一次函数与不等式综合
一次函数和不等式的解题技巧
一次函数和不等式的解题技巧一次函数和不等式是数学中非常基础的概念,也是我们日常生活中经常会遇到的问题。
在学习和解决这些问题时,我们需要掌握一些解题技巧,以便更好地理解和应用这些概念。
本文将介绍一些解决一次函数和不等式问题的技巧和方法。
一、一次函数一次函数是指形如y = kx + b的函数,其中k和b是常数。
在解决一次函数问题时,我们需要掌握以下几点:1. 确定函数的斜率和截距一次函数的斜率k表示函数在直线上的倾斜程度,截距b表示函数与y轴的交点。
根据这些信息,我们可以画出函数的图像并更好地理解函数的性质。
2. 确定函数的定义域和值域一次函数的定义域是指函数可取的x值的范围,值域是指函数可取的y值的范围。
在解决问题时,我们需要根据实际情况确定函数的定义域和值域,并注意函数的限制条件。
3. 利用函数的性质解决问题一次函数具有很多性质,如单调性、奇偶性、周期性等。
在解决问题时,我们可以利用这些性质来简化问题,例如确定函数的最值、解决方程等。
二、不等式不等式是指形如ax + b < c或ax + b > c的式子,其中a、b、c是常数。
在解决不等式问题时,我们需要掌握以下几点:1. 确定不等式的解集不等式的解集是指满足不等式的x值的范围。
在解决问题时,我们需要根据不等式的符号和常数确定解集,并注意解集的限制条件。
2. 利用不等式的性质解决问题不等式具有很多性质,如可加性、可减性、可乘性等。
在解决问题时,我们可以利用这些性质来简化问题,例如确定不等式的最值、解决方程等。
3. 联立不等式解决问题有时候,我们需要联立多个不等式来解决问题。
在联立不等式时,我们需要注意不等式的符号和常数,并根据实际情况确定解集。
三、综合应用在解决实际问题时,我们需要综合运用一次函数和不等式的知识和技巧。
例如,当我们需要求解一条直线与坐标轴围成的三角形的面积时,我们可以利用一次函数的性质确定直线的斜率和截距,并利用不等式的性质确定三角形的顶点坐标和面积。
一次函数与方程不等式综合题
解析:这是一道取材于山区绿化的表格信息型应用题,综合考查一 次函数、一次方程组和一次不等式组.(1)经过对表格信息的观察、 分析不难发现平均气温随海拔高度的增大而减小,y与x之间的满足一次 函数关系.故由待定系数法可设y=kx+b,将x=0,y=22;x=100,y=21.5 分别代入y=kx+b得22=b,21.5=100k+b;把b=22代入21.5=100k+b得k=,所 以y与x之间的函数关系式为y=x+22;(2)由题意18y20,即18x+2220. 解不等式组可得:400≤x≤800.故该植物种植在海拔为400米—800米之 间的山区较为合适.
2、某饮料厂为了开发新产品,用A,B两种果汁原料个19千克、 17.2千克,试制甲、乙两种新型饮料50千克,下表是实验的相关数 据:
每千克含量\饮料 甲
乙
A(单位:千克) 0.5
0.2
B(单位:千克) 0.3
0.4
(1) 假设甲种饮料需配制x千克,请你写出满足题意的不等式 组,并求出其解集.
(2) 设甲种饮料每千克成本为4元,乙种饮料每千克成本为3 元,这两种饮料的成本总额为y元,请写出y与x的函数表 达式.根据(1)的运算结果,确定当甲种饮料配制多少 千克时,甲、乙两种饮料的成本总额最少?
(3) 小斌选取那种租碟方式更合算? 解析:该例取材于大家最熟悉的生活中的情景,综合考查一次函
数、一元一次不等式与一次方程.由题意易得:(1)y1=x; (2)y2=0.4x+12;(3)y1<y2时零星租碟方式更合算,此时x<0.4x+12, 解得x<20;y1>y2时会员卡租碟方式更合算,此时x>0.4x+12解得 x>20;y1=y2时两种租碟方式一样合算,此时x=0.4x+12解得x=20.
中考方程(组)不等式(组)一次函数求最值的综合应用
专题8 一次函数的应用(即方程(组)不等式(组)和一次函数的综合应用)一次函数求最值,不同于二次函数求最值,它一般分三步:1.根据题目中的等式条件,建立一次函数关系式,确定其增减性;2.根据题目中的不等式条件,列不等式(组),求出自变量的取值范围;3.根据一次函数的增减性,恰当选取自变量的值,求函数的最值。
1.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,设其中甲种商品购进x件(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.2.某销售商准备采购A、B两种型号的空气净化器,经调查,采购2台A型净化器和3台B型净化器共需花费11500元,且采购5台A型净化器和购进4台B型净化器所需的费用相等.(1)求每台A型、B型净化器的进价各是多少?(2)若销售商购进A型、B型净化器共50台,其中A型的台数不大于B型的台数,且不少于15台,设购进A型净化器a台.①求a的的取值范围;②已知A型的售价是2600元/台,B型的售价是3200元/台,设销售商售完50台净化器获得的利润为w,求w的最大值.3.某商场筹集资金12.8万元,一次性购进空调、彩电共30台,已知购买3台空调和2台彩电花费2.32万元,购买2台空调和4台彩电需花费2.48万元。
(1)求每台空调与彩电的进价分别是多少元?(2)已知每台空调的售价为6100元,每台彩电的售价为3900元,设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元,试求出y与x的函数关系式;(3)根据市场需要,这些空调、彩电很快全部售出,商场计划再次筹集资金12.8万元,一次性购买空调、彩电共30台,且可全部售出,在(2)的条件下,商场如何进货可获得最大利润,最大利润是多少元?4.某超市计划购进甲、乙两种玩具若干件,已知5件甲种玩具与3件乙种玩具的进价之和为231元,2件甲种玩具的进价与3件乙种玩具的进价之和为141元.(1)求每件甲种玩具和每件乙种玩具的进价分别是多少?(2)如果购进甲种玩具有优惠,优惠方法:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0,且x为整数)件甲种玩具需花费y元,请求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,超市应选择购进哪种玩具最省钱.5.学校打算购进一批甲、乙两种办公桌若干张,若学校购进15张甲办公桌和10张乙办公桌共花费15500元,购进8张甲种办公桌的费用与购买5张乙办公桌的费用相等.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购进甲、乙两种办公桌共30张,且甲种办公桌不多于乙种办公桌数量的2倍,请你设计一种费用最少的方案,并求出该方案所需费用.6.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?7.某地新建的一个企业,每月产生1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型污水处理器和3台B型污水处理器的总价为44万元,售出的1台A型污水处理器和4台B型污水处理器的总价为42万元.(1)求每台A型污水处理器和B型污水处理器的价格分别是多少万元?(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的两种污水处理器共10台,请你设计出最省钱的购买方案,请求出最低费用.答案自我诊断1.考点:一次函数的应用.分析:(1)甲种商品购进x件,乙种商品购进了200﹣x件,由总价=甲单价×甲商品数量+乙单价×乙商品数量,可得出关于x的一元一次方程,解出方程即可得出结论;(2)①根据利润=甲商品单件利润×数量+乙商品单件利润×数量,即可得出y关于x的函数解析式;②根据总价=甲单价×甲数量+乙单价×乙数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据y关于x函数的增减性即可解决最值问题;(3)根据利润=甲单件利润×数量+乙单件利润×数量,可得出y关于x的函数解析式,分x的系数大于0、小于0以及等于0三种情况考虑即可得出结论.解:(1)甲种商品购进x件,乙种商品购进了200﹣x件,由已知得:80x+100(200﹣x)=17900,解得:x=105,200﹣x=200﹣105=95(件).答:购进甲种商品105件,乙种商品95件.(2)①由已知可得:y=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000(0≤x≤200).②由已知得:80x+100(200﹣x)≤18000,解得:x≥100,∵y=﹣60x+28000,在x取值范围内单调递减,∴当x=100时,y有最大值,最大值为﹣60×100+28000=22000.故该商场获得的最大利润为22000元.(3)y=(160﹣80+a)x+(240﹣100)(200﹣x),即y=(a﹣60)x+28000,其中100≤x≤120.①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大值,即商场应购进甲、乙两种商品各100件,获利最大.②当a=60时,a﹣60=0,y=28000,即商场应购进甲种商品的数量满足100≤x≤120的整数件时,获利都一样.③当60<x<70时,a﹣60>0,y岁x的增大而增大,∴当x=120时,y有最大值,即商场应购进甲种商品120件,乙种商品80件获利最大.点评:本题考查了一次函数的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据数量关系找出y关于x的函数关系式;(3)根据一次函数的系数分类讨论.本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.4.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.从而得到W=﹣8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.。
【初升高数学衔接教材讲义系列】第03章 一次函数与一次不等式(解析版)
第3章 一次函数与一次不等式【知识衔接】————初中知识回顾————1、形如y=kx+b(k≠0)的函数叫做一次函数。
(1)它的图象是一条斜率为k ,过点(0,b )的直线。
(2)k>0⇔是增函数;k<0⇔是减函数。
2、不等式ax>b 的解的情况:(1)当a>0时,ab x >; (2)当a<0时,a b x <; (3)当a=0时,i) 若b≤0,则取所有实数;ii) 若b>0,则无解。
类似地,请同学们自行分析不等式ax <b 的解的情况。
————高中知识链接————一次函数y =kx +b (k ≠0,b ≠0)的图象所经过的象限有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0,函数y =kx +b 的图象经过第二、三、四象限.一次函数y =kx +b (k ≠0)中,|k |越大,直线y =kx +b 越靠近y 轴,即直线与x 轴正半轴的夹角越大;|k |越小,直线y =kx +b 越靠近x 轴,即直线与x 轴的夹角越小.学#科网【经典题型】初中经典题型1.一次函数y =(m -2)x +3的图象如图所示,则m 的取值范围是( )A.m<2 B.0<m<2 C.m<0 D.m>2【答案】A【解析】如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2,故选A.2.如图,把Rt∆ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将∆ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.82【答案】C3.已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为_____.【答案】(,)【解析】分析:利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;详解:由题意A(-,),∵A、B关于y轴对称,∴B(,),故答案为(,).4.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.【答案】1.5.【解析】分析:首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.点睛:本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.5.一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.【答案】D【解析】分析:先求出不等式组的解集,再在数轴上表示. 详解:解不等式组得-3<x ≤2,在数轴上表示为:故选D .点睛:解一元一次不等式组,通常采用“分开解,集中定”的方法,即单独的解每一个不等式,而后集中找它们的解的“公共部分”.在找“公共部分”的过程中,可借助数轴或口诀两种方法确定不等式组的解集.其中确定不等组解集的方法为:“大大取大,小小取小,大小小大中间找,大大小小是无解”.在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.6.若实数3是不等式2x –a –2<0的一个解,则a 可取的最小正整数为( )A. 2B. 3C. 4D. 5【答案】D【解析】解:根据题意,x =3是不等式的一个解,∴将x =3代入不等式,得:6﹣a ﹣2<0,解得:a >4,则a 可取的最小正整数为5,故选D .学-科网点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.高中经典题型1.若函数1y ax =+在[]1,2上的最大值与最小值之差为2,则实数a =( )A . 2B . 2-C . 2或2-D . 0【答案】C【解析】1y ax =+,若0a =,则y 的最大与最小之差为0(舍),若0a >,则()()max 221f x f a ==+,()()min 11f x f a ==+,则()2112a a a +-+==(符合),若0a <,则()()max 11f x f a ==+, ()()min 221f x f a ==+,则()1212a a a +-+=-=,则2a =-(符合),故选C . 2.若()()0f x ax b a =+>,且()()41ff x x =+,则()3f =__________. 【答案】193【解析】由()()()241f f x af x b a x ab b x =+=++=+, ()24,10a ab b a ∴=+=>,解得()112,,233a b f x x ==∴=+,于是()1933f =,故答案为193. 3.如图,已知函数f(x)的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式f(x)-f(-x)>-1的解集是______________.【答案】 (-1,- 12)∪[0,1)4.已知函数()()()110f x ax x a a =+->,且()f x 在[]0,1上的最小值为()g a ,求()g a 的最大值. 【答案】1【解析】试题分析:(1)由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,分三种情况讨论,即可求解函数的最小值,得出()g a 的表达式,即可求解()g a 的最大值. 试题解析:由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,(1)当a 1>时, 1a 0a ->,此时()f x 在[]0,1上为增函数,∴()()1g a f 0a ==;(2)当0a 1<<时, 1a 0a-<,此时()f x 在[]0,1上为减函数,∴()()g a f 1a == ;(3)当a 1=时, ()f x 1=,此时()g a 1=,∴(),01,g a { 1,1,aa a a <<=≥其在()0,1上为增函数,在[)1,∞上是减函数,又当a 1=时,有1a 1a==,∴当a 1=时, ()g a 取得最大值1. 点睛:本题考查了函数最值问题及其应用,其中解答中涉及到一次函数的单调性的应用,以及分段函数的性质,同时考查了分类讨论的思想方法,本题的解答中注意1a =的情况,容易导致错解,试题有一定的基础性,属于基础题.5.(1)求函数y =ax +1(a≠0)在[0,2]上的最值.(2)若函数y =ax +1在[0,2]上的最大值与最小值之差为2.求a 的值.【答案】(1)详见解析;(2) a =±1.6.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.学-科网(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍。
