有一个以格点为顶点的三角形(阴影部分),如图2-Z-11所示,请你在图①、图②、图③中分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复)图2-Z-1114.(10分)如图2-Z-12,锐角三角形ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.图2-Z-1215.(10分)如图2-Z-13,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为P.若∠BAC=85°,求∠BDC的度数.图2-Z-1316.(10分)在等边三角形ABC中,E是AB上的动点,点E与点A,B不重合,点D 在CB的延长线上,且EC=ED.(1)如图2-Z-14①,若E是AB的中点,求证:BD=AE.(2)如图②,若E不是AB的中点,(1)中的结论“BD=AE”是否成立?若不成立,请直接写出BD与AE的数量关系;若成立,请给予证明.图2-Z-1417.(12分)如图2-Z-15所示,在四边形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?请说明理由.图2-Z-15详解详析1.[解析] D 根据轴对称图形的定义——在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.只有D 选项中的图形符合题意.故选D.2.C3.[解析] B ∵AB =AC ,∠C =72°,∴∠ABC =∠C =72°,∠A =36°.又∵BC =BD ,∴∠BDC =∠C =72°.∴∠DBC =36°.∴∠ABD =∠ABC -∠DBC =72°-36°=36°=∠A.∴AD =BD =BC =3.故选B.4.[解析] A ∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°.∵AD ⊥BC ,∴BD =CD.∴AD 是BC 的垂直平分线.∴BE =CE.∴∠EBC =∠ECB =45°.∴∠ACE =60°-45°=15°.5.[解析] C 由作图可知MN 为线段AB 的垂直平分线,∴AD =BD.∴∠DAB =∠B =25°.∵∠CDA 为△ABD 的一个外角,∴∠CDA =∠DAB +∠B =50°.∵AD =AC ,∴∠C =∠CDA =50°.故选C.6.[答案] 30° [解析] 连接OC ,OD.∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称, ∴OA 为PC 的垂直平分线,OB 为PD 的垂直平分线,∴OC =OP ,EC =EP ,OP =OD ,FP =FD.由此可求得∠COA =∠AOP =12∠COP ,∠POB=∠BOD =12∠POD.∵OP =5 cm ,∴OP =OC =OD =5 cm. ∵△PEF 的周长是5 cm ,∴PE +EF +PF =CE +EF +FD =CD =5 cm , ∴CD =OC =OD =5 cm ,∴△OCD 是等边三角形,∴∠COD =60°,∴∠AOB =∠AOP +∠BOP =12∠COP +12∠DOP =12∠COD =30°.7.[答案] 22[解析] ①若腰长是4 cm ,底边长是9 cm ,因为4+4<9,所以不满足三角形的三边关系,因此此种情况不成立.②若底边长是 4 cm ,腰长是9 cm ,4+9>9,能构成三角形,则其周长=4+9+9=22(cm).故填22.8.[答案] 30[解析] ∵△ABC 是等边三角形, ∴∠BAC =60°,AB =AC. ∵D 是BC 边的中点, ∴∠BAD =12∠BAC =30°.故答案是30. 9.[答案] 2[解析] ∵AB =AC ,∠A =36°, ∴∠B =∠ACB =180°-36°2=72°.∵将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处, ∴AE =CE ,∠A =∠ECA =36°. ∴∠CEB =72°. ∴BC =CE =AE =2. 故答案为2. 10.[答案] 2[解析] 如图,过点O 作OM ⊥AB 于点M ,延长MO 交CD 于点N ,作OE ⊥AC 于点E.∵AB ∥CD ,MN ⊥AB , ∴MN ⊥CD.∵AO ,CO 分别平分∠BAC 和∠ACD , ∴OM =OE =ON.∵直线AB ,CD 之间的距离为4 cm , ∴MN =4 cm ,∴OE =2 cm ,∴点O 到直线AC 的距离是2 cm. 11.[答案] 50[解析] ∵在△ABC 中,∠ABC =90°,∠C =20°, ∴∠BAC =180°-∠B -∠C =70°. ∵DE 是边AC 的垂直平分线, ∴CE =AE ,∴∠EAC =∠C =20°,∴∠BAE =∠BAC -∠EAC =70°-20°=50°. 故答案为50.12.[答案] 75°或120°或90°[解析] 如图所示,分为以下5种情况:①OA =OP ,∵∠AOB =30°,OA =OP ,∴∠OAP =∠OPA =12×(180°-30°)=75°;②OA =AP ,∵∠AOB =30°,OA =AP , ∴∠APO =∠AOB =30°,∴∠OAP =180°-∠AOB -∠APO =180°-30°-30°=120°; ③AB =AP ,∵∠ABM =60°,AB =AP , ∴∠APO =∠ABM =60°,∴∠OAP =180°-∠AOB -∠APO =180°-30°-60°=90°; ④AB =BP ,∵∠ABM =60°,AB =BP , ∴∠BAP =∠APO =12×(180°-60°)=60°,∴∠OAP =180°-∠AOB -∠APO =180°-30°-60°=90°; ⑤AP =BP ,∵∠ABM =60°,AP =BP ,∴∠ABM =∠PAB =60°, ∴∠APO =180°-60°-60°=60°,∴∠OAP =180°-∠AOB -∠APO =180°-30°-60°=90°.综上,当∠OAP 的度数为75°或120°或90°时,以A ,O ,B 中的任意两点和点P 为顶点的三角形是等腰三角形.13.解:答案不唯一,如图所示.14.解:(1)证明:∵OB =OC , ∴∠OBC =∠OCB.∵锐角三角形ABC 的两条高BD ,CE 相交于点O , ∴∠BEC =∠CDB =90°.∴∠BCE +∠ABC =∠DBC +∠ACB =90°. ∴∠ABC =∠ACB. ∴AB =AC.∴△ABC 是等腰三角形. (2)点O 在∠BAC 的平分线上. 理由:连接AO. 在△AOB 和△AOC 中, ⎩⎪⎨⎪⎧AB =AC ,OB =OC ,OA =OA ,∴△AOB ≌△AOC(SSS). ∴∠BAO =∠CAO.∴点O 在∠BAC 的平分线上.15.解:如图,过点D 作DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵DP 是BC 的垂直平分线,∴BD =CD.在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DEB ≌Rt △DFC(HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF. ∵∠DEB =∠DFA =90°, ∴∠EAF +∠EDF =180°.∵∠BAC =85°,∴∠BDC =∠EDF =95°. 16.解:(1)证明:∵△ABC 是等边三角形, ∴∠ABC =∠ACB =60°. ∵E 是AB 的中点, ∴CE 平分∠ACB ,AE =BE. ∴∠BCE =30°. ∵ED =EC , ∴∠D =∠BCE =30°. ∵∠ABC =∠D +∠BED , ∴∠BED =30°. ∴∠D =∠BED. ∴BD =BE.∴BD =AE. (2)BD =AE 成立.证明:过点E 作EF ∥BC 交AC 于点F ,如图所示.∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC. ∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°. 故∠AEF =∠AFE =∠A =60°.∴△AEF 是等边三角形.∴EF =AE ,∠DBE =∠EFC =120°.∵ED =EC ,∴∠D =∠ECD.∵∠D +∠BED =∠ECF +∠ECD =60°,∴∠BED =∠ECF.在△DEB 和△ECF 中,⎩⎪⎨⎪⎧∠BED =∠FCE ,∠DBE =∠EFC ,ED =CE ,∴△DEB ≌△ECF(AAS).∴BD =EF.∴BD =AE.17.解:(1)证明:因为∠ABC =90°,CE ⊥BD , 所以∠ABD +∠BEC =90°,∠BCE +∠BEC =90°.所以∠BCE =∠ABD.因为∠ABC =90°,AD ∥BC ,所以∠ABC =∠DAB =90°.又因为BC =AB ,所以△CBE ≌△BAD.所以BE =AD.(2)证明:因为E 是AB 的中点,所以BE =AE.由(1)知AD =BE ,所以AE =AD.因为∠ABC =90°,AB =BC ,所以∠BAC =∠ACB =45°.因为AD ∥BC ,所以∠DAC =∠ACB =45°.所以∠BAC=∠DAC.由等腰三角形的性质,得EM=MD,AM⊥DE,即AC是线段ED的垂直平分线.(3)△DBC是等腰三角形.理由:由(2)知AC是线段ED的垂直平分线,得CD=CE. 由(1)知△CBE≌△BAD,得CE=BD.所以CD=BD.所以△DBC是等腰三角形.。
八年级数学(上册)第二章测试卷.doc
八年级数学(上册)第二章测试卷一、选择题(10*3=30 )1 、已知等腰三角形的两边长分别为 4 、 9,则它的周长为()( A)17(B)22(C)17 或 22(D)132 、等边三角形的对称轴有()A1 条B2条C 3 条D 4 条3、以以下三个数为边长的三角形能构成直角三角形的是()A1,1,2B5,810C6,7,8D3,4,54、已知 ABC 的三边分别是 3cm, 4cm, 5cm,则 ABC的面积是()A6c ㎡ ,B7.5c ㎡ C 10c㎡D12c ㎡5、三角形内到三角形各边的距离都相等的点必在三角形的()A中线上B角均分线上C高线上D 不可以确立6、以下条件中,不可以判断两个直角三角形全等的是()A两个锐角对应相等B一条边和一个锐角对应相等C两条直角边对应相等D一条直角边和一条斜边对应相等7 、等腰三角形的一个顶角为40o,则它的底角为()C( A) 100 o(B)40 o(C)70o(D)70o或40o8 、以下能判定△ ABC 为等腰三角形的是()( A)∠ A=30 o、∠B=60 o(B)∠A=50 o、∠ B=80 oA DB ( C) AB=AC=2 , BC=4( D )AB=3 、 BC=7 ,周长为 139、若一个三角形有两条边相等,且有一内角为 60o,那么这个三角形必定为()( A)等边三角形( B )等腰三角形( C)直角三角形( D)钝角三角形10、如图∠BCA=90,CD⊥AB,则图中与∠A 互余的角有()个A.1 个B、2 个 C、3 个 D、4 个二.填空题( 10*3=30 )1、一个等腰三角形底上的高、________和顶角的 ________相互重合。
2、在 Rt △ ABC 中 ,∠C=90度 ,∠B=25 度 ,则∠A=______ 度 .3、等腰三角形的腰长为10 ,底边长为12 ,则其底边上的高为______.4、已知等边三角形的周长为24cm ,则等边三角形的边长为 _______cm5、Rt △ ABC 的斜边 AB 的长为 10cm ,则 AB 边上的中线长为 ________6、在 Rt △ ABC 中,∠C=90 o,∠ A=30 o, BC=2cm ,则 AB=_____cm 。
苏科版八年级上学期期末质量自测数学试题
苏科版八年级上学期期末质量自测数学试题一、选择题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<2.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC = B .BE CE = C .AC DB =D .A D ∠=∠3.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 4.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .10 5.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE6.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .107.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m < 8.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .29.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 10.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 11.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 12.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命13.下列式子中,属于最简二次根式的是( )A .12B .0.5C .5D .1214.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)15.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL二、填空题16.在平面直角坐标系中,过点()5,6P 作PA x ⊥轴,垂足为点A ,则PA 的长为______________.17.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.18.圆周率π=3.1415926…精确到千分位的近似数是_____.19.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′处,那么CD=_____.P关于x轴对称的点P'的坐标是__________.20.点(2,1)21.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .22.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B点后,B点的位置可以用数对表示为__________.23.如图,在△ABC中,∠ACB=90°,AC=BC=4,O是BC的中点,P是射线AO上的一个动点,则当∠BPC=90°时,AP的长为______.a b c,若,a c的面积分别为5和11,则b的面积为24.如图,直线l上有三个正方形,,__________.25.若点(3,)P m -与(,6)Q n 关于x 轴对称,则m n +=__________.三、解答题26.如图,已知函数12y x =+的图像与y 轴交于点A ,一次函数2y kx b =+的图像经过点(0,4)B ,与x 轴交于点C ,与12y x =+的图像交于点D ,且点D 的坐标为2,3n ⎛⎫ ⎪⎝⎭.(1)求k 和b 的值;(2)若12y y >,则x 的取值范围是__________.(3)求四边形AOCD 的面积.27.已知一次函数y =3x +m 的图象经过点A (1,4).(1)求m 的值;(2)若点B (﹣2,a )在这个函数的图象上,求点B 的坐标.28.在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与△ABC 关于y 轴对称;(2)点A 的对称点1A 的坐标为 ;(3)求△111A B C 的面积.29.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.30.(1)计算:203(12125(39)(45)(45);π---+⨯-(2)求x 的值:23(3)27.x += 31.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x =2﹣3.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.C解析:C【解析】【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,根据定理逐个判断即可.【详解】A .AB =DC ,∠ABC =∠DCB ,BC =BC ,符合SAS ,即能推出△ABC ≌△DCB ,故本选项错误; B .∵BE =CE ,∴∠DBC =∠ACB .∵∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合ASA ,即能推出△ABC ≌△DCB ,故本选项错误;C .∠ABC =∠DCB ,AC =BD ,BC =BC ,不符合全等三角形的判定定理,即不能推出△ABC ≌△DCB ,故本选项正确;D .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合AAS ,即能推出△ABC ≌△DCB ,故本选项错误.故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS ,ASA ,AAS ,SSS .3.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 4.C解析:C【解析】【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt △ABD 中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.5.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A,∠B=∠C 利用 ASA 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项B,BE=CD 不能说明△ABE≌△ACD ,说法错误,故此选项正确;选项C,AD=AE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项D,BD=CE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.6.C解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.8.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.10.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.11.