高考物理解题方法与技巧之放缩法临界法
临界问题分析法
临界问题分析法临界问题的分析方法孟德飞纵观近年来各省高考物理试题,不难发现,各省都越来越重视考查学生对解决物理问题方法的掌握情况。
例如,物理模型法、整体法与隔离法、等效法、图像法、临界问题分析法等。
在问题练习中,同学们要重视解题过程的思维方法训练。
如果同学们能够熟练掌握各种解题方法的特点和技巧,对物理学习就起到事半功倍的效果。
透析近年的高考考题,本文就解决常见的临界问题解题方法进行分析和总结。
临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点。
临界问题的分析对象正是临界状态。
与临界状态相关的物理条件则称为临界条件。
临界条件是解决临界问题的突破点,在物理解题中起着举足轻重的作用,解答临界问题的关键是找准临界条件。
临界条件一般是隐藏着的,需要同学们仔细分析题目才能找出来。
但它也有一定规律:题干含有“恰好”、“刚好”、“最小”、“最大”、“至少”、“最多”的词语认真分析找等词语时,该问题一般是临界问题。
审题时,要抓住这些关键出临界条件。
临界问题一般解题模式为:1.找出临界状态及临界条件;2.列出临界点的规3.解出临界量;4.分析临界量列出公式。
律;下面就一些典型试题进行分析总结:一、动力学中的临界问题分析方法动力学中的临界问题比较普遍,例如“物体恰好离开地面”、“物体速度达到最大值时”、“绳刚好碰到钉子”、“物体刚好通过最高点”、“两物体刚好不相撞”、“物体刚好滑出小车”等就是一些题目中常见的临界状态。
相对应的临界条件应该为:临界状态临界条件物体恰好离开(不离开)地面物体不受地面的支持力物体速度达到最大值时物体所受合力为零绳刚好碰到钉子(绳拉物体做圆周运动) 半径突然变小物体刚好通过最高点只有重力提供向心力两物体刚好不相撞两物体接触时速度相等或者最终速度相等物体刚好滑出小车物体滑到小车一端时与车的速度刚好相等例题1. 一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。
高中物理临界问题解题技巧类解
高中物理临界问题解题技巧类解临界问题是物理现象中的常见现象。
所谓临界状态就是物理现象从一种状态变化成另一种状态的中间过程,临界状态通常具有以下特点:瞬时性、突变性、关联性、极值性等。
临界状态往往隐藏着关键性的隐含条件,是解题的切入口,在物理解题中起举足轻重的作用。
求解临界问题通常有如下方法:极限法、假设法、数学分析法(包括解析法、几何分析法等)、图象法等。
极限法:在题目中如出现“最大”、“最小”、“刚好”、“要使”等词语时,一般隐含着临界问题。
处理问题时,一般把物理问题(或过程)设想为临界状态,从而使隐藏着的条件暴露出来,达到求解的目的。
假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,解决办法是采用假设法,把物理过程按变化的方向作进一步的外推,从而判断可能出现的情况。
数学分析法;是一种很理性的分析方式,把物理现象转化成数学语言,用数学工具加以推导,从而求出临界问题,用这种分析方法一定要注意理论分析与物理实际紧密联系起来,切忌纯数学理论分析。
图象法:将物理过程的变化规律反映到物理图象中,通过图象分析求出临界问题。
下面列举的是高中物理各知识系统中典型的临界问题。
一、运动学中的临界问题例1、一列客车以速度v 1前进,司机发现前方在同一轨道上有一列货车正在以速度v 2匀速前进,且v1v 2,货车车尾与客车车头相距s 0,客车立即刹车做匀减速运动,而货车仍保持匀速运动。
求客车的加速度a 符合什么条件两车才不会撞上?分析:这一类问题一般用数学方法(解析法)来求解。
若要客车不撞上货车,则要求客车尽可能快地减速,当客车的速度减小到与货车速度相等时两车相对静止,若以后客车继续减速,则两车的距离又会增大;若以后客车速度不变,则两车将一直保持相对静止。
可见,两车恰好相碰时速度相等是临界状态,即两车不相碰的条件是:两车速度相等时两车的位移之差△S ≤S 0。
下面用两种方法求解。
解法一:以客车开始刹车时两车所在位置分别为两车各自位移的起点,则,客车:21112s v t at =-,货车:22s v t =, 两车不相撞的条件:21,v v at =-120s s s -≤。
数学圆法巧解磁场中的临界问题-2024年高考物理答题技巧(解析版)
数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
缩放圆法巧解磁场中粒子运动的临界问题
高中物理缩放圆法巧解磁场中粒子运动的临界问题编稿老师刘汝发一校杨雪二校黄楠审核王红仙知识点考纲要求题型说明缩放圆法巧解磁场中粒子运动的临界问题1. 进一步熟悉粒子在磁场中做圆周运动的圆心、半径,及轨迹的确定方法;2. 理解缩放圆法确定临界的技巧;3. 理解移动圆法确定临界的技巧。