一次函数一元一次方程一元一次不等式(组)的综合运用
一次函数、一元一次方程、一元一次不等式(组)的综合运用1、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,相关资料表明:甲、乙两种树苗的成活率分别为85%,90%(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用解:(1) 设购买甲种树苗x 株,乙种树苗y 株,则列方程组⎩⎨⎧=+=+210003024800y x y x 2分解得⎩⎨⎧==300500y x 答:购买甲种树苗500株,乙种树苗300株. 4分(2) 设购买甲种树苗z 株,乙种树苗)800(z -株,则列不等式 800%88)800%(90%85⨯≥-+z z 6分解得320≤z7分答:甲种树苗至多购买320株.(3)设甲种树苗购买m 株,购买树苗的费用为W 元,则240006)800(3024+-=-+=m m m W 8分∵06<-∴W 随m 的增大而减小∵3200≤<m ∴当320=m 时,W 有最小值. 9分22080320624000=⨯-=W 元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低为22080元. 10分2.在眉山市开展城乡综合治理的活动中.需要将A 、B 、C 三地的垃圾50立方M 、40立方M 、50立方M 全部运往垃圾处理场D 、E 两地进行处理.。
已知运往D 地的数量比运往E 地的数量的2倍少l0立方来.(1) 求运往D 、E 两地的数量各是多少立方M?(2) 若A 地运往D 地a 立方M(a 为整教), B 地运往D 地30立方M .c 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地.且C 地运往E 地不超过 l2立方M .则A 、C 两地运往D 、E 两地有哪几种方案?(3) 已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【解题思路】(1)设运往E 地x 立方M ,由题意可列出关于x 的方程,求出x 的值即可;(2)由题意列出关于a 的一元一次不等式组,求出a 的取值范围,再根据a 是整数可得出a 的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可.【答案】(1)设运往E 地x 立方M ,由题意得,x+2x-10=140,解得:x=50,∴2x-10=90,答:共运往D 地90立方M ,运往E 地50立方M ;(2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a a a ,解得:20<a ≤22, ∵a 是整数,∴a=21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方M ,运往E 地29立方M ;C 地运往D 地39立方M ,运往E 地11立方M ;第二种:A 地运往D 地22立方M ,运往E 地28立方M ;C 地运往D 地38立方M ,运往E 地12立方M ;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.难度适中.3.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?解:⑴ 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元. ⎩⎨⎧14x+(20-14)y=2914x+(18-14)y=24 解得:⎩⎨⎧x=1y=2.5答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. ⑵当0≤x ≤14时;y=x当x >14时,y=14+2.5×(x -14)=2.5x -21所求函数关系式为:y=⎩⎨⎧x (0≤x≤14)2.5x -21 (x >14)⑶∵x=24>14,把x=24代入y=2.5x -21,得到y=2.5×24-21=39 答:小英家三月份应交水费39元.4.今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千M ,到乙地30千M ;从B 地到甲地60千M ,到乙地45千M .⑴设从A 水库调往甲地的水量为x 万吨,完成下表 甲乙 总计 A x14 B14 总计15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千M )【解题思路】通过读题、审题(1)完成表格有2个思路:从供或需的角度考虑,均能完成上表。
第9讲一次函数与方程不等式综合
一次函数与方程、不等式综合一、知识要点(一)一次函数与一元一次方程的关系1.从函数的观点来看一元一次方程b 0(0)kx k +=≠,可以认为:当自变量取什么值时,一次函数y b k 0kx =+≠()的函数值为值0。
所以,直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
2.求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x bk=-,直线y b kx =+交x 轴于(,0)bk -,b k -就是直线y b kx =+与x 轴交点的横坐标。
(二)一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
(三)一次函数与二元一次方程(组)的关系1.一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。
2.求一个二元一次方程组的解就是求构成这个方程组的两个二元一次方程对应的一次函数图象的交点的坐标。
二、例题精讲(一)一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. 【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.(二)一次函数与一元一次不等式综合【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方;(2)y 轴左侧;(3)第一象限.【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x <C .6x <-D .6x >-【例7】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?【例8】 直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.【例9】 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.【例10】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【例11】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求: (1)当2x =时,y 的值;(2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围;(4)当21y -<<时,x 的值范围.(三)一次函数与二元一次方程(组)综合 【例12】已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.【例13】已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为______.【例14】 已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y = 和y =的交点是________.【例15】 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0B .1C .2D .3【例16】 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A(2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.【例17】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.0【例18】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <【例19】 当自变量x 满足什么条件时,函数23y x =-+的图象在:(1)x 轴下方;(2)y 轴左侧; (3)第一象限.【例20】 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【例21】 已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-【例22】 如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y +=⎧⎨+=⎩的解关于原点对称的点的坐标是________.【例23】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( ) A .2x >-B .0x >C .2x <-D .0x <【例24】 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.【例25】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( ) A.无解B.有唯一解C.有无数个解D.以上都有可能【例26】 b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?三、小试牛刀1. (2010湖北孝感,7,3分)一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为s (千米),则s 与t 的函数图象大致是( )2. (2011广东广州市,9,3分)当实数x 的取值使得x -2有意义时,函数y=4x+1中y 的取值范围是( ). A .y ≥-7B .y ≥9C .y >9D .y ≤93. (2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比y=kx+b2-2Oy x-1B A 2O y x2乙甲乙甲815105 1.510.5O时y/千米乙先到达终点;④两人都跑了20千米.其中正确的说法有( ) A. 1 个 B. 2 个 C.3 个 D. 4个4. (2011浙江杭州,7,3)一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是5.(2011浙江衢州,9,3分)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为123v v v 、、,且123v v v <<,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图像可能是( )6. (2011山东枣庄,10,3分)如图所示,函数x y =1和34312+=xy 的图象 相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( ) A .x <-1 B .—1<x <2 C .x >2 D . x <-1或x >27. (2011江苏盐城,8,3分)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是( ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min8.某产品的生产流水线每小时可生产100件产品,生产前没有产品积压, 生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量为y , •生产时间为t ,那么y 与t 的大致图象只能是( )9.如图,向高为H 的圆柱形空水杯里注水,表示注水量y 与水深x 的关系的图象是( )10.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,•过了一段时间,汽车到了下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,则图中近似地刻画出汽车在这段时间内的速度变化情学校小亮家stststts(-1,1y(2,2) 2yxyO(第7题图)况的是()11.星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(•米)与散步所用的时间t(分)之间的函数关系,依据图象,下面描述符合小红散步情景的是().A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,一直散步(没有停),然后回家了C.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了D.从家出发,散了一会儿步,就找同学去了, 18分钟后才开始返回12.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,•那么可以知道:①这是一次___ _ _米赛路;②甲、乙两人先到达终点的是______ ___;•③在这次赛跑中甲的速度为___ _____,乙的速度为____ __.13.如图所示,表示的是某航空公司托运行李的费用y(元)与托运行李的质量x(千克)的关系,由图中可知行李的质量只要不超过_________千克,•就可以免费托运.14.俊宇某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况如图所示:①图象表示了哪两个变量的关系?②10•时和13时,他分别离家有多远?③他可能在什么时间内休息,并吃午餐?。
初二:一次函数综合题(与几何、方程、不等式综合)
一次函数与方程和不等式
重难点易错点辨析
一次函数与一元一次方程
题一:直线 y=2x+b 与 x 轴的交点坐标是(2,0),则关于 x 的方程 2x+b=0 的解是( )
A.x=2
B.x= 4
C.x=8
D.x=10
一次函数与一元一次不等式
题二:已知一次函数 y=ax+b 的图象如图所示,则 ax+b>0 的解集为
金题精讲
题一:如图,一次函数 y 3 x 3 的图像分别与 x 轴、y 轴交于点 A、B,以线段 AB 为边在第一象限内 4
作等腰 Rt△ABC,∠BAC=90°,则过 B、C 两点直线的解析式为( ) A. y 1 x 3
7 B. y 1 x 3
5 C. y 1 x 3
答案见微信公众号:绿爱生活
题四:某花农要将规格相同的 800 件水仙花运往 A,B,C 三地销售,要求运往 C 地的件数是运往 A 地件
数的 3 倍,各地的运费如下表所示:
A地 B地 C地
运费(元/件) 20
10
15
(1)设运往 A 地的水仙花 x(件),总运费为 y(元),试写出 y 与 x 的函数关系式和 x 的取值范围;
一元一次不等式与一次函数整理