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A2=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.12.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;D.故选C.14.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.二、填空题16.【解析】【分析】根据题意得出PA 就是P 到x 轴的距离,即可得出结论.【详解】∵PA ⊥x 轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x 轴的距离.掌握点到坐标轴的距离是解解析:6【解析】【分析】根据题意得出PA 就是P 到x 轴的距离,即可得出结论.【详解】∵PA ⊥x 轴,∴PA =|6|=6.故答案为:6.【点睛】本题考查了点到x 轴的距离.掌握点到坐标轴的距离是解答本题的关键.17.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.18.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.19.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.20.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】P关于x轴对称的点P'的坐标是(2,-1)点(2,1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;21.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 22.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.23.22【解析】【分析】在Rt△AOC中利用勾股定理即可求出AO的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP的长度,由线段间的关系即可得出AP的长度.【详解】解:依照题意画解析:25±2【解析】【分析】在Rt△AOC中利用勾股定理即可求出AO的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP的长度,由线段间的关系即可得出AP的长度.【详解】解:依照题意画出图形,如图所示.∵∠ACB=90°,AC=BC=4,O是BC的中点,∴CO=BO=12BC=2,AO=22AC CO+=25,∵∠BPC=90°,O是BC的中点,∴OP=12BC=2,∴AP=AO-OP=25-2,或AP=AO+OP=25+2.故答案为:25±2.【点睛】本题考查了直角三角形斜边上的中线以及勾股定理,根据直角三角形中斜边上的中线等于斜边的一半求出OP的长度是解题的关键.24.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.25.-9【解析】【分析】先根据关于轴对称对称的两点横坐标相等,纵坐标互为相反数求出m和n的值,然后代入m+n计算即可.【详解】∵点与关于轴对称,∴m=-6,n=-3,∴m+n=-6-3=-解析:-9【解析】【分析】先根据关于x轴对称对称的两点横坐标相等,纵坐标互为相反数求出m和n的值,然后代入m+n 计算即可.【详解】∵点(3,)P m -与(,6)Q n 关于x 轴对称,∴m=-6,n=-3,∴m+n=-6-3=-9.故答案为:-9.【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.三、解答题26.(1)k 和b 的值分别为2-和4;(2)23x >;(3)103. 【解析】【分析】(1)根据点D 在函数y =x +2的图象上,即可求出n 的值;再利用待定系数法求出k ,b 的值;(2)根据图象,直接判断即可;(3)用三角形OBC 的面积减去三角形ABD 的面积即可.【详解】(1)函数12y x =+的图像过点D ,且点D 的坐标为2(,)3n ,则有28233n =+=. 所以点D 的坐标为28(,)33. 所以有4,28.33b k b =⎧⎪⎨+=⎪⎩ 解得2,4.k b =-⎧⎨=⎩所以k 和b 的值分别为2-和4. (2)由图象可知,函数y =kx +b 大于函数y =x +2时,图象在直线x =23的左侧, ∴x <23, 故答案为:x <23. (3)已知函数12y x =+的图像与y 轴交于点A ,则点A 坐标为(0,2).所以422AB OB OA =-=-=.函数2y kx b =+的图像与x 轴交于点C ,令20y =,则240x -+=.2x =.所以点C 坐标为(2,0).∴2OC =.则四边形AOCD 的面积等于112104222233BOC BAD S S ∆∆-=⨯⨯-=⨯⨯. 【点睛】本题主要考查一次函数的交点,解决此题时,明确二元一次方程组与一次函数的关系是解决此类问题的关键.第(3)小题中,求不规则图形的面积时,可以利用整体减去部分的方法进行计算.27.(1)1;(2)(﹣2,﹣5).【解析】【分析】(1)把点A (1,4)的坐标代入一次函数y =3x+m 可求出m 的值,(2)确定函数的关系式,再把B 的坐标代入,求出a 的值,进而确定点B 的坐标.【详解】解:(1)把点A (1,4)的坐标代入一次函数y =3x+m 得:3×1+m =4,解得:m =1,(2)由(1)得:一次函数的关系式为y =3x+1.把B (﹣2,a )代入得:a =3×(﹣2)+1=﹣5,∴B 的坐标为(﹣2,﹣5)【点睛】考查一次函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.28.(1)见解析;(2)(-3,5);(3)7.【解析】【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再顺次连接可得;(2)根据所作图形可得A 1点的坐标;(3)根据割补法求解可得△111A B C 的面积等于矩形的面积减去三个三角形的面积.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)由图知A 1的坐标为(-3,5);故答案是:(-3,5);(3)△111A B C 的面积为4×4-12×2×3-12×1×4-12×2×4=7. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.29.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.30.(1)4--2)120,6x x ==-【解析】【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【详解】解:(1)原式=3511654---+=--(2)23(3)27.x +=2(3)9.x +=3 3.x +=±120,6x x ==-【点睛】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键31.﹣21(2)x -,﹣112【解析】【分析】直接括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】原式= [221(2)(2)x x x x x +----]•4x x - =2(2)(2)(1)(2)4x x x x x x x x +---⋅-- =24(2)4x x x x x-⋅-- =﹣21(2)x -,当x =2﹣时,原式=﹣112. 【点睛】 此题主要考查分式的化简求值,熟练掌握,即可解题.。
苏教版八年级数学上册第二章【轴对称图形】单元复习试卷及答案1
八年级数学上册第二章【轴对称图形】单元测试卷一、单选题(共10题;共30分)1.到三角形三条边的距离相等的点是这个三角形()A、三条高的交点B、三条中线的交点C、三条角平分线的交点D、三条边的垂直平分线的交点2.下面的图形中,不是轴对称图形的是()A、有两个内角相等的三角形B、线段C、有一个内角是30°,另一个内角是120°的三角形D、有一个内角是60°的直角三角形;3.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A、1号袋B、2号袋C、3号袋D、4号袋4.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cmB.17cmC.13cm或17cmD.11cm或17cm5.有一个等腰三角形的周长为16,其中一边长为4,则这个等腰三角形的底边长为()A.4B.6C.4或8D.86.一个等腰三角形的顶角是100°,则它的底角度数是()A.30°B.60°C.40°D.不能确定7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.608.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.49.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CEA.∠DAB′=10.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共8题;共24分)11.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是________cm.12.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是________m.13.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是________厘米.,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是________.14.如图,∠BAC=110°15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于________.16.如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=________.17.在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则.AD+AE=________cm18.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若AB=10,BC=8,BD=5,则△ABD 的面积为________.三、解答题(共5题;共35分)19.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积(2)在平面直角坐标系中画出△A′B′C′三顶点的坐标,使它与△ABC关于x轴对称,并写出△A′B′C′(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.20.如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.21.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.22.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.23.如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.四、综合题(共1题;共10分)24.已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1,并写出△A1B1C1各顶点坐标;A1(________,________)B1(________,________)C1(________,________)(2)△ABC的面积=________.答案解析一、单选题1、【答案】C【考点】角平分线的性质【解析】【分析】由到三角形三边的距离都相等的点是三角形的三条角平分线的交点;到三角形三个顶点的距离都相等的点是三角形的三条边的垂直平分线的交点.即可求得答案.【解答】到三角形三边的距离都相等的点是三角形的三条角平分线的交点.故选C.【点评】此题考查了线段垂直平分线的性质以及角平分线的性质.此题比较简单,注意熟记定理是解此题的关键2、【答案】D【考点】轴对称图形【解析】【分析】如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.【解答】A、有两个内角相等的三角形,是等腰三角形,是轴对称图形,故正确;B、线段是轴对称图形,对称轴是线段的中垂线,故正确;C、有一个内角是30°,一个内角是120°的三角形,第三个角是30°,因而三角形是等腰三角形,是轴对称图形,故正确;D、不是轴对称图形,故错误.故选D.【点评】本题主要考查了轴对称图形的定义,确定轴对称图形的关键的正确确定图形的对称轴3、【答案】B【考点】生活中的轴对称现象,轴对称的性质,作图-轴对称变换【解析】【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【解答】根据轴对称的性质可知,台球走过的路径为:故选:B.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.4、【答案】B【考点】等腰三角形的性质【解析】【解答】解:当7为腰时,周长=7+7+3=17cm;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm.故选B.【分析】题中没有指明哪个是底哪个腰,故应该分两种情况进行分析,注意利用三角形三边关系进行检验.5、【答案】A【考点】等腰三角形的性质【解析】【解答】解:当4为等腰三角形的底边长时,则这个等腰三角形的底边长为4;当4为等腰三角形的腰长时,底边长=16﹣4﹣4=8,4、4、8不能构成三角形.故选A.【分析】分4为等腰三角形的底边长与腰长两种情况进行讨论.6、【答案】C【考点】等腰三角形的性质【解析】【解答】解:因为其顶角为100°,则它的一个底角的度数为12(180﹣100)=40°.故选C.【分析】已知给出了顶角为100°,利用三角形的内角和定理:三角形的内角和为180°即可解本题.7、【答案】B【考点】角平分线的性质【解析】【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=12AB?DE=12×15×4=30.故选B.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.8、【答案】C【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC?EF=12×5×2=5,故选C.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.9、【答案】D【考点】翻折变换(折叠问题)【解析】【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.10、【答案】C【考点】轴对称的性质【解析】【解答】解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.二、填空题11、【答案】18【考点】等边三角形的判定与性质【解析】【解答】解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.12、【答案】6【考点】角平分线的性质【解析】【解答】解:根据勾股定理得,斜边的长度=82+62=10m,设点O到三边的距离为h,则S△ABC=12×8×6=12×(8+6+10)×h,解得h=2m,∴O到三条支路的管道总长为:3×2=6m.故答案为:6m.【分析】根据勾股定理求出斜边的长度,再根据三角形的面积公式,Rt△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.13、【答案】5【考点】翻折变换(折叠问题)【解析】【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=12×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形.∵AD=AH+HD=HM+MF=HF,HF=EH2+EF2=32+42=5,∴AD=5厘米.故答案为5.【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.14、【答案】40°【考点】线段垂直平分线的性质【解析】【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=40°,故答案为:40°.【分析】根据三角形内角和定理求出∠B+∠C的度数,根据线段的垂直平分线的性质得到PA=PB,QA=QC,得到∠PAB=∠B,∠QAC=∠C,结合图形计算即可.15、【答案】120°【考点】等边三角形的性质【解析】【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=12∠ABC=30°,∠ICB=12∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.【分析】根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.16、【答案】15°【考点】等腰三角形的性质,等边三角形的性质【解析】【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×60°=30°,∵AD=AE,∴∠ADE=∠AED=180°-∠CAD2=75°,,∴∠ADC=90°∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得CAD=30°答案.17、【答案】8或16【考点】线段垂直平分线的性质【解析】【解答】解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,,∴AD+AE=BD+CE∵BC=12cm,DE=4cm,∴如图1,AD+AE=BD+CE=BC﹣DE=12﹣4=8cm,,如图2,AD+AE=BD+CE=BC+DE=12+4=16cm综上所述,AD+AE=8cm或16cm.故答案为:8或16.【分析】作出图形,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,AE=CE,然后分两种情况讨论求解.18、【答案】15【考点】角平分线的性质【解析】【解答】解:如图,过点D作DE⊥AB于E,∵BC=8,BD=5,∴CD=BC﹣BD=8﹣5=3,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=3,∴△ABD的面积=AB?DE=×10×3=15.