线性规划的对偶问习题

合集下载

线性规划的对偶问习题.doc

线性规划的对偶问习题.doc

第二章线性规划的对偶问题第二章线性规划的对偶问题习题2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3 (2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4 ≤54x1+x2+x3≤20 2x1-x2+3x3 =-4x j ≥0 (j=1,2,3)x1 -x3+x4≥1x1,x3≥0,x2,x4 无约束(3) min z =3x1+2 x2-3x3+4x4 (4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3 ≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3 ≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5x1≥0,x4≤0,x2,,x3 无约束x1≤0,x2≥0,x3 无约束2.2 已知线性规划问题max z=CX,AX=b ,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k 个约束条件乘上常数λ(λ≠0);(2)将第k 个约束条件乘上常数λ(λ≠0)后加到第r 个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);(4)模型中全部x1用3 x' 代换。

12.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2 +x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)*=4;y2* =1,试根据对偶问题的性质,求出原问题的最其对偶问题的最优解y1优解。

运筹学习题答案(第二章)

运筹学习题答案(第二章)

School of Management
运筹学教程
第二章习题解答
2.4 给出线性规划问题
min Z = 2 x1 + 3 x 2 + 5 x 3 + 6 x 4 x1 + 2 x 2 + 3 x 3 + x 4 ≥ 2 st . − 2 x1 + x 2 − x 3 + 3 x 4 ≤ − 3 x j ≥ 0 , ( j = 1, L , 4 )
page 14 30 December 2010
School of Management
运筹学教程
第二章习题解答
是原问题的可行解。 解:x1=1,x2=x3=0是原问题的可行解。原问题的对 是原问题的可行解 偶问题为: 偶问题为:
min W = 2 y1 + y 2 − y1 − 2 y 2 ≥ 1 (1) y + y ≥1 (2) 1 2 st . ( 3) y1 − y 2 ≥ 0 y1 , y 2 ≥ 0 (4)
运筹学教程
第二章习题解答
2.1 写出下列线性规划问题的对偶问题。 写出下列线性规划问题的对偶问题。
min Z = 2 x1 + 2 x 2 + 4 x 3 x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3x ≤ 3 2 3 st 1 x1 + 4 x 2 + 3 x 3 = 5 x1 , x 2 , ≥ 0 , x 3 无约束
School of Management
运筹学教程
第二章习题解答
max Z = 5 x1 + 6 x2 + 3 x3 x1 + 2 x2 + 2 x3 = 5 − x + 5 x − 3 x ≥ 3 2 3 st 1 4 x1 + 7 x2 + 3 x3 ≤ 8 x1无约束 , x2 , ≥ 0, x3 ≤ 0

运筹学第二章线性规划的对偶理论

运筹学第二章线性规划的对偶理论

(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3

y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条

线性规划问题及其数学模型(最新整理)

线性规划问题及其数学模型(最新整理)

试根据对偶问题性质证明上述线性规划问题目标函数值无界。
7. 给出线性规划问题
2
max z 2x1 4x2 x3 x4
2xx12x13xxx322xx64 468
x1
x2
x3
9
x j 0 ( j 1,,4)
要求:(1)写出其对偶问题;(2)已知原问题最优解为 X*=(2,2,4,0),试根据
每捆原稿纸用白坯纸 3 1 kg, 每打日记本用白坯纸 13 1 kg, 每箱练习本用白坯纸
3
3
26 2 kg。 已知生产各种产品的赢利为:每捆原稿纸 1 元,每打日记本 2 元,每箱练 3
习本 3 元。试决定:(1)在现有生产条件下使该厂赢利最大的方案;(2)如白坯纸
供应量不变,而工人数量不足时可从市场上招收临时工,临时工费用为每人每天 15
(4)
n
aij x j
bi
(i 1,, m1 m)
j1
n
aij x j
bi
(i m1 1, m2 2,, m)
j1
x
j
0无约束
( j 1,, n1,, n)
2. 判断下列说法是否正确,为什么?
(1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解;
(2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解;
变;
(3)约束条件右端项由
13
变为
2 3

