复变函数 第2章

合集下载

复变函数第2章

复变函数第2章

By 宋朝红2.1 复变函数的极限2.2 复变函数的连续性2.3 导数2.4 解析函数2.5 调和函数Math HZAU第二章导数zz f z z f z Δ)()Δ(lim 000Δ−+→1 导数与微分定义:设函数w=f(z)在包含z 0的某邻域D 内有定义,点z 0+⊿z ∈D. 如果极限存在, 则称f (z )在z 0可导, 此极限值就称为f (z )在z 0的导数, 记作0000Δ0(Δ)()d ()lim .d Δ|z z z f z z f z w f z z z=→+−′==如果f (z )在区域D 内处处可导, 则称f(z)在D内可导.例1求f (z )=z 2的导数例3讨论函数f (z )=|z|2的可导性函数可导一定连续,但连续却不一定可导例2问:函数f (z )=x +2yi 是否可导?求导公式与法则①常数的导数c ′=(a+ib )′=0.②(z n )′=nz n-1(n 是自然数).③设函数f (z ),g (z ) 均可导,则[f (z )±g (z )]′=f ′(z )±g ′(z ),[f (z )g (z )]′= f ′(z )g (z )+ f (z )g ′(z )----实函数中求导法则的推广)0)((,)()(')()()('')()(2≠−=⎥⎦⎤⎢⎣⎡z g z g z g z f z g z f z g z f④复合函数的导数( f [g (z )])′=f ′(w )g ′(z ),其中w=g (z )。

.0)()()()(10处可导点外)处在复平面上(除分母为导;在整个复平面上处处可由以上讨论z Q z P z R z a z a a z P nn =+++=⇒"⑤反函数的导数,其中: w=f (z )与z=ϕ(w )互为单值的反函数,且ϕ′(w )≠0。

)('1)('w z f ϕ=例3求f (z )=Arcsinz=-iLn (iz+ )的导数。

复变函数-第2章

复变函数-第2章

(1) 若 Δz 沿实轴趋于0, 即 Δz = Δx,
f ′( z0 ) = lim u ( x0 + Δx, y0 ) + iv( x0 + Δx, y0 ) − u ( x0 , y0 ) − iv( x0 , y0 ) Δx →0 Δx u ( x0 + Δx, y0 ) − u ( x0 , y0 ) v( x0 + Δx, y0 ) − v( x0 , y0 ) = lim + i lim Δx → 0 Δx → 0 Δx Δx ∂u ∂v = ( x0 , y0 ) + i ( x0 , y0 ) ∂x ∂x
∀ z0 ∈ C,
f ( z0 + Δz ) − f ( z0 ) z0 + Δz − z0 Δz = = Δz Δz Δz Δx − iΔy ⎧ 1, Δy = 0 = →⎨ 差商的极限不存在! Δx + iΔy ⎩− 1, Δx = 0
所以, 与 z 有关的函数不可微. 比如, x, y作为一元或者二元实函数都是可微的, z+z z−z 但作为复函数则不可微! x= ,y= 2 2i
但是,
| ΔxΔy | f (0 + Δz ) − f (0) = Δz Δx + iΔy
取 Δy = kΔx
Δx → 0 +
|k| 1 + ik
差商极限不存在, 故不可微. ★ 想一想问题出在哪里? 注意到, 实函数 u ( x, y ) = | xy | 在(0,0)不可微!
反证, 若实函数 u ( x, y ) = | xy | 在(0,0)可微, 则
2. 柯西-黎曼(Cauchy-Riemann)方程
若函数 f ( z ) = u ( x, y ) + iv( x, y ) 在 z0 = x0 + iy0 可导, 则

复变函数复变函数2

复变函数复变函数2

z0
)或
dw dz
z z0
.
应该注意:上述定义中z 0的方式是任意的。
容易证明: 可导
可微 ;可导
连续。
如果 f (z) 在区域D内处处可导, 就说 f (z) 在D内可导.
例1 求 f (z) = z2 的导数。
[解] 因为 lim f (z Δ z) f (z) lim (z Δ z)2 z2
§2.2 解析函数和调和函数的关系
定义1 实函数u(x, y)为区域D内的调和函数:
u(x, y)在区域D内有二阶连续偏导数,
且满足u uxx uyy 0
(称为调和方程或Laplace方程)
定理1:f (z) u(x, y) iv(x, y)是区域D内的解析函数
u与v是区域D内的调和函数
f (z)在区域D内解析:f (z)在D内处处解析.
函数在一点解析 在该点可导。反之不一定成立。
在区域内: 解析 可导 .
例如 f (z) = z2 在整个复平面上解析;w f (z) z 2
仅在原点可导,故在整个复平面上不解析;
f (z) = x +2yi 在整个复平面上不解析。
例4 讨论函数 f (z)=1/z 的解析性.
是区域内的正交 曲线族。
(正交:两曲线在交点处的切线垂直 )
证:u ( x,
y)
C1在( x,
y)处切线的斜率ku
ux uy

v(x,
y)
C2在(x,
y)处切线的斜率kv
vx vy
ku kv
ux uy
vx vy
C
R
vy uy
uy vy
1,
得证。
例如 f z z2 x2 y2 i2xy, f z 2z 0z 0.