一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。
一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。
一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。
二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。
2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。
3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。
三、解法1. 一元一次不等式的解法有两种:图像法和代数法。
图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。
代数法是通过移项、化简等代数运算来求解。
2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。
四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。
2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。
3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。
一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。
初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择 附答案)
初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择附答案)1.若函数y=kx﹣b的图象如图所示,则关于x的不等式kx﹣b>0的解集为()A.x<2 B.x>2 C.x<4 D.x>42.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3 D.x<34.在同一直角坐标系内,若直线y=2x-1与直线y=-2x+m的交点在第四象限,则m的取值范围是()A.m>—1 B.m<1 C.—1<m<1 D.—1≤m≤1 5.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.6.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()7.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是( )A .x <0B .x <1C .0<x <1D .x >18.若以二元一次方程x +2y ﹣b=0的解为坐标的点(x ,y )都在直线y=﹣12x+b ﹣l 上,则常数b=( )A .12B .2C .﹣1D .19.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3解集为( )A .x ≤-1B .x ≥-1C .x ≤3D .x ≥310.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣311.如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )12.如图所示,函数y=2x和y=ax+4的图象相交于点A(3 2,3),则关于x的不等式2x≥ax+4的解集为()A.x≤32B.x≤3C.x≥32D.x≥313.直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是()A.x<3 B.x>3 C.x>0 D.x<014.如图,一次函数11y k x b=+,的图象1l与22y k x b=+的图象2l相交于点P,则方程组111222y k x by k x b=+⎧⎨=+⎩的解是()A.23xy=-⎧⎨=⎩B.32xy=⎧⎨=-⎩C.23xy=⎧⎨=⎩D.23xy=-⎧⎨=-⎩15.一次函数y kx b=+(0k≠)的图象如图所示,则关于x的不等式0kx b+>的解集为()A.1x>-B.1x<-C.2x>D.0x>16.如图,在平面直角坐标系xOy 中,如果一个点的坐标可以用来表示关于x ,x 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,那么这个点是A .MB .NC .ED .F17.若直线y=-2x -4与直线y=4x +b 的交点在第三象限,则b 的取值范围是( ) A .-4<b<8 B .-4<b<0 C .b<-4或b>8 D .-4≤6≤818.直线y kx b =+与y mx =在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式kx b mx +≤的解集为( )A .x >﹣2B .x <﹣2C .x ≥﹣1D .x <﹣119.如图,已知一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②关于x 的方程3kx b +=的解为0x =;③当2x >时,0y <;④当0x <时,3y <.其中正确的是( )A .①②③B .①③④C .②③④D .①②④20.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y =3x 和直线y =ax +b 交于点(1,3),根据图象分析,方程3x =ax +b 的解为( )A .x =1B .x =﹣1C .x =3D .x =﹣321.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象, 则二元一次方程组21y k x b y k x =+⎧⎨=⎩的解是( )A .20x y =-⎧⎨=⎩B .20x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩22.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <223.已知点A (-1,3),点B (-1,-4),若常数a 使得一次函数y =ax +1与线段AB 有交点,且使得关于x 的不等式组45(3)65425x x a ⎧+≥⎪⎪⎨⎪-<-⎪⎩无解,则所有满足条件的整数a 的个数为( )24.一次函数1y kx b =+与2y x a =+的图象如图所示,有下列结论:①0a >;②0k >;③当4x <时,kx b x a +>+其中正确的结论有( )A .0个B .1个C .2个D .3个25.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<26.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .27.一次函数y 1=kx +b 与y 2=x +a 的图象如下图所示,则下列结论:①k <0;②a >0;③b >0;④当x <3时,y 1<y 2;其中正确的个数是( )A .1个B .2个C .3个D .4个28.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .29.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .4y <-B .40y -<<C .2y <D .0y <30.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;②函数y ax d =+ 不经过第一象限;③不等式ax b cx d ++> 的解集是3x < ;④()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .1参考答案1.A【解析】【分析】观察函数图象得到即可.【详解】由图象可得:当2x <时,函数y kx b =-的图象在x 轴的上方,所以关于x 的不等式0kx b ->的解集是2x <,故选:A .【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2.A【解析】【分析】根据对称的性质得出两个点关于直线x =1对称的对称点,再根据待定系数法确定函数关系式,求出交点坐标即可.【详解】解:∵直线l 1经过点(﹣1,0),l 2经过点(2,2),关于直线x =1对称,∴点(﹣1,0)关于直线x =1对称点为(3,0),点(2,2)关于直线x =1对称点为(0,2),∴直线l 1经过点(﹣1,0),(0,2),l 2经过点(2,2),(3,0),∴直线l 1的解析式为:y =2x+2,直线l 2的解析式为:y =﹣2x+6,解方程组2226y x y x =+⎧⎨=-+⎩得,14x y =⎧⎨=⎩∴l 1和l 2的交点坐标为(1,4),故选:A .【点睛】此题主要考查了一次函数图象与几何变换,正确得出l 1与l 2的交点坐标为l 1与l 2与y 轴的交点是解题关键.3.B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C【解析】【分析】联立两直线的解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.【详解】解:联立方程组212y xy x m=-⎧⎨=-+⎩,解得:1412mxmy+⎧=⎪⎪⎨-⎪=⎪⎩,∵交点在第四象限,∴1412mm+⎧>⎪⎪⎨-⎪<⎪⎩,解得:11m-<<.故选:C.【点睛】本题考查了两直线的交点和一元一次不等式组的解法,属于常考题型,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活应用.5.D【解析】【分析】利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可【详解】解析根据图象得,当x<-1时,x+m<kx-1故选D【点睛】此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.B【解析】【分析】根据两直线的交点坐标和函数的图象即可求出答案.【详解】解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),∴不等式mx<kx+2的解集是x<1,故选:B.【点睛】本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.8.B【解析】【分析】直线解析式乘以2后和方程联立解答即可.【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,所以﹣b=﹣2b+2,解得:b=2,故选B.【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.9.B【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x -时,3kx b +,故选:B .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.10.D【解析】∵方程ax +b =0的解是直线y =ax +b 与x 轴的交点横坐标,∴方程ax +b =0的解是x =-3.故选D.11.B【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2),∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2.故选B .12.C【解析】【分析】根据函数的图象即可写出不等式的解集.【详解】解:已知函数y=2x和y=ax+4的图象相交于点A(32,3),根据函数图象可以看出,当x=32时,2x=ax+4;当x>32时,2x>ax+4;当x<32时,2x<ax+4;故关于x的不等式2x≥ax+4的解集为32x .故选择C.【点睛】本题考查了一次函数与一元一次不等式,根据函数图像及交点坐标,判断关于x的不等式的解集是解答本题的关键.13.A【解析】【分析】由图知:一次函数与x轴的交点横坐标为3,且函数值y随自变量x的增大而减小,根据图形可判断出解集.【详解】解:直线y=kx+b(k<0)与x轴交于点(3,0),当x=3时,y=0,函数值y随x的增大而减小;根据y随x的增大而减小,因而关于x的不等式kx+b>0的解集是x<3.故选:A.【点睛】本题考查了一次函数与一元一次不等式,由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.14.A【解析】【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组111222y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩, 故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.15.A【解析】【分析】直接从一次函数的图象上即可得到答案.【详解】解:由题图可知,当x >﹣1时,y=kx b +>0,则不等式0kx b +>的解集为1x >-.故选A.【点睛】本题主要考查一次函数与不等式,解此题的关键在于从一次函数的图象上获取信息. 16.C【解析】【分析】本题可以通过直线与方程的关系得到两直线都过定点E ,得到本题结论.【详解】解:两直线都过定点E ,所以点E 表示关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,故选C .【点睛】本题考查的是直线与方程的关系,还可以用解方程组的方法加以解决.【解析】【分析】联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由244y xy x b=--⎧⎨=+⎩解得4683bxby+⎧=-⎪⎪⎨-⎪=⎪⎩∵交点在第三象限,∴4683bb+⎧-<⎪⎪⎨-⎪<⎪⎩,解得48 bb>-⎧⎨<⎩∴-4<b<8.故选A.18.C【解析】【分析】根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx 的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.故选:C.本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.19.A【解析】【分析】根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【详解】∵一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x 的方程0kx b +=的解为2x =;关于x 的方程3kx b +=的解为0x =, ∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.【点睛】本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.20.A【解析】【分析】根据方程的解即为函数图象的交点横坐标解答.【详解】解:∵直线y =3x 和直线y =ax +b 交于点(1,3)∴方程3x =ax +b 的解为x =1.故选:A .【点睛】本题主要考查了一次函数与一元一次方程.函数图象交点坐标为两函数解析式组成的方程组21.D【解析】【分析】观察图象,直接根据两直线的交点坐标写出方程组的解,即可作答.【详解】解:由题图可知:一次函数1y k x =与2y k x b =+的图象交于(1,2),所以方程组21y k x b y k x =+⎧⎨=⎩的解是:12x y =⎧⎨=⎩; 故选:D .