(4)增加一个新的变量 x6 , P6 11, c6 7 ;
4
(5)增添一个新的约束 x1+2x2+x3≤4。 13. 分析下列线性规划问题中,当且变化时最优解的变化,并画出 z(λ)对 λ 的 变化关系图。

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题第⼆章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3⽆限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2⽆限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试⽤互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代⼊上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

⼜因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4⽤对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,⾮基变量在⽬标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

线性规划的对偶理论与灵敏度分析习题

线性规划的对偶理论与灵敏度分析习题

线性规划的对偶理论与灵敏度分析习题1第二章 线性规划的对偶理论与灵敏度分析习题1. 写出下列线性规划问题的对偶问题。

(1)⎪⎪⎩⎪⎪⎨⎧≥=++≤++≥++++=无约束321321321321321,0,534332243422min x x x x x x x x x x x x x x x z (2)⎪⎪⎩⎪⎪⎨⎧≤≥≤++≥-+-=++++=0,0,837435522365max 321321321321321x x x x x x x x x x x x x x x z 无约束(3)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=====∑∑∑∑====),,1;,,1(0),,1(),,1(min 1111n j m i x n j b x m i a x x c z ij mi j ij nj i ij m i ijnj ij2(4)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥++==<=<=∑∑∑===),,,,1(0),,2,1(),,1(min 1211111n n j x m m m i b x a m m i b x a x c z j nj i j ij nj i j ij nj jj 无约束2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解;(2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解;( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值;(4)任何线性规划问题具有唯一的对偶问题。

3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

3 2 2 0 0 03C B 基 B x 1 x 2 x 3 x 4 x 5 x 60 x 4 (b) 11 1 1 0 02 x 5 15 (a) 1 2 0 1 0 1 x 6 202 (c )1 0 01jj z c -0 2 0 0 00 x 4 5/4 0 0(d ) (l ) -1/4 -1/4 3 x 125/410 (e ) 0 3/4 (i ) 2 x 2 5/2 01 (f ) 0 (h ) 1/2 jj z c --1(k) (g)-5/4(j)4. 给出线性规划问题⎪⎩⎪⎨⎧=≥-≤+-+-≥++++++=)4,,1(0322326532min 432143214321 j x x x x x x x x x x x x x z j(1)写出其对偶问题;(2)用图解法求解对偶4问题;(3)利用(2)的结果及根据对偶问题性质写出原问题最优解。

运筹学第四章习题答案

运筹学第四章习题答案

即:4y1+6y2=﹣8 ① 又由于原问题的最优解X1*>0,X2*<0是松约束,故对偶问题的 约束必为紧约束,即对偶问题的前两个约束必为等式:
y1+y2=﹣2 y1+ky2=﹣2 ∴由①②解得y1*=﹣2 Y*=(﹣2,0)
② ③ y2*=0,即对偶问题的最优解为
将y1*,y2*的值代入③式得k=﹣1
(2)max z=4x1-2x2+3x3-x4
X1+x2+2x3+x4≤7
2x1-x2+2x3-x4=﹣2
s、t
X1-2x2+x4≥﹣3
X1、x3≥0 x2、x4无符号约束
解:其对偶问题为:
Min w=7y1-2y2-3y3
y1+2y2+y3≥4
y1-y2-2y3=﹣2
s、t
2y1+2y2≥3
y1-y2+y3=﹣1
y1≥0 y2无符号约束 y3≤0
4、已知线性规划问题:
Max z=x1+2x2+3x3+4x4
x1+2x2+2x3+3x4≤20
s、t
2x1+x2+3x3+2x4≤20
xj≥0 j=1、2、3、4
其对偶问题最优解为y1=1.2 y2=0.2,由对偶理论直接求出原问题的 最优解。
解:将Y*=(1.2,0.2)代入对偶问题的约束条件:
1、写出下列线性规划问题的对偶问题。
(1)min z=x1+x2+2x3
X1+2x2+3x3≥2
2x1+x2-x3≤4
s.t
3x1+2x2பைடு நூலகம்4x3≤6

