2017年普通高等学校招生全国统一考试文科数学 (2)
2017年高考真题 文科数学(全国II卷)解析版
绝密★启用前2017年普通高等学校招生全国统一考试文科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技能的考查,注重数学在生活中的应用.同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中略有下降.具体来说还有以下几个特点:1.知识点分布保持稳定小知识点如:集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题,大知识点如:三角与数列三小一大,概率与统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数与导数三小一大(或两小一大).2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了对数学文化的考查要求.2017年高考数学全国卷II文科第18题以养殖水产为题材,贴近生活.3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有所涉及.【命题趋势】1.函数与导数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质的重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用.2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积结合在一起考查,解答题一般分两问进行考查.3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低. 4.三角函数与数列知识:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查利用基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小、巧、活的特点.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分。
2017年普通高等学校招生全国统一考试文科数学Ⅱ卷(含答案及详尽解析)
全国卷Ⅱ(文科)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4}解析:依题意得A ∪B ={1,2,3,4},选A. 答案:A2.(1+i)(2+i)=( ) A .1-i B .1+3i C .3+i D .3+3i解析:依题意得(1+i)(2+i)=2+i 2+3i =1+3i ,选B. 答案:B3.函数f (x )=sin(2x +π3)的最小正周期为( )A .4πB .2πC .π D.π2解析:依题意得,函数f (x )=sin(2x +π3)的最小正周期T =2π2=π,选C.答案:C4.设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b |解析:依题意得(a +b )2-(a -b )2=0,即4a ·b =0,a ⊥b ,选A. 答案:A5.若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:依题意得,双曲线的离心率e = 1+1a2,因为a >1,所以e ∈(1,2),选C.答案:C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:依题意,题中的几何体是用一个平面将一个底面半径为3、高为10的圆柱截去一部分后所剩余的部分,可在该几何体的上方拼接一个与之完全相同的几何体,从而形成一个底面半径为3、高为10+4=14的圆柱,因此该几何体的体积等于12×(π×32)×14=63π,选B.答案:B7.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:依题意,在坐标平面内画出不等式组表示的平面区域及直线2x +y =0(图略),平移直线y =-2x ,当直线经过点(-6,-3)时,z =2x +y 取得最小值,z min =2×(-6)+(-3)=-15,选A.答案:A8.函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)解析:由x 2-2x -8>0,得x <-2或x >4.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞),选D.答案:D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩解析:依题意,由于甲看后还是不知道自己的成绩,说明乙、丙两人必是一个优秀、一个良好,则甲、丁两人必是一个优秀、一个良好,因此乙看了丙的成绩就可以知道自己的成绩,丁看了甲的成绩就清楚自己的成绩,综合以上信息可知,乙、丁可以知道自己的成绩,选D.答案:D10.执行如图所示的程序框图,如果输入的a =-1,则输出的S =( ) A .2 B .3 C .4 D .5解析:依题意,当输入的a =-1时,执行程序框图,进行第一次循环:S =0+(-1)×1=-1,a =1,K =2;进行第二次循环:S =-1+1×2=1,a =-1,K =3;进行第三次循环:S =1+(-1)×3=-2,a =1,K =4;进行第四次循环:S =-2+1×4=2,a =-1,K =5;进行第五次循环:S =2+(-1)×5=-3,a =1,K =6;进行第六次循环:S =-3+1×6=3,a =-1,K =7.此时K =7>6,结束循环,输出的S =3,选B.答案:B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110B.15 C.310 D.25解析:依题意,记两次取得卡片上的数字依次为a ,b ,则一共有25个不同的数组(a ,b ),其中满足a >b 的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率为1025=25,选D.答案:D12.过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为( )A. 5 B .2 2C .2 3D .3 3 解析:依题意,得F (1,0), 则直线FM 的方程是y =3(x -1).由⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23),由MN ⊥l ,得|MN |=|MF |=3+1=4,又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°,因此△MNF 是边长为4的等边三角形,点M 到直线NF 的距离为4×32=23,选C. 答案:C第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数f (x )=2cos x +sin x 的最大值为________. 解析:依题意,得f (x )=5sin(x +θ)(其中sin θ=25,cos θ=15).因此函数f (x )的最大值是 5.答案: 514.已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.答案:1215.长方体的长、宽、高分别为3、2、1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π. 