复变函数第二章

复变函数第二章

2连续、可导、解析的关系
f ( z ) 在D内解析
f ( z ) 在D内可导
f ( z ) 在z0解析
f ( z ) 在z0可导
f ( z ) 在z0连续
3 复变函数与二元实函数的关系
设f ( z ) = u ( x, y ) + iv( x, y ), A = u0 + iv0 , z0 = x0 + y0i
例5
求出下列各函数的解析区域,并求出导数.
1)f ( z ) =
z
2
2
z +1
,
x+ y x− y 2) f ( z ) = 2 +i 2 2 2 x +y x +y
f ( z )在z 2 + 1 ≠ 0,即z ≠ ±i外处处可导,因此 解: 1) 其解析区域为复平面内除去z ≠ ±i两点.且
2z 2 z ( z 2 + 1) − z 2 2 z = 2 f ′( z ) = 2 2 ( z + 1) 2 ( z + 1)
则称f ( z )在z 0 可导.这个极限值称为f ( z )在z 0的导数.
dω 记作f ′( z0 ) = dz
z = z0
f ( z 0 + ∆z ) − f ( z 0 ) = lim . ∆z → 0 ∆z
在定义中应注意: 在定义中应注意
z0 + ∆z → z0 (即∆z → 0)的方式是任意的 .
∂u ∂u ∂x ∂u ∂y ∂u ∂u 则 = + = cos θ + sin θ ∂r ∂x ∂r ∂y ∂r ∂x ∂y
导数公式的其它形式 导数公式
∂u ∂v f ′( z ) = +i ∂x ∂x

复变函数第2章(钟玉泉)

复变函数第2章(钟玉泉)
u u 2 x, 0 x y v v y, x x y

容易看出, 这四个偏导数处处连续, 但仅当 x=y=0时, 它们才满足柯西-黎曼方程, 因而函 数仅在z=0可导, 但在复平面内任何地方都不 解析.
例2 设函数f(z)=x2+axy+by2+i(cx2+dxy+y2). 问常 数a,b,c,d取何值时, f(z)在复平面内处处解析? [解] 由于 ux=2x+ay, uy=ax+2by, vx=2cx+dy, vy=dx+2y 要使ux=vy, uy=-vx, 只需2x+ay=dx+2y, 2cx+dy=-ax-2by. 因此, 当a=2, b=-1, c=-1, d=2时, 此函数在复 平面内处处解析, 这时 f(z)=x2+2xy-y2+i(-x2+2xy+y2) =(1-i)(x+iy)2=(1-i)z2
定理二 函数f(z)=u(x,y)+iv(x,y)在其定义域D内 解析的充要条件是u(x,y)与v(x,y)在D内可微, 并满足柯西-黎曼方程。
例1 判断下列函数在何处可导, 在何处解析:
1)w z ; 2) f ( z ) e (cos y i sin y); 3)w z Re( z )
f ( z0 Δ z ) f ( z0 ) f ( z0 ) e Δz

应当注意, 定义中z0+Dzz0(即Dz0)的方式 是任意的, 定义中极限值存在的要求与 z0+Dzz0的方式无关, 也就是说, 当z0+Dz在区 域D内以任何方式趋于z0时, 比值
f ( z0 Δ z ) f ( z0 ) 都趋于同一个数. Δz

【复变函数】第二章 解析函数(工科2版)

【复变函数】第二章 解析函数(工科2版)
(1) f ( z ) = | z |2
2 2 2 解: f ( z ) = | z | = x + y
∴ u( x , y ) = x 2 + y 2 , v ( x , y ) = 0
∂u ∂u ∂v ∂v = 2 x, = 2 y, = 0, =0 ∂x ∂y ∂x ∂y
条件, 由C-R条件 x=0, y=0 , 条件 所以在z=0处可导 处处不解析. 所以在 处可导, 处处不解析 处可导
目录
上页
下页
返回
结束
【例3】讨论下列函数的解析性 可导性 . 】讨论下列函数的解析性, (1). f ( z ) = x + 2 yi 在复平面上处处不可导, 解:f (z) 在复平面上处处不可导,处处不解析
( 2 ). f ( z ) = z 2
在复平面上处处可导, 解:f (z) 在复平面上处处可导,处处解析 1 ( 3 ). f ( z ) = z 1 解:f ′( z ) = − 2 除 z = 0 外处处可导,处处解析. 外处处可导,处处解析. z 1+ z ( 4 ). f ( z ) = 1− z 2 解:f ′( z ) = 外处处可导,处处解析. 2 除 z = 1 外处处可导,处处解析. (1 − z )
返回 结束
目录
上页
下页
内处处为0, 内为一个常数. 【例6】若f'(x)在D内处处为 则f(x)在D内为一个常数 】 在 内处处为 在 内为一个常数 Proof: 由导数的计算公式
∂u ∂v ∂u ∂v f ′( z ) = +i =0 ⇔ = 0, = 0, ∂x ∂x ∂x ∂x
∂u ∂v ∂v ∂u = 0, = 0, f ′( z ) = −i =0 ⇔ ∂y ∂y ∂y ∂y