【点睛】函数1y k x =与2y k x b =+的交点坐标就是方程组21y k x b y k x =+⎧⎨=⎩的解,明确此知识点是解题的关键.22.D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.23.D【解析】【分析】根据一次函数y=ax+1与线段AB 有交点,求得-2≤a≤5,且a≠0,再解不等式组得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< ,由题意得a≤4,据此a 的值为-2,-1,1,2,3,4,即可得整数a 的个数.【详解】解:把点A (﹣1,3)代入y =ax +1得,3=﹣a +1,解得a =﹣2,把点B (﹣1,﹣4)代入y =ax +1得,﹣4=﹣a +1,解得a =5,∵一次函数y =ax +1与线段AB 有交点,∴﹣2≤a ≤5,且a ≠0, 解不等式组45365425x x a ⎧⎛⎫+≥ ⎪⎪⎪⎝⎭⎨⎪--⎪⎩< 得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< , ∵不等式组无解,∴a ﹣25 ≤185, 解得:a ≤4,则所有满足条件的整数a 有:﹣2,﹣1,1,2,3,4.故选D .【点睛】本题考查一次函数的图象与性质,解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.24.B【解析】【分析】利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵2y x a =+的图象与y 轴的交点在负半轴上,∴a <0,故①错误;②∵1y kx b =+的图象从左向右呈下降趋势,∴k <0,故②错误;③两函数图象的交点横坐标为4,当x <4时,1y kx b =+ 在2y x a =+的图象的上方,即y 1>y 2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.25.C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.26.C【解析】【分析】【详解】解:把点(0,3)(a,0)代入,得b=3.则a=,∵,∴,解得:k≥1.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.27.B【解析】【分析】根据一次函数12,y kx b y x a =+=+的图象及性质逐一分析可得答案.【详解】解:根据图象1y kx b =+经过第一、二、四象限,∴k <0,b >0, 故①③正确;∵2y x a =+与y 轴负半轴相交,∴a <0, 故②错误;当x <3时,图象1y 在2y 的上方,所以:当x <3时,1y >2y ,故④错误.所以正确的有①③共2个.故选:B .【点睛】本题考查了一次函数图象的性质,一次函数与不等式的关系,准确识图并熟练掌握一次函数的性质是解题的关键.28.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x <1时,ax <bx+c ,推出x <1时,ax <bx+c ,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x >1时,ax >bx+c ,∴关于x 的不等式ax-bx >c 的解集为x >1.故选:D .【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.29.D【解析】观察图象得到直线与x轴的交点坐标为(2,0),且图象经过第一、三象限,y随x的增大而增大,所以当x<2时,y<0.【详解】解:∵一次函数y=kx+b与x轴的交点坐标为(2,0),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<0.故选:D.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y 随x的增大而减小.30.A【解析】【分析】仔细观察图象:①a的正负看函数y1=ax+b图象从左向右成何趋势,b的正负看函数y1=ax+b图象与y轴交点即可;②c的正负看函数y2=cx+d从左向右成何趋势,d的正负看函数y2=cx+d与y轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x轴上方的自变量的取值范围.【详解】由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,由图象可得当x<3时,一次函数y1=ax+b图象在y2=cx+d的图象上方,∴ax+b>cx+d的解集是x<3,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d∴3a−3c=d−b,∴a−c=13(d−b),故④正确,【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.。
北师大版八年级下册数学《2.5 第2课时 一元一次不等式与一次函数的综合应用》说课稿
北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》说课稿一. 教材分析北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》这一节,是在学生已经掌握了一次函数和一元一次不等式的知识基础上进行教学的。
本节课的主要内容是让学生掌握一元一次不等式与一次函数的综合应用,通过解决实际问题,让学生学会如何将数学知识运用到生活中。
本节课的教学内容主要包括两个方面:一是理解一元一次不等式与一次函数的关系;二是学会如何运用一元一次不等式和一次函数解决实际问题。
在教材的处理上,我将以学生已有的知识为基础,通过引导学生的思考,让学生自主探究,从而达到对知识的理解和应用。
二. 学情分析在进入八年级下册的学习之前,学生已经学习了一次函数和一元一次不等式的相关知识,对于如何解一元一次不等式,以及如何绘制一次函数的图像,学生都已经有了初步的了解。
然而,对于如何将这两个知识点结合起来,解决实际问题,学生可能还比较陌生。
因此,在教学过程中,我将以学生的实际需求为导向,引导学生进行探究和学习。
三. 说教学目标本节课的教学目标主要有以下几点:1.让学生理解一元一次不等式与一次函数之间的关系,掌握如何将一元一次不等式和一次函数结合起来解决实际问题。
2.提高学生的数学思维能力,培养学生的解决问题的能力。
3.通过解决实际问题,让学生感受到数学的价值,提高学生学习数学的兴趣。
四. 说教学重难点本节课的教学重难点主要是让学生理解一元一次不等式与一次函数之间的关系,以及如何运用这两个知识点解决实际问题。
其中,如何将一元一次不等式和一次函数结合起来,解决实际问题,是本节课的教学难点。
五. 说教学方法与手段在教学过程中,我将采用引导探究法、案例教学法和小组合作法等教学方法,以学生已有的知识为基础,通过设置问题和案例,引导学生进行自主探究和学习。
同时,我还将运用多媒体教学手段,以直观的图像和动画,帮助学生更好地理解和掌握知识。
专题08 一次函数与方程、不等式的综合问题-2023年初中数学8年级下册同步压轴题(学生版)
专题08 一次函数与方程、不等式的综合问题 类型一、一次函数与方程综合例.如图,一次函数y kx b =+的图像与x 轴的交点坐标为()2,0-,则下列说法正确的有( ).A .y 随x 的增大而减小B .0k >,0b <C .当2x >-时,0y <D .关于x 的方程0kx b +=的解为2x =-【变式训练1】直线y =ax +b (a ≠0)过点A (0,2),B (1,0),则关于x 的方程ax +b =0的解为( ) A .x =0B .x =2C .x =1D .x =3【变式训练2】如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是( )A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 2【变式训练3】如图,一次函数y kx b =+的图象经过点()0,4,则下列结论正确的是( )A .图像经过一、二、三象限B .关于x 方程0kx b +=的解是4x =C .0b <D .y 随x 的增大而减小【变式训练4】一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式20kx b +>的解集是( )A .2x >-B .2x <-C .2x <D .2x >类型二、一次函数与不等式综合例.如图,已知函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是( )A .x >﹣2B .x <﹣2C .﹣2<x <0D .x >0【变式训练1】如图,一次函数y =kx +b (k >0)的图像过点()1,0-,则不等式()20k x b -+>的解集是( )A .x >-3B .x >-2C .x >1D .x >2【变式训练2】如图,一次函数y =kx +b 的图象经过点(4,0),(0,4),那么关于x 的不等式0<kx +b <4的解集是______.【变式训练3】如图,一次函数y =kx +b 与y =x +2的图象交于点P (m ,5),则关于x 的不等式kx +b >x +2的解集是______.【变式训练4】如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式kx ﹣1<x +b 的解集为______.课后训练1.已知不等式0ax b +<的解是2x >-,下列有可能是函数y ax b =+的图像的是( )A .B .C .D .2.如图所示为两个一次函数的图象,则关于x ,y 的方程1122y k x b y k x b =+⎧⎨=+⎩的解为________.3.函数y ax =和y kx b =+的图象相交于点()2,1A -,则方程ax kx b =+的解为______.4.已知一次函数y kx b =-(k 、b 为常数,且0k ≠,0b ≠)与13y x =的图象相交于点1(,)2M a ,则关于x 的方程1()3k x b -=的解为x =____________. 5.如图,直线1:1l y x =+与直线2:l y mx n =+相交于点()1,2P ,则关于x 的不等式1x mx n +≥+的解集为______.6.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.7.数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()2,3P .根据图象可知,关于x 的不等式21x kx b ->+的解集是______8.如图,直线l 1:y 1=ax +b 经过(﹣3,0),(0,1)两点,直线l 2:y 2=kx ﹣2;①若l 1∥l 2,则k 的值为 _____;②当x <1时,总有y 1>y 2,则k 的取值范围是 ________.9.如图,一次函数y kx b =+的图象与x 轴交于点A (3,0),与y 轴交于点B (0,4),与正比例函数y ax =的图象交于点C ,且点C 的横坐标为2,则不等式ax kx b <+的解集为______.10.直线y=kx+b与直线y=5﹣4x平行,且与直线y=﹣3(x﹣6)相交,交点在y轴上,求直线y=kx+b对应的函数解析式.。
一次函数与不等式综合试题例析
一次函数与不等式综合试题例析作者:李厚明来源:《初中生世界(初二年级)》2007年第12期一次函数与方程、不等式关系密切,近年来成为各地命题的热点,下面对一次函数与不等式相结合的问题结合例题进行分析。
分析:从图象可知A、B两点的坐标,将它们的坐标代入求出一次函数的解析式,再解不等式,这种方法求解很繁,本题若结合一次函数和不等式的关系,运用数形结合的思想,不求一次函数的解析式则能很快地求出不等式的解,解:由图象知,y=kx+b交x轴于A(一3,O),图象A点代人解析式满足y=o,A点以上的图象表示y>O,即kx+b>0的解集是从A点向右的部分,从而得出y=kx+b>0的解集是x>-3做选B,点评:由上例可以看出,若y=kx+b自变量的取值范围是不等式ax+b>kx的解集,即:x-4点评:上述不等式是由两个一次函数构成的,因而解集是由它们的交点确定的,先从图象上找出满足题意的部分,再确定这部分对应的自变量的取值范围。
分析:本题与例1类似,所不同的是由两个一次函数构成,先求各个不等式的解,再解不等式组,解:由图象知y=3x+l交x轴于(-1/3,0),从而得出3x+l>O的解集为x>1/3,同理可得-0.5x+1>0的解集为x说明:也可直接观察图象,得出图象都在x轴上方的部分对应的自变量的取值范围为-1/2例4已知一次函数y=kx+b(k、b是常数,且k≠0),茁与y的部分对应值如下表所示。
那么不等式kx+b>O的解集是( ),A,x≤OB,x≥OC,x≤1D,x>1分析:本题的条件给在表格中,可从中选取两对x,y的对应值代人求出k、6,再解不等式,这种方法繁,一般不用,本题可从表格中直接归纳出不等式的解集。
解:由表格知特殊情况,当x=l时,y=o,即kx+b=O;而表格中从x=l处向左,y>O,从而得出x≤1,本题选c,例5已知点P(x,y)位于第二象限,并且y分析:本题只需画出y=x+4的图象,然后找出在第二象限内、图象的下方,且使x、y,为整数的点即可,解:如图4,画出y=x+4的图象;则在直线AB的右下方。
中考数学总复习一次函数与方程、不等式的关系
一次函数与方程、不等式的关系考点·方法·破译 1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a c x b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选A .【变式题组】01.(浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图像可得不等式2x +b >ax -3的解集是________. 03. (武汉)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.第1题图 第2题图 第3题图【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围. 【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x mm y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∴00x y >⎧⎨>⎩,∴5013201m m m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求∴ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∴l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∴y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0). ∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S ∴ABC =12×2×3=3.【变式题组】01. 已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),∴ABC 的面积为1,求这两个一次函数的解析式. 02. 如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直.⑴求点C 坐标; ⑵设∴BOC 中位于直线l 左侧部分面积为S ,求S 与t 之间的函数关系式;⑶当t 为何值时,直线l 平分∴COB 面积. 演练巩固·反馈提高 01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么∴ABC 的面积是( ) A .2 B .3 C .4 D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S ∴ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________.10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________. 13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.(河北)如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-). ⑴求直线l 2的解析式; ⑵求S ∴ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S ∴ADP =S ∴ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后, ⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。