运筹学 第三版2

运筹学 第三版2

习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

【免费下载】运筹学 第2章 对偶理论习题

【免费下载】运筹学 第2章 对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

第三章线性规划对偶理论与灵敏度分析习题 一、思考题1.对偶问题和对偶变量的经济意义是什么?2.简述对偶单纯形法的计算步骤。

它与单纯形法的异同之处是什么?3.什么是资源的影子价格?它和相应的市场价格之间有什么区别?4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系?5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么?7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+kn σ(标准形为求最小值),其经济意义是什么?8.将i j ji bc a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确1.任何线性规划问题都存在且有唯一的对偶问题。

2.对偶问题的对偶问题一定是原问题。

3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。

4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。

5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。

7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。

8.对于i j ji bc a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。

9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。

10.应用对偶单纯形法计算时,若单纯形表中某一基变量0<i x ,且i x 所在行的 所有元素都大于或等于零,则其对偶问题具有无界解。

线性规划的对偶

线性规划的对偶

第四章 线性规划的对偶理论一、填空题1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题与之对应,反之亦然。

2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。

3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。

4.对偶问题的对偶问题是原问题_。

5.若原问题可行,但目标函数无界,则对偶问题不可行。

6.若某种资源的影子价格等于k。

在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。

相应的目标函数值将增加3k 。

7.线性规划问题的最优基为B,基变量的目标系数为C B,则其对偶问题的最优解Y﹡= C B B-1。

8.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX ﹡= Y﹡b。

9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。

10.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡=Y*b。

11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。

12.影子价格实际上是与原问题各约束条件相联系的对偶变量的数量表现。

13.线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为A T 。

14.在对偶单纯形法迭代中,若某b i<0,且所有的a ij≥0(j=1,2,…n),则原问题_无解。

二、单选题1.线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为A形式。

A.“≥” B.“≤” C,“>” D.“=”2.设、分别是标准形式的原问题与对偶问题的可行解,则 C 。

3.对偶单纯形法的迭代是从_ A_开始的。

A.正则解 B.最优解 C.可行解 D.基本解4.如果z。

是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡A。

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

线性规划问题的对偶问题

线性规划问题的对偶问题

该问题的对偶问题:
max z = 2 y1 - 3y2 s.t. 2y1- 3y2 1
3y1- y2 2 5y1- 7y2 3 y1,y2 0
例2-6:写出下列线性规划问题的 对偶问题
min S = 2x1 + 3x2 - 5x3
s.t. x1+ x2 - x3 5
2x1
+ x3 = 4
x1 x 2


0
y1
min 12
16
15
y
2

y3
2 2
4 0
0 5

y1 y2 y3


2 3
y1

y
2


0
y3
线性规划的对偶关系:
(I) Max z = C x
s.t. Ax b
s.t. X1 + x2 + 2x3 10 y1 4x1 +2x2 - x3 20 y2 x1,x2 , x3 0
解:该问题的对偶问题:
min g = 10 y1 + 20 y2 s.t. y1 + 4y2 10
y1 + 2y2 1 2 y1 - y2 2
y1,y2 0
假设 y1, y2 分别表示每个木工 和油漆工工时的租金,则所付租金 最小的目标函数可表示为:
min s = 120 y1 + 50 y2
目标函数中的系数 120,50 分别表 示可供出租的木工和油漆工工时数。
该企业家所付的租金不能太低, 否则家具厂的管理者觉得无利可图 而不肯出租给他。因此他付的租金 应不低于家具厂利用这些资源所能 得到的利益:

运筹学习题集(第二章)

运筹学习题集(第二章)