答案:14π16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:依题意得2b ×a 2+c 2-b 22ac =a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc ,即a 2+c 2-b 2=ac ,所以2ac cos B =ac >0,cos B =12.又0<B <π,所以B =π3.答案:π3三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3. ① (1)由a 3+b 3=5得2d +q 2=6. ②联立①和②解得⎩⎪⎨⎪⎧ d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1. (2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5,q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6. 18.(本小题满分12分)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解析:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD ,故BC ∥平面P AD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.(本小题满分12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:旧养殖法新养殖法(1)记A 表示事件“旧养殖法的箱产量低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3) 附:,K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解析:(1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20.(本小题满分12分)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0), 由NP →= 2 NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则 OQ →=(-3,t ),PF →=(-1-m ,-n ), OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(本小题满分12分)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解析:(1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0;当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x .当a ≥1时,设函数h (x )=(1-x )e x ,h ′(x )=-x e x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,g ′(x )=e x -1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1.综上,a 的取值范围是[1,+∞).请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为(2,π3),点B 在曲线C 2上,求△OAB 面积的最大值.解析:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).2017年普通高等学校招生全国统一考试文科数学Ⅱ卷(大儒诚信教育资源) 由题设知|OA |=2,ρB =4cos α,于是△OAB 面积S =12|OA |·ρB ·sin ∠AOB =4cos α·|sin(α-π3)| =2|sin(2α-π3)-32| ≤2+ 3.当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.23.(本小题满分10分)选修4—5:不等式选讲已知a >0,b >0,a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.。
2017全国甲卷数学文(Ⅱ卷)
绝密★启用前2017年普通高等学校招生全国统一考试(全国甲卷)文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}123A =,,,{}234B =,,,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 2.(1+i )(2+i )= A .1-iB .1+3iC .3+ID .3+3i3.函数π()sin(2)3f x x =+的最小正周期为 A .4πB .2πC .πD .π24.设非零向量a ,b 满足||||+=-a b a b ,则 A .⊥a bB .||||=a bC .//a bD .||||>a b5.若a >1,则双曲线2221x y a-=的离心率的取值范围是A .∞)B .2)C .D .12(,)6.如图,网格纸上小正方形的边长为1,学科粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为 A .90π B .63π C .42π D .36π7.设x ,y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+的最小值是A .-15B .-9C .1D98.函数2()ln(28)f x x x =--的单调递增区间是A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,学|根据以上信息,则 A .乙可以知道两人的成绩 B .丁可能知道两人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的1a =-,则输出的S = A .2 B .3 C .4 D .511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A .110B .15C .310D .2512.过抛物线C :y 2=4x 的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为 AB.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)-附答案解析
箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
附:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
20.设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足 .
(1)求点P的轨迹方程;
(2)设点 在直线 上,且 .证明:过点P且垂直于OQ的直线 过C的左焦点F.
zmin=-12-3=-15.
故选:A
【点睛】
此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.
8.D
【解析】
由 >0得:x∈(−∞,−2)∪(4,+∞),
令t= ,则y=lnt,
∵x∈(−∞,−2)时,t= 为减函数;
x∈(4,+∞)时,t= 为增函数;
y=lnt为增函数,
15.长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为__________.