复变函数第二章(第三讲)

复变函数第二章(第三讲)

∂u ∂v 1 ∂u ∂v iii) 求导数: f '(z) = ∂x + i ∂x = i ∂y + ∂y 求导数:
前面我们常把复变函数看成是两个实函数拼成的, 前面我们常把复变函数看成是两个实函数拼成的, 但是求复变函数的导数时要注意, 但是求复变函数的导数时要注意, 并不是两个实函 数分别关于x, 求导简单拼凑成的 求导简单拼凑成的. 数分别关于 ,y求导简单拼凑成的.实可微与复可微 是完全不同的概念。 是完全不同的概念。
§2.2 解析函数的充要条件
Cauchy-Riemann定理 1. Cauchy-Riemann定理 2. 举例
Cauchy-Riemann定理 1. Cauchy-Riemann定理
定理 设f (z)= u + i v, z= x +i y, z0=x0+i y0, 则f (z)在 在
(1) u( x, y), v( x, y)在( x0 , y0 )可微, ∂u ∂v ∂u ∂v z0处可导⇔ . (2) = , = − 在( x0 , y0 )成立 ∂x ∂y ∂y ∂x 定义 方程
∂u ∂v = ∂x ∂y
∂v ∂u =− ∂x ∂y
称为Cauchy-Riemann方程(简称C-R方程).
֠
由此可以看出可导函数的实部与虚部有密切 的联系. 的联系.
֠ 利用该定理可以判断那些函数是不可导的. 利用该定理可以判断那些函数是不可导的.
基本步骤: 偏导数的连续性, 基本步骤 i) 判别 u(x, y),v (x, y) 偏导数的连续性, , ii) 验证 验证C-R条件 条件. 条件
由以上讨论得 函数; P ( z ) = a 0 + a1 z + L + a n z n 是整个复平面上的解析 函数; P(z) R( z ) = 是复平面上 ( 除分母为 0点外 )的解析函数 . Q( z)

第二章复变函数

第二章复变函数
∂u = 2x ∂x ∂v =y ∂x
v( x, y) = xy
∂u =0 ∂y ∂v =x ∂y
Q 都是初等函数,在复平面内处处连续;
∂u ∂v ∂x = ∂y 针对柯西 − 黎曼方程 仅在 z = 0处成立 ∂u = − ∂v ∂y ∂x
∂u ∂v 导数: f ' ( z = 0 ) = [ + i ] | z = 0 = ( 2 x + iy ) | x = 0, y = 0 = 0 ∂x ∂x
∂u ∂v |( x, y ) +i |( x, y ) ∂x ∂x
()∆z 0 2 →
沿虚轴
∆ z = i∆ y
{u ( x, y + ∆y ) + iv ( x, y + ∆y )} − {u ( x, y ) + iv ( x, y )} lim i∆ y ∆y → 0 1 u ( x, y + ∆y ) − u ( x, y ) v ( x , y + ∆y ) − v ( x , y ) + lim lim ∆y i ∆y →0 ∆y ∆y → 0
f 例: f ( z ) = u + iv为解析函数, ' ( z ) ≠ 0, 则曲线u ( x, y) = c1
v( x, y ) = c2必互相正交。
证: ux 曲线 u ( x , y ) = c1 斜率为 k1 = − uy vx 曲线 v ( x , y ) = c 2 斜率为 k 2 = − vy
w = f ( z) = z
2
的可导性。
2 2 ∆ w f ( z + ∆z ) − f ( z ) z + ∆z − z = = ∆z ∆z ∆z

第二章 复变函数

第二章 复变函数

第二章 复变函数:第二节:初等函数1、指数函数:我们要把实指数函数的定义扩充到整个复平面上,使得复变数z=x+iy 的函数f (z )满足下列条件:(1)x e x f R x =∈∀)(,;(2)f (z )在整个复平面C 上解析;(3)C ,21∈∀z z ,有)()()(2121z f z f z z f =+; 则可以证明,)sin (cos )(y i y e z f x +=,事实上,由(3)及(1)有)()()(iy f e iy x f z f x =+=令 ),()()(y iB y A iy f +=其中A (y )及B (y )是实值函数,所以)()()(y B ie y A e z f x x +=显然,y y A cos )(=及y y B sin )(=满足上面的条件。