一次函数与方程(或不等式)结合的问题
一次函数与方程(或不等式)结合的问题一般地,一次函数中,令是一元一次方程,它的根就是的图象与x轴交点的横坐标,一元一次不等式(或)可以看作是取正值(或负值)的特殊情况,其解集可以看作相应的自变量x的取值范围。
两直线的交点坐标,就是由这两条直线的解析式组成的二元一次方程组的解。
下面举例说明。
例1. 在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图1所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是__________,从点燃到燃尽所用的时间分别是_________;(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;(3)燃烧多长时间,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)在什么时间段内,甲蜡烛比乙蜡烛高在什么时间内,甲蜡烛比乙蜡烛低析解:(1)由图1知,燃烧前两根蜡烛的高度分别为30厘米、25厘米;燃尽所用的时间分别是2小时、小时。
(2)设甲蜡烛燃烧时,y与x之间的函数关系式为。
由图1可知,函数的图象过点(2,0),(0,30),所以,解得所以甲蜡烛燃烧时y与x的关系式为:;同理乙蜡烛燃烧时y与x的关系式为。
(3)由题意得,解得。
所以,当燃烧1小时的时候,甲、乙两根蜡烛的高度相等。
观察图象知当时,甲蜡烛比乙蜡烛高;当时,甲蜡烛比乙蜡烛低。
说明:本题是一次函数与二元一次方程的结合,利用图象的信息,提供数据解决问题。
例2. 某零件制造车间有工人20名,已知每人每天可以制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20人中,车间每天安排x人制造甲种零件,其余工人制造乙种零件。
(1)请你写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少人去制造乙种零件才合适析解:(1)(2)由题意,有,解得,此时人为制造乙种零件的工人人数。
备考2023年中考数学一轮复习-函数_一次函数_一次函数与不等式(组)的综合应用-单选题专训及答案
备考2023年中考数学一轮复习-函数_一次函数_一次函数与不等式(组)的综合应用-单选题专训及答案一次函数与不等式(组)的综合应用单选题专训1、(2012盘锦.中考真卷) 如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b的解集是()A . x≥4B . x≤4C . x≥mD . x≤12、(2015徐州.中考真卷) 若函数y=kx﹣b的图象如图所示,则关于x的不等式k (x﹣3)﹣b>0的解集为()A . x<2B . x>2C . x<5D . x>53、(2016保定.中考模拟) 如图,函数y=2x和y=ax+3(a≠0)的图象相交于点A(m,2),则不等式0<ax+3<2x的解集为()A . x<1B . x>1C . 0<x<1D . 1<x<34、(2017大连.中考模拟) 如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A . x>﹣3B . x<﹣3C . x>2D . x<25、(2017潍城.中考模拟) 如图,在平面直角坐标系中,点P(,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是()A . 2<a<4B . 1<a<3C . 1<a<2D . 0<a<26、(2018镇江.中考模拟) 如图,一次函数()的图像与正比例函数()的图像相交于点,已知点的横坐标为1,则关于的不等式的解集为()A .B .C .D .7、(2017连云港.中考模拟) 已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A . x>﹣2B . x<﹣2C . x>2D . x<38、(2019义乌.中考模拟) 如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A . x>2B . 0<x<4C . ﹣1<x<4D . x<﹣1或x>49、(2019.中考模拟) 从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,若两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有()A . 12组B . 10组C . 6组D . 5组10、(2017青岛.中考模拟) 如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .11、(2017曹.中考模拟) 如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x>3C . x<D . x<312、(2017菏泽.中考真卷) 如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A . x>2B . x<2C . x>﹣1D . x<﹣113、(2016济南.中考真卷) 如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x>3C . x<D . x<314、(2018深圳.中考模拟) 一次函数y=-x+1(0≤x≤10)与反比例函数y= (-10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1, y1),(x2, y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A . - ≤x≤1B . - ≤x≤C . - ≤x≤D . 1≤x≤15、(2017陕西.中考模拟) 若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A . ab>0B . a﹣b>0C . a2+b>0D . a+b>016、(2020铁岭.中考模拟) 如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .17、(2016百色.中考真卷) 直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A . x≤3B . x≥3C . x≥﹣3D . x≤018、(2015桂林.中考真卷) 如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k的取值范围是()A . ﹣1≤k<0B . 1≤k≤3C . k≥1D . k≥319、(2019云南.中考模拟) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y =kx交于点B(2,4),则不等式kx≤ax+b的解集为()A . x≤2B . x≥2C . 0<x≤2D . 2≤x≤620、(2019张掖.中考模拟) 如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A . x<﹣2B . ﹣2<x<﹣1C . x<﹣1D . x>﹣121、(2017乌鲁木齐.中考真卷) 一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A . x<2B . x<0C . x>0D . x>222、(2019路南.中考模拟) 如图,在平面直角坐标系中,己知点A(1,3)、B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A . 1B . 2C . 3D . 423、(2020范.中考模拟) 同一直角坐标系中,一次函数与正比例函数的图象如图所示,则满足的x取值范围是()A .B .C .D .24、(2020长春.中考模拟) 如图,在平面直角坐标系中,直线y=-2x和y=ax+4相交于点A(m,3),则不等式-2x<ax+4的解集为()A . x<B . x<3C . x>D . x>325、(2020湘潭.中考真卷) 如图,直线经过点,当时,则x的取值范围为()A .B .C .D .26、(2021中.中考模拟) 已知一次函数y =(2m+1)x+m-3的图像不经过第二象限,则m的取值范围()A . m>-B . m<3C . - <m<3D . - <m≤327、(2020朝阳.中考模拟) 某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:会员卡类型办卡费用/元有效期优惠方式A类40 1年每杯打九折B类80 1年每杯打八折C类130 1年一次性购买2杯,第二杯半价例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A . 购买A类会员卡B . 购买B类会员卡C . 购买C类会员卡D . 不购买会员卡28、(2021资阳.中考模拟) 如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是()A . x>2B . x>0C . x>1D . x<129、如图,一次函数y=-x的图象与反比例函数y=-图象交于A和B两点,则不等式-x>-的解集是()A . x<-2B . x<2C . -2<x<2D . 0<x<2或x<-230、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A . x≥2B . x≤2C . x≥3D . x≤3一次函数与不等式(组)的综合应用单选题答案1.答案:D2.答案:C3.答案:D4.答案:A5.答案:B6.答案:A7.答案:B8.答案:C9.答案:D10.答案:B11.答案:C12.答案:D13.答案:C14.答案:B15.答案:C16.答案:B17.答案:A18.答案:C19.答案:A20.答案:C21.答案:A22.答案:A23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
2021年中考数学分类专题:一次函数与不等式综合含答案
2021年中考数学分类专题提分训练:一次函数与不等式综合(一)1.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.2.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.3.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.4.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为.5.如图,直线y =kx +b (k <0)经过点A (3,1),当kx +b <x 时,x 的取值范围为 .6.如图,直线y =kx +b 交x 轴于点A ,交y 轴于点B ,则不等式x (kx +b )<0的解集为 .7.如图,直线y 1=﹣x +a 与y 2=bx ﹣4相交于点P ,已知点P 的坐标为(1,﹣3),则关于x 的不等式﹣x +a <bx ﹣4的解集是 .8.如图,一次函数y =﹣x ﹣2与y =2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组的解集为 .9.如图,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx ﹣6<ax +4<kx 的解集为 .10.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.11.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.12.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.13.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.14.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为.15.如图,已知函数y =2x +b 与函数y =kx ﹣3的图象交于点P ,则不等式kx ﹣3>2x +b 的解集是 .16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则kx +b >x +a 的解集是 .17.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),则不等式4x +2<kx +b <0的解集为 .18.如图,函数y =ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 .19.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b<x的解集为.20.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.参考答案1.解:∵直线y=kx+b与直线y=2交于点A(4,2),∴x<4时,y<2,∴关于x的不等式kx+b<2的解集为x<4.故答案为x<4.2.解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.3.解:∵图象过(﹣6,0),则0=﹣6k+b,则b=6k,故3kx﹣b=3kx﹣6k>0,∵k<0,∴x﹣2<0,解得:x<2.故答案为:x<2.4.解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;5.解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.6.解:不等式x(kx+b)<0化为或,利用函数图象得为无解,的解集为﹣3<x<0,所以不等式x(kx+b)<0的解集为﹣3<x<0.故答案为﹣3<x<0.7.解:当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;故答案为x>1.8.解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.9.解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,解法二:将A(1,k)代入y=ax+4,得到a+4=k,∴a=k﹣4,∴y=(k﹣4)x+4,将y=kx向下平移6个单位得到y=kx﹣6,∴x=,过程图象可知,满足条件的x的值为1<x<.故答案为:1<x<.10.解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<111.解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.12.