16. 的内角 的对边分别为 ,若 ,则 ________.
17.已知等差数列 的前 项和为 ,等比数列 的前 项和为 ,且 , , .
(1)若 ,求 的通项公式;
(2)若 ,求 .
18.四棱锥 中,侧面 为等边三角形且垂直于底面 ,
(1)证明:直线 平面 ;
(2)若△ 面积为 ,求四棱锥 的体积.
19.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
2017年全国高考文科数学试题及答案-全国卷2
绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{1,2,3},{2,3,4}A B ==,则A B =UA. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i +3. 函数()sin(2)3f x x π=+的最小正周期为A.4πB.2πC. πD.2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是A. 2+∞(,)B. 2(,)C. 2(1,)D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是 A. -15B.-9C. 1 D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩 C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512. 过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。
2017年普通高等学校招生全国统一考试数学试题文全国卷2
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
AB=????2,3,A?31,2,,4B?, 1.设集合则????????4,3,421,,313,2,21,,3,4 B. A. D. C.2.(1+i)(2+i)=A.1-iB. 1+3iC. 3+iD.3+3i???)(x2x+=sin f的最小正周期为函数 3.3???? B.2 D. C. A.42ba-+ab=a b,满足则4.设非零向量a=ba?b aa bb C. ∥ B. A ⊥ D.2x2-y?1的离心率的取值范围是,则双曲线若5.>1a2a(1,2)2))2(,+?,(2(,12) D. A. B. C.6.如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为???? D.36 C.42 B.63A.90.2x+3y?3?0??2x?3y?3?0z?2x?y yx的最小值是 7.设、满足约束条件。
则??y?3?0?A. -15 B.-9 C. 1 D 928)x?ln(?x?2f(x) 8.函数的单调递增区间是????),-1) C.(1, +A.(-) D. (4, +,-2) B. (-位良好,22位优秀,老师说,9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,你们四人中有我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 B.丁可能知道两人的成绩A.乙可以知道两人的成绩乙、丁可以知道自己的成绩 D.C.乙、丁可以知道对方的成绩a S= ,则输出的=-1执行右面的程序框图,如果输入的10.A.2 B.3 C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为1213 B.A. C. D. 5510102lxly在的准线,点,N为CC于点M(M过抛物线12.C:在=4x的焦点F轴上方),且斜率为的直线交3l,则M到直线⊥NF的距离为上且MN3523232 D. B. C.A.二、填空题,本题共4小题,每小题5分,共20分.??=2cosx?sinfxx的最大值为函数 . 13.??????23f?2?xxx-0??,x上的奇函数,当是定义在时,R14., 已知函数xf??=f2则 O的表面积为3,2,1,其顶点都在球O的球面上,则球15.长方体的长、宽、高分别为caa,b,c,b B=cosC+则ABC的内角A,B,C的对边分别为若2cosA,cosB=16.△题为必考题,每个试题考2170分。
2017年高考全国二卷文科数学试卷
2017年高考全国二卷文科数学试卷2017年普通高等学校招生全国统一考试(II卷)文科数学1.设集合A={1,2,3},B={2,3,4},则A∪B= {1,2,3,4}。
2.(1+i)(2+i)= 1+3i。
3.函数f(x)=sin(2x+π/3)的最小正周期为π。
4.设非零向量a、b满足|a+b|=|a-b|,则 |a| = |b|。
5.若a>1,则双曲线 x^2/4 - y^2/a^2=1的离心率的取值范围是 (1,2)。
6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为42π。
7.设x、y满足约束条件 2x-3y+3≤0,y+3≥0,则z=2x+y的最小值是 -1.8.函数f(x)=ln(x^2-2x-8)的单调递增区间是(4,+∞)。
9.甲、乙、丙、XXX同学一起去向老师询问成语竞赛的成绩。
老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给XXX看甲的成绩。
看后甲对大家说:我还是不知道我的成绩。
根据以上信息,则乙、丁可以知道自己的成绩。
10.执行右面的程序框图,如果输入的a=-1,则输出的S=4.11.从分别写有1、2、3、4、5的5张卡片中随机抽取1张,放回后再随机抽取一张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 3/10.12.过抛物线$C:y^2=4x$的焦点$F$,且斜率为3的直线交$C$于点$M$($M$在$x$轴的上方),$l$为$C$的准线,点$N$在$l$上且$MN\perp l$,则$M$到直线$NF$的距离为$\textbf{33}$。
13.函数$f(x)=2\cos x+\sin x$的最大值为$\textbf{2\sqrt{5}}$。
14.已知函数$f(x)$是定义在$\mathbb{R}$上的奇函数,当$x\in(-\infty,0)$时,$f(x)=2x^3+x^2$,则$f(2)=\textbf{14}$。
2017年新课标全国卷2高考文科数学试题及答案
2017年新课标全国卷2高考文科数学试题及答案2017年普通高等学校招生全国统一考试(新课标II卷)文科数学注意事项:1.在答题卡和试卷上填写姓名和准考证号。
2.选择题用铅笔在答题卡上涂黑对应选项,非选择题写在答题卡上。
3.考试结束后,将试卷和答题卡一并交回。
一、选择题(共12小题,每小题5分,共60分)1.设集合A={1,2,3},B={2,3,4},则A∪B=A。
{1,2,3,4}B。
{1,2,3}C。
{2,3,4}D。
{13,4}2.计算(1+i)(2+i)=A。
1-iB。
1+3iC。
3+iD。
3+3i3.函数f(x)=sin(2x+π/3)的最小正周期为πA。
4πB。
2πC。
πD。
24.设非零向量a,b满足a+b=a-b,则A。
a⊥bB。
a=bC。
a∥bD。
a>b5.若a>1,则双曲线2y=1的离心率的取值范围是aA。
(1,2)B。
(2,+∞)C。
(2,2)D。
(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A。
90πB。
63πC。
42πD。