故答案为:15.【分析】过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.三、解答题19、【答案】(1)解:描点如图,由题意得,AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC=12×5×2=5(2)解:如图;A′(﹣2,﹣1)、B′(3,﹣1)、C′(2,﹣3)(3)解:M'(x,﹣y).【考点】作图-轴对称变换【解析】【分析】(1)根据点的坐标,直接描点,根据点的坐标可知,AB∥x轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;(2)分别作出点A、B、C关于x轴对称的点A'、B'、C',然后顺次连接A′B′、B′C′、A′C′,并写出三个顶点坐标;(3)根据两三角形关于x轴对称,写出点M'的坐标.;20、【答案】解:∵△ABC中,AB=AC,∠BAC=100°∠BAC2=180°-100°2=40°,∴∠B=∠C=180°-∵AB=AC,AD⊥BC,∠BAC=100°,∴AD平分∠BAC,∴∠BAD=∠CAD=50°.【考点】等腰三角形的性质【解析】【分析】先根据等腰三角形的性质得出∠B=∠C,再由三角形内角和定理即可求出∠B的度数,根据等腰三角形三线合一的性质即可求出∠BAD的度数.21、【答案】证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角),∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF.【考点】线段垂直平分线的性质【解析】【分析】由FE是AD的垂直平分线得到FA=FD,再根据等边对等角得到∠FAD=∠FDA,而∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,其中由AD是∠BAC的平分线可以得到∠1=∠2,所以就可以证明题目结论.22、【答案】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF,∴S△ABC=(AB+AC)×DE,即×(16+12)×DE=28,解得DE=2(cm).【考点】角平分线的性质【解析】【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD 列方程计算即可得解.23、【答案】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,设CE=x,则DE=EF=8﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,即CE=3【考点】翻折变换(折叠问题)【解析】【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,然后在Rt△ECF中根据勾股定理得到x2+42=(8﹣x)2,再解方程即可得到CE的长.四、综合题24、【答案】(1)0;﹣2;﹣2;﹣4;﹣4;﹣1(2)5【考点】作图-轴对称变换【解析】【解答】解:(1)如图,△A1B1C1,即为所求,由图可知,A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1).故答案为:0,﹣2;﹣2,﹣4;﹣4,﹣1;2)S△ABC=S四边形CDEF﹣S△ACD﹣S△ABE﹣S△BCF=12﹣2﹣3﹣2=5.故答案为:5.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,由各点在坐标系中的位置写出各点坐标即可;(2)利用四边形的面积减去三个顶点上三角形的面积即可.。
苏科版八年级上学期期末质量自测数学试题
苏科版八年级上学期期末质量自测数学试题一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110°2.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 3.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒4.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .5.下列成语描述的事件为随机事件的是( )A .守株待兔B .水中捞月C .瓮中捉鳖D .水涨船高 6.某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是( )A .2y x =B .1y x =+C .1y x =--D .1y x =- 7.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长;以上真命题的个数是( )A .1B .2C .3D .48.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .3 9.若分式12x x -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 10.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 11.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.512.下列式子中,属于最简二次根式的是( )A .12B .0.5C .5D .1213.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定14.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL15.下列四个图案中,不是轴对称图案的是( )A .B .C .D .二、填空题16.1﹣π的相反数是_____.17.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.18.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.19.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________. 20.4的算术平方根是 .21.在2,227,254-,3.14,这些数中,无理数有__________个. 22.36的算术平方根是 .23.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.24.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.25.若一次函数y x a =-+与y x b =+的图像的交点坐标(,1010)m ,则a b +=__________. 三、解答题26.计算:(1)23(5)427-+;(2)12426(8)18÷+-. 27.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?28.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D →→→的方向以大于1 cm/s 的速度匀速移动,点Q 从点D 出发,在CD 边上沿D C →方向以1 cm/s 的速度匀速移动,P 、Q 两点同时出发,当点P 、Q 相遇时即停止移动.设点P 移动的时间为t(s),正方形ABCD 与PMQ ∠的内部重叠部分面积为y (cm 2).已知点P 移动到点B 处,y 的值为96(即此时正方形ABCD 与PMQ ∠的内部重叠部分面积为96cm 2).(1)求点P 的速度:(2)求y 与t 的函数关系式,并直接写出的取值范围.29.计算:(1)2(43)x y -(2)(1)(1)x y x y +++- (3)2293169a a a a -⎛⎫÷- ⎪++⎝⎭(4)22222233a b a b a a a b a b a b b +-⎛⎫⋅-÷ ⎪-+-⎝⎭30.解方程:(1)22(1)8x -= (2)214111x x x +-=-- 31.已知2y +与x 成正比,当x =1时,y =﹣6.(1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD 是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C .【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.3.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.4.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.D解析:D【解析】【分析】分别求出每个函数与x轴的交点,即可得出结论.【详解】A.y=2x与x轴的交点为(0,0),故本选项错误;B.y=x+1与x轴的交点为(-1,0),故本选项错误;C.y=-x-1与x轴的交点为(-1,0),故本选项错误;D.y=x-1与x轴的交点为(1,0),故本选项正确.故选:D.【点睛】本题考查了一次函数的性质.掌握求一次函数与x轴的交点坐标的方法是解答本题的关键.7.D解析:D【解析】【分析】根据三角形边与角的关系逐一分析即可得解.假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.8.D解析:D【解析】【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===. 由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm ,在Rt △BDE 中,由勾股定理得,DE 2+BE 2=BD 2即CD 2+42=(8-CD)2,解得:CD=3cm .故选:D .【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键. 9.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.11.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=GH GE HE2222故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.12.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;2C.,是最简二次根式,故本选项正确;2D.故选C.13.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.14.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.15.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B .此图案不是轴对称图形,符合题意;C .此图案是轴对称图形,不符合题意;D .此图案是轴对称图形,不符合题意;故选:B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题16.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.17.1【解析】∵点P (a ,b )在一次函数y=x+1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.18.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B 和C 重合时,线段AB 最短,题目比较典型,主要培养了学生的理解能力和计算能力.19.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+- ∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 20.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.21.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义. 22.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.23.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.24..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.25.2020【解析】把分别代入与,然后把两个式子相加即可求解.【详解】把分别代入与,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.解析:2020【解析】【分析】把(,1010)m 分别代入y x a =-+与y x b =+,然后把两个式子相加即可求解.【详解】把(,1010)m 分别代入y x a =-+与y x b =+,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.三、解答题26.(1)6;(2)3. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式=3 =3. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.28.(1)3 cm/s;(2)()()() 144120418021481081289t ty t tt t⎧-≤≤⎪=-<≤⎨⎪-<≤⎩.【解析】【分析】(1)由于P的速度比Q的速度大,因此P到达B点时,Q在DC边上,此时重叠部分面积为正方形的面积减去△DQM和△ABM的面积,求解即可;(2)分三种情况讨论:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M 是AD 边的中点,∴AM=MD=6,由题意可知当P 到达B 点时Q 在DC 边上,DQ=t ,∴ABM DMQ ABCD y S S S =--△△正方形 , ∴11961212612622t =⨯-⨯⨯-⨯⨯, 解得,t=4,∴ P 点的速度为12÷4=3 cm/s ;(2)当点P 在边AB 上时,04t ≤≤, APM DMQ ABCD y S S S =--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯ 当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.29.(1)2216249x xy y -+;(2)2221x xy y ++-;(3)3a a +;(4)22223()()a ab b a b a b +++- 【解析】【分析】(1)根据完全平方公式直接写出结果即可;(2)先将x y +看做一个整体运用平方差公式计算,再利用完全平方公式展开即可;(3)将分式利用平方差公式和完全平方公式分解因式,再约分化简即可;(4)运用分式的混合运算法则化简即可.【详解】(1)2(43)x y -=2216249x xy y -+;(2)2222(1)(1)()121x y x y x y x xy y +++-=+-=++-;(3)22293(3)(3)169(3)33a a a a a a a a a a a -+-⎛⎫÷-=⋅= ⎪+++-+⎝⎭; (4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 22222()2()()3()a b a b a b a b a b a b a+-=⋅-⋅-+- 2222()13()()1a b a b a b a b a b +=⋅-⋅-+- 2222()3()()a b ab a b a b a b +=--+- 2224233()()a ab b ab a b a b ++-=+- 22223()()a ab b a b a b ++=+-. 【点睛】本题主要考查了整式得乘除法及分式的乘除法,熟练运用整式得乘法公式,幂运算,及分式的通分约分等计算技巧是解决本题的关键.30.(1) x 1=3, x 2=-1 ;(2)无解.【解析】【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -=2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,∴原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.31.(1)y =-4x-2;(2)a =-1.【解析】【分析】(1)设y+2=kx ,将x=1、y=-6代入y+2=kx 可得k 的值;(2)将点(a ,2)的坐标代入函数的解析式求a 的值.【详解】解:(1)∵y+2与x 成正比,∴设y+2=kx ,将x=1、y=-6代入y+2=kx 得-6+2=k×1,∴k=-4,∴y=-4x-2(2)∵点(a ,2)在函数y=-4x-2图象上,∴2=-4a-2,∴a=-1.【点睛】本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.。
2020-2021学年度苏科版八年级上学期数学第2章轴对称图形单元检测试卷(2)