选择题、计算题本知识点属于高考重点难点,缩放圆和旋转圆是确定临界非常有效的方法,在考查同学们想象能力的同时,也考查了数学运算能力,因此高考命题者对这种方法情有独钟。
二、重难点提示:重点:1.粒子在磁场中做圆周运动的圆心、半径及轨迹的确定方法;2. 缩放圆法和移动圆法确定临界的技巧。
难点:缩放圆法和移动圆法确定临界的技巧。
一、带电粒子在有界磁场中的运动这类问题综合性较强,解答时既要用到物理中的洛伦兹力、圆周运动的知识,又要用到数学中的平面几何中圆及解析几何知识。
1. 一个基本思路:定圆心、找半径、画轨迹、求时间(1)圆心的确定:因为洛伦兹力F指向圆心,根据F⊥v画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F的方向,沿两个洛伦兹力F画其延长线,两延长线的交点即为圆心;或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置。
(2)半径的确定和计算:qvB=mRv2,R=Bqmv或是利用平面几何关系,求出该圆的可能半径(或圆心角)。
(3)粒子在磁场中运动时间的确定:由公式qBmTπ2=,Ttπα2=或vRtθ=。
可求出粒子在磁场中的运动时间。
2. 两个重要结论(1)如下图,带电粒子以速度v指向圆形磁场的圆心入射,出磁场时速度方向的反向延长线肯定经过圆形磁场的圆心。
(2)粒子从圆形磁场边界上某一点射入磁场区域,若粒子轨道半径和磁场半径相同,则粒子飞出磁场时速度方向相同;反之若从圆形磁场边界平行射出,则粒子的轨道半径和圆形磁场半径相同二、解决带电粒子在有界磁场中运动的临界问题的两种方法1. 轨迹圆的缩放当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”。
高中物理临界问题解题方法技巧类解
高中物理临界问题解题方法技巧类解临界问题是高中物理解题中常见问题。
所谓临界状态就是物理现象从一种状态变化成另一种状态的中间过程,临界状态通常具有以下特点:瞬时性、突变性、关联性、极值性等。
临界状态往往隐藏着关键性的隐含条件,是解题的切入口,在物理解题中起举足轻重的作用。
求解临界问题通常有如下方法:假设法、极限法、数学分析法(包括解析法、几何分析法等)、图象法等。
假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,解决办法是采用假设法,把物理过程按变化的方向作进一步的外推,从而判断可能出现的情况。
极限法:在题目中如出现“最大”、“最小”、“刚好”、“要使”等词语时,一般隐含着临界问题。
处理问题时,一般把物理问题(或过程)设想为临界状态,从而使隐藏着的条件暴露出来,达到求解的目的。
数学分析法;是一种很理性的分析方式,把物理现象转化成数学语言,用数学工具加以推导,从而求出临界问题,用这种分析方法一定要注意理论分析与物理实际紧密联系起来,切忌纯数学理论分析。
图象法:将物理过程的变化规律反映到物理图象中,通过图象分析求出临界问题。
下面列举的是高中物理各知识系统中典型的临界问题。
一、平衡状态的临界问题例1、倾角为30θ=度的斜面上放置一个重200N 的物体,物体与斜面间的动摩擦因数为3μ=,要使物体恰好能沿斜面向上匀速运动,所加的力至少为多大?方向如何?分析;由于施力的方向没定,先假定一个方向:与斜面成α角向上,物体的受力分析如图2所示。
解:x 方向:cos sin F f mg αθ=+ y 方向: sin cos F N mg αθ+= 其中 F N μ=联立以上三式求解得:/(cos )F mg αα==,其中060ϕ=。
当030α=时F 有极值:min F =。
例2、如图3所示,用光滑的粗铁丝做成一个直角三角形ABC ,BC 边水平,ABC α∠=,AB 及AC 上分别套有用细绳连着的小环P 、Q 。
高中物理解题方法之临界法
高中物理解题方法之临界法一种物理现象转化为另一种物理现象的转折状态叫临界状态。
临界状态下的物理问题称为临界问题。
解决临界问题的方法称为临界法。
在高中物理的各个部分都有临界问题,都可用临界方法。
一、静力学中的临界问题:平衡物体的临界状态是指物体所处的平衡状态将要被破坏而尚未被破坏的状态。
解决临界问题的关键是找到临界条件。
物理方法:物理方法是指充分利用物理状态和物理规律,分析临界状态或边界条件,在特殊状态下,根据物理规律列方程,便可直接解决临界问题。
<br>物理方法包括(1)利用临界条件,(2)利用边界条件,(3)利用矢量图。
临界问题与极值问题是相关联的,其主要区别是:临界问题通常用物理方法,极值问题通常用数学方法。
二、动力学中的临界问题动力学中的临界问题,临界条件主要有下列几种: (1)接触与脱离的临界条件:两物体间的弹力0=N F (2)相对滑动的临界条件:静摩擦力达到最大值(3)绳子断裂与松弛的临界条件:断裂:绳中张力等于它所能承受的最大张力,松弛:0=T F(4)加速度最大与速度最大的临界条件:在变化的外力作用下,物体所受合外力最大时加速度最大,所受合外力最小时加速度最小;加速度为0时,速度往往最大。