36π7.设x、y满足约束条件2x+3y-3≤02x-3y+3≥0y+3≥0则z=2x+y的最小值是A。
-15B。
-9C。
1D。
98.函数f(x)=ln(x2-2x-8)的单调递增区间是A。
(-∞,-2)B。
(-∞,-1)C。
(1,+∞)D。
(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A。
乙可以知道两人的成绩B。
丁可能知道两人的成绩C。
乙、丁可以知道对方的成绩D。
乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A。
2B。
3C。
4D。
511.从五张卡片中随机抽取两次,求第一次抽到的数大于第二次的概率。
2017年全国卷2全国甲卷高考文科数学试题
2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={1,2,3},B={2,3,4},则AUB=A.{1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4}2.. (1+i)(2+i)=A. 1-IB. 1+3iC. 3+ID. 3+3i3. 函数f(x)=sin(2x+)的最小正周期为A. 4 B. 2 C. D.4. 设非零向量a,b满足|a+b|=|a-b|,则A.a bB. |a|=|b|C. a∥bD. |a|>|b|5. 若a>0,则双曲线的离心率的取值范围时A. () B. () C. (1,) D. (1,2)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将圆柱截去一部分后所得,则该几何体的体积为A. 90B. 63C. 42D. 367. 设x,y满足约束条件,则z=2x+y的最小值为A. -15 B. -9 C. 1 D. 98. 函数f (x )=ln ( -2x-8)的单调递增区间是A. (- )B. (- )C. (1,+ )D. (4,+ )9. 甲,乙,丙,丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有两位优秀,两位良好,我现在给甲看乙,丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说,我还是不知道我的成绩,根据以上信息,则A . 乙可以知道四人的成绩 B. 丁可以知道四人的成绩 C . 乙,丁可以知道对方的成绩 D. 乙丁可以知道自己的成绩 10. 执行右面的程序框图,如果输入的a=-1,则输出的S=A. 2B. 3C. 4D. 511. 从分别写有1,2,3,4,5的5张卡片中随机抽取一张,放回后再随机抽取一张,则抽的第一张卡片上的数大于第二张卡片上的数的概率为 A.B.C.D.12. 过抛物线C : 的焦点F ,且斜率为 的直线交C 于点M ,(M 在x 轴的正上方),l 为C 的准线,点N 在l 上,且MN l ,则M 到直线NF 的距离为 A .B. 2C. 2D.二、填空题:本题共4小题,每小题5分,共20分13. 函数f(x)=2cosx+sinx 的最大值为________14. 已知函数f(x)是定义在R 上的奇函数,当x 时,f(x)=2 ,则f(2)= 15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为_______.16.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则=B _________.三、解答题:共70分。
2017年普通高等学校招生全国统一考试 文数(新课标II卷)解析版(参考版)
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 【答案】B【解析】由题意2(1)(2)2313i i i i i ++=++=+,故选B. 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π【答案】C 【解析】由题意22T ππ==,故选C. 4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a 【答案】A【解析】由||||a b a b +=-平方得2222()2()()2()a ab b a ab b ++=-+,即0ab =,则a b ⊥,故选A.5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,) 【答案】C【解析】由题意222222111c a e a a a +===+,因为1a >,所以21112a <+<,则1e <<故选C.6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π【答案】B7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
2017年新课标全国卷2高考文科数学试题及答案
绝密★启用前2017年普通高等学校招生全国统一考试(新课标II 卷)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=A B A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π7.设x、y满足约束条件2+330233030x yx yy-≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y=+的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x=--的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F 的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为B. C. D.二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。
2017年高考真题全国2卷文科数学(附答案解析)
uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.
2017年高考文科数学全国卷2(含详细答案)
--------------------答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位卷3.考试结束后,将本试卷和答题卡一并交回。
__ __ __ __ __A .1 iB .1 3iC .3 iD . 3 3i__ __ 3的最小正周期为_名 题 A. 1 只有一项A . ( 2, -------------绝密★启用前在2017 年普通高等学校招生全国统一考试--------------------文科数学此注意事项:1.置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择_--------------------题时,将答案写在答题卡上,写在本试卷上无效。
__ _ __ 一、选择题:本题共 35 小题,每小题 4 分,共 140 分。
在每小题给出的四个选项中,号 上 证 --------------------是符合题目要求的.考 准1.设集合 A1,2,3 , B 2,3,4 ,则 A B( )A . 1,2,3,4B . 1,2,3C . 2,3,4D . 1,3,4答--------------------2. (1 i)(2 i)()__ _ 3.函数 f(x) sin 2x() 姓--------------------A . 4πB . 2π C. π D.