2020-2021学年度苏科版八年级上学期数学第2章轴对称图形单元检测试卷(2)(考试时间100分钟,满分120分)一、选择题(本大题共有8小题,每小题3分,共24分)1、下列图案是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个 2、下列说法中正确的是( )A .两个全等三角形一定成轴对称B .全等三角形的对应边上的中线相等C .若两个三角形全等,则对应角所对的边不一定相等D .任意一个等腰三角形都只有一条对称轴 3、如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60°4、如图,在ABC 中,,AB AC D =为BC 的中点,有下列四个结论:①B C ∠=∠;②AD BC ⊥;③2BAC BAD ∠=∠;④ABD ACD S S .其中正确的结论有( )A .1个B .2个C .3个D .4个5、等腰三角形的一个外角为 80°,则它的底角为( )A .100°B .8 0°C .40°D .100°或 40°6、下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③④D .①②③④7、如图,120AOB ∠=︒,OP 平分AOB ∠,且OP = 2.若点,M N 分别在,OA OB 上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A. 1个B. 2个C. 3个D. 3个以上8、如图,在△ABC 中,∠BAC=90°,∠ABC=2∠C ,BE 平分∠ABC 交 AC 于 E ,AD ⊥BE 于 D ,下列结论:①AC ﹣BE=AE ;②点 E 在线段 BC 的垂直平分线上;③∠DAE=∠C ;④BC=4AD ,其中正确的个数有( )A .1 个B .2 个C .3 个D .4 个二、填空题(本大题共有10小题,每小题3分,共30分)9、如图,ABC ∆与'''A B C ∆关于直线l 对称,且78,48A C ︒︒'∠=∠=,则∠B 的度数为________10、如图,在ABC ∆中,AC 的垂直平分线分别交,AC BC 于点,,E D EC = 4 , ABC ∆的周长为23,则ABD ∆的周长为__________11、如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有 个.12、在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.13、若等腰三角形一腰上的高和另一腰的夹角为40°,该三角形的一个底角是 . 14、如图,△ABC 中,∠ABC 与∠ACB 的外角平分线交于P,PM⊥AC 于M,若PM=6cm ,则点P 到AB 的距离为 .15、如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,S △ABC =7,DE =2,AB =4,则AC 长是________.16、如图,在四边形ABCD 中,90BCD BAD ∠=∠=︒ , ,AC BD 相交于点,,E G H 分别是,AC BD 的中点.如果80BEC ∠=︒,那么GHE ∠的度数为 .17、如图,已知在等腰三角形ABC中,AB= AC,P、Q分别是边AC,AB上的点,且AP=PQ= QC=BC.则∠A= .18、如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有___________①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.三、解答题(本大题共有7小题,共66分.)19、(满分8分)尺规作图(不写作法,保留作图痕迹)。
苏科版八年级数学上册第二章 轴对称图形 单元测试(含答案)
初中数学苏科版八年级上册第二章轴对称图形单元测试一、单选题1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()。
A. B. C.D.2.如图,ΔABC中,∠A=70∘,点E、F在AB、AC上,沿EF向内折叠ΔAEF,得ΔDEF,则图中∠1+∠2的和等于()A.70∘B.90∘C.120∘D.140∘3.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A. B. C.D.4.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当∠AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°5.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP∠OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则∠ODQ的面积是()A.3B.4C.5D.66.如图,在∠ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则∠BMN的周长是()A.36B.24C.18D.167.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形8.如图,在△ABC中AB=AC,BC=4,面积是20,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段上一动点,则△CDM周长的最小值为().A.6B.8C.10D.129.如图在∠ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO 的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①∠ABD∠∠CBD;②AC∠BD;③四边形ABCDAC•BD,其中正确的结论有()的面积= 12A.①②B.①③C.②③D.①③②二、填空题11.已知等腰三角形的其中两边长为6cm和8cm,则这个三角形的周长为________cm.12.等腰三角形的顶角是50°,则它一腰上的高与底边的夹角为________.13.若等腰三角形一腰上的高与腰长之比为1:2,则该等腰三角形顶角的度数为________。
苏科版数学八年级上册期末复习第2章 轴对称图形综合素质评价卷(含答案)
第2章 综合素质评价一、选择题(每题3分,共24分)1.【2023·深圳母题·教材P72复习题T1】下列图形中,为轴对称图形的是( )2.[2024常州二十四中月考]若等腰三角形的底角等于50°,则这个等腰三角形顶角的度数是( )A.50°B.65°C.80°D.100°3.[2023贵州]5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12 m,则底边上的高是( )(第3题)A.4 mB.6 mC.10 mD.12 m4.如图,在△ABC中,∠BAC=90°,M是边BC上一点,将△ABC沿AM折叠,点B恰好能与AC的中点D重合.若AB=6,则点M到AB的距离是( )(第4题)A.3B.4C.5D.65.【母题教材P72复习题T3(2)】如图,在5×5的小正方形网格中有4个涂阴影的小正方形,它们组成一个轴对称图形.现在移动其中一个小正方形到空白的小正方形处,使得新的4个阴影小正方形组成一个轴对称图形,不同的移法有( )(第5题)A.8种B.12种C.16种D.20种6. 母题 教材P57习题T1【母题 教材P57习题T1】如图,在△ABC 中,AB ,AC 的垂直平分线分别交BC 于D ,E 两点,并且相交于点F ,且∠DFE =70°,则∠DAE 的度数是( )(第6题)A .30°B .40°C .60°D .70°7.[2024南京玄武区月考]如图,在△ABC 中,∠ABC =52°,P 为△ABC 内一点,过点P 的直线MN 分别交AB ,BC 于点M ,N .若点M 在PA 的垂直平分线上,点N 在PC 的垂直平分线上,则∠APC 的度数为( )(第7题)A .115°B .116°C .117°D .118°8.如图,在四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B'恰好落在CD 上.若∠BAD =α,则∠ACB 的度数为( )(第8题)A .45°B .α-45°C .αD .90°-α1212二、填空题(每小题3分,共30分)9.[2024泰州姜堰区月考]等腰三角形的周长为14 cm ,一边长为4 cm ,则底边长为 cm .10.在镜子中看到的一串数字是“”,则这串数字是 .11.在△ABC 中,AB =AC ,∠BAC =100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADB 的度数是 .12.[2024青岛期中]如图,在△ABC 中,BC =7 cm ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,AC 的长为13 cm ,则△BCE 的周长为 cm .(第12题)13.【新考法对称法】如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B'.若点B'刚好落在边AC上,∠CB'E=30°,CE=3,则BC的长为 .(第13题)14.[2024晋中期中]小聪同学在寒假完成项目作业《用纸片“做数学”》时,通过实践探索和推理验证发现,当一张三角形纸片的内角满足一定条件时,这个三角形纸片能沿一条直线裁剪成两个等腰三角形.例如三角形纸片的一个内角是另一个内角的3倍时(如图),沿图中虚线裁剪得到的两个三角形都是等腰三角形.除此情形,三角形纸片的内角条件满足 时,也能沿一条直线裁剪得到两个等腰三角形.(写出一种情况即可)(第14题)15.[2023兴化月考]如图,已知O为△ABC三边垂直平分线的交点,∠BAC=70°,则∠BOC= .(第15题)16.如图,CD是等边三角形ABC的中线,DE⊥AC,垂足为E.若DE的长为3 cm,则点D到BC的距离为 cm.(第16题)17.如图,已知S△ABC=24 m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.(第17题)18.【新视角规律探究题】如图所示的是一钢架,设∠AOB=α,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH,…,添加的钢管长度都与OE相等,若最多能添加这样的钢管4根,则α的取值范围是 .(第18题)三、解答题(共66分)19.(10分)两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到A,B两个城镇的距离相等,到l1,l2两条公路的距离也相等,那么点C应选在何处?请在图中用尺规作图找出点C.(不写已知、求作、作法,只保留作图痕迹)20.(10分)[2024无锡惠山区月考]如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若AE=4,BD=3,求△ABC的面积.21.(10分)[2023安徽]如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB先向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.22.(12分)[2024南通如东县期末]如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE=AC.(1)求证:AD⊥BC;(2)若∠BAC=75°,求∠B的度数.23.(12分)[2024镇江期中]已知:如图,△ABC,△CDE都是等边三角形,AD与BE相交于点O,M,N分别是线段AD,BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.24.(12分)[2024靖江月考]已知,如图,在△ABC中,AC的垂直平分线与∠ABC的平分线交于点D.(1)如图①,判断∠BAD和∠BCD之间的数量关系,并说明理由;(2)如图②,若∠DAC=60°,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)如图③,在(2)的条件下,DA和CB的延长线交于点E,H是CD上一点且DH=AE,连接AH交BD于点G,若CE=8,求DG的长.(三角形两边的中点连线长等于第三边的一半)参考答案一、选择题1. D 2. C 3. B 4. B 5. D 6. B7. B 点拨:∵∠ABC =52°,∴∠BMN +∠BNM =128°.∵点M 在PA 的垂直平分线上,点N 在PC 的垂直平分线上,∴AM =PM ,PN =CN ,∴∠MAP =∠MPA ,∠CPN =∠PCN .∵∠BMN =∠MAP+∠MPA ,∠BNM =∠CPN +∠PCN ,∴∠MPA =∠BMN ,∠CPN =∠BNM ,∴∠1212MPA +∠CPN =(∠BMN +∠BNM )=×128°=64°,∴∠APC =180°1212-(∠MPA +∠CPN )=180°-64°=116°.8. D二、填空题9.4或6 10.8965321 11.90°或50°12.20 13.9 14.有一个内角是直角(答案不唯一)15.140° 16.317.12 点拨:如图,延长BD 交AC 于点E .∵AD 平分∠BAE ,AD ⊥BD ,∴∠BAD =∠EAD ,∠ADB =∠ADE =90°.在△ABD 和△AED 中,{∠BAD =∠EAD ,AD =AD ,∠ADB =∠ADE ,∴△ABD ≌△AED (ASA ),∴BD =DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC =S △ABC =×24=12(m 2).121218.18°≤α<22.5° 点拨:∵OE =EF ,∴∠EFO =∠EOF =α,∴∠GEF =∠EOF +∠EFO =2α.同理可得∠GFH =3α,∠HGB =4α.∵最多能添加这样的钢管4根,∴4α<90°,5α≥90°,∴18°≤α<22.5°.三、解答题19.解:点C 的位置如图所示.20.(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD .由作图知:AE =AF .在△ADE 和△ADF 中,{AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF (SAS ).(2)解:∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC ,CD =BD =3,∴BC =6.又∵AD =AE =4,∴S △ABC =BC ·AD =×6×4=12.121221.解:(1)线段A 1B 1如图所示.(2)线段A 2B 2如图所示.(3)直线MN 即为所求.22.(1)证明:如图,连接AE.∵EF 垂直平分AB ,∴AE =BE .又∵BE =AC ,∴AE =AC .又∵D 是CE 的中点,∴AD ⊥BC .(2)解:设∠B =x °.∵AE =BE ,∴∠BAE =∠B =x °,∴∠AEC =2x °.∵AE =AC ,∴∠C =∠AEC =2x °.在△ABC 中,∠B +∠C +∠BAC =180°,∴x °+2x °+75°=180°,解得x =35,∴∠B =35°.23.(1)证明:∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE .在△ACD 和△BCE 中,{AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS ),∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC .∵△DCE 是等边三角形,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED =∠ADC +60°+∠BED =∠BEC +60°+∠BED =∠CED +60°=60°+60°=120°,∴∠DOE =180°-(∠ADE +∠BED )=60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE .∵M ,N 分别是线段AD ,BE 的中点,∴AM =AD ,BN =BE ,∴AM =BN .1212在△ACM 和△BCN 中,{AC =BC ,∠CAM =∠CBN ,AM =BN ,∴△ACM ≌△BCN (SAS ),∴CM =CN ,∠ACM =∠BCN ,∵∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,即∠MCN =60°,∴△MNC 是等边三角形.24.解:(1)∠BAD +∠BCD =180°.理由如下:如图①,过点D 作DG ⊥BC 于点G ,DH ⊥BA 交BA 的延长线于点H.∵AC 的垂直平分线与∠ABC 的平分线交于点D ,∴AD =CD ,∠ABD =∠DBC ,∴DH =DG .在Rt △ADH 和Rt △CDG 中,∴Rt △ADH ≌Rt △CDG (HL ),{AD =CD ,DH =DG ,∴∠HAD =∠DCG .∵∠BAD +∠HAD =180°,∴∠BAD +∠DCG =180°,即∠BAD +∠BCD =180°.(2)BD =AB +BC .理由如下:如图②,在BD上截取BF=AB,连接AF.由(1)知∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°.∵∠DAC=60°,AD=CD,∴△ACD为等边三角形,∴AD=AC,∠ADC=60°,∴∠ABC=120°,∴∠ABD=∠DBC=60°.又∵BF=AB,∴△ABF为等边三角形,∴AB=AF,∠BAF=60°,∴∠BAF=∠DAC,∴∠BAF-∠CAF=∠DAC-∠CAF,即∠BAC=∠DAF.在△ABC和△AFD中,{AB=AF,∠BAC=∠DAF,AC=AD,∴△ABC≌△AFD(SAS),∴DF=BC,∴BD=BF+DF=AB+BC.(3)由(2)知∠DAC=∠DBC=60°.如图③,延长HD至点M,使DM=DH,连接AM.由(2)易得∠ACB=∠ADB.∵DM=DH,DH=AE,∴DM=AE.∵∠DAC=∠ADC=60°,∴∠ADM=∠EAC=120°.又∵AC=AD,∴△EAC≌△MDA(SAS),∴AM =CE ,∠MAD =∠ECA ,∴∠MAD =∠ADB ,∴DG ∥AM .又∵DH =DM ,∴易得AG =GH ,∴DG =AM =CE =4.1212。
八年级上册数学第二章测试题及答案
八年级上册数学第二章测试题及答案八年级上册数学第二章测试一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
2、若函数y= -2x m+2是正比例函数,则m 的值是。
3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。
5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第象限。
6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。
7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。
8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。
9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为:。
10、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。
(1)y 随着x 的增大而减小,(2)图象经过点(1,-3)。