若,,222111iy x z iy x z +=+=则有)()]sin()[cos()sin (cos )sin (cos )()(2121212211212121z z f y y i y y e y i y e y i y ez f z f x x x x +=+++=++=+ 因此,定义复指数函数,为)sin (cos exp y i y e z e w x z +==由此有Euler 公式:y i y e iy sin cos +=;指数函数的基本性质:(4)C ∈∀z ,0≠z e ;(5)指数函数z e w =在整个复平面内有定义并且解析,z z e e =)'(,指数函数z e w =是实指数函数在复平面上的解析推广;(6)Euler 公式:y i y e iy sin cos +=;(7)从定义得||x z e e =, ,2,1,02±±=+=k k y Arge z ,π利用Euler 公式,得到复数的指数表示式:若复数z 的模为r ,幅角为θ,则有θθθi re i r z =+=)sin (cos ;(8)指数函数是周期i π2为得周期函数;(9)指数函数的几何映射性质:由于指数函数有周期i π2,所以研究当z 在带形}2Im 0C,|{π<<∈=z z z B 中变化时,函数z e w =的映射性质。

复变函数论第二章习题全解

复变函数论第二章习题全解

第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有 0)()(lim)(0101001=--='→t t t z t z t z n n t t n此与假设矛盾. 01001),(t t t t t >⇒+∈δ 因为 [])()(arg )()(arg010101t z t z t t t z t z -=--所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-=()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微. (2)在C 上处处不满足C R -条件.(3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且 00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-=且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Qx ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+= ()sin sin cos x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有xchy v xshy v xshy u xchy u y x y x cos ,sin ,sin ,cos =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x cos sin cos )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有xchy v xshy v xshy u xchy u y x y x sin ,cos ,cos ,sin -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x sin cos sin )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1cos sin sin cos r i u i u rθθθθθ=--+()()cos sin sin cos r r i u i v θθθθ=-++ ()()cos sin r r i u iv θθ=-+ ()()1cos sin r r r r ru iv u iv i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e-+++=cos11sin1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)cos()cos(cos nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=-- (4) z z iz i iz cos )cos()cos()cosh(=-=⋅=(5) z i zz i iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121shz shz chz chz +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshyi xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( shz e e e e chz zz z z =-='+='--2)2()( 20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z +=(4)z z sin cos -=,即1tan -=z ,所以ππk i i i z +-=+-=411ln21 (5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255iz i e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此 1)()(4+-=-=R z f z f AB.26.证明:()f z = 0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()arg f z π=得()()arg c i f z i f i e π∆=()2arg 1arg 3c c i z z ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z z f z z z f z z z z+-+⋅==---()4242121Re mz I z i z z-+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i yv x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x vy u y v x u ∂∂-=∂∂∂∂=∂∂,,得0=∂∂zf 5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y shy Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 chR t ≤sin又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有 (1) 10182)(,8)(arg ie c ei f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆2]0[21ππ-=-=故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f π-==,i f 162)1(-=-''.。

《复变函数论》第二章

《复变函数论》第二章

第二章 复变函数第一节 解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设()w f z =是在区域D 内确定的单值函数,并且0z D ∈。

如果极限00,0()()limz z z Df z f z z z →∈--存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0'()fz ,或z z dw dz=。

定义2.2:如果()f z 在0z 及0z 的某个邻域内处处可导,则称()f z 在0z 处解析;如果()f z 在区域D 内处处解析,则我们称()f z 在D 内解析,也称()f z 是D 的解析函数。

解析函数的导(函)数一般记为'()f z 或d ()d f z z。

注解1、εδ-语言,如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||z z δ-<时,00()()||f z f z a z z ε--<-,则称)(z f 在0z 处可导。

注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。

解析函数的四则运算:()f z 和()g z 在区域D 内解析,那么()()f z g z ±,()()f z g z ,()/()f z g z (分母不为零)也在区域D内解析,并且有下面的导数的四则运算法则:(()())''()'()[()()]''()()()'()f zg z f z g z f z g z f z g z f z g z ±=±=+2()'()()()'()()[()]'f z f z g z f z g z g z g z -⎡⎤=⎣⎦。

复变函数论第二章总结

复变函数论第二章总结

复变函数论第二章总结一、思维导图二、分类1.与积分路径无关:定理1 如果函数f(z)在单连通域内处处解析,F(z)为f(z)的一个原函数,那么:其中为单连通域内的两个点。

2.与积分路径有关:①无奇点:定理2(柯西积分定理)设f(z)在单连通域E内解析,C为E 内任一简单闭曲线,则:例题:②有一个奇点:定理3(柯西积分公式)如果函数f(z)在区域D内处处解析,C为D内的任何一条正向简单闭曲线,它的内部完全含于D,为C 内任意一点,那么例题:定理4(高阶导数公式)解析函数的导数仍然为解析函数,它的n阶导数为:例题:③有两个及以上奇点:定理5(复合闭路定理)设C为多连通域D内的一条简单闭曲线,是在C内部的简单闭曲线,它们互不包含也互不相交,并且以为边界的区域全含于D,如果f(z)在D内解析,则: (1) ,例题:2.解析函数与调和函数的关系1.调和函数的定义:若u(x,y)在区域E内具有连续的二阶偏导数,且在E内满足,则称函数u(x,y)为区域E的调和函数。

方程称为调和方程。

定理1 任何一个在区域E上解析的函数f(z)=u(x,y)+iv(x,y),其实部与虚部都是该区域上的调和函数。

(该定理的逆定理不成立!要使u+iv解析,还需要满足C-R条件才可以)2.对于给定的调和函数u(x,y),把使u+iv构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数。