π24.设非零向量 a , b 满足 a b = a b ,则()无--------------------A . a ⊥ bB. a = bC . a ∥ bD . a >b6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为 ( ) A . 90 π B . 63π C . 42 π D . 36 π2x 3y 3≤0,7.设 x , y 满足约束条件 2x 3y 3≥0,则 z 2x y 的最小值是 ( )y 3≥0,A . 15 B. 9 C .1 D .98.函数 f(x) ln(x 2 2x 8)的单调增区间是 ( )A .( , 2) B.( ,1) C . (1, ) D . (4, )9.甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有 2位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 ( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的 a 1 ,则输出的 S ( )A .2B .3C .4D .511.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 ( )1 32 10 B. 5 C. 10 D. 55.若 a >1 ,则双曲线x 2a 2 y 21 的离心率的取值范围是 ( ) 12.过抛物线 C :y2 4x 的焦点 F ,且斜率为3 的直线交 C 于点 M ( M 在 x 轴的上方),效---------------- ) B . ( 2,2) C . (1, 2) D . (1,2)文科数学试卷 第 1 页(共 20 页) l 为 C 的准线,点 N 在 l 上且 MN l ,则 M 到直线 NF 的距离为 ( )A. 5B.2 2C. 2 3 D . 3 3文科数学试卷 第 2 页(共 20 页)n的前n项和为S,等比数列b的前n项和为T,a附:0.0502AD,BAD二、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)2cos x sinx的最大值为.14.已知函数f(x)是定义在R上的奇函数,当x(,0)时f(x)2x3x2,则f(2).15.长方体的长宽高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.△ABC的内角A,B,C的对边分别为a,b,c.若2b cosB a cosC ccos A,则B=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各网箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;已知等差数列an n n11,b11,箱产量<50kg箱产量≥50kga 2b22.旧养殖法新养殖法(1)若a3b35,求b的通项公式;n(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.(2)若T321,求S.3P(K2≥k)0.0100.001K2k 3.841 6.63510.828n(ad bc)2(a b)(c d)(a c)(b d)18.(12分)如图,四棱锥P ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB BC 1ABC90.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P ABCD的体积.文科数学试卷第3页(共20页)文科数学试卷第4页(共20页)(2)设点Q在直线x3上,且OP PQ1.证明:过点P且垂直于OQ的直线l过______号上3,点B在曲线C上,求△OAB面积的最大值.__答__ __ __ __ ___ __名x-------------20.(12分)设O为坐标原点,动点M在椭圆C:在--------------------点P满足NP2NM.x22y21上,过M作x轴的垂线,垂足为N,(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1__ ___ _证考准_姓(1)求点P的轨迹方程;此--------------------C的左焦点F.卷----------------------------------------21.(12分)--------------------设函数f(x)(1x2)e.(1)讨论f(x)的单调性;(2)当x≥0时,若f(x)≤ax1,求a的取值范围.题--------------------无--------------------的极坐标方程为cos 4.(1)M为曲线C上的动点,点P在线段OM上,且满足OM OP16,求点P的1轨迹C的直角坐标方程;2(2)设点A的极坐标为2,223.[选修4—5:不等式选讲](10分)已知a>0,b>0,a3b32.证明:(1)(a b)(a5b5)≥4;(2)a b≤2.效----------------文科数学试卷第5页(共20页)文科数学试卷第6页(共20页)2.∵ a >1 ,∴1<1 <2 ,则1<e < 2 .故选 C.一、选择题1.【答案】A【解析】 A 2017 年普通高等学校招生全国统一考试文科数学答案解析B ={1,2,3} {2,3,4}={1,2,3,4}.故选 A.2.【答案】B【解析】 (1 i)(2 i) 2 i +2i i2 3i 1 1 3i .故选 B.3.【答案】C【解析】最小正周期 T2π 2π.故选 C.4.【答案】A【解析】由 |ab |= |a b |,两边平方得 a 2 2a b b 2a 2 2ab b 2 ,即 a b 0 ,则 a ⊥ b .故选 A.5.【答案】C【解析】 e 2c 2 a 2 1 1 11a 2 a 2 a 2 a 26.【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3 ,高为4 的圆柱,其体积V1π 32 4 36π,上半部分是一个底面半径为 3,高为 6 的圆柱的一半,其体积V 2 1 2(π 32 6) 27π,∴该组合体的体积V =V7.【答案】A1V =63π.故选 B.2【解析】不等式组表示的可行域如图所示,易求得 A(0,1),B ( 6, 3) ,C (6, 3).目标函数可化为 y由图可知目标函数在点 B 处取得最小值,最小值为 2 ( 6) ( 3) 15 .故选 A.2x z ,S K S ;S 2 3 ,∴ M (3,2 3).由 MN l 可得 N ( 1,2 3),又 F (1,0),则 NF 所在 2【解析】依题意有 x 22x 8>0 ,解得 x < 2 或 x >4 ,易知 f(x)在 ( , 2)单调递减,在 (4, ) 单调递增,所以 f(x)的单调递增区间是 (4, ) .故选 D.9.【答案】D【解析】由甲的说法可知乙、丙 1 人优秀 1 人良好,则甲、丁两人 1 人优秀 1 人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩知道自己的成绩,即乙、丁可以知道自己的成绩.故选 D.10.【答案】B【解析】第一次循环: S0 1 1,a 1, K 2 ;第二次循环: S 1 2 1, a 1, K 3 ;第三次循环: 1 3 2 ,a 1 , 4 ;第四次循环:2 4 2 ,a 1 ,K 5 第五次循环: 2 5 3,a 1, K 6 ;第六次循环: S3 6 3,a 1, K 7 .结束循环,输出 S3 .故选 B.11.