二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有()(A )4个(B )3个(C )2个(D )1个12、下面哪个点不在函数32+-=x y 的图像上()(A )(-5,13)(B )(0.5,2)(C )(3,0)(D )(1,1) 13、直线y=kx+b 在坐标系中的位置如图,则(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12 k b == 14、下列一次函数中,随着增大而减小而的是()(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( )(A )34m < (B )314m -<< (C )1m <- (D )1m >- 17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C )(D )18、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2与x 成正比,且当x=1时,y= -6(1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值21、已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数y= 12x 的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。
苏科版八年级上学期期末质量自测数学试题
苏科版八年级上学期期末质量自测数学试题 一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .9 2.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >3.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况4.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x <5.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .106.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A.y随x的增大而增大B.y随x的增大而减小C.随x的增大,y先增大后减小D.随x的增大,y先减小后增大7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±2 9.在下列分解因式的过程中,分解因式正确的是()A.-xz+yz=-z(x+y) B.3a2b-2ab2+ab=ab(3a-2b)C.6xy2-8y3=2y2(3x-4y) D.x2+3x-4=(x+2)(x-2)+3x10.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限11.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h12.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)13.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的()A.总体B.个体C.样本D.样本容量14.下列分式中,x取任意实数总有意义的是()A .21x x +B .221(2)x x -+C .211x x -+D .2x x + 15.2的算术平方根是() A .4 B .±4 C .2 D .2±二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 18.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 19.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.20.点(−1,3)关于x 轴对称的点的坐标为____.21.点A (2,-3)关于x 轴对称的点的坐标是______.22.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.23.2______324.化简20,0)3b a b a>≥结果是_______ . 25.若直角三角形斜边上的中线是6cm ,则它的斜边是 ___ cm .三、解答题26.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.27.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?28.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形; (2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.29.观察下列等式: 112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;…… 根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数: 2⨯( )-5=( )5⨯; (2)小明将上述等式的特征用字母表示为:2x y xy -=(x 、y 为任意实数).①小明和同学讨论后发现:x 、y 的取值范围不能是任意实数.请你直接写出x 、y 不能取哪些实数.②是否存在x 、y 两个实数都是整数的情况?若存在,请求出x 、y 的值;若不存在,请说明理由.30.(1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--+-31.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m <1,∴|m-1|+(m+6)=1-m+m+6=7,故选C .【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范围.2.A解析:A【解析】【分析】由图知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大,由此得出当x >0时,y >2,进而可得解.【详解】根据图示知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大; 即当x >0时函数值y 的范围是y >2;因而当不等式kx+b-2>0时,x 的取值范围是x >0.故选:A .【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.3.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A 、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B 、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C 、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D 、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B .【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A解析:A【解析】【分析】根据分式的定义即可求解.【详解】依题意得50x -≠,解得5x ≠,故选A.【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.5.A解析:A【解析】【分析】由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,易得△BCF 的周长等于AB+BC ,则可求得答案.【详解】解:由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.6.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】 解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+,∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.7.D解析:D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.8.C解析:C【解析】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2,故选C.9.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误;6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.10.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像11.C解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.12.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.14.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.15.C解析:C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:2故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120︒【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12且a a>≠【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析18..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.19.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.20.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.21.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.22.x>﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当解析:x>﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为x>﹣1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.23.>【解析】, .解析:>【解析】<,>2324.【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知解析:3a【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.25.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,∴则它的斜边是:cm;故答案为:12.【点睛】本题考查了直解析:12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,⨯=cm;∴则它的斜边是:2612故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.27.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式. 28.作图见解析.【解析】试题分析:(1)根据正方形的面积为10可得正方形边长为10,画一个边长为10正方形即可;(2)①画一个边长为2,22,10的直角三角形即可;②画一个边长为5,5,10的直角三角形即可;试题解析:(1)如图①所示:(2)如图②③所示.考点:1.勾股定理;2.作图题.29.(1) 53-;(2)①x 不能取-1,y 不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4; 【解析】【分析】(1)设所填数为x,则2x-5=5x ;(2)①假如2x y xy -=,则2,12x y y x x y ==+-,根据分式定义可得;②由①可知21xyx=+或2yxy=-,x≠-1,y≠2,代入尝试可得.【详解】(1)设所填数为x,则2x-5=5x解得x=5 3 -所以所填数是5 3 -(2)①假如2x y xy-=则2,12x y y xx y ==+-所以x≠-1,y≠2即:x不能取-1,y不能取2;②存在,由①可知21xyx=+或2yxy=-,x≠-1,y≠2所以x,y可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.30.(1)x=5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x﹣1)2=16,x﹣1=±4,解得:x=5或﹣3;(2)20201-=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.31.()113;()28BD=;()3.数轴上画出表示数的B点.见解析.【解析】【分析】(1) 根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】()1∵这一个直角三角形的两条直角边分别为512、∴这个直角三角形斜边长为225+12=13故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE =⎧⎨=⎩∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- ,由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.。
苏科版八年级上学期期末质量自测数学试题
苏科版八年级上学期期末质量自测数学试题一、选择题1.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒2.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )A .(﹣2,﹣4)B .(1,2)C .(﹣2,4)D .(2,﹣1)3.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条6.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 8.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:3 9.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④10.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4) B .(2,4)C .(﹣2,﹣4)D .(8,1) 11.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对12.下列各数中,无理数的是( )A .0B .1.01001C .πD .4 13.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 14.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)15.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°二、填空题16.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).17.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.18.若x +2y =2xy ,则21+x y的值为_____. 19.如图,已知等腰三角形ABC ,AB =AC ,若以点B 为圆心,BC 长为半径画弧,分别与腰AB ,AC 交于点D ,E .给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE =BE ;②AD =DE ;③∠EBC =∠A ;④∠BED =∠C .20.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.21.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.22.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.23.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.24.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________25.点P (3,-4)到 x 轴的距离是_____________.三、解答题26.求下列各式中的x :(1)()2116x -=;(2)321x +=.27.如图,∠AOB =90°,OA =12cm ,OB =8cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C 处的位置,不必叙述作图过程,保留作图痕迹;(2)求线段OC 的长.28.(模型建立)(1)如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA ;(模型应用)(2)① 已知直线l 1:y =43x +8与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转45o至直线l 2,如图2,求直线l 2的函数表达式; ② 如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为(8,-6),点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线y =-3x +6上的动点且在y 轴的右侧.若△APD 是以点D 为直角顶点的等腰直角三角形,请直接写出点D 的坐标.29.如图,在平面直角坐标系中,点B 的坐标是()0,2,动点A 从原点O 出发,沿着x 轴正方向移动,以AB 为斜边在第一象限内作等腰直角三角形ABP ∆,设动点A 的坐标为()(),00t t ≥.(1)当2t =时,点P 的坐标是 ;当1t =时,点P 的坐标是 ;(2)求出点P 的坐标(用含t 的代数式表示);(3)已知点C 的坐标为()1,1,连接PC 、BC ,过点P 作PQ y ⊥轴于点Q ,求当t 为何值时,当PQB ∆与PCB ∆全等.30.求下列各式中x 的值:(1)240x -=;(2)3216x =-31.