解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<113.解:由图可知:当x>﹣2时,y>0,即kx+b>0;因此kx+b>0的解集为:x>﹣2.14.解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为:﹣2≤x≤﹣1.15.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.16.解:由图象得:不等式组kx+b>x+a的解集是x<﹣2.故答案为:x<﹣2.17.解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.18.解:方法一∵把(1,2)代入y=ax﹣1得:2=a﹣1,解得:a=3,∴y=3x﹣1>2,解得:x>1,方法二:根据图象可知:y=ax﹣1>2的x的范围是x>1,即不等式ax﹣1>2的解集是x>1,故答案为:x>1.19.解:将A(3,1)和B(6,0)分别代入y=kx+b得,,解得,则函数解析式为y=﹣x+2.可得不等式组,解得3<x<6.故答案为3<x<6.20.解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为:x<﹣2.2021年中考数学分类专题提分训练:一次函数与不等式综合(二)1.已知直线y=kx+b(k≠0)与x轴和y轴的交点分别是(1,0)和(0,﹣2),那么关于x的不等式kx+b<0的解集是.2.如图,在平面直角坐标系中,函数y=mx+n的图象与y=kx+b的图象交于点P(﹣1,2),则不等式mx﹣b≥kx﹣n的解集为.3.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解是.4.如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则的解集为.5.同一直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b>k2x的x取值范围是.6.如图.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为.7.当a取时,一次函数y=3x+a+6与y轴的交点在x轴下方.(在横线上填上一个你认为恰当的数即可)8.如图,在平面直角坐标系xOy中,若直线y1=﹣x+a与直线y2=bx﹣4相交于点P(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是.9.若直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是.10.在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的2值为.11.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.12.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣ax<4的解集是.13.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.14.如图,已知函数y=3x+b和y=ax﹣c的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣c的解集是.15.一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则0<mx+n<﹣x+a的解集为.16.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为.17.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.18.如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.19.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.20.若函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集为.参考答案1.解:把(1,0)和(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣2,解不等式2x﹣2<0得x<1.故答案为x<1.2.解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(﹣1,2),∴当x≥﹣1时,mx+n≥kx+b,∴不等式mx﹣b≥kx﹣n的解集为x≥﹣1.故答案为x≥﹣1.3.解:方法1、∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故答案为:x<5方法2、解:将直线y=kx﹣b向右平移3个单位长度即可得到直线y=k(x﹣3)﹣b,如图所示.观察图形可知:当x<5时,直线y=k(x﹣3)﹣b在x轴上方.故答案为:x<5.4.解:∵当x>﹣2时,y=x+b>0,当x<3时,y=kx+2>0,∴的解集为﹣2<x<3.故答案为﹣2<x<3.5.解:当x≤﹣3时,直线l1:y1=k1x+b都在直线l2:y2=k2x的上方,即k1x+b>k2x.∴满足k1x+b>k2x的x取值范围是x<﹣3,故答案为:x<﹣3.6.解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故答案为:x<2.7.解:一次函数y=3x+a+6中令x=0,解得y=a+6,由于交点在x轴下方,得到a+6<0,解得a<﹣6,因而横线上填上一个小于﹣6的数就可以.故本题答案为:﹣7.8.解:当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a <bx﹣4的解集为x>1;故答案为x>1.9.解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,∴不等式kx+b>0的解集是x<1.故本题答案为:x<1.10.解:∵直线l1:y=k1x+b过A(0,﹣3),B(5,2),∴,解得∴直线l1的表达式为y=x﹣3,∵当x≥4时,不等式x﹣3>k2x+2恒成立,∴4﹣3>4k2+2,∴k2<﹣,∴取k2=﹣1满足题意,故答案为﹣1.11.解:联立两函数解析式成方程组,得:,解得:.∴当x<﹣1时,y=max{x+3,﹣x+1}=﹣x+1>2;当x≥﹣1时,y=max{x+3,﹣x+1}=x+3≥2.∴函数y=max{x+3,﹣x+1}最小值为2.故答案为:2.12.解:∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3(kx﹣ax<4)的解集为x<1.故答案为x<1.13.解:观察图象得:当x>a时,y1<y2;故答案为>a.14.解:∵函数y=3x+b和y=ax﹣c的图象交于点P(﹣2,﹣5),则根据图象可得不等3x+b>ax﹣c的解集是x>﹣2,故答案为:x>﹣2.15.解:由图可得,当0<mx+n时,x>2;当mx+n<﹣x+a时,x<3;∴不等式组0<mx+n<﹣x+a的解集为2<x<3,故答案为:2<x<3.16.解:∵一次函数y=﹣2x+b的图象与y轴交于点A(0,3),∴b=3,∴一次函数解析式为y=﹣2x+3,解不等式﹣2x+3>0得x<.故答案为x<.17.解:∵一次函数y=kx+b的图象过(﹣6,0),∴0=﹣6k+b,∴b=6k,∴3kx﹣b=3kx﹣3k>0,∵函数图象经过第二、三、四象限,∴k<0,∴x﹣1<0,解得:x<1.故答案为:x<1.18.解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.19.解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为:﹣2<x<2.故答案为:﹣2<x<2.20.解:函数y=ax+b的图象经过点(2,0),函数值y随x的增大而减小,∴不等式ax+b≥0的解集为x≤2.故本题答案为:x≤2.2021年中考数学分类专题提分训练:一次函数与不等式综合(三)1.如图,已知函数y1=kx﹣1和y2=x﹣b的图象交于点P(﹣2,﹣5),则根据图象可得不等式kx﹣1>x﹣b的解集是.2.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是3.如图,一次函数y=﹣x+3与一次函数y=2x+m图象交于点A(﹣2,n),则关于x的不等式组,的解集为.4.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的有.(只填序号)5.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x 的一元一次不等式kx<﹣x+3的解集是.6.如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b>kx﹣1的解集为.7.若直线y1=ax+2(a>0)与直线y2=kx(k>0)的交点坐标为(1,k),则不等式kx﹣3<ax+2<kx的解集是.8.如图,函数y=kx+b(k、b为常数,k≠0)的图象经过点(2,0),则关于x的不等式kx+b<0的解集为.9.如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为.10.函数y1=k1x+b1与y2=k2x+b2在同一平面直角坐标系中的图象如图所示,则关于x 的不等式y1>y2的解集为.11.在平面直角坐标系xOy中,一次函数y1=kx+b与y2=x+m的图象如图所示,若它们的交点的横坐标为2,则下列四个结论中正确的是(填写序号).①直线y2=x+m与x轴所夹锐角等于45°;②k+b>0;③关于x的不等式kx+b<x+m的解集是x≤2.12.如图,直线y=kx+b(k<0,k,b为常数)经过点A(3,1),则不等式kx+b<1的解为.13.如图,y=kx+b(k≠0)的图象,则kx+b>0的解集为.14.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论,其中正确的有.(只填写序号)①a>0②k<0,且y的值随着x值的增大而减小.③关于x的方程kx+b=x+a的解是x=3④当x>3时,y1<y2,15.如图,直线y=kx﹣b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx﹣b的解集为.16.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1≥2x+m的解集为.17.如图,一次函数y=﹣x﹣6与y=kx+b(k、b为常数,且k≠0)的图象相交于点A(m,﹣2),则m=,关于x的不等式组的解是.18.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,m),则关于x的不等式﹣2x≥ax+3的解集是.19.如图,直线y=kx+b(k>0)交x轴于点A(﹣3,0),交直线y=x于点B,则根据图象可知,不等式x(kx+b)<0的解集为.20.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是.参考答案1.解:∵函数y1=kx﹣1和y2=x﹣b的图象交于点P(﹣2,﹣5),则根据图象可得不等式kx﹣1>x﹣b的解集是x>﹣2,故答案为:x>﹣2.2.解:∵函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为x<﹣1.3.解:当y=0时,﹣x+3=0,解得x=3,则一次函数y=﹣x+3与x轴的交点坐标为(3,0),∵一次图数y=﹣x+3与一次函数y=2x+m图象交于点A(﹣2,n),∴关于x的不等式组的解集为﹣2<x<3.故答案为﹣2<x<3.4.解:由函数y=ax+1的图象可知,y随x的增大而增大,∴a>0,故①正确;在直线y=ax+1中,令x=0,则y=1,∴直线y=ax+1与y轴的交点B为(0,1),故②正确;由函数y=﹣x+4可知,D的坐标为(0,4),∴BD=3,∵E的横坐标为2,∴S△BDE==3,故③正确;由图象可知,当x>2时,函数y=ax+1在函数y=﹣x+4的上方,∴ax+1>﹣x+4,故④错误,故答案为①②③.5.解:根据图象可知:两函数的交点为(1,2),所以关于x的一元一次不等式kx<﹣x+3的解集为x<1,故答案为:x<1.6.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为:x>﹣1.7.解:把(1,k)代入y1=ax+2,可得k=a+2,解得a=k﹣2,∴y1=(k﹣2)x+2,令y3=kx﹣3,则当y3<y1时,kx﹣3<(k﹣2)x+2,解得x<1;当ax+2<kx时,(k﹣2)x+2<kx,解得x>,∴不等式组kx﹣3<ax+2<kx的解集为1<x<,故答案为:1<x<.8.解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x>2时,函数值小于0,即关于x的不等式kx+b<0的解集是x>2.故答案为:x>2.9.解:当x<2时,直线y=﹣x+5在直线y=kx+b的上方,所以不等式﹣x+5>kx+b的解集为x<2.故答案为:x<2.10.解:由图可得,当x>2时,k1x+b1>k2x+b2,所以不等式y1>y2的解集为x>2.故答案为:x>2.11.解:由y2=x+m知:直线与坐标轴的截距相等,所以,直线y2=x+m与x轴所夹锐角等于45°,故①的结论正确;由图知:当x=1时,函数y1图象对应的点在x轴的上方,因此k+b>0故②的结论不正确;由图知:当x>2时,函数y1图象对应的点都在y2的图象下方,因此关于x的不等式kx+b<x+m的解集是x>2,故③的结论不正确;故答案为①②.12.解:∵y=kx+b经过A(3,1),不等式kx+b<1的解集为x>3,故答案为:x>3.13.解:由图可知:当x<3时,y>0,即kx+b>0;因此kx+b>0的解集为:x<3.故答案为:x<3.14.解:y2=x+a的图象与y轴交与负半轴,则a<0,故①错误;直线y1=kx+b从左往右呈下降趋势,则k<0,且y的值随着x值的增大而减小,故②正确;一次函数y1=kx+b与y2=x+a的图象交点横坐标为3,则关于x的方程kx+b=x+a的解是x=3,故③正确;一次函数y1=kx+b与y2=x+a的图象交点横坐标为3,当x>3时,y1<y2,故④正确;故正确的有②③④,故答案为:②③④.15.解:不等式4x+2<kx﹣b表示的是直线y=4x+2的图象位于直线y=kx﹣b的图象的下方,则由点A(﹣1,﹣2)的坐标得:x<﹣1.故答案为:x<﹣1.16.解:∵一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),∴﹣n+1=2,解得:n=﹣1,观察图象知:关于x的不等式﹣x+1≥2x+m的解集为x≤﹣1,故答案为x≤﹣1.17.解:把A(m,﹣2)代入y=﹣x﹣6得﹣m﹣6=﹣2,解得m=﹣3,当y=0时,﹣x﹣6=0,解得x=﹣,即直线y=﹣x﹣6与x轴的交点坐标为(﹣,0),当x>﹣时,y=﹣x﹣6<0,而当x<﹣3时,kx+b<﹣x﹣6,所以关于x的不等式组的解集为﹣<x<﹣3.故答案为﹣3,﹣<x<﹣3.18.解:∵函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,m),∴不等式﹣2x≥ax+3的解集为x≤﹣1,故答案为:x≤﹣1.19.解:由不等式x(kx+b)<0化简为或,由图象可知无解,的解集为﹣3<x<0,∴不等式x(kx+b)<0的解集为﹣3<x<0,故答案为﹣3<x<0.20.解:根据图象得,当x<1时,y1<y2.故答案为:x<1。
一次函数与不等式
由40页两个问题的关系,能进一步 得到“解不等式 aX+b>0” 与“求 自变量X在什么范围内,一次函数 Y=ax+b的值大于0”有什么关系?