例1.一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图所示,以竖直向上为a 的正方向,则人对地板的压力A .t=2s 时最大B .t=2s 时最小C .t=8.5s 时最大D .t=8.5s 时最小 6.解析】0~4s ,加速度向上,人超重,设地板对人支持力为F N ,则ma mg F N =-,当s t 2=时,加速度最大,支持力就最大,根据牛顿第三定律,人对地板压力也最大;7~10s ,加速度向下,人失重,设地板对人支持力为F N ,则ma F mg N =-,ma mg F N -=当s t 5.8=时,加速度最大,支持力就最小,根据牛顿第三定律,人对地板压力也最小。
高考物理解题方法与技巧讲解15---临界法(解析版)
(1)弹簧的劲度系数 k;
(2)AB 杆中弹力为零时,装置转动的角速度ω0 ;
(3)弹簧长度从 3 L 缓慢缩短为 1 L 的过程中,外界对转动装置所做的功 W。
2
2
【解答】(1)装置静止时,设 OA、AB 杆中的弹力分别为 F1、T1 ,OA 杆与转轴的夹
角为θ1 .
L
小环受到弹簧的弹力 F弹1 = k ⋅ 2
做圆锥摆类的圆周运动,随转动角速度的增大,物体受到的支持力会减小,当该力恰 好减为 0 时,往往就是该问题的连接状态,由连接状态求临界线速度和角速度。
五、电场中的临界问题
例题 3. 匀强电场中有 a、b、c 三点.在以它们为顶点的三角形中, ∠a=30°、∠c=
小环受力平衡 F弹1 = mg + 2T1 cosθ1
小球受力平衡 F1 cosθ1 + T1 cosθ1 = mg ; F1 sinθ1 = T1 sinθ1
解得 k = 4mg L
4 / 17
(2) 设 OA、AB 杆中的弹力分别为 F2 、T2 ,OA 杆与转轴的夹角为θ2 ,弹簧长度为 x。
W
−
mg( 3 2
L
−
1 2
L)
−
2mg( 3 4
L
−
1 4
L)
=
2×
2m(ω3l
sinθ3 )2
解得W = mgL + 16mgl 2 L
【解析】
5 / 17
小球和小环位置示意图 【点评】本题考查圆周运动,弹簧等知识和力的分析,力的平衡,向心力等能力,综 合性强,物理情景复杂。难度:难
四、圆锥摆中的临界问题
2 / 17
将做离心运动。 (2)竖直平面内的圆周运动的临界问题 轻绳模型和轻杆模型比较表
高考物理解题方法指导:临界和极值问题
临界和极值问题当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件.解答临界问题的关键是找临界条件许多临界问题,题目中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,也有一些临界问题中并不显含上述常见的“临界术语”,但审题时会发现某个物理量在变化过程中会发生突变,则该物理量突变时物体所处的状态即为临界状态审题时,一定要抓住这些特定的词语挖掘内涵,找出临界条件.解答临界问题的方法一般有两种,一是以定理、定律为依据,先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件,同时要特别注意可能出现的多种情况.互动探究例1、如图所示,跨过定滑轮的轻绳两端,分别系着物体A和B,物体A放在倾角为α的斜面上,已知物体A的质量为m,物体B和斜面间动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体静止在斜面上,求物体B质量的取值范围.例2、一车处于静止状态,车后相距x0=25m处有一个人,当车开始启动以a=1m/s2的加速度前进的同时,人以v=6m/s的速度匀速追车,能否追上?若追不上,人车间最小距离为多少?例3、一个质量为0.2kg的小球用细绳吊在底角为53º的光滑斜面顶端,如图所示,斜面静止时,球靠在斜面上,绳与斜面平行.当斜面以10m/s2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.例4、如图所示,用细线悬挂于O点的摆球在小锤两次打击下才能通过以O为圆心,以线长为半径的圆周的最高点,设两次打击时作用时间相等,摆球运动中悬线始终拉直,求两次打击力之比F II:F I的最小值.例5、如图所示,倾角θ =30°、高为h的三角形木块B,静止放在一水平面上,另一滑块A以初速度v0从B的底端开始沿斜面上滑,若B的质量为A的质量的2倍,当忽略一切摩擦的影响时,要使A能够滑过木块B的顶端,求v0应为多大?例6、如图所示,带正电小球质量为m= 1×10-2kg,带电量为q=l×10-6C,置于光滑绝缘水平面上的A点.