【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:12345 1(1,1)(2,1)(3,1)(4,1)(5,1) 2(1,2)(2,2)(3,2)(4,2)(5,2) 3(1,3)(2,3)(3,3)(4,3)(5,3) 4(1,4)(2,4)(3,4)(4,4)(5,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)共有 25 种情况,满足条件的有 10 种,所以所求概率为12.【答案】C10 2 25 5.故选 D.【解析】由题知 F (1,0),则 MF 所在直线的方程为 y 3(x 1),与抛物线联立,化简,得3x210x 3 0 ,解得 x1 1 3, x直线的方程为 3x y3 0 ,∴ M 到直线 NF 的距离 d |3 3( 3)2 3 2 3|( 1)=2 3 .故选 C.二、填空题13.【答案】 5【解析】 f(x) 2cosx sinx≤ 22 125 ,∴ f(x)的最大值为 5 .14.【答案】12.n 的公差为 d , b 的公比为 q ,联立①②解得 d 1, 2 AD , BC ∥AD , ABC15.【答案】14 π【解析】设球的半径为 R ,依题意知球的直径为长方形的体对角线,∴ 2R32 22 1214 ,球 O 的表面积 S 4πR 2(2R )2 14π16.【答案】π3【解析】由正弦定理得 2sinB cos BsinA cosCsinC cos Asin(AC ) sinB ,∴ c osB三、解答题17.【答案】(1)设数列 an 1 π,则 B . 2 3则 a2b21 (2 1)d q 2 1 2 ,∴ d q3 .①a3b31 (3 1)d q 315 ,∴ 2d q 26 .②d 3,q 2 或 q 0 (舍去).∴ b 的通项公式为 bnn2n 1 .(2)由 b 11 , T321 得 q 2 q 20 0 .解得 q5或q 4.当q5 时,由①得 d8,S当q 4 时,由①得 d1, S333a13a12 32 d 2 32 d21 .6.18.【答案】(1)在平面 ABCD 内,∵ BADABC 90 ,∴ BC ∥AD .∵ AD 平面 PAD , BC 平面 PAD ,∴ BC ∥平面 PAD .(2)取 AD 的中点 M ,连接 PM , CM .∵ AB BC 190 ,∴四边形 ABCM 为正方形,∴ CMAD .∵侧面 PAD 为等边三角形且垂直于底面 ABCD ,平面 PAD 平面 ABCD AD ,∴ PMAD ,又 AD 底面 ABCD ,∴ PM 底面 ABCD .2x x 2 7 ,解得 x2 (负值舍去),设 BC x ,则 CMx , CD2x , PM3x , PC PD 2x .取 CD 的中点 N ,连接 PN .则 PN CD ,∴ PN 14x.2S △PCD1 142 2∴ AB BC 2 , AD 4 , PM2 3 .∴四棱锥 P ABCD 的体积 VP ABCD1 2 (2 4) 3 22 3 4 3.19.【答案】(1)旧养殖法的箱产量低于 50 kg 的频率为(0.012 0.014 0.024 0.034 0.040) 50.62,∴ A 的概率估计值为 0.62.(2)根据箱产量的频率分布直方图的列联表:箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法6234 3866K 2的观测值 K2200 (62 66 34 38)2 100 100 96 104≈15.705.∵ 15.705>6.635,∴有 99% 的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在 50 kg~55 kg 之间,旧养殖法的箱产量平均值(或中位数)在 45k g~50 kg 之间,且新养殖法的箱产量分布集中程度比旧养殖法的箱产量分布集中程度高,∴可以认为新养殖法的箱产量较高且稳定,新养殖法优于旧养殖法.20.【答案】(1)设P(x,y),M(x,y),则N(x,,NP(x x,y),NM(0,y).0)由NP2NM得x0x,y022y.∵M(x,y)在C上,∴00x2y2221,∴点P的轨迹方程为x2y22.(2)由题意知F(1,0).设Q(3,t),P(m,n),则OQ Q(3,t),PF(1m,n),OQ PF33m tn,OP(m,n),PQ(3m,tn).由OP PQ1得3m m2tn n21,由(1)知m2n22,∴33m tn0.∴OQ PF0,即OQ⊥PF.又过点P存在唯一直线垂直于O Q,∴过点P且垂直于OQ的直线l过C的左焦点F.21.【答案】(1)∵f(x)(1x2)e x,∴f(x)(12x x2)e x.令f(x)0得x12或x12.当x(,12)时,f(x)<0;当x(12,12)时,f(x)>0;当x(12,)时,f(x)<0.∴f(x)在(,12)和(12,)单调递减,在(12,12)单调递增.(2)f(x)(1x)(1x)e x.当a≥1时,设函数h(x)(1x)e x,则h(x)xe x<0(x>0),∴h(x)在[0,)单调递减.又h(0)1,∴h(x)≤1,∴f(x)(x1)h(x)≤x1≤ax1.当0<a<1时,设函数g(x)e x x1,则g(x)e x1>0(x>0).g(x)[0,)1) 1) ∴ △OAB 的面积 S 1 B sin AOB 4cos sin 3当 0<x <1时, f(x)>(1 x)(1 x)2 ,(1 x)(1 x)2 ax 1 x(1 a x x 2 ),取x0 5 4a 12 ,则 x 0 (0,.(1 x )(1 x )2 ax0 0 0 1 0 ,∴ f(x )>ax 0 0 1.当 a≤0 a≤0 时,取 x 0 5 1 2 ,则 x 0(0, .f(x )>(1 x )(1 x )21≥ax0 0 0 0 1 .综上, a 的取值范围是[1, ).22.【答案】(1)设 P 的极坐标为 ( , )( >0), M 的极坐标为 ( , )( >0).1 1由题设知 OP , OM1 4 cos .由 OM OP 16 得 C 的极坐标方程为 4cos( >0), 2即 (x 2)2 y 2 4(x 0).(2)设点 B 的极坐标为 ( , )( >0).B B由题设知 OA 2,B 4cos ,ππ 3 OA 2 sin 2≤2 3.2 3 3 2 当 π时, S 取得最大值 2 3 .12∴ △OAB 面积的最大值为 2 3 .23.【答案】(1) (a b)(a 5 b 5 ) a 6 ab 5 a 5b b 6(a 3 b 3)2 2a 3b 3 ab(a 4 b 4 )4 ab(a 2 b 2 )2≥4 .(2)∵ (a b) a 3 3a 2b 3ab 2 b 33(a b)2 2 3ab(a b)≤2 (a b)3(a b)32,4∴(a b)3≤8,a b≤2.。
2017年全国高考文科数学试题及答案-全国卷2