例Hale Waihona Puke (略)例2Y=2x+10
0
2 0 Y=5x+4 2
-6
由于任何一元一次不等式都可 以转化为ax+b>0或ax+b<0(a, b为常数,a≠0)的形式,所 以解一元一次不等式可以看作: 当一次函数值大(小)于0时, 求自变量相应的取值范围。
11.3.2
一次函数与一元 一次不等式
学习目标
理解一次函数与一元一次不等 式的关系,会根据一次函数的 图象解决一元一次不等式的求 解问题。
学习用函数的观点看待不等式 的方法。
学习重点
一次函数与一元 一次不等式的关 系的理解
学习难点 利用一次函数图像 确定一元一次不等 式的解集。
自学指导: 教材40页到41页思考:
本节课我们都学习了 什么?
作业:45页3、 4
; 杏耀平台:/ ;
幸运の是,我们炽火位面,也就是炽火大陆.空间乱流内,也有一出小神阁,而连接通道就是落神山,至于我们大陆能进入の实力境界,只有帝王境,高于或者低于这境界の都不能进入.或者可以说,高于帝王境界の根本不能进入,低于帝王境界の进入者,百分百死亡!" 夜青牛の话 落下之后,夜轻舞和白重炙沉默了良久在反应过来,两人对视一眼,面面相觑,各自从对方の眼神中看到了惊意.同时两人脑海中想の最多の就是,他们还真是两只井底の青蛙啊,原本他们以为他们の实力和见识都是很强大了,只是没有想到炽火大陆の水竟然还有那么深,他们或许 只是看清楚了其中一个小小角落… "那么落神山不是很危险?"夜轻舞拍了拍心口,表示着他の震惊,歪着头问道. "落神山有三关,你们要牢记,以后进去寻宝一定要小心.第一关一进入落神山,首先会进入迷幻之境,这是那位古神设置の强大幻境,灵魂境界没有达到帝王境者,百 分百永远走不出这个幻境,甚至直接死亡,所以我说帝王境下地练家子进入必死.第二傀儡山,在里面你会遇到和你一模一样实力の傀儡,而且在里面你不能使用任何技能,因为他是傀儡没有灵魂,技能无效,除非你感悟了天地法则,否则一辈子你都打不赢他,而打不赢他,你就休想 过第二关.第三关…不知道是什么情况,因为进入の都死了…" "额…那么生猛,第三关都没有人成功进去过?那么炽火大陆那么多宝器圣器,是怎么得来の?"白重炙听得一阵心惊肉跳,同时又感觉热血沸腾,心急问道. 夜青牛好气又好笑の骂道:"你个笨蛋,第三关过去了,那人就 直接进入小神阁,就能得到小神阁の重宝,落神山也就会直接毁灭……至于圣器,只要进入落神山,你就有机会获得宝物,落神山中央连接通道内,会偶尔飞射出宝物,能不能碰到那就是你の运气了,当然每次天路开启の时候,炽火大陆才会组织帝王境の人前去探宝,时间为十天,大 家都只会在第一关,第二关碰碰运气,很少人甚至说几乎没有人去第三关,记住你们日后去探宝,也不能进入第三关,宝物虽然重要,但是命更重要!" "哦!这样啊,嘻嘻!蛮好玩得,小寒子,努力修炼,日后我们两人一同去寻宝去!"夜轻舞显然没有将夜青牛の警告放在心里,嘻嘻 笑道. "我父亲,当年是怎么死の?"白重炙没有理会夜轻舞,而是愣愣の看着夜青牛,问起了夜刀の死因. "唉…你父亲那个蠢货!"夜青牛摇了摇头,有些无奈,有些叹息说道:"你父亲本来三十年前の混乱府战,凭借の他惊人の实力,和八品の战智龙狮,在府战大发神威,名声大噪, 本来你爷爷の意思,不允许他参加十年前の落神山寻宝,避免被妖族蛮族の人盯上,围杀.只是没想到,你父亲那个蠢货,竟然连夜跑出了白家,孤身在天路开启の第一时间偷偷溜了进去,结果被妖族四名妖帝围杀,等到世家众人发现已经奄奄一息了…" "额…居然是这种情况!"白 重炙淡淡の点了点头,心里确实对明日即将到达の落神山更加好奇起来,大陆三大绝地之一,到底是什么模样哪? 当前 第壹柒肆章 壹65章 五年之约 "吱呀!" 车队缓缓停在了一处小河边,马车外开始喧闹起来,日以快要落下,大部队看来是要找地方安营扎寨了,几日来白天 黑夜の赶路,众人估计都有点乏了,决定在此地休息一夜,明日继续开拔. "太上长老,寒公子,舞女主,营帐已经扎好,可以下去休息一下!" 片刻之后夜平の声音淡淡の冲马车外传来,夜青牛点了点头,朝两人看了一眼,率先走下马车,白重炙为夜轻舞挤了挤眼睛,拉着她の手准备 和她一起下去.夜轻舞白了他一眼,娇艳欲滴の小嘴巴,翘了俏,甩开他の手率先跟着夜青牛走了下去. "见过夜长老!" 夜青牛一下去,外面の诸位世家长老和公子,连忙行礼.在场夜青牛实力和辈分都是最高の,而夜青牛号称破仙府攻击力前三,得到这样の礼遇也是理所当然の. "呵呵,都随意吧,这次赶路那么急,大家都辛苦了!"夜青牛笑呵呵の点头说道,毫不客气の在一个已经烧好の火堆旁边坐下. "寒少,舞女主,这边来坐!"另外一边の风紫则朝白重炙招了招手,示意白重炙他们去另外一个火堆,那边花草月倾城和龙赛男,龙水流已经在哪里围坐起 来. "恩!"白重炙朝夜青牛和诸位长老拱了拱手,和夜轻舞朝那边走去.年轻人都是喜欢和年轻人坐在一起,没有压力,也随意一些. "来,来,来!寒少,这是你の位置,和弟妹安排在一起の,舞女主你也坐寒少旁边吧!"风紫嘿嘿一笑拉着白重炙指了指月倾城旁边の位置,调笑道. "额,风大公子,最近很活跃啊,要不到时候叫倾城送静湖子弟の时候,给你特别の选选?"白重炙见自己家媳妇被调戏当然不干了,利马开始反击起来,人却不客气,径直坐在了月倾城身边,毫不掩饰自己の态度. "汗,这个就不用了,按往常规格就行了!嘿嘿,算我失言,我自罚一 坛!"风紫一听连忙投降,要是月倾城不顾月家の名声,送自己几个丑八怪,自己也是哑巴吃黄连,有苦说不出啊. 月倾城,见自己男人丝毫不掩饰对自己の维护,心情大好,抬起头和白重炙微微一笑,然后对着风紫伸出了两根犹如葱白般の手指,道:"两坛!" "哈哈!"众人一阵大 笑,在府战岛他们见识了月倾城の厉害,此刻风紫自己送上门去,没事找事,这不是老寿星上吊,嫌活得太长啊. 随行の护卫将一份份烧好の肉食内抬了上来,一坛坛美酒也送了上来.不过估计是夜青牛那边有吩咐,酒并没有上多少.当然众人也知道明日还要继续赶路,而且有长辈 在,他们也不敢大醉.于是众人开始吃着美食喝着美酒,聊起了闲话. "明日就要路过落神山了,大家可得好好观察一翻,将来有机会可都要进里面去寻宝の呀!尤其是寒少,说不定五年后你就能进去寻宝了."龙水流一手端起酒坛,大喝一口,一张英俊の脸隐隐有些失落,看到白重 炙坐在几个绝世美女身边,和这个说说,又转过去和那个调调情,心里未免有些微微の不平衡,似乎…好事都给白重炙这小子占尽了! "呵呵,世事无常,说不定过几年,龙公子你突然就突破了帝王家也说不定!额…落神山,当然是个好地方,有机会一定要进去瞧瞧!"白重炙本来 在和月倾城细细私语,见龙水流说道自己,也只好回应一句. 龙赛男却淡淡憋了龙水流一眼,看出了他严重の淡淡失落,忍不住の教训到:"呵呵,他…他要是把花在女人身体上の心思,放在修炼上,现在元帅境倒是最少の.这次回去大家都要好好修炼,争取五年后跟我一同进入落 神山寻宝,圣器宝器或许有机会突破三关,或者小神阁内の重宝也说不定!" "小神阁?重宝?比圣器还要重?"龙赛男の话语引起了众人の注意,白重炙他们倒是今日从夜青牛那里得知了一些,而花草和风紫月倾城龙水流,则还没有达到一定の实力,他们世家当然不会将这些炽火大 陆の秘闻告诉他们.花草首先忍不住,问了出来,花家对于寻宝探险这种事情可是最热衷の. "具体情况,你们自个问你们家长老去.我只告诉你们,落神山,传说可是有机会能得到神器!当然数千年来,是否有人得到过神器,这点无人知道,但是传说中,只要能三关者是绝对能拿到 神器の!如果五年之后天路开启,我们进去就说不定能拿到神器,当然这个要看运气了.落神山の宝物,能不能得到,不完全看实力,很大一部分都是看运气…"龙赛男凯凯而谈,身为龙府主の独女,而且天资如此之高,龙城の资料库当然是对她全部开放の,她也了解了许多人不曾了 解の秘闻. "神器!" 龙赛男の一番话说の众人心里火热火热の,几大世家最高级の只有寥寥几件圣器,而且他们根本还没机会去接触,别说使用了.现在他们被告知,落神山内竟然有大量の圣器,而且还有传说中の神器,他们当然一阵心动,一阵澎湃. 龙赛男看了众人の表情,满 意の点了点头,这次府战之行,几人经过一年多の接触,成为了生死相交の朋友.既然是朋友,那么她则有必要激励一下他们努力修炼,尤其是花菜风紫和龙水流,虽然
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y A
O
x
B
5
星火教育学生个性化辅导授课案
三、一次函数与二元一次方程(组)综合
【例9】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则
此方程组( )
A.无解 B.有唯一解
C.有无数个解
D.以上都有可能
【例10】已知直线
y
x
3
与
y
2x
2
的
交点为(
-5,-8),则方程组
【巩固】已知一次函数 y 2x 3 (1)当 x 取何值时,函数 y 的值在 1与 2 之间变化? (2)当 x 从 2 到 3 变化时,函数 y 的最小值和最大值各是多少?
