矿粉在泥凝土中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿渣微粉在商品混凝土中的应用

[摘要]本文介绍了国内外矿渣微粉的应用情况,并分析了矿渣微粉对商品混凝土性能的影响,说明了将矿渣微粉与I级粉煤灰复合配制商品混凝土可以发挥优势互补效应,使混凝土的性能得到进一步改善。阐述了矿渣微粉在商品混凝土应用过程中应注意的问题。

[关键词]矿渣微粉;商品混凝土

1引言

矿渣作为水泥混合材在我国已有40多年的历史,但20世纪90年代以前,大多数是将矿渣和水泥熟料一起粉磨,属粗放型应用。由于矿渣与水泥熟料的易磨性相差很大,与熟料混磨后的矿粉较粗,其比表面积为300m2/kg左右,在水泥水化时矿渣的活性不能充分发挥。因此,掺混合材的水泥一般都是早期强度低,凝结时间长。如将矿渣经过单独粉磨得到矿渣粉,由于其比表面积达到400m2/kg以上,颗粒较细,则其活性可以得到充分发挥,这种颗粒细小的粉磨矿渣就是磨细矿渣(GGBFS)(也称矿渣微粉,简称矿粉)。

2矿渣微粉在国内外的应用情况

1862年德国人发现水淬矿渣具有潜在的活性后,矿渣长期作为水泥混合材使用。1865年德国开始生产石灰矿渣水泥。随着矿渣硅酸盐水泥良好的耐久性及应用价值不断为人们所认识,19世纪初在欧洲得到了广泛的应用。德国有关矿渣硅酸盐水泥的研究资料比硅酸盐水泥的还要多。1933年出现了湿碾矿渣及湿碾矿渣混凝土技术,50年代这一技术曾在大型混凝土和预制混凝土中应用,因湿碾矿渣浆具有储存和运输困难的缺点,该技术并未得到广泛推广。1958年南非将水淬矿渣烘干磨细,克服了湿碾矿渣浆储存及运输困难的缺点,首次将矿粉用于商品混凝土。进入60年代,随着预拌混凝土工业的兴起和发展,矿粉作为混凝土的独立组分得到了广泛应用,90年代在东南亚、我国台湾、香港地区也得到了广泛的使用。目前,国外一些发达国家已将掺有矿粉的混凝土普遍用于各类建筑工程。西欧掺有矿粉的水泥约占水泥总用量的20%;荷兰矿粉掺量65%~70%的水泥约占水泥总销量的60%,几乎各种混凝土结构都采用此种水泥;英国矿粉的每年销售量已达到100多万吨;美国、加拿大现在也将矿粉掺入水泥中应用于各种建筑工程;在日本、新加坡、东南亚地区矿粉普遍地应用于商品混凝土和掺入水泥中。

美国1982年发布了《混凝土和砂浆用的磨细粒化高炉矿渣》标准(ASTMC989-82),并于1989年进行了修订。澳大利亚、加拿大、英国等在1980年-1986年期间也相继制定了矿粉的材料标准。日本在1986年由土木学会制定了《混凝土用矿渣粉》标准草案,于1995年3月正式修订为日本的国家工业标准(JISA6206-1995),日本1988年还制定了《掺高炉矿渣粉的混凝土的设计与施工指南(草案)》。这些标准的制定和实施极大地推动了矿粉混凝土技术的研究,并促使矿粉混凝土技术得到了令人瞩目的发展。在我国,矿渣运用的历史久远,但都是作为活性混合材添加在水泥熟料中,成为硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥。随着国际上对矿粉研究地不断深入和大规模地开发利用,我国20世纪80年代改革开放的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重的环境保护,自20世纪90年代起,我国开始了矿粉的特性及应用研究工作。1998年上海市实施地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999年《粒化高炉矿渣微粉在混凝土中应用技术规程》制定颁布。2000年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》(GB18046-2000)颁布实施,2002年国家标准《高强、高性能混凝土用矿物外加剂》颁布,在该标准中正式将矿渣微粉命名为“矿物外加剂”纳入混凝土第六组分。磨细矿渣作为一个独立的产品出现在建筑市场,广泛应用于商品混凝土中。矿粉的应用逐渐成熟,并被广泛接受和使用。据不完全统计上海每年用于商品混凝土和掺加在水泥中的矿粉已达到80万吨。

3矿渣微粉对混凝土性能的影响

3.1矿粉细度(比表面积)及其对混凝土强度的影响

磨细矿渣微粉磨到一定细度(比表面积),才能充分参与水化反应提高活性。矿粉细度大小直接影响矿粉的增强效果,原则上矿粉细度越大则效果越好,但要求过细则粉磨困难,成本大