如图,平面直角坐标系中,直线AB :y =kx +3(k ≠0)交x 轴于点A (4,0),交y 轴正半轴于点B ,过点C (0,2)作y 轴的垂线CD 交AB 于点E ,点P 从E 出发,沿着射线ED 向右运动,设PE =n .(1)求直线AB 的表达式;(2)当△ABP 为等腰三角形时,求n 的值;(3)若以点P 为直角顶点,PB 为直角边在直线CD 的上方作等腰Rt △BPM ,试问随着点P 的运动,点M 是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数.【详解】延长AO 交BC 于D .∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.4.D解析:D【解析】【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标.【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.5.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD ⊥BC ,根据勾股定理可得:AC 2-CD 2=AB 2-BD 2所以设CD=x,则BD=7-x所以52-x 2=(2-(7-x )2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC 中3==所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.6.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,7.C解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.8.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.9.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.10.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.11.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.12.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;D.42,是整数,属于有理数.故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.13.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.14.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.二、填空题16.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.17.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x 的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.18.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式=22x y xyxy xy+==2,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=B解析:③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.【点睛】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.20.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形, ∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.21.(-1,0)【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).22.【解析】【分析】在x 轴上取一点P (1,0),连接BP ,作PQ ⊥PB 交直线BN 于Q ,作QR ⊥x 轴于R ,构造全等三角形△OBP ≌△RPQ (AAS );然后根据全等三角形的性质、坐标与图形性质求得Q ( 解析:5,33⎛⎫ ⎪⎝⎭【解析】【分析】在x 轴上取一点P (1,0),连接BP ,作PQ ⊥PB 交直线BN 于Q ,作QR ⊥x 轴于R ,构造全等三角形△OBP ≌△RPQ (AAS );然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ 的解析式,所以将点N 代入该解析式来求m 的值即可.【详解】解:在x 轴上取一点P (1,0),连接BP ,作PQ ⊥PB 交直线BN 于Q ,作QR ⊥x 轴于R ,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR ,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M (-1,0),∴OP=OM=1,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.23.y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2﹣2=2x .故答案为:y =2x .【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x 左加右减;上下平移,b 上加下减”是解此题的关键.24.(3,4)【解析】分析:首先根据点A 和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A 的坐标为(-4,-1),A′的坐标为(-2,2), ∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A 和点A ′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B ′的坐标.详解:∵A 的坐标为(-4,-1),A ′的坐标为(-2,2), ∴平移法则为:先向右平移2个单位,再向上平移3个单位, ∴点B ′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.25.4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.解析:4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.三、解答题26.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x+=,x3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.27.(1)详见解析;(2)103cm.【解析】【分析】(1)作AB的垂直平分线,交OA于点C,则点C即为所求;(2)设BC=xcm,根据题意用x表示出AC和OC,根据勾股定理列出方程,解方程即可.【详解】解:(1)如图所示,作AB的垂直平分线,交OA于点C,则点C即为所求;(2)由作图可得:BC=AC,设BC=xcm,则AC=xcm,OC=(12﹣x)cm,由勾股定理得,BC2=OB2+OC2,即x2=82+(12﹣x)2,解得x=263.∴OC=12﹣263=103答:线段OC的长是103cm.【点睛】本题考查的是勾股定理的应用和基本作图:线段的垂直平分线,掌握直角三角形中,两条直角边的平方和等于斜边的平方是解题的关键.28.(1)证明见解析;(2)①y=-7x-42;② (2,0)或(5,-9)【解析】【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定△ACD≌△CBE;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=6,CD=OB=8,求得C(-8,14),最后运用待定系数法求直线l2的函数表达式;②根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=-3x+6上的动点且在y 轴的右侧时,分两种情况:当点D在矩形AOCB的内部或边上时,当点D在矩形AOCB的外部时,设D(x,-3x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:如图1,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBCCA CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△CBE(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+8中,若y=0,则x=-6;若x=0,则y=8,∴A(-6,0),B(0,8),∴BD=AO=6,CD=OB=8,∴OD=8+6=14,∴C (-8,14),设l 2的解析式为y=kx+b ,则14806k b k b =-+⎧⎨=-+⎩解得742k b =-⎧⎨=-⎩∴l 2的解析式:y=-7x-42;②D (2,0),(5,-9)理由:当点D 是直线y=-3x+6上的动点且在y 轴右侧时时,分两种情况:当点D 在矩形AOCB 的内部或边上时,如图,过D 作x 轴的平行线EF ,交直线OA 于E ,交直线BC 于F ,设D (x ,-3x+6),则OE=3x-6,AE=6-(3x-6)=12-3x ,DF=EF-DE=8-x ,由(1)可得,△ADE ≌△DPF ,则DF=AE ,即:12-3x=8-x ,解得2x=4,x=2,∴-3x+6=0,∴D (2,0),即点D 为直线y=-3x+6与x 轴交点,此时,PF (PC )=ED (OD )=2,AO=6=CD ,符合题意;准确图形如下:当点D 在矩形AOCB 的外部时,如图,过D 作x 轴的平行线EF ,交直线OA 于E ,交直线BC 于F ,设D(x,-3x+6),则OE=3x-6,AE=OE-OA=3x-6-6=3x-12,DF=EF-DE=8-x,同理可得:△ADE≌△DPF,则AE=DF,即:3x-12=8-x,解得x=5,∴-3x+6=-9,∴D(5,-9),此时,ED=PF=5,AE=BF=DF=3,BP=PF-BF=5-3=2 <6,点P在线段BC上,符合题意.【点睛】本题考查一次函数综合题,主要考查点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.29.(1) (2,2);(32,32); (2) P(2t2+,2t2+);(3) 22+2.【解析】【分析】(1) 当2t=时,三角形AOB为等腰直角三角形,所以四边形OAPB为正方形,直接写出结果;当1t=时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;(2) 作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;(3) 根据已知求出BC值,根据上问得到OQ=2t2+,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.【详解】(1) 当2t=时,三角形AOB为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当1t 时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN =∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PM BN=AM∴四边形OMPN为正方形,OM=ON=PN=PM ∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=32∴ P(32,32)(2) 如图作PE ⊥y 轴于E ,PF ⊥x 轴于F ,则四边形OEPF 为矩形∵∠BPE+∠BPF=∠APF+∠BPF=90°∴ ∠BPE =∠APF ∵∠BEP=∠AFP∴ △BEP ≌△AFP∴PE=PF BE=AF∴四边形OEPF 为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴ OE=OF=PE=PF=2t 2+ ∴ P(2t 2+,2t 2+); (3) 根据题意作PQ ⊥y 轴于Q ,作PG ⊥x 轴与G∵ B(0,2) C(1,1)∴2由上问可知P(2t 2+,2t 2+),OQ=2t 2+ ∵△PQB ≌△PCB ∴2∴2+2=2t 2+ 解得 t=22+2.【点睛】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.30.(1)2x =-或2x =;(2)2x =-【解析】【分析】(1)根据平方根的性质解方程即可;(2)根据立方根的性质解方程即可.【详解】解:(1)240x -=24x =解得:2x =-或2x =(2)3216x =-38x =-解得:2x =-【点睛】此题考查的是含平方和立方的方程,掌握平方根的性质和立方根的性质是解决此题的关键.31.(1)y =﹣34x +3;(2)n =56或8343;(3)在直线上,理由见解析 【解析】【分析】 (1)将点A 的坐标代入直线AB :y =kx +3并解得:k =﹣34,即可求解; (2)分AP =BP 、AP =AB 、AB =BP 三种情况,分别求解即可;(3)证明△MHP ≌△PCB (AAS ),求出点M (n +73,n +103),即可求解. 【详解】(1)将点A 的坐标代入直线AB :y =kx +3并解得:k =﹣34, 故AB 的表达式为:y =﹣34x +3; (2)当y =2时,x =43,故点E (43,2),则点P (n +43,2), 而点A 、B 坐标分别为:(4,0)、(0,3),则AP 2=(43+n ﹣4)2+4;BP 2=(n +43)2+1,AB 2=25, 当AP =BP 时,(43+n ﹣4)2+4=(n +43)2+1,解得:n =56;当AP=AB时,同理可得:n=8213(不合题意值已舍去);当AB=BP时,同理可得:n=﹣43+26;故n=56或83+21或﹣43+26;(3)在直线上,理由:如图,过点M作MD⊥CD于点H,∵∠BPC+∠PBC=90°,∠BPC+∠MPH=90°,∴∠CPB=∠MPH,BP=PM,∠MHP=∠PCB=90°∴△MHP≌△PCB(AAS),则CP=MH=n+43,BC=1=PH,故点M(n+73,n+103),n+73+1= n+103,故点M在直线y=x+1上.【点睛】此题主要考查了平面直角坐标系中一次函数与全等三角形、等腰三角形的综合应用,熟练掌握,即可解题.。
苏科版初中数学八年级上册第2章综合测试试卷含答-案答案在前1
第2章综合测试答案解析一、1.【答案】D【解析】解:A.为轴对称图形;B.为轴对称图形;C.为轴对称图形;D.不是轴对称图形。
故答案为:D.2.【答案】D【解析】解:A60,AEF AFE18070110,沿EF向内折叠△AEF,得△DEF,AED AFD2(AEF AFE)2110220,121802220360220140.故答案为:D.3.【答案】B【解析】解:点P在AOB的平分线上,点P到OA边的距离等于6,点P到OB的距离为6,点Q是OB边上的任意一点,PQ≥6.故答案为:B.4.【答案】D【解析】解:作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,由四边形的内角和为360可知,BAD360909050130,即123130①,由作图可知,1G,3H,△AGH的内角和为180,则2132180②,又①②联立方程组,解得280.故答案为:D.5.【答案】D【解析】解:过点D作DH OB于点H,如图,是AOB的角平分线,DP OA,DH OB,DH DP4,△ODQ的面积OC初中数学九年级上册1/81 1= OQ DH 4 3 6.故答案为:D.2 26.【答案】D【解析】解:ME、NF分别为AB、BC 的垂直平分线,AM MB,NB NC ,△MEB的周长=BM MN NB AM MN NC AC ,△BMN的周长等于24,故答案为:B.7.【答案】D【解析】解:如图,根据轴对称的性质可知,1OP2OP ,P ,1 OP2 OP1OP2 60 △P是等边三角形.故答案为:D.8.【答案】D【解析】解:连接AD交EF于点M,此时△CDM周长最小,l,D为BC中点,AD BC,20AB AC△,BC 4 ,AD 10 ,则S BC ADABC2△CDM周长=CM MD CD ,EF垂直平分AC ,CM AM,又BD 4,D为BC 中点,CD 2 ,△CDM周长=AD CD 12 ,故答案为:D.9.【答案】C【解析】解:CE 为外角ACD的平分线,BE平分ABC,1DCE ACD,21BE ABC,又△DCE是△BCE的外角,D21 1,故①正确;BO,CO分别平分ABC,2 BCE DBE( ACD ABC) 12 21OBC ABC,21OCB ACB,21 1 1BOC 180(OBC OCB) 180(ABC ACB) 180(1801) 901,故②、2 2 2初中数学九年级上册2/ 8③错误;OC平分ACB,CE平分ACD,1ACO ACB,21ACE ACD,21 1,BOC是△COE的外角,OCE B ACD 18090AC2 2BOC COE 2 90 2 ,故④正确;故答案为:C.10.【答案】D【解析】解:①AD CD,AB CB,BD BD ,△ABD≌△CBD,①符合题意;②AD CD,AB CB,1BD垂直平分AC ,AC BD,②符合题意;③AC BD ,四边形ABCD的面积AC BD③符2合题意;故答案为:D.二、11.【答案】20 或22【解析】解:①腰长为6 cm,满足三角形三边关系,这个三角形的周长=6+6+8=20 cm ,②腰长为8 cm ,满足三角形三边关系,这个三角形的周长=6+8+8=22 cm ,故答案为:20 或22.12.【答案】25【解析】解:如图:△ABC中,AB AC,BD是边AC上的高.A 70,且AB AC,ABC C 18050265;在Rt△BDC中,BDC 90,C 65;DBC 906525.故答案为:2513.【答案】30或150【解析】解:解△ABC中,AC BC,BD 是高,BDC 90当△ABC时钝角三角形时,在Rt△BDC中,BC 2BD ,BCD 30,ACB 180BCD 18030150;当△ABC是锐角三角形时,初中数学九年级上册3/ 8在Rt△BDC中,BC 2BD ,C 30.该等腰三角形的顶角为30或150.故答案为:30或150.14.