判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=C B B-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划A约束条件相同B目标函数相同C最优目标函数值相同D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证A使原问题保持可行B使对偶问题保持可行C逐步消除原问题不可行性D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系A若最优解存在,则最优解相同B原问题无可行解,则对偶问题也无可行解C对偶问题无可行解,原问题可能无可行解D一个问题无界,则另一个问题无可行解E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为A—(λ1,λ2,……λn)B (λ1,λ2,……λn)C —(λn+1,λn+2,……λn+m)D(λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解C可能一个问题有最优解,另一个问题具有无界解D原问题与对偶问题都有最优解计算题线性规划问题和对偶问题2.1 对于如下的线性规划问题min z = 3x1 + 2x2 +x3s.t. x1 + x2+ x3 ≤ 15 (1)2x1 - x2+ x3≥ 9 (2)-x1 + 2x2+2x3≤ 8 (3)x1 x2x3 ≥ 01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3s.t. y1 + 2y2- y3 ≤ 3 (1)y1 - y2+ 2y3≤ 2 (2)y1 + y2+ 2y3≤ 1 (3)y1≤0、 y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3s.t. x1 + x2+ x3+ x4= 15 (1)-2x1 + x2- x3+ x5= -9 (2)-x1 + 2x2+2x3+x6= 8 (3)原始问题的最优解为(X 1 X 2 X 3 X 4 X 5 X 6)=(2,0,5,8,0,0),minz=11 对偶问题的最优解为(y 1 y 2 y 3 y 4 y 5 y 6)=(0,7/5,-1/5,0,19/5,0),maxw=112.2 对于以下线性规划问题max z = -x 1 - 2x 2s.t. -2x 1 + 3x 2 ≤ 12 (1) -3x 1 + x 2 ≤ 6 (2) x 1 + 3x 2 ≥ 3 (3) x 1 ≤ 0, x 2 ≥ 01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、 写出这个(极大化)线性规划问题的对偶问题;4、 求出对偶问题的最优解和最优解的目标函数值;5、 第(2)个约束右端常数b 2=6在什么范围内变化,最优解保持不变。

写出下列线性规划问题的对偶问题(10分)

写出下列线性规划问题的对偶问题(10分)

命题人: 教研室主任: 第1页一、写出下列线性规划问题的对偶问题(10分)二、求解下列线性规划问题(15分)三、分配甲、乙、丙、丁四个人去完成A 、B 、C 、D 、E 五项任务,每个人完成各项任务的时间如下表所示。

由于任务数多于人数,故考虑任务E 必须完成,其它4项中可任选3项完成,试确定最优分配方案,使完成任务的总时间为最少。

(15分)四、某河流中有几个岛屿,如下图所示。

从两岸至各岛屿及各岛屿之间的桥梁编号如下图所示,在一次敌对的军事演习中,问至少应炸断几座及哪几座桥梁,才能完全切断两岸的交通联系(15分)⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz 32121321321⎪⎪⎩⎪⎪⎨⎧≥≤=++≤++≥++++=无约束321321321321321x 0,x ,0x 53x 4x x 33x x 2x24x 3x x 4x 2x 2x minz )1(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥===≥=∑∑∑∑====n),1,j m;,1,(i 0x )n ,1,j (b x m),1,(i a x x c minz )2(ij m1i jij n1j iij m 1i n1j ijij命题人: 教研室主任: 第2页五、试根据下表所提供的条件,绘制出网络计划图(10分)六、甲、乙、丙三个城市每年分别需要煤炭320、250、350万吨,由A 、B 两处煤矿负责供应。

已知煤炭年供应量为A —400万吨,B —450万吨。

有煤矿至各城市的单位运价如下表所示: 单位:万元/万吨。

由于需大于求,经研究平衡决定,甲城市供应量可减少0~30万吨,乙城市需要量应全部满足,丙城市供应量不少于270万吨。

试写出该运输问题的数学模型并用表上作业法求其初始解(15分)七、某一警卫部门,共有8支巡逻队,负责3个要害部位,A 、B 、C 的警卫巡逻。

对每个部位可分别派2~4支巡逻队,并且派出的巡逻队数不同,各部位预期在一段时间内可能的损失有差别,具体数字见下表,问该警卫部门应往各部位分别派多少支巡逻队,使总的预期损失为最小?试建立动态规划模型并求解。

线性规划的对偶问题,DOC

线性规划的对偶问题,DOC

第二章线性规划的对偶问题习题2.1写出下列线性规划问题的对偶问题(1)maxz=10x1+x2+2x3(2)maxz=2x1+x2+3x3+x4st.x1+x2+2x3≤10st.x1+x2+x3+x4≤54x1+x2+x3≤202x1-x2+3x3=-4x j ≥0(j=1,2,3)x1-x3+x4≥1xj≥0(j=1,2,3,4)其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。