3.求共轭调和函数的两种方法:①偏积分法(最常用,且不容易出错)如果已知一个调和函数u,那么就可以利用柯西-黎曼方程求得它的共轭调和函数v,从而构成一个解析函数u+vi。

这种方法称为偏积分法。

例题:②偏积分法:例题:(这里的积分路径一般从原点(0,0)开始选取,选任意的也可以)。

复变函数论第2章

复变函数论第2章

返回
下页
结束
18

例5 研 究 函 数 f ( z ) z 2 ,g ( z ) x 2 y i 和 h ( z ) z 2 的 解 析 性 .
答案: f(z)z2 在复平面内是解; 析的
g(z)x2yi处处不 ; 解析
下面h 讨 (z)论 z2的解,析性
h(z0z)h(z0) z0 z2 z02
首页
上页
返回
下页
结束
15

2、解析函数及其简单性质
(1) 解析函数的定义 定义 如 果 函 数 f(z)在 z0及 z0的 邻 域 内 处 处 可 导 ,那 么
称 f(z)在 z0解 析 .A n a ly sis
如果函数 f (z)在区域 D内每一点可微(解析), 则称 f (z)在区域 D内解析. 或称 f (z)是 区域 D 内 的 一 个 解 析 函 数 (全 纯 函 数 或 正 则 函 数 ).
z 0
f ( z 0 ) z 是 函 数 w f ( z ) 的 改 变 量 w 的 线 性 部 分 .
f(z0) z称为 w 函 f(z)在 数 z0点 的,微分
记作 d w f(z0) z.
如 果z0函 的数 微,则 在 分称 存 f(z)函 在数
在 z0可. 微 14
首页
上页
返回
y
x y
x
1 ik 1 ik
首页
上页
返回
下页
结束
20

由于 k的任意, 性
z 1ki不趋于一个确定 . 的值 z 1ki
lim h(z0z)h(z0)不存 . 在
z 0
z
因此 h(z)z2仅在 z0处可,而 导在其他点都 不可,根 导据定 ,它义在复平面内析 处. 处不解

复变函数-第二章-解析函数

复变函数-第二章-解析函数

23
(3.4)当为无理数或 Im 0时:
z e

Lnz
e
(ln z i arg z 2 k i )
e
ln z
e
i arg z
e
2 k i
---- 无穷多值函数
(3.5)当 0, z 0 e0Lnz e0 1
在除原点和负实轴复平面内主值支及各分支解析,且 1 Ln z Ln z z e e z 1 z
e e
1 z
1 x yi
1 z
1 z
e
x y i x2 y2 x2 y2
,
Re(e ) e
x x2 y2
y cos 2 . 2 x y
16
2、 对数函数 定义 指数函数的反函数称为对数函数.即
把满 足 e w z( z 0)的函 数 w f (z) 称为 对数 函数 , 记作w Lnz.
10
推论1 函数f (z)=u(x, y)+iv(x, y),如果u(x, y)
和 v(x, y)的四个偏导数 :
u u v v , , , x y x y
在点(x,y)处连续 且满足 方程,则 f(z)在点 u , v v C-R u
x y z=x+iy处可导。 , x y .
给定一复数 z,如何计算 Lnz ?
令w u iv , z re i , 那 么 e u iv re i u ln r , v 2k ( k为 整 数).
w Lnz ln r i ( 2k ) ( k 0,1,) 每个确 定的k 或 Lnz ln z iArg z ln z i (arg z 2k ) 对应一

复变函数第2章解析函数

复变函数第2章解析函数
dw zz0 f (z0 )z
当 f (z) z时,dw= dz ,z 所以 f 在(z)点
z 0处的微分又可记为
dw zz0 f (z0 ) d z
亦即
dw
dz zz0
f (z0 )
由此可知,函数 w f (z)在点 z处0 可导与可微 是等价的.
复变函数的求导法则与高数完全类似:
则称 gx, y为 D内的调和函数
定理2.3 设 f z u i,v 若 f 在z 区域 内D 解
析,则 与u 均v 为 内D的调和函数.
定义2.4 若在区域 D内, u与 v均为调和函数
且满足C-R条件
ux vy , uy vx 则称 u 为 v的共轭调和函数
定理2.4 设 ux, y在区域 D内为调和函数,则
z0
)
lim
zz0
f (z) f (z0) z z0
0 f (z0 ) 0

lim
zz0
f (z)
f (z0 ),故
f在(z)点 处z 0连续.
同高数一样,称函数 f (z) 的改变量 w的线性部 分 f (z0 )z为函数 f (z在) 点 z处0 的微分,记作 dw 或 zz0 df(z) z,z0 即
2.1 复变函数的导数
定义2.1 设函数 w f z定义在区域 D
内,z0 D ,(z0 z) D ,若极限
lim f z0 z f z0
z0
z
存在,则称此极限为函数 f z在点 z0处的导数,
记作 f z0 或
df ,即
dz zz0
f
z0
df dz
z z0
lim
z0
f
z0