当空间存在着斜例4例5例6向上的匀强电场时,该小球从静止开始始终沿水平面做匀加速直线运动,当运动到B点时,测得其速度v B=1.5m/s,此时小球的位移为s=0.15m.求此匀强电场场强E的取值范围.(g=10m/s2)某同学求解如下:设电场方向与水平面之间夹角为θ,由动能定理qEs cosθ=-0,得= V/m.由题意可知θ>0,所以当E>7.5×104V/m时小球将始终沿水平面做匀加速直线运动.经检查,计算无误.该同学所得结论是否有不完善之处?若有请予以补充.例7、如图所示,磁场方向垂直纸面向里,磁感应强度大小为B,AB、AC、BD为磁场的边界,AB长为L,AC、BD足够长.位于AB的中点O是一个能向纸面内发射质量为m、电量为q的正粒子的粒子源,粒子的速度方向与AB成30º角.要使粒子能从AC边射出磁场,粒子从粒子源射出的速率必须满足什么条件.例8、如图所示,ABC是一块玻璃直角三棱镜的主截面,已知光从该玻璃到空气的临界角C=55°.当一束光垂直于BC面射到棱镜上时,画出在各个面上反射、折射的光路图.例8 课堂反馈反馈1、在原子物理学中,常用电子伏特(符号是eV)作为能量的单位.当γ光子能量大于E0(E0=1.022MeV)时,就可能有电子对生成,其中E0的能量转化为一对正负电子,余下的能量变成电子对的动能.已知普朗克常量h = 6.63×10-34J·s.求:(1)求电子的质量m?(2)要能生成电子对,γ光子的频率必须大于多少(结果保留两位有效数字)?(3)若γ光子的频率为f,生成的电子速度v为多大?(结果用m,h,E0,f表示)反馈2、在天体演变的过程中,红色巨星发生“超新星爆炸”后,可能形成中子星(电子被迫同原子核中的质子相结合而形成中子),中子星具有极高的密度.(1)若已知某中子星的密度为1017kg/m3,该中子星的卫星绕它做圆轨道运动,试求该中子星的卫星运行的最小周期.(2)中子星也在绕自转轴自转,若某中子星的自转角速度为6.28×30r/s,为了使该中子星不因自转而被瓦解,则其密度至少应为多大?(假设中子星是通过中子间的万有引力结合成球状星体,引力常量G=6.67×10-11N·m2/kg2)达标练习1、电子中微子可以将一个氯核转变为一个氩核,其核反应方程式为,已知核的质量为36.95658u,核的质量为36.95691u,的质量为0.00055u,1u质量对应的能量为931.5MeV.根据以上数据,可以判断参与上述反应的屯子中微子的最小能量为( A )A.0.82 MeV B.0.31 MeV C.1.33 MeV D.0.51 McV2、相距很远的两个分子,以一定的初速度相向运动,直到距离最小在这个过程中,两分子间的分子势能( D )A .一直增大B .一直减小C .先增大,后减小D .先减小,后增大3、如图所示,M 为固定在桌面上的木块, M 上有一个3/4圆弧的光滑轨道abcd ,a 为最高点,bd 为其水平直径,de 面水平且长度一定,将质量为m 的小球在d 点的正上方高h 处从静止释放,让它自由下落到d 点切入轨道内运动,则( ACD )A .在h 为一定值的情况下,释放后,小球的运动情况与其质量的大小无关B .只要改变h 的大小,就能使小球通过a 点后,既可以使小球落到轨道内,也可以使小球落到de 面上C .无论怎样改变h 的大小,都不能使小球通过a 点后又落回到轨道内D .使小球通过 a 点后飞出de 面之外(e 的右边)是可以通过改变h 的大小来实现的4、用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图(1)所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T ,则T 随ω2变化的图象是图(2)中的( C )5、如图所示,在水平方向的匀强电场中,绝缘细线的一端固定在O 点,另一端系一带正电的小球在竖直平面内作圆周运动,小球所受的电场力和重力相等,直径ac 和bd 互相垂直,且bd 平行于电场线,则( BC )A .小球在a 点动能最小B .小球在c 点重力势能最小C .小球在b 点机械能最大D .小球在d 点总能最大 6、“水刀”就是将普通水加压,使其从小口径喷嘴中以800m/s —1000m/s的速度射出的水流我们知道,任何材料能承受的压强都有一定的限度,如橡胶为5⨯107Pa ,花岗石为1.2~2.6⨯108Pa ,铸铁为8.8⨯108Pa ,工具钢为6.8⨯108Pa 设想一水刀垂直入射的速度为800m/s ,水流与材料接触后速度为零,且不附着在材料上,则此水刀不能切割( CD )A .橡胶B .花岗石C .铸铁D .工具钢7、圆筒形的薄壁玻璃容器中,盛满某种液体,容器底部外面有光源S ,试问液体折射率至少为多少时,才不能通过容器壁在筒外看到光源S (壁厚不计).8、如图所示,一带电质点,质量为 m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.