2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的、准考证号填写在本试卷和答题卡相应位置上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.〔1+i 〕〔2+i 〕=-i B. 1+3i C. 3+i D.3+3i()fx =πsin (2x+)3的最小正周期为ππ C. π D.2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.假设>1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 2(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为π π ππx 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.411.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M 〔M 在x 轴上方〕,l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,此题共4小题,每题5分,共20分.()cos sin =2+f x x x 的最大值为 .()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的外表积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,假设2b cosB=a cosC+c cosA,则B= 三、解答题:共70分。
【试题】2017年全国高考文科数学试题及答案全国卷2
【关键字】试题绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合,则A. B. C. D.2.A. B. C. D.3. 函数的最小正周期为A.4B.2C.D.4. 设非零向量,满足则A. ⊥B.C. ∥D.5. 若,则双曲线的离心率的取值范围是A. B. C. D.6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90B. 63C. 42D. 367. 设满足约束条件。
则的最小值是A. -15B.-9C. 1 D 98. 函数的单调递增区间是A.(-,-2)B. (-,-1)C.(1, +)D. (4, +)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A. 乙可以知道两人的成绩B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A. B.C. D.12. 过抛物线的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,则到直线的距离为A. B. C. D.二、填空题,本题共4小题,每小题5分,共20分.13. 函数的最大值为.14. 已知函数是定义在R上的奇函数,当时,,则15. 长方体的长、宽、高分别为3,2,1,其顶点都在球的球面上,则球的表面积为16. 的内角的对边分别为,若,则三、解答题:共70分。
2017年全国高考文科数学试题及答案-全国卷2
绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{1,2,3},{2,3,4}A B ==,则AB =A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i +3. 函数()sin(2)3f x x π=+的最小正周期为A.4πB.2πC. πD.2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是A. ∞)B. 2)C. (1D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是 A. -15B.-9C. 1D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩 C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512. 过抛物线2:4C y x =的焦点FC 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.B.C.D.二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。
2017年高考全国二卷文科数学试卷
2017年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 设集合A = {1,2,3},B = {2,3,4},则A ∪B =A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4}2. (1 + i)(2 + i) =A. 1 - iB. 1 + 3iC. 3 + iD. 3 +3i3. 函数)32sin()(π+=x x f 的最小正周期为A. π4B. π2C. πD.2π 4. 设非零向量a 、b 满足| a + b | = | a - b |,则A. a ⊥bB. | a | = | b |C. a // bD. | a | > | b |5. 若a > 1,则双曲线1222=-y ax 的离心率的取值范围是A. ),2(+∞B. )2,2(C. )2,1(D. )2,1(6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A. π90 B. π63 C. π42D. π362017.67. 设x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,03,0332,0332y y x y x 则z = 2x + y 的最小值是A. -15B. -9C. 1D. 98. 函数f (x ) = ln(x 2 - 2x - 8)的单调递增区间是A. (-∞,-2)B. (-∞,1)C. (1,+∞)D. (4,+∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。
老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲 的成绩。
看后甲对大家说:我还是不知道我的成绩。
根据以上信息,则 A. 乙可以知道四人的成绩B. 丁可以知道四人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的a = -1,则输出的S =A. 2B. 3C. 4D. 511. 从分别写有1、2、3、4、5的5张卡片中随机抽取1张,放回后再随机抽取一张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A.101 B.51 C. 103 D.52 12. 过抛物线C :y 2 = 4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为A. 5B. 22C. 32D. 33二、填空题:本题共4小题,每小题5分,共20分。
2017年全国高考文科数学试题及答案-全国卷2
绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{1,2,3},{2,3,4}A B ==,则AB =A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i +3. 函数()sin(2)3f x x π=+的最小正周期为A.4πB.2πC. πD.2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是A. +∞)B. )C. (1D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是 A. -15B.-9C. 1 D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩 C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512. 过抛物线2:4C y x =的焦点FC 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.B.C.D.二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则( )。