复变函数课件第2章复变函数的概念、极限与连续性

复变函数课件第2章复变函数的概念、极限与连续性

u x cos y sin
v
x sin
y
sin
—旋转变换(映射)
➢见图2
y (z)
v (w)
o
x
o
u
图1-1
y、v (z)、(w)
y、v (z)、(w)
o
x、u
x、u
图1-2
o 图2
例5 研究w z2 所构成的映射 .
y (z)
v (w)
w z2
2
o
x
o
u
y (z)
v (w)
w z2
(1) 设 z0 D , 若存在 z0 的一个邻域,使得 f (z) 在此邻域内处处可导, 则称 f (z)在 z0处解析, 也称 z0是 f (z)的解析点.
(2) 若 f (z) 在区域D内每一点都解析,则称 f (z)在区域D内解析, 或者称 f (z) 是区域D内的 解析函数.
(3) 设G是一个区域,若闭区域 D G, 且 f (z)在G内解析,则称 f (z) 在闭区域 D 上 解析.
由 f (z)在D内可导, 可知 f (z)在U内可导, 即 f (z)在z处解析.
z0
z
lim (z z)2 z2
z0
z
lim(2z z). z0
所以 z2 2z.
例2 证明 f (z) x 2 yi 在复面内处处 连续,但处处不可导.
证明 对复平面内任意点z, 有 f (z z) f (z)
( x x) 2( y y)i x 2 yi x 2yi. 故 lim[ f (z z) f (z)] 0.
z z0
注意: 定义中zz0的方式是任意的.
几何意义
y
(z)

复变函数课件第二章

复变函数课件第二章
的导数,
记作
dw f ( z 0 z ) f ( z0 ) f ( z0 ) lim . dz z z0 z 0 z
复变函数与积分变换
Complex Analysis and Integral Transform
复变函数与积分变换
Complex Analysis and Integral Transform
y 1 0 当 z 0(x 0, y 0) 时, lim z 0 x iy i y lim ∴ z 0 不存在,即处处不可导。 x iy
y lim 0 当 z 0(x 0, y 0) 时, z 0 x iy
复变函数与积分变换
复变函数与积分变换
在定义中应注意: z0 z z0 (即z 0)的方式是任意的.
Complex Analysis and Integral Transform
即z0 z在区域D内以任意方式趋于 0时, z f ( z0 z ) f ( z0 ) 比值 都趋于同一个数 . z
y 1 f f ( z z ) f ( z ) lim , lim lim y 0 x i y z 0 z z 0 i z x 0
当点沿不同的方向使z 0时, 极限值不同 ,
故f ( z ) Im z在复平面上处处不可导.
复变函数与积分变换
例2
Complex Analysis and Integral Transform
2
研究函数 f ( z ) z 2 , g( z ) x 2 yi 和
h( z ) z 的解析性.
解 由本节例1和例3知:
f ( z ) z 2 在复平面内是解析的 ;

复变函数课件02章 解析函数

复变函数课件02章 解析函数

试求: f (i)
答案:-3
复变函数与积分变换
第2章 解析函数
定理2.3(解析的充要条件)
函数f(z)=u(x,y)+iv(x,y)在区域D内解析的充要条件是: u(x,y)和v(x,y)在D内可微,且满足柯西——黎曼方程。
u v , v u x y x y
复变函数与积分变换
第2章 解析函数
和、差、积、商(除z 去0 分母为0点)仍为解析函数;
由解析函数构成的复合函数也是解析函数。
复变函数与积分变换
第2章 解析函数
§2.2 复变函数可导与 解析的充要条件
定理2.2(可导的充要条件)
函数f(z)=u(x,y)+iv(x,y)在定义域内一点z=x+iy可导的 充要条件是:u(x,y)和v(x,y)在点(x,y)可微,且满足柯 西——黎曼方程。
u v , v u x y x y 则称v(x,y)为u(x,y)的共轭调和函数。
定理2.6
函数f(z)=u(x,y)+iv(x,y)在区域D内是解析的函数的充 要条件为:虚部v(x,y)是实部u(x,y)的共轭调和函数。
复变函数与积分变换
第2章 解析函数
例2.12 试求一解析函数f(z) ,使其实部为 u(x,y)=x2+y2-2xy.
第2章 解析函数
例2.1 求函数 f (z) zn 的导数(n为正
整数)。
f (z) (zn ) lim (z z)n zn nzn1
z 0
z
例2.2 求函数 f (z) z2 的导数(n为正
整数)。
(z2 ) 2z
复变函数与积分变换
第2章 解析函数
某点可导
该点连续