2.5考虑线性规划问题maxz=2x1+4x2+3x3st.3x1+4x2+2x3≤602x1+x2+2x3≤40x 1+3x2+2x3≤80xj≥0(j=1,2,3)(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;仅供个人学习参考(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

2.6已知线性规划问题maxz=10x1+5x2st.3x1+4x2≤95x1+2x2≤8xj≥0(j=1,2)(1)给出a,b,c,d,e,f,g的值或表达式;(2)指出原问题是求目标函数的最大值还是最小值;(3)用a+?a,b+?b分别代替a和b,仍然保持上表是最优单纯形表,求?a,?b满足的范围。

仅供个人学习参考仅供个人学习参考2.9某文教用品厂用原材料白坯纸生产原稿纸、日记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为30000千克。

已知工人的劳动生产率为:每人每月可生产原稿纸30捆,或日记本30打,或练习本30箱。

已知原材料消耗为:每捆原稿纸用白坯纸310千克,每打日记本用白坯纸340千克,每箱练习本用白坯纸380千克。

又知每生产一捆原稿纸可获利2元,生产一打日记本获利3元,生产一箱练习本获利1元。

试确定:(1)现有生产条件下获利最大的方案;(2)如白坯纸的供应数量不变,当工人数不足时可招收临时工,临时工工资支出为每人每月40元,则该厂要不要招收临时工?如要的话,招多少临时工最合适?2.10某厂生产甲、乙两种产品,需要A 、B 两种原料,生产消耗等参数如下表(表中2.12试从经济上解释对偶问题及对偶变量的含义。

2、线性规划问题的对偶问题

2、线性规划问题的对偶问题

s.t. -4y1-3y2
≥7
2y1-6y2+5y3=4 -6y1-4y2+3y3≤-3
y1≤0,y2≥0,y3无约束
例2-8:写出下列线性规划问题的对 偶问题 s.t. min w = 3x1 - 2x2 + x3 x1+2x2 =1 y1 2x2 - x3 -2 y2 2x1 +x3 3 y3 x1- 2x2 + 3x3 4 y4 x1,x2 0 , x3 无非负限制
引入变量 y1 , y2’,y2” 写出对偶问题
max g = 5 y1+ 4y2’- 4y2” s.t. y1 +2y2’- 2y2” 2 y1 3 -y1 + y2’- y2” -5 y1, y2’,y2” 0
令y2 = y2’- y2” 得到 max g = 5 y1 + 4y2 s.t. y1 + 2y2 2 y1 3 -y1+ y2 -5 y1 0 ,y2 无非负约束
解: 综合运用对偶原则得到 max g = y1-2y2 +3y3 +4y4 s.t. y1+ 2y3 + y4 3 2y1 +2y2 - 2y4 -2 -y2+ y3 +3y4 = 1 y2≤0, y3, y4 0 ,y1 无非负约束
2.2 对偶问题的基本定理
定理2.1:(弱对偶定理) 对于互为对偶问题(I)(II)中 的任意的可行解x(0),y(0),都有 c x(0) ≤ y(0) b
定理2.2 (最优准则) 若原问题的某一个可 与对偶问题的最优解.
定理2.3
(对偶定理)
若原问题有最优解,则对偶 问题也有最优解,且最优值相等.