幅度增加。综合考虑矿粉的细度以400~600m2/kg为佳,从表1中的试验数据分析矿粉的细度也应为400~600m2/kg。

但实际应用中,由于矿渣较难磨细,考虑到磨机效率,矿渣磨细到400~500m2/kg已经比较好了。从颁布执行的GB/T18046-2000标准来看,只要将矿渣比表面积控制在420~450m2/kg 即可满足标准中S95级要求。这样,即可满足预拌混凝土公司配制≤C60混凝土的要求。除非需配制C80以上的混凝土,否则勿需耗费大量电能生产比表面积600m2/kg的磨细矿渣。另外,仅用比表面积作为矿渣粉的质量指标是不够严谨的,因为不同粉磨系统制备的磨细矿渣,即使比表面积相同,其活性指数(特别是7d龄期时)也不一定相同。

3.2矿粉对混凝土耐久性的影响

(1)矿粉降低水泥的水化热

混凝土在硬化过程中,水泥水化反应产生大量水化热。由于混凝土热阻很大,热量聚集在内部不易散发,而表面散热较快,致使在混凝土内部和表面形成较大温差。这样会导致不均匀温度变形和温度应力,一旦拉应力超过混凝土即时抗拉强度,就会在混凝土内部或表面产生裂缝。这种温度裂缝是混凝土早期开裂的主要因素之一,往往是贯穿性的有害裂缝,对混凝土的耐久性十分不利。

应用42.5普通硅酸盐水泥及矿粉和粉煤灰进行试验,可以看出,混凝土中掺加矿粉可降低浆体的水化热,单掺量小于50%时,水化热降低不明显。当达到70%掺量时,3d、7d的水化热明显降低;矿粉和粉煤灰复配,可显著降低浆体3d、7d的水化热。对要求严格控温的大体积混凝土,矿粉和粉煤灰复配是理想的矿物掺合料,可有效减少混凝土早期温缩裂缝。

(2)矿粉提高混凝土抗渗性能

超细矿粉对混凝土抗渗性的改善主要取决于它的两个综合效应;一是火山灰效应,二是微集料效应。火山灰效应;矿渣改变了胶结料与集料的界面粘结强度,普通混凝土的浆体与集料的界面粘结受水化产物Ca(OH)2定向排列的影响而强度降低。矿渣微粉吸收水泥水化时形成的Ca(OH)2,并进一步水化生成更多有利的C—S—H凝胶,使界面区的Ca(OH)2晶粒变小,改善了混凝土的微观结构,使水泥浆体的孔隙率明显下降,强化了集料界面粘结力,从而使混凝土的抗渗性能提高。

微集料效应:混凝土体系可理解为连续级配的颗粒堆积体系,粗集料间隙由细集料填充,细集料间隙由水泥颗粒填充,水泥颗粒之间的间隙则由更细的颗粒填充。矿渣微粉可起到填充水泥颗粒间隙的微集料作用,从而改善了混凝土的孔结构,降低了孔隙率,并减少了最大孔径的尺寸,使混凝土形成了密实充填结构和细观层次的自紧密堆积体系,大幅度提高了混凝土的抗渗性能,同时也防止了泌水、离析。

应用42.5普通硅酸盐水泥及矿粉和粉煤灰进行试验,从试验数据上看,混凝土中掺加矿粉或矿粉和粉煤灰复配,发挥掺合料的微集料效应和二次水化反应,可以使混凝土孔径细化,连通孔减少,混凝土密实性提高,从而大幅提高混凝土的抗渗性能。

3.3矿粉和粉煤灰复掺对混凝土工作性能及力学性能的影响

为保证混凝土的可泵送性,商品混凝土要求有很好的流动性,混凝土初始坍落度,一般控制在180mm以上,泵送时坍落度一般控制在110mm。在水泥水化初期,矿渣微粉分布并包裹在水泥颗粒的表面,起到了延缓和减少水泥初期水化物相互搭接的隔离作用。

因此,使坍落度经时损失也有所改善。在同样混凝土配合比及掺用同样高效减水剂的情况下,矿渣混凝土的坍落度经时损失比普通混凝土小,有利于商品混凝土的泵送施工。另外,矿粉会使混凝土凝结时间有所延长。

矿渣和I级粉煤灰复合掺加,两种材料的火山灰效应、形态效应和微集料效应相互叠加,形成“工作性能互补效应”和“强度互补效应”,使混凝土具有良好的抗渗性和可泵性。

(1)混凝土“工作性能互补效应”

对新拌混凝土,发挥粉煤灰的“形态效应”。粉煤灰中富含的球状玻璃体对浆体起到“润滑作用”,增大了拌合料的流动性,减小泵送阻力,改善由于矿粉的掺入所导致的混凝土粘聚性提高、泌水性增加的趋势,使新拌混凝土得到最佳的流动性和粘聚性。

(2)混凝土“强度互补效应”

相关文档
最新文档