A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A 【难度】简单【点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )。
A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【难度】简单【点评】本题在高考数学(理)提高班讲座 第十六章《计数技巧》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
3.下列各式的运算结果为纯虚数的是( )。
A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C 【难度】一般【点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是( )。
A .14B .π8C .12D .π 4【答案】B 【难度】一般【点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为( )。
A .13B .1 2C .2 3D .3 2【答案】D 【难度】中等【点评】本题在高考数学(理)提高班讲座 第十二章《圆锥曲线的方程与性质》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )。
【答案】A【难度】中等【点评】本题在高考数学(理)提高班讲座第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为()。
A.0 B.1 C.2 D.3【答案】D【难度】中等【点评】本题在高考数学(理)提高班讲座第四章《函数的值域、最值求法及应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
8..函数sin21cosxyx=-的部分图像大致为()。
【答案】C【难度】中等【点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
9.已知函数()ln ln(2)f x x x =+-,则( )。
A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【难度】中等【点评】本题在高考数学(理)提高班讲座 第二章《函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入( )。
A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D 【难度】较难【点评】本题在高考数学(理)提高班讲座 第十三章《算法与统计》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c C =( )。
A .π12B .π6C .π4D .π3【答案】B 【难度】中等【点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )。
A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【难度】较难【点评】本题在高考数学(理)提高班讲座 第十二章《圆锥曲线的方程与性质》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________. 【答案】7 【难度】简单【点评】本题在高考数学(理)提高班讲座 第十五章《常用逻辑语》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 【答案】x-y+1=0 【难度】简单【点评】本题在高考数学(理)提高班讲座 第三章《函数的性质及其应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
【答案】10【难度】中等【点评】本题在高考数学(理)提高班讲座第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。
若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。
【答案】36π【难度】中等【点评】本题在高考数学(理)提高班讲座第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记S n为等比数列{}n a的前n项和,已知S2=2,S3=-6.(1)求{}n a的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列。
【答案】=1 (2)23n+-+232312(2)2(2)2(2)(2)4333n n n n n n S S ++++++-+-+-+-++=--==12n n n n S S ++-=-即S S∴12,,n n n S S ++S 成等差数列 【难度】中等【点评】本题在高考数学(理)提高班讲座 第十五章《常用逻辑语》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠= ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积. 【答案】由AB ⊥平面PAD 知:AB ⊥AD 又∵AB ∥DC ,AB=DC ∴四边形ABCD 为矩形AD BC ∴==∴△PBC 为等边三角形 由(1)知AB ⊥平面PAD ∴平面ABCD ⊥平面PAD 取AB 的中点M 连接PM 由PA=PD,得PM ⊥AD,2PM a =由平面ABCD ⊥平面PAD 且交线为AD 知:PM ⊥平面ABCD ∴PM 为四棱柱P-ABCD 的高118.333P ABCD ABCD V S PM a -∴==⨯=矩形【难度】中等【点评】本题在高考数学(理)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【答案】根据表格中数据可知第13次抽取的尺寸不在范围内,因此需要检查。
(ii)剔除离群值之后,组成一组新的数据,设平均数为'x,标准差为's0.09≈【难度】较难【点评】本题在高考数学(理)提高班讲座第三章《函数的性质及其应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
20.(12分)设A,B为曲线C:y=24x上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程. 【答案】由题意知切线与直线AB 平行∴M 点处的切线斜率为001''|12x x k y x k ===== 02x ∴=∴M 点坐标为M (2,1)则1122(2,1),(2,1)AM x y BM x y =--=-- 由(1)联立知22440,01x kx b k b k --=+=△=>又2440,10x kx b b ∴--=+△=>由韦达定理得:12121212122121212124,42()()()x x x x by y x b x b x x b y y x b x b x x b x x b +==-+=+++=++=++=+++根据题意:AM ⊥BM【难度】较难【点评】本题在高考数学(理)提高班讲座 第十二章《圆锥曲线的方程与性质》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。