(重力忽略不计)图(1) 图(2) 达标4 E达标59、如图所示,木板AB 放在光滑水平面上,其周围是竖直向下的匀强电场一质量为m 、带电量为q 的小物块,以某一水平初速度从A 端滑上木板,到B 端时恰相对静止若将电场反向,强度不变,物块仍以原初速度从A 端滑上木板,结果滑到木板的中点时相对静止,求:(1)物块的电性;(2)场强的大小.10、如图所示,弹簧上端固定在O 点,下端挂一木盒A ,盒子顶端挂着一小球B (可视为质点),若A 、B 的质量均为1kg ,B 距A 底板为H =16cm ,当它们都静止时,弹簧的长度为L 某时刻,悬挂小球的细线突然断开,在A 上升到最高点时,B 和A 的底板相碰,碰撞时间极短,碰后成为一体向下运动,当弹簧的长度又为L 时,两者的速度为v =1m/s ,求:(1)碰撞中动能的损失∆E ;(2)弹簧的劲度系数k ;(3)细线断前弹簧的弹性势能E 0.11、如图所示为三对等间距的平行光滑导轨,导轨宽均为L ,其中M 、N 为两对倾斜放置的塑料导轨,P 为水平放置的金属导轨,三对导轨焊接处为金属,整个装置放在竖直向上的匀强磁场中,磁场的磁感应强度为B 已知质量为m 1的金属棒在M 轨道上从高度为h 1处由静止释放,金属棒沿导轨M 滑下,然后沿导轨N 滑上,达到的最大高度为h 2,此过程中质量为m 2的导体棒由静止在安培力作用下沿导轨P 运动起来,不计一切因碰撞损失的能量,不计导轨电阻,求此过程中:(1)安培力对m 1的冲量I ;(2)m 2的最大速度v ;(3)电路中产生的焦耳热Q .专题十一,课时1解答例1解析:以B 为研究对象,由平衡条件得 T =m B g再以A 为研究对象,它受重力、斜面对A 的支持力、绳的拉力和斜面对A 的摩擦作用.假设A 处于临界状态,即A受最大静摩擦作用,方向如图所示,根据平衡条件有:N =mg cos θ,T - f m -mg sin θ = 0,或:T +f m -mg sin θ=0, f m =μN ,综上所得,B 的质量取值范围是:m (sin θ-μcos θ)≤m B≤m (sin θ+μcos θ) .例2解析:人与车运动时间相等,设为t ,当人追上车时,二者之间的位移关系应为,即,由上式求解t ,若有解则追上,反之追不上,将题给数据代入整理后可得,由于判别式,所以人不可能追上车当车的速度等于人的速度时,人与车的距离最小,根据可知,从开始追车到距离最小所用时间为 t = 6s 在这段时间内人与车的位移分别为m , m ,人、车间最小距离为∆ s =s 车 + x 0 – s 人=7m .例3解析:首先用极限法把加速度a 推到两个极端来分析:当加速度a 较小时,小球受到重力、绳子的拉力和斜面的支持力三个力作用,此时绳子平行与斜面;当加速度a 足够大 例11 达标11时,小球将“飘起” ,离开斜面,此时绳子与水平方向的夹角未知那么,当a =10m/s2向右时,究竟是上述两种情况的哪一种?解题时必须先求出小球离开斜面的临界值,然后再确定.设小球处在离开斜面的临界状态(N刚好为零)时,斜面向右的加速度为a0,此时对小球:mg cotθ= ma0,可求出:a0 =g cotθ = 7.5m/s2;因为a > a0,所以小球一定离开斜面,可以求得绳子的拉力N,细线与水平方向的夹角为α= arctan mg/ma = 45º,斜面的支持力N=0.例4解析:要求F II:F I的最小值,即要求F I的最大值,F II的最小值,故必须找出F I和F II对应的两个临界状态.据题意,小球经两次打击才通过圆周最高点C,故第一次打击后,小球只能在圆弧AB C 之间运动,从下图可以看出,当小球在圆弧AB上运动时,重力沿半径的分力F1背离圆心,拉紧绳子,即使小球速度减为零,也不会脱离圆周.当小球在圆弧BC上运动时,重力沿半径的分力F1改为沿半径指向圆心.必会在下图中P点出现(0º<θ<90º),小球将脱离圆周而作斜抛运动,线松驰.可见,由于在B点上下重力沿半径方向分力F1方向的突变,使得小球将出现不同的运动情况.要使绳子始终拉直,第一次打击后,小球只能在圆弧AB上运动,“小球沿圆弧上升至B点速度恰为零”为确定F I的临界条件.要求F II最小,则第二次打击后,小球恰能通过最高点C,“绳子张力T C= 0”,这是确定F II最小值的临界条件.设第一次打击后,小球速度为v1,由动量定理得F I t = mv1 ……①F I最大时,小球到达B点速度为零,由机械能守恒定律得mv12/2 = mgl ……②联立解得:v1 =,F I =m/t小球经过最低点并向左运动时,作第二次打击,打击后速度为v2,由动量定理得:F II t = mv2 - mv1……③设小球升至最高点C时速度为v3,由机械能守恒定律得:……④F II最小时,小球通过C点时线的张力T C=0,由牛顿第二定律得mg= mv32/l ……⑤联立解得:F II =,得F II/ F I =.