第2章 复变函数

第2章 复变函数

( x, y ) Î E .
(1)
其中 u = u ( x, y ) 和 v = v( x, y ) 是一对二元实函数, 它们分别称为 f ( z ) 的实部和虚部, 分别记 为 Re f ( z ) 和 Im f ( z ). 这说明一个复函数等价于一对二元实变量的实函数. 复函数的形如(1)式的表示形式对应于复数的代数形式. 对应于复数的指数形式, 相应地可 以将复函数表示为指数形式:
f ( z) > M ,
则称当 z 0 时, f ( z ) 趋近于无穷大 记为 lim f ( z ) = ¥.
z z0
(2) 设 w = f ( z ) 是定义在 E 上的复函数, 无穷远点 ¥ 是 E 的聚点(即对任意 r > 0, ¥ 的
r 邻域 { z : z > r } 中包含 E 中的点), 是一复数. 若对任意 > 0, 存在 r > 0, 使得当 z Î E 并且 z > r 时, 有
复变函数的连续性
定是 E 的聚点. 若
z z0
lim f ( z ) = f ( z0 ),
则称 f ( z ) 在点 z0 处(相对于集 E )连续. 若 f ( z ) 在 E 上的每一点处都连续, 则称 f ( z ) 在 E 上连 续. 例6 例 5(2)的结论表明多项式函数在复平面上处处连续. 设 f ( z ) = u ( x, y ) + iv( x, y ) 是定义在 E 上的复函数, z0 = x0 + iy0 是 E 的聚 定理 2.1.2
于是 f ( z ) f ( z0 ) f ( z ) f ( z0 )
1 f ( z0 ) . 2
1 f ( z0 ) . 即 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a0 z n a1 z n 1 ●有理分式函数 w b z m n z m1 0 1 an 1 z an bm1 z bm
在复平面上除去使分母为零的点外处处连续. 片 22
▽ 设f(z)在有界闭区域 D上连续,则下列性质成立:
∎ f(z) 在 D 上有界,即存在M >0,使得|f(z)|<M; ∎ |f(z)|在 D 上有最大值与最小值, 即存在 z1, z2 D, 使得|f(z2)||f(z)||f(z1)| ∎ f(z) 在 D 上一致连续, 即 >0, >0, 使得任意 z1, z2 D, 当| z1− z2|< 时,均有| f(z1)− f(z2) |<.
原函数在整个z平面上处处不可导.
★ 函数f(z)在点z0可导
f(z)在z0连续.
f ( z0 Δz ) f ( z0 ) Δz
lim 若f(z)在点z0可导,即 f ( z0 ) z 0
于是 令 则有 以及 所以
Δz 0
f ( z0 Δz ) f ( z0 ) lim f ( z0 ) 0 z 0 Δz f ( z0 Δz ) f ( z0 ) (Δz ) f ( z0 ) Δz lim (Δz ) 0
u ( x, y) 不存在 所以 ( x, ylim ) (0,0)
lim f ( z ) 不存在. 根据定理2.1, z 0
方法二. 设 则
Re( z 2 ) (2) f ( z ) . 2 |z|
z rei r (cos i sin )
r 2 cos 2 f ( z) cos 2 2 r
例2.4 求函数f(z)=zn(n为正整数)的导数.
f ( z Δz ) f ( z ) ( z Δz )n z n f ( z ) lim lim 解: Δz 0 Δz 0 Δz Δz 1 n 1 2 n2 n 1 n lim (Cn z Cn z Δz Cn zΔz n 2 Cn Δz n 1 )
Δz 0
Δz
存在且有限, 则称函数f(z) 在点z0处可导, 极限值称为 f(z)在z0的导数, 记作
df ( z ) f ( z0 ) dz
z z0
dw dz
f ( z0 Δz ) f ( z0 ) . z z0 lim Δz 0 Δz
若函数f(z)在区域D内每一点都可导,则称函数f(z)在 区域D内可导.
Δz 0 1 n 1 Cn z nz n 1 ,
▲ f(z)= zn(n为正整数)在整个z平面上处处可导.
例2.5 考察函数f(z)=1/z 在整个z平面上的可导性. 解:当z≠0 时,
1 1 f ( z z ) f ( z ) lim lim z z z z 0 z 0 z z 1 1 = lim 2 2, z 0 z ( z ) z z
1 2 2 1 (u ) v 2 4
定义:设函数w=f(z)定义在E上,值域为G. 若对于 G中的任一点w, 在E中存在一个或几个点z与之对 应,则在G上确定了一个单值或多值函数,记作 z=f -1(w),它就称为函数w=f(z)的反函数.
如:w=zn 与w=z1/n
2.复变函数的极限 定义2.2设复变函数w=f(z)定义在点 z0 的某去心邻域 0<|z-z0|<r 内,若存在常数 w0 ,对于任意给定的 >0, 都存在= (, z0)>0 (0< r), 使得当0<|z-z0|<时,
▲w = u(x,y)+iv(x,y)
例:w = u+iv,
u
zz x ? 2
zz y 2i
w = f(z) (x2+y2≠0)
( z 0)
2x y , v x2 y 2 x2 y 2
1 x 令 2 ( z z ),
y
1 3 1 ( z z ) ,则 w 2i 2z 2z
z z0
lim g ( z) B,
(1) lim( f ( z ) g ( z )) A B;
z z0
(2) lim f ( z ) g ( z ) AB;
z z0
f ( z) A (3) lim z z0 g ( z ) B
( B 0).
和、差、积、商的极限值 等于 极限值的和、差、积、商.
( z D).
§2.2 解析函数的概念
1.复变函数的导数 定义2.4 (导数的定义)设函数w=f(z)定义在z平面上 区域D内,点z0、z0+z D, Δw=f(z0+ z) - f(z0), 若极限 f ( z Δz ) f ( z ) Δw
Δz 0
lim
Δz
lim
0
0
例2.2 判断下列函数在原点处的极限是否存在,若存 在,试求出极限值: Re( z 2 ) z Re( z ) (2) f ( z ) . (1) f ( z ) ; 2 z z 解:(1)方法一
| Re( z ) | | f ( z ) | z z 因为 |z|
所以任意ε>0 ,取=,当| z |< 时,总有 | f(z)-0 |< | z |< ε.
的何种曲线?
1 1 x iy 2 解:z x iy, w u iv z x iy x y 2 x y u 2 , v 2 2 x y x y2
z平面上的直线x=1对应于w平面上的曲线
y v 1 y2 2 1 y 1 2 2 u v u 2 2 2 2 2 (1 y ) (1 y ) 1 y 1 u , 2 1 y
f ( z) 0 根据极限定义 lim z 0
(1) f ( z )
z Re( z ) z
方法二 设z=x+iy, 则
f ( z) ( x iy) x x2 y 2
x2 x2 y 2
x2 x2 y 2