【答案】10【解析】解:Rt△ABC 中,ACB 90,A 50,B 90A 905040,将△ABC折叠,使点A落在边CB上A'处,折痕为CD,A DA'C 50;DA'C B A'DB,40A'DB 50A'DB 504010.故答案为:10.15.【答案】2:3:4【解析】解:如图:过点O作OD AC于D,OE AB于E,OF BC于F,三条角平分线将△ABC分为三个三角形,OE OF OD,11 1S△:S△:S△AB OE:BC OF:AC OD AB:BC:AC=2:3:4.ABO BCO CAO22 216.【答案】4【解析】解:过点C作CE AB于点E,交BD于点M,过点M作MN BC于N,平分ABC,ME AB于点E,MN BC于N ,MN ME ,CE CM ME CM MN的BD1最小值.三角形ABC的面积为15,AB 10,10CE 20,CE 4.即CM MN的最小值为4.2故答案为:417.【答案】60【解析】解:△ABC 为等边三角形,CAE ABD 60,AC BA.在△ACE和△BAD中,AC BA,△ACE≌△BAD SAS ,ACE BAD.DPC CAP ACP,CAE ABDAE BDBAD CAP ACP CAP 60,DPC 60.故答案为:60.18.【答案】32a【解析】解:如图所示:初中数学九年级上册4/8△是等边三角形,A1B1 A2B1 , 3 4 12=60,2=120,MON=30,A1B1A2,又3=60, 5 1806030=90,MON =1=30,1 180 120 30 =30,△A B A、△A3B3 A4 是等边三角形,1110 60,13 60,OA A B a A B a,1 1 12 1 2 2 3,A1B1∥A2B2∥A3B3 ,B1A2∥B2 A3 ,1 6 7 30, 5 8 90,4 12 60A B B A, 3 3 4 1 2 42 2 2 1 2 B3 A3 2B2 A3 ,A B B A a,A B B A a,4 4 8 1 2 8A B B A a,以此类5 5 16 1 2 16推:A6B6 32B1A2 32a.故答案是:32a.三、19.【答案】(1)解:如图1,△A'B'C'即为所求;(2)解:如图2,点P即为所求.【解析】(1)分别作出各点关于y轴的对称点,再顺次连接即可.(2)连接AB,作线段AB的垂直平分线与COD的平分线,其交点即为点P.初中数学九年级上册5/ 820.【答案】(1)证明:AF是DAC的角平分线,DAF FAC,又AF∥BC,FAC ACB,DAF B,ACB B,△ABC是等腰三角形.(2)解:CG平分ACE,ACG GCE,又B40,△ABC是等腰三角形,BCA40,ACE180BCA 140,1ACG GCE ACE70,BCG BCA+ACG110,又2AF∥BC,ACG BCG70.【解析】(1)根据角平分线的性质得到DAF FAC,再结合平行线的性质即可得出答案.(2)根据角平分线的相知得出ACG GCE,再根据等腰三角形的性质得出BCA和ACG,最后结合平行线的性质即可得出答案.21.【答案】(1)证明:△ABC是等边三角形,AB AC,BAC C60,又AE CD,△≌△,BE AD.ABE CAD SAS(2)解:△ABE≌△CAD,ABE CAD,BFD ABE BAD CAD BAC60. 【解析】(1)根据等边三角形的性质可得AB AC,BAC C60,然后根据SAS可证△ABE≌△CAD,再根据全等三角形的性质即得结论.(2)由全等三角形的性质可得ABE CAD,然后根据三角形的外角性质和角的和差即可得出结果.22.【答案】(1 )l是边AB的垂直平分线,DA DB.l2 是边AC的垂直平分线,1EA EC.BC BD DE EC DA DE EA 6 cm .(2)如图,是边AB的垂直平分线,OA OB.l2 是边AC的垂直平分线,OA OC.OB OC BC16 cm ,l1OA OB OC 5 cm .(3 )BAC120,ABC ACB60.DA DB,EA EC,BAD ABC,EAC ACB.DAE BAC BAD EAC60.【解析】(1)根据AB边的垂直平分线l交BC于D,AC边的垂直平分线l交BC于E,l与l相交于点O,1 2 1 2可得AD BD,AE CE,继而可得BC△ADE的周长.(2)连接OA,由AB边的垂直平分线l交BC于D,AC边的垂直平分线l交BC于E,l与l相交于点O,1 2 1 2可得OA OB OC,继而求得答案.(3)由BAC120,可求得ABC ACB60,根据DA DB,EA EC,得出BAD ABC,EAC ACB,即可求解.初中数学九年级上册6/ 823.【答案】(1)解:E是AOB的平分线上一点,EC OB,ED OA ,DE CE,OE OE,△≌△,OD OC ,△DOC 是等腰三角形,OE是AOB 的平分线,OE是CD的Rt ODE Rt OCE垂直平分线.(2)解:OE是AOB的平分线,AOB 60,AOE BOE 30,EC OB,ED OA,OE 2DE,ODF OED 60,EDF 30,DE 2EF ,OE 4EF.【解析】(1)先根据E是AOB的平分线上一点,EC OB,ED OA得出△ODE≌△OCE,可得出OD OC,DE CE,OE OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线.(2)先根据E是AOB的平分线,AOB 60可得出AOE BOE 30,由直角三角形的性质可得出OE 2DE,同理可得出DE 2EF即可得出结论.24.【答案】(1)证明:连接DB、DC,且平分BC,DB DC.AD为△BAC的平分线,DE AB,DF AC,DG BCDB DCDE DF.AED BED ACD DCF 90在Rt△DBE和Rt△DCF中,,DE DFRt△DBE≌Rt△DCF HL ,BE CF.AD AD,(2)解:在Rt△ADE和Rt△ADF中,DE DFRt△ADE≌Rt△ADF HL.AE AF.AC CF AF,AE AC CF.AE AB BE,,AB 8,AC 6,6BE 8BE ,BE 1,AE 817.即AE 7,AC CF AB BEBE 1【解析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,再由直角三角形的判定方法HL得到Rt△DBE≌Rt△DCF,得到对应边BE CF.(2)根据直角三角形的判定方法HL得到Rt△ADE≌Rt△ADF,再由线段的和差求出AE、BE的长.25.【答案】(1)证明:AD是△ABC的角平分线,DE A于E,DF AC于F ,DE DF(角平分线的性质)(2)解:垂直.理由如下:是△ABC的角平分线,EAD FAD,DE AB,DF AC,AED AFD90,在AD初中数学九年级上册7/8EAD FADRt△AED和Rt△AFD中,AED AFDAD AD,Rt△AED≌Rt△AFD AAS ,AE AF ,点A在线段EF的垂直平分线上,同理点D也在线段EF 的垂直平分线上,AD EF.(3)解:设S△x,则S△BDE 2x ,S△ACD 1,且△AED≌△AFD,S△AED S△AFD 1x,CDFS△S△S△x x x ,又21 1ABD BDE AED1 1S AB DE△,S AC DF△,且AB c,AC b,ABD ACD2 2112x 2c DE x 1,b DF 1,DE,22 c DF22x 2 2 ,又由(1)可知DE DF ,,b c bc解得1,△AED≌△AFD,S AED S AFD S ACD S CDF 1x x△△△△,bc 2c 2cS四边形2S2(1x)2114,即四边形AEDF的面积为.4AEDF AED△b b b【解析】(1)由角平分线的性质直接可得到DE DF.(2)可证明△AED≌△AFD,可知AE AF,利用线段垂直平分线的判定可证明AD是EF的垂直平分线,可证得结论.(3)设△CDF的面积为x,则可分别表示出△BED、△ADE的面积,利用三角形的面积可分别表示出DE和DF,根据DE DF可得到关于x的方程,可求得x的值,进一步可求得四边形AEDF的面积.初中数学九年级上册8/8第2章综合测试一、单选题1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是().A B C D2.如图,△ABC中,A70,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中1 2 的和等于()A.70B.90C.120D.1403.点P在AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6B.PQ≥6C.PQ<6D.PQ≤64.如图,在四边形ABCD中,C50,B D90,E,F分别是BC,DC上的点,当△AEF的周长最小时,EAF的度数为()A.50B.60C.70D.805.如图,射线OC是AOB的角平分线,D是射线OC上一点,DP OA于点P,DP4,若点Q是射线OB上一点,OQ3,则△ODQ的面积是()A.3B.4C.5D.66.如图,在△ABC中,BA BC,ABC120,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC24,则△BMN的周长是()初中数学八年级上册1/6A.36B.24C.18D.167.已知AOB30,点P在AOB的内部,点P和点P关于OA对称,点1 P和点P关于OB对称,则2P、1O、P三点构成的三角形是()2A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形8.如图,在△ABC中AB AC,BC4,面积是,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段上一动点,则△CDM周长的最小值为().A.6B.8C.10D.129.如图在△ABC中,BO,CO分别平分ABC,ACB,交于O,CE为外角ACD的平分线,BO的延长线交CE于点E,记BAC1,BEC2,则以下结论①122,②BOC32,③BOC901,④BOC902正确的是()A.①②③B.①③④C.①④D.①②④10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD CD,AB CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC BD;③1四边形ABCD的面积AC BD,其中正确的结论有()2初中数学八年级上册2/6A.①②B.①③C.②③D.①③②二、填空题11.已知等腰三角形的其中两边长为6 cm 和8 cm ,则这个三角形的周长为________cm .12.等腰三角形的顶角是50,则它一腰上的高与底边的夹角为________.13.若等腰三角形一腰上的高与腰长之比为1:2 ,则该等腰三角形顶角的度数为________.14.如图,Rt△ABC中,ACB90,A50,将其折叠,使点A落在边CB上A' 处,折痕为CD,则A'DB________度.15.如图,△ABC的三边AB、BC、CA长分别是40、60、80,其三条角平分线将△ABC分为三个三角形,则S△: S△: S△等于________.ABO BCO CAO16.如图,已知钝角三角形ABC的面积为20,最长边AB10 ,BD平分ABC,点M、N分别是BD、BC上的动点,则CM MN的最小值为________.17.如图,等边△ABC中,D,E分别是AB、BC边上的一点,且,则DPC________.18.如图,已知:MON=30,点A、A、A在射线ON上,点B、B、B…在射线OM上,△A B A、1 2 3 1 2 3 1 1 2△A B A、△A B A…均为等边三角形,若OA a,则△A B A的边长为________.2 23 3 34 1 6 6 7初中数学八年级上册3/ 6三、综合题19.作图题(保留作图痕迹,不写画法).(1)请在坐标系中,画出△ABC关于y轴对称的△A'B'C'.(2)如图(2),A与B是两个居住社区,OC与OD是两条交汇的公路,欲建立一个超市M,使它到A、B两个社区的距离相等,且到两条公路OC、OD的距离也相等.请利用尺规作图,确定超市M的位置.20.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作ACE的平分线交AF于点G,若B40,求ACG的度数.初中数学八年级上册4/621.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE CD,AD与BE相交于点F.(1)求证:BE AD;(2)求BFD的度数.22.如图,在△ABC中,AB边的垂直平分线l交BC于点D,AC边的垂直平分线l交BC于点E,l与l1 2 1 2 相交于点O,联结OB、OC,若△ADE的周长为6 cm ,△OBC的周长为16 cm .(1)求线段BC的长;(2)联结OA,求线段OA的长;(3)若BAC120,求DAE的度数.23.如图,已知:E是AOB的平分线上一点,EC OB,ED OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线;(2)若AOB60,请你探究OE,EF之间有什么数量关系?并证明你的结论.初中数学八年级上册5/ 624.如图,△ABC中,AD平分BAC,DG BC且平分BC,DE AB于E,DF AC于F.(1)求证:BE CF;(2)如果AB8,AC6,求AE、BE的长.25.如图,在△ABC中,AB c,AC b.AD是△ABC的角平分线,DE A于E,DF AC于F,EF 与AD相交于O,已知△ADC的面积为1.(1)证明:DE DF;(2)试探究线段EF和AD是否垂直?并说明理由;(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.初中数学八年级上册6/6。
八年级数学上学期第二阶段学业质量监测试题 苏科版-苏科版初中八年级全册数学试题
某某省某某市钟英中学2015-2016学年八年级数学上学期第二阶段学业质量监测试题(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置.......上) 1.9的平方根是A .±3B .3C .-3D .± 32.下面有4个汽车标志图案,其中是轴对称图形的个数有A .1个B .2个C .3个D .4个3.下列各数: 3.14159,364 ,π, 227 ,1.010010001…(从左向右每两个1之间依次增加一个0)中,无理数的个数有 A .1个 B .2个 C .3个 D .4个 4.下列各组数据分别是三角形的三边长,其中能构成直角三角形的是A .2cm 、4cm 、5cmB .1cm 、1 cm 、 2cmC .1cm 、2 cm 、2cmD . 3cm 、2cm 、 5cm5.如右图,已知AB =AD ,那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是 A .CB =CD B .∠BAC =∠DACC .∠BCA =∠DCAD .∠B =∠D =90°6.点P (m +3,m +1)在x 轴上,则点P 坐标为 (第5题图)DCABA .(0,-2)B .(2,0)C .(4,0)D .(0,-4)7.等腰三角形的两边分别为3和6,则这个三角形的周长是 A .12 B . 15 C . 9 D .12或158.如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A →D →C →E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图像表示大致是(第8题图)二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 9. 计算3-27 的结果为▲ .10.用四舍五入法把9.456精确到百分位,得到的近似值是▲ . 11.比较大小:4 3 ▲ 7.(填“>”、“=”或“<”)12.函数y =kx +b (k ≠0)的图像平行于直线y =2x +3,且交y 轴于点(0,-1),则其函数表达式是 ▲ .13.点P (3,a )与点Q (b ,2)关于y 轴对称,则a +b = ▲ .14.如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 ▲ . A B CDEP A B D. C A . B . C . D .15. 函数y =(m +1)x m 2是y 关于x 的正比例函数,则m = ▲ .16.如图,Rt△ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D的长为 ▲ .(第16题图)17.如图,在等边△ABC 中,AB =2,N 为AB 上一点,且AN =1,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,连结BM 、MN ,则BM +MN 的最小值是 ▲ .18.已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 ▲ .(第17题图)三、解答题(本大题共8题,共64分.请在答题卷指定区域内作答,解答时应写出文字ABCDMNy =-x -2(第14题图)说明、证明过程或演算步骤)19.(1)(4分)计算:2-1+ 4-38 +( 2)0(2)(4分)求(x -3)2=16中x 的值.20.(6分)如图:点C 、D 在AB 上,且AC =BD ,AE =FB ,DE =FC .求证:AE ∥BF .21.(7分)如图,在∠AOB 内找一点P ,使得点P 到∠AOB 的 两边距离相等,且使点P 到点C 的距离最短(尺规作图,不写作法,请保留作图痕迹......).22.( 6分) 图l 、图2是两X 形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和点B 在小正方形的顶点上.(1) 在图1中画出△ABC (点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个即可);(2) 在图2中画出△ABD (点D 在小正方形的顶点上),使△ABD 为等腰三角形(第21题图) B(画一个即可);23.(8分)已知一次函数y =kx +b 的图像经过点(-1,-2),且与正比例函数y =12x的图像相交于点(2,a ). (1)求a 、b 、k 的值;(2)在右图中画出这两个函数图像,并求这两个函数图像与x 轴所围成的三角形面积.yx(第23题图)1 1-1 O-1A B AB(第22题图)24.(10分)小丁每天从报社以每份0.5元买进报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可以退回报社,但报社只按每份0.3元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y关于x的函数表达式并写出自变量x的取值X围;(2)如果以每月30天计算,小丁每天至少要卖多少份报纸才能保证每月收入不低于2000元?25.