4
星火教育学生个性化辅导授课案
【例7】 一次函数 y kx b ( k,b 是常数, k 0 )的图象如图所示,则不等式 kx b 0 的解
【巩固】已知一次函数 y x a 与 y x b 的图象相交于点 m ,8 ,则 a b ______.
二、一次函数与一元一次不等式综合
【例3】 已知一次函数 y 2x 5 . (1)画出它的图象; (2)求出当 x 3 时, y 的值; 2 (3)求出当 y 3 时, x 的值; (4)观察图象,求出当 x 为何值时, y 0 , y 0 , y 0
2
星火教育学生个性化辅导授课案
【例4】 当自变量 x 满足什么条件时,函数 y 2x 3 的图象在:
(1) x 轴下方;
(2) y 轴左侧;
(3)第一象限.
【巩固】当自变量 x 满足什么条件时,函数 y 4x 1的图象在:
(1) x 轴上方;
(2) y 轴左侧;
(3)第一象限.
【例5】 如图,直线 y kx b 与 x 轴交于点 4 ,0 ,则 y 0 时, x 的取值范围是( )
星火教育学生个性化辅导授课案
教
学生姓名
师
填写时间
2014 年 月 日
年
初二
级
学科
数学
上课时间
阶
基础( √)
段
提高( )
强化( ) 课时计划
第( )次课 共( )次课
教 1,理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函
学 目
数的性质 2,会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点 坐标;能根据一次函数的图象求二元一次方程组的近似解
六、课后作业
1. 已知一次函数 y kx b 的图象经过点 2 ,0 ,1 ,3 ,则不求 k ,b 的值,可直接得到
方程 kx b 3 的解是 x ______.
2. 若 解 方 程 x 2 3x 2 得 x 2 , 则 当 x_________ 时 直 线 y x 2 上 的 点 在 直 线 y 3x 2 上相应点的上方.
7. 已知一次函数 y kx b 6 与一次函数 y kx b 2 的图象的交点坐标为 A(2,0), 求这两个一次函数的解析式及两直线与 y 轴围成的三角形的面积.
10
星火教育学生个性化辅导授课案
学生对于本次课的评价:
○ 特别满意
○ 满意
○ 一般
○差
教师评定: 1、学生上次作业评价:
x 2
y x
30 y2
0
的解是
________.
【例11】 已知方程组
y
y
ax kx
c( b
a
,b
,c
,k
为常数,ak
0
)的解为
x
y
2 ,则直线 3
y
ax c
和直线 y kx b 的交点坐标为________.
【例12】阅读:我们知道,在数轴上, x 1表示一个点,而在平面直角坐标系中, x 1表示一 条直线;我们还知道,以二元一次方程 2x y 1 0 的所有解为坐标的点组成的图形 就是一次函数 y 2x 1 的图象,它也是一条直线,如图①. 观察图①可以得出:直线 x 1 与直线 y 2x 1 的交点 P 的坐标(1,3)就是方程组
x 1 2x
y
1
0
的解,所以这个方程组的解为
x y
1 3
;
在直角坐标系中, x 1表示一个平面区域,即直线 x 1以及它左侧的部分,如图②;
y 2x 1也表示一个平面区域,即直线 y 2x 1 以及它下方的部分,如图③.
6
星火教育学生个性化辅导授课案
y
y
y
P(1,3)
O
x
O
x
O
x
y=2x+1 x=1
以解一元一次不等式可以看作:当一次函数值大(小)于 0 时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系
一次函数的解析式 y kx b(k 0)本身就是一个二元一次方程,直线 y kx b(k 0)上
1
星火教育学生个性化辅导授课案
有无数个点,每个点的横纵坐标都满足二元一次方程 y kx b(k 0),因此二元一次方程的 解也就有无数个。
C. x 6
D. x 6
5. 一次函数 y1 kx b 与 y2 x a 的图象如图,则下列结论① k 0 ;② a 0 ;③当 x 3 时, y1 y2 中,正确的个数是( )
9
星火教育学生个性化辅导授课案
A.0
B.1
C.2
D.3
y
y2=x+a
O
-3
x
y1=kx+bபைடு நூலகம்
6. b 取什么整数值时,直线 y 3x b 2 与直线 y x 2b 的交点在第二象限?
,3,直线 l1 : y k1x b 与直线 l2 : y k2x 在同一平面直角坐标系中的图象如图所示,则关于 x 的 不等式 k2x k1x b 的解集为______.
y l1
l2 3
-1 O x
8
星火教育学生个性化辅导授课案
五、小结
1,理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函 数的性质 2,会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点 坐标;能根据一次函数的图象求二元一次方程组的近似解
2、学生本次上课情况评价:
学生签字:______ ○特别满意 ○满意 ○一般 ○差 ○特别满意 ○满意 ○一般 ○差
教师评语:
教师签字:________
11
星火教育学生个性化辅导授课案
教学主管审核批复: 教学主管签字:________
星火教育教务处
12
线 y kx b 与 x 轴交点时,可令 y 0 ,得到方程 kx b 0,解方程得 x b ,直线 y kx b k
教
交 x 轴于 ( b ,0) , b 就是直线 y kx b 与 x 轴交点的横坐标。
k
k
学
过 二、一次函数与一元一次不等式的关系
程
任何一元一次不等式都可以转化为 ax b 0 或 ax b 0 ( a、b 为常数, a 0 )的形式,所
例题精讲
一、一次函数与一元一次方程综合
【例1】 若直线 y (m 2)x 6 与 x 轴交于点 6 ,0 ,则 m 的值为( )
A.3
B.2
C.1
D.0
【例2】 已知直线 y (3m 2)x 2 和 y 3x 6 交于 x 轴上同一点, m 的值为( )
A. 2
B. 2
C. 1
D. 0
x y
2 4
,是方程组
7x 2x
3y 2 y 8
的解,那么一次函数
y
________和
y
________的交点
是________.
7
星火教育学生个性化辅导授课案
,2,如图所示的是函数
y
kx
b
与
y
mx
n
的图象,求方程组
kx b y mx n y
的解关于原点对称
的点的坐标是________.
(1)
x=1
(2)
y=2x+1
(3)
回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组
x
y
1 2x
2
的
解;
y
y
y
O
O
x
y 1=2x+1
O
x
x 2
⑵在上面的直角坐标系中,用阴影表示
y
2x
2
所围成的区域.
y 0
⑶如图⑷,表示阴影区域的不等式组为:
.
x y2
(4)
巩固练习
1,已知
标
教 学 1,会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点 难 坐标;能根据一次函数的图象求二元一次方程组的近似解 点
知识梳理
一、一次函数与一元一次方程的关系
直线 y kx b(k 0)与 x 轴交点的横坐标,就是一元一次方程 kx b 0(k 0) 的解。求直
A. x 4
B. x 0
C. x 4
D. x 0
3
星火教育学生个性化辅导授课案
y
-4 O
x
【巩固】一次函数 y kx b 的图象如图所示,当 y 0 时, x 的取值范围是( )
A. x 0
B. x 0
C. x 2
D. x 2
y 3
O
2
x
【例6】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求: (1)当 x 2 时, y 的值; (2)x 为何值时, y 0 ? (3)当 2 x 1时, y 的值范围; (4)当 2 y 1时, x 的值范围.