x2 x2 y 2
,
i
xy x2 y 2
xy x2 y 2
| z |2 x2 y 2 .
v( x, y ) 0.
Re( z 2 ) x 2 y 2 f ( z) 2 . 2 2 |z| x y
x2 y 2 u ( x, y ) 2 , 2 x y
当z沿直线 y=kx 趋向于0,有
x2 k 2 x2 1 k 2 lim u ( x, y) lim 2 . 2 2 2 ( x , y ) (0,0) x 0 x k x 1 k
1 f ( z ) 2 ( z 0). z
函数1/z在整个z 平面上除去原点外处处可导.
例2.6 研究函数f(z)= z 在整个z平面上的可导性.
解:令z=x+iy, z= x+i y
f ( z Δz ) f ( z ) z Δz z z Δz z lim lim lim Δz 0 Δz 0 Δz 0 Δz Δz Δz Δz Δx iΔy lim lim , Δz 0 Δz Δz 0 Δx iΔy
§2.1 复变函数的概念、极限与连续性
1. 复变函数的概念 定义2.1 设E为一复数集. 若对 E 中的每一个复数 z=x+iy, 按照某种法则 f 有确定的一个或几个复数 w=u+iv 与之对应,那么称复变数 w 是复变数 z 的 函数(简称复变函数), 记作 w=f(z). 通常也称 w=f(z) 为定义在 E 上的复变函数,其 中 E 称为定义域,E 中所有的 z 对应的一切 w 值 构成的集合称为 f(z) 的值域,记作 f(E) 或 G. ●单值函数:一个 z 值对应着唯一一个 w 值;
单值函数


w=|z|, w=zn,
w | z |Leabharlann w=(z+1)/(z-1)
§2.1 复变函数的概念、极限与连续性
1. 复变函数的概念 定义2.1 设E为一复数集. 若对 E 中的每一个复数 z=x+iy, 按照某种法则 f 有确定的一个或几个复数 w=u+iv 与之对应,那么称复变数 w 是复变数 z 的 函数(简称复变函数),记作 w=f(z). 通常也称 w=f(z) 为定义在E上的复变函数,其 中 E 称为定义域,E 中所有的 z 对应的一切 w 值 构成的集合称为 f(z) 的值域,记作 f(E) 或 G. ●单值函数:一个 z 值对应着唯一一个 w 值; ●多值函数:一个 z 值对应着两个或两个以上 w 值.
对于复变函数w=f(z)即u+iv=f(x+iy),可以理解为
两个复平面上的点集之间的映射,具体地说,复变
函数w=f(z)给出了z平面上的点集E到w平面上的点集 f(E)(或G)之间的一个对应关系: zE w f(z)G, 其中w称为z的像,z称为w的原像.
1 例2.1 函数 w 将z平面上的直线 x=1变成w 平面上 z
当z沿不同射线argz=θ趋向于0时, f(z)趋向于不同的值.
f ( z ) 不存在. 所以 lim z 0
3.复变函数的连续性 lim f ( z ) f ( z0 ) 定义 函数 f(z)在点 z0 处连续: z z 函数 f(z)在区域D内连续: f(z)在D 内每一点都连续.
0
定理2.3 若 f(z)、g(z) 在点z0连续,则其和、差、积、 商(分母不为零)在点z0处连续. 定理2.4 若h=g(z)在点z0连续, =f(h)在h0=g(z0)连续, 则复合函数=f(g(z))在z0处连续. 定理2.5 函数 f(z)=u(x, y)+iv(x, y)在点z0=x0+iy0处连续 u(x,y)、v(x,y) 均在点(x0, y0)处连续. ●多项式函数w=a0zn+a1zn-1+…+an 在整个复平面上连续
相关文档
最新文档