例5解析:滑块A恰好到达滑块B的最高点时,两者有共同速度v,系统水平方向动量守恒:mv0cosθ=(m+M)v①系统机械能守恒:可得,所以当时,滑块A可以滑过斜面B的顶端.例6 解析:该同学所得结论有不完善之处.为使小球始终沿水平面运动,电场力在竖直方向的分力必须小于等于重力qE sinθ≤mg 所以即7.5×104V/m<E≤1.25×105V/m.例7解析:由几何关系可得,粒子在磁场中的轨道半径L/3 ≤r ≤L,又Bqv0=m v02/r,r = m v0 /Bq,得L Bq / 3m≤v0 ≤L Bq / m.例8解析:光垂直BC面入射,一部分光按原路反射,一部分沿入射方向进入玻璃.射到AC面上时光的人射角i1=30°<55°,因此一部分光折射进空气,一部分光反射到BC面.在BC面上光的入射角i2=60°>55°,发生全反射,垂直于AB面入射并进入空气.光路图如图所示.反馈1解析:(1)由质能方程,E0 = 2mc2,得m = 9.1×10-19kg;(2)E0 = h f,f = 2.5×1020Hz;(3)h f - E0= 2 ×mv2/2,.反馈2解析:(1)由题设可知,中子星的卫星绕中子星沿圆周运动,则中子星与其卫星之间的万有引力提供卫星做圆周运动的向心力,所以有,即由上式可知,轨道半径越小,卫星的运行周期越小,故当卫星做圆周运动的半径恰等于中子星的半径时,其运行的周期必为最小值.设中子星的圆轨道半径为R,质量为m,由万有引力提供向心力,可得,即当R= r(中子星的半径)时,卫星的运行周期最小,注意到,则有,代入数据,解得T min=1.2×10-3s.(2)由F=mω2R可知,中子星表面“赤道"”部分做圆周所受的向心力最大,由此可得到中子星因自转而不发生瓦解的临界条件是:中子星“赤道”表面处质点所受万有引力应等于其所需要的向心力,由这种情况下计算出的中子星的密度即为其密度的下限值.设中子星的质量为M,半径为r,密度为ρ, 自转角速度为ω,今在中子星"赤道"表面处取一质量极小的部分,设其质量为m,因为这部分的质量极小,故可认为中子星其他部分的质量仍为M,由万有引提供向心力,可得,又,整理,可得,代入数据,可午ρmin=1.3×1014 kg/m3.达标解析达标1、A 2、D 3、ACD 4、C 5、BC 6、CD达标7解析:要在容器外空间看不到光源S,即要求光源S进入液体后,射向容器壁光线的入射角(临界角),如图所示,由折射定律可知,(1)由图可知,,(2)在A点入射处,由折射定律有,所以(3)由(1)(3)两式可知,由(2)式可知:越小越好,临界角C也是越小越好:由可知,越大,C越小;而由可知,当一定时,越大,小,所以液体的折射率.达标8解析:质点在磁场中作半径为R的圆周运动,,得(1)根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆弧,这段圆弧应与入射方向的速度、出射方向的速度相切过点作平行于轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O'为圆心、R为半径的圆(圆中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周所以本题所求的圆形磁场区域的最小半径为达标8(2)所求磁场区域如图12-5中实线圆所示.达标9解析:(1)负电;(2)设木板质量为M ,长为L ,木块与木板间的动摩擦因数为μ,则f 1 = μ(mg – qE ),f 2 = μ(mg + qE ),由动量守恒,mv 0=(M+m )v ,由系统能量守恒,f 1 L = mv 02/2 -(M+m )v 2/2,f 2 L /2 = mv 02/2 -(M+m )v 2/2,解得E=mg /3q .达标10解析:(1)全程用能量守恒,m B gH =(m A + m B )v 2/2 + ∆E ,∆E =0.6J ;(2)设B 下降h 与A 相碰,有m B gh = m B v 12/2,碰撞时动量守恒,m B v 1 = (m A + m B )v 2,又∆E = m B v 12/2 -(m A + m B )v 22/2,得h = 0.12m ,则此过程中A 上升h ´ = 0.04m ;又B 下落时A 作简谐运动,A 在最低点时,回复力为F 回= mg ,则A 在最高点时,回复力为F 回= mg ,弹恰好处于原长,B 下落前系统平衡时有,k h ´=2mg ,得k = 500N/m ;(3)A 从开始运动到最高点机械能守恒,有E 0= m A g h ´=0.4J .达标11解析:(1)设金属棒m 1沿导轨M 下滑到最低点时的速度为v 1,沿导轨N 上滑的初速度为v 2,有m 1gh 1 = m 1 v 12/2,m 1gh 2 = m 1 v 22/2,则安培力的冲量为I = m 1 v 2 - m 1 v 1= m 1()(2)由动量守恒,m 1 v 1 = m 1 v 2 + m 2 v ,v =(3)由能量守恒定律,得)2()(212121221211222111h h h h g m m h h g m v m gh m gh m Q -+--=--=.。