运筹学第二章线性规划的对偶理论复习题

运筹学第二章线性规划的对偶理论复习题
min w = 5 y1 + 12 y2 st. y1 + 2 y2 ≥ 2 y1 + 3 y2 ≥ 1 2y1 + 4 y2 ≥ 3 y1 ≥ 0,y2无符号限制
2, 0)T ; (2)由题知原问题的最优解为 x* = (3,
5
由互补松弛定理得:在对偶问题中对应第一,二个约束为紧,第三个约束条件 为松,即,
max z = x1 + x2
s.t.
− x1 + x2 + x3 ≤ 2 − 2 x1 + x2 − x3 ≤ 1 x1 , x2 , x3 ≥ 0
有可行解,但无最优解.
⎛0⎞ ⎟ 证明: x = ⎜ ⎜0⎟ ⎜0⎟ ⎝ ⎠
是线性问题的可行解,即该问题存在可行解;
又∵其对偶问题为:
min w = 2 y1 + y2 st. -y1 − 2 y2 ≥ 1
x1 + x 2 − x3 ≤ 2 x1 − x 2 + x3 = 1 2 x1 + x2 + x3 ≥ 2
x1 ≥ 0, x 2 ≤ 0, x3无约束
的最大值不超过 1. 证明:该线性问题的对偶问题为:
min w = 2 y1 + y2 + 2 y3 st. y1 + y2 + 2 y3 ≥ 1 y1 − y2 + y3 ≤ 2 -y1 + y2 + y3 = 1 y1 ≥ 0,y2 自由,y3 ≤ 0
7、考虑下列原始线性规划
max z = 2 x1 + x2 + 3x3
s.t.
x1 + x2 + 2 x3 ≤ 5 2 x1 + 3x 2 + 4 x3 = 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欢迎阅读
第二章线性规划的对偶问题
习题
2.1 写出下列线性规划问题的对偶问题
(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4
st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤5
4x1+x2+x3≤20 2x1-x2+3x3=-4
x j≥0 (j=1,2,3)x1-x3+x4≥1
x j≥0(j=1,2,3,4)
其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3
st. 3x1+4 x2+2x3≤60
2x1+x2+2x3≤40
x1+3x2+2x3≤80
x j≥0 (j=1,2,3)
(1)写出其对偶问题
(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;
欢迎阅读
欢迎阅读
(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;
(4)比较(2)和(3)计算结果。

2.6 已知线性规划问题max z=10x1+5x2
st. 3x1+4x2≤9
5x1+2x2≤8
x j≥0(j=1,2)
(1)给出a,b,c,d,e,f,g的值或表达式;
(2)指出原问题是求目标函数的最大值还是最小值;
(3)用a+?a,b+?b分别代替a和b,仍然保持上表是最优单纯形表,求?a,?b满足的范围。

欢迎阅读
欢迎阅读
欢迎阅读
2.9 某文教用品厂用原材料白坯纸生产原稿纸、日记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为30000千克。

已知工人的劳动生产率为:每人每月可生产原稿纸30捆,或日记本30打,或练习本30箱。

已知原材料消耗为:每捆原稿纸用白坯纸310千克,每打日记本用白坯纸340千克,每箱练习本用白坯纸3
80千克。

又知每生产一捆原稿纸可获利2元,生产一打日记本获利3元,生产一箱练习本获利1元。

试确定:
(1)现有生产条件下获利最大的方案;
(2)如白坯纸的供应数量不变,当工人数不足时可招收临时工,临时工工资支出为每人每月40元,则该厂要不要招收临时工?如要的话,招多少临时工最合适?
2.10 某厂生产甲、乙两种产品,需要A 、B 两种原料,生产消耗等参数如下表(表中
2.12 试从经济上解释对偶问题及对偶变量的含义。

2.13 根据原问题同对偶问题之间的对应关系,分别找出两个问题变量之间、解以及检验数之间的对应关系。

2.14 什么是资源的影子价格,同相应的市场价格之间有何区别,以及研究影子价格的意义。

2.15 试述对偶单纯形法的计算步骤,它的优点及应用上的局限性。

2.16 将a ij ,b ,c 的变化分别直接反映到最终单纯形表中,表中原问题和对偶问题的解各自将会出现什么变化,有多少种不同情况以及如何去处理。

2.17 判断下列说法是否正确
(a)任何线性规划问题存在并具有唯一的对偶问题;
欢迎阅读
欢迎阅读
(b)对偶问题的对偶问题一定是原问题;
(c)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;
(d)若某种资源的影子价格等于k,在其它条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k;
(e)应用对偶单纯形法计算时,若单纯形表中某一基变量x i<0,又x i所在行的元素全部大于或等于零,则可以判断其对偶问题具有无界解;
(f)若线性规划问题中的bi,c,值同时发生变化,反映到最终单纯形表中,不会出现原问题与对偶问题均为非可行解的情况;
(g)在线性规划问题的最优解中,如某一变量x j为非基变量,则在原来问题中,无论改变它在目标函数中的系数c j或在各约束中的相应系数a ij,反映到最终单纯形表中,除该列数。

相关文档
最新文档