(9分)如图,△ABC是等边三角形,点D、E分别是BC、CA的延长线上的点,且CD(1)求证:AD=BE;(2)求∠BFD的度数.B C D26.(10分)一列快车由甲地开往乙地,一列慢车由乙地开往甲y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段ABy2(km)与行驶的时间x(h)之间的函数关系,如图中线段AC所示.根据图像进行以下研究.解读信息:(1)甲、乙两地之间的距离为▲km;(2)线段..AB的函数表达式为▲;两车在慢车出发▲小时后相遇;问题解决:(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数表达式,并在图2画出函数的图像.图1 图2 (第26题图)2015-2016学年度第一学期第二阶段学业质量监测试卷八年级数学参考答案一、选择题(本大题共8小题,每小题2分,共16分)二、填空题(共10小题,每小题2分,共20分)9.-3; 10.; 11.< 12.y =2x -1; 13.-1;14.⎩⎨⎧x =-1y =-1;15.1; 16.4; 17.3; 18.(3,4)或(2,4)或(8,4) 三、解答题(共8题,共64分) 19(1)(4分)原式=12+2-2+1 …………………………2分 =32…………………………2分 (2)(4分)x -3=±4 …………………………2分∴x =7 或 x =-1…………………………2分 20.(6分)∵AC =BD ∴AC +CD =BD +CD ∴AD =BC ………………………… 1分 在△ADE 和△BCF 中,AD =BC ,AE =FB ,DE =FC ∴△ADE ≌△BCF ………………………… 4分 ∴∠A =∠B ………………………… 5分 ∴AE ∥BF ………………………… 6分21.(7分) 作∠AOB 平分线 …………………………3分过点C 作∠AOB 平分线的垂线 …………………………6分 交点P 结论 …………………………7分22.(6分)23.(8分)(1)a =1、b =-1、k =1 ………………… 3分 (2)图略 ………………………… 5分y =x -1与x 轴的交点为(1,0) …………………………… 6分S =12………………………… 8分24.(10分)(1)y =(1-0.5)x --0.3)(200-x )…………………………2分=0.7x -40(0≤x ≤200,且x 为整数);…………………………5分(2)根据题意得:30(0.7x -40)≥2000,………………………… 7分解得x≥152821.…………………………9分故小丁每天至少要买153份报纸才能保证每月收入不低于2000元……………10分25.(9分)(1)证△ACD≌△BAE…………………………5分(2)∠BFD=60°………………………… 9分26.(10分)(1)甲、乙两地之间的距离为 450 km; …………………………1分(2)线段AB的函数表达式为y1=450-150 x (0≤x≤3); (3)分函数关系式1分,x的取值X围1分两车在慢车出发2小时后相遇;…………………………4分(3)450225(02)y225450(23)75(36)x xx xx x-≤≤⎧⎪=-≤<⎨⎪≤≤⎩…………………………7分其图像为折线图………10分拐点处的数据一定要标出,若未标出,扣1分。
2021年苏科版八年级数学上册《第2章轴对称》寒假综合复习自主测评(附答案)
2021年苏科版八年级数学上册《第2章轴对称》寒假综合复习自主测评(附答案)1.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11B.16C.17D.16或172.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°3.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.44.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE 5.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n﹣1为顶点的底角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°6.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形7.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3B.P4P5C.P7P8D.P8P98.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED,则BE的长是()A.4B.C.3D.29.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.10.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是.11.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=°.12.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.13.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=°.14.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠P AQ的度数是.15.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.16.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.17.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.19.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.20.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.21.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.22.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?23.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′.(1)求证:△ABD≌△ACD′;(2)若∠BAC=120°,求∠DAE的度数.24.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE 的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.参考答案1.解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选:D.2.解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.3.解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选:C.4.解:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=BC=BF,A不合题意;∵DE=AB,EF=BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE;故选:B.5.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.故选:C.6.解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.7.解:由题意可得:当连接P2P3,P4P5,P7P8时,所形成的图形是轴对称图形,当连接P8P9时,所形成的图形不是轴对称图形.故选:D.8.解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE===.故选:B.9.解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△FBE、△HCE,△AFG,△ACD共5个.故答案为:5.10.解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.11.解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.12.解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.13.解:∵CD与BE互相垂直平分,∴四边形BDEC是菱形,∴DB=DE,∵∠BDE=70°,∴∠ABD==55°,∵AD⊥DB,∴∠BAD=90°﹣55°=35°,根据轴对称性,四边形ACBD关于直线AB成轴对称,∴∠BAC=∠BAD=35°,∴∠CAD=∠BAC+∠BAD=35°+35°=70°.故答案为:70.14.解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴P A=PB,QA=QC,∴∠P AB=∠B,∠QAC=∠C,∴∠P AB+∠QAC=∠B+∠C=70°,∴∠P AQ=∠BAC﹣(∠P AB+∠QAC)=40°,故答案为:40°.15.解:当高在三角形内部时,顶角是60°;当高在三角形外部时,顶角是120°.故答案为:60°或120°.16.解:如图所示:故一共有13移法,故答案为:13.17.解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.18.解:(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2=12﹣1﹣1﹣﹣2=.19.解:(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴P A=PB,∴∠A=∠ABP.∴.20.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.21.解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.22.解:连接DE,EF,∵AB=AC,∴∠B=∠C,在△BDE和△CFE中,,∴△BDE≌△CFE(SAS),∴DE=EF,在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE,∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF.23.(1)证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴AD=AD′,∵在△ABD和△ACD′中,∴△ABD≌△ACD′;(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.24.(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.。
2022-2023学年苏科版八年级数学上册第二章轴 对称图形 单元测试卷含答案
轴对称图形单元测试卷(含答案)(时间60分钟满分100分)一、选择题(每题2分,共20分)1.下列四个交通标志图中,是轴对称图形的是( )2.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点3.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟.如果在镜子里看到该电子钟的时间显示如图所示,那么它的实际时间是( )A.12:51 B.15:21C.15:51 D.12:214.已知点P在线段AB的中垂线上,点Q在线段AB的中垂线外,则( )A.PA+PB>QA+QB B.PA+PB<QA+QBC.PA+PB=QA+QB D.不能确定5.如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E.若AC=8 cm,△ABE的周长为15 cm,则AB的长为( ) A.6 cm B.7 cm C.8 cm D.9 cm6.下面四个图形中是轴对称图形的个数有( )A.1个B.2个C.3个D.4个7.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个8.如图,在等边△ABC中,BD、CE是两条中线,则∠1的度数为( )A.90o B.30o C.120o D.150o9.如图,在△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为( )A.3 B.4 C.5 D.610.如图,光线L照射到平面镜Ⅰ上,然后在平面镜Ⅰ,Ⅱ之间来回反射,•已知∠α=55°,∠θ=75°,则β为()A.60°B.55°C.60°D.65°二、填空题(每题3分,共30分)11.如图,在△ABC中,AB=AC,∠B=50°,则∠A=_______°.12.给出下列图形:①线段;②射线;③直线;④圆;⑤等腰直角三角形;⑥等边三角形;⑦等腰梯形.其中只有一条对称轴的图形有__________.(填序号)13.已知等腰三角形一个内角的度数为70°,则它的顶角度数为________14.若直角三角形斜边上的高和中线长分别是5 cm、6 cm,则它的面积是______15.如图,在△ABC中,∠ACB=130o,AC、BC的垂直平分线分别交AB于点M、N,则∠MCN=________16.如图,△ABC是等边三角形,点B、C、D、E在同一直线上.且CG=CD,DF=DE,则∠E的度数为_______.17.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB=_______.18.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D …,按此做法进行下去,∠A n 的度数为_______.19.如图,在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°的方向的C处,他先沿正东方向走了320m到达B地,再沿北偏东30°的方向走,恰能到达目的地C,那么,由此可知,B,C两地相距_______.m.20.如图,在等腰梯形ABCD中,AC⊥BD,AC=6 cm,则等腰梯形ABCD的面积为_______cm2.三、解答题(共50分)21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A'B'C'D',使四边形A'B'C'D'和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A'B,C'D'的面积.22.如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.23.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点,判断:MN与BD的位置关系,并说明理由.24.如图,在△ABC中,∠A=70°,BP是∠ABC的平分线,CP是∠ACD的平分线.(1)如图1,求∠P的度数;(2)如图2,过点P作EF∥BC,分别与边AB,AC交于点E,F,判断线段BE,EF,CF之间的数_______.量关系,并说明理由.25.数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题:(1)如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC,交AC于点D.说明△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小颖发现:下面两个等腰三角形,如图②,③也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数.26.某供电部门准备在输电主干线l上连接一个分支线路,分支点为M,同时向新落成的A,B两个居民小区送电.已知居民小区A,B分别到主干线l的距离AA1=2 km,BB1=1 km,且A1B1= 4 km.(1) 如果居民小区A,B在主干线l的两旁,如图(1)所示,那么分支点M在什么地方时分支线路的总长(即MA+MB) 最短? 请在图中画出来;(2) 如果居民小区A,B在主干线l的同旁,如图(2)所示,那么分支点M在什么地方时分支线路的总长(即MA+MB) 最短? 请在图中画出来.27. (1) 如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E证明:DE=BD+CE.(2) 如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立? 如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图③,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.参考答案:1.B2.B3.A4.D5.B6.C7.D8.C9.B10.D11.8012.②⑤⑦13.70°或40°14.30 cm215.80°16.15°17.30°18.1180 2n-⎛⎫︒ ⎪⎝⎭19.32020.1821.(1)所作图形如下:(2)四边形A'B'C'D'的面积为6.522.23.MN垂直平分BD提示:连接BM,DM,证BM=12AC,DM=12AC,则BM=DM,再用三线合一证MN垂直平分BD.24.(1)35°(2)EF=BE-CF25.(1)略(2)如图:26.(1) 连接AB交l于点M.(2)找A关于l对称的A'连接A'B交l于点M.27.证明:(1) ∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE. (2) ∵∠B=∠BAC =α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α. ∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC.∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE.∵△ABF 和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF.∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.。