巧用放缩法和旋转法求解带电粒子在磁场中的临界问题
巧用放缩法和旋转法求解带电粒子在磁场中的临界问题带电粒子在磁场中的临界问题1、解决此类问题的关键是找准“临界点”2、找临界点的方法是:以题目中的“恰好”“最大”“至少”等词语为突破口,借用半径R和速度v (或者磁场B)之间的约束关系进行动态轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后根据数学方法求解极值。
动圆放缩法带点粒子以任意速度、沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化。
通过画出动态放缩圆可以帮助我们确定临界条件。
例题1、如图所示,在POQ区域内分布有磁感应强度为B的匀强磁场,磁场方向垂直于纸面向里,有一束负离子流沿纸面垂直于磁场边界OQ方向从A点射入磁场,已知OA=S,∠POQ=30°,负离子的质量为m,带电量为-q,要使负离子不从OP边射出,负离子进入磁场时的速度最大不能超过多少?若为正离子呢?例题2、如图所示,A、B为水平放置的无限长平行板,板间距离为d,A板上有一电子源P,Q 点为P点正上方B板上的一点,在纸面内从P点向Q点发射速度大小不限的电子,若垂直纸面向里方向加一匀强磁场,磁场感应强度为B,已知电子质量为m,电量为q,不计电子重力及电子间的相互作用力,且电子打到板上均被吸收,并转移到大地,求电子击在A、B两板上的范围?变式:如图所示,足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从ad边的中心O点处,垂直磁场方向射入一速度为v0的带正电粒子,v0与ad边的夹角为30°.已知粒子质量为m,带电量为q,ad边长为L,不计粒子的重力.(1)求要使粒子能从ab边射出磁场,v0的大小范围.(2)粒子在磁场中运动的最长时间是多少?在这种情况下,粒子将从什么范围射出磁场?定圆旋转法带电粒子在平面内从某一点保持速度大小不变而以任意方向射入匀强磁场中,把其轨迹连续起来观察可发现这些带电粒子在磁场中做匀速圆周运动的圆心在以入射点O为圆心、半径R=mv0/qB 的圆周上(这个圆在下面的叙述中称为“轨迹圆心圆”)例题3、如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里.许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图是正确的()A 、B 、C 、D 、例题4、如图所示,直角三角形AOC区域内存在垂直纸面向外的匀强磁场(边界存在磁场),磁感应强度大小为B,∠A=600,AO=L.在O点放置一个粒子源发射质量为m,带电量为+q的粒子。
高中物理解题难点突破临界与极值问题解题思路及方法(整理全)
高中物理中的临界问题与极值问题精品讲学案一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。
与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。
极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。
临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。
因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。
高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。
从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。
也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。
可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。
新高考物理专题-巧用圆的旋转、缩放和平移解磁场临界极值问题
巧用圆的旋转、缩放和平移解磁场临界极值问题江苏省泰兴中学李淑玲带电粒子在匀强磁场中受洛伦兹力做匀速圆周运动,根据这一特点该问题的解决方法一般为:一定圆心,二画轨迹,三用几何关系求半径,四根据圆心角和周期关系确定运动时间。
其中圆心的确定最为关键,一般方法为:①已知入射方向和出射方向时,过入射点和出射点做垂直于速度方向的直线,两条直线的交点就是圆弧轨迹的圆心。
②已知入射点位置及入射时速度方向和出射点的位置时,可以通过入射点做入射方向的垂线,连接入射点和出射点,做其中垂线,这两条垂线的交点就是圆弧轨迹的圆心。
以上方法简单明了,但具体求解时,学生对其轨迹的变化想象不出来,从而导致错解习题。
如从以上方法出发,再借助圆规或硬币从“动态圆”角度分析,便可快而准的解决问题。
此类试题可分为旋转圆、缩放圆和平移圆三大类型。
一、旋转圆【模型特征】带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图1。
解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。
【典例1】如图2,在0≤x≤a区域内存在与xOy平面垂直的匀强磁场,磁感应强度的大小为B。
在t=0时刻,一位于坐标原点的粒子源在xOy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0°~180°范围内。
已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上P(a,a)点离开磁场。
求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间。
【动态分析】由题知沿y轴正方向发射的粒子从磁场边界上P(a,a)点离开磁场,利用圆规或硬币可作出其轨迹图像如图3,由于粒子速度方向在0°~180°范围内,其它方向的轨迹可以通过旋转第一个圆得到(O点为旋转点),如图4。
一般解决临界问题的基本解决方法及例题介绍
一般解决临界问题的基本解决方法及例题介绍一般解决临界问题的基本解决方法及例题介绍1.演绎法:以原理、定理和定律为依据,先找出所研究问题的一般规律和一般解,然后分析讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。
2.临界法:以原理、定理或定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解,以此对一般情况进行分析讨论和推理,即采用林特殊到一般的推理方法。
由于临界状态比一般状态简单,故解决临界问题时用临界法比演绎法简捷。
在找临界状态和临界量时,常常用到极限分析法:即通过恰当地选取某个物理量(临界物理量)推向极端(“极大”和“极小”,“极左”和“极右”等),从而把隐蔵的临界现象(或“各种可能性”)暴露出来,找到解决问题的“突破口”。
因此,先分析临界条件物理学中临界问题题1 如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。
现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是A.处为拉力,为拉力B.处为拉力,为推力C.处为推力,为拉力D.处为推力,为推力解析因为圆周运动的物体,向心力指向圆心,小球在最低点时所需向心力沿杆由a指向O,向心力是杆对小球的拉力与小球重力的合力,而重力方向向下,故杆必定给球向上的拉力,小球在最高点时若杆恰好对球没有作用力,即小球的重力恰好对球没有作用力,即小球的重力恰好提供向心力,设此时小球速度为vb,则:mg = m vb =当小球在最高点的速度vvb时,所需的向心力Fmg,杆对小球有向下的拉力;若小球的'速度vvb时,杆对小球有向上推力,故选A、B正确评析本题关键是明确越过临界状态vb = 时,杆对球的作用力方向将发生变化。
题2 在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间距离大于L(L比2r大得多)时,两球之间无相互作用力;当两球心间距离等于或小于L时,两球间存在相互作用的恒定斥力F。
物理临界值的解题思路
物理临界值的解题思路物理学是一门基础学科,它探究自然界的规律和现象,为人类社会的发展提供了重要的科学依据。
在物理学中,临界值是一个非常重要的概念,它是指某个物理量达到某个临界值时,系统的状态会发生重要的变化。
本文将介绍物理临界值的概念、分类以及解题思路。
一、物理临界值的概念物理临界值是指某个物理量达到某个特定值时,系统的状态会发生重要的变化。
这个变化可能是相变、共振、失稳等,具体表现为物理量的突变、震荡或者翻转等。
临界值是物理学中的一个重要概念,它与系统的稳定性、相互作用等密切相关。
二、物理临界值的分类根据物理量的不同性质,临界值可以分为多种类型。
下面列举几种常见的物理临界值:1. 相变临界值相变是物质从一种状态向另一种状态转化的过程,例如水从液态向固态转化为冰。
相变临界值是指物质在达到一定温度、压力等条件下,从一种状态向另一种状态转化的临界值。
例如,水在0℃下达到冰点,会发生相变,这个温度就是水的相变临界值。
2. 共振临界值共振是指两个或多个物体在一定频率下发生相互作用的现象。
共振临界值是指两个物体在达到一定频率下,能够产生共振的临界值。
例如,两个钟摆在特定频率下会发生共振,这个频率就是两个钟摆的共振临界值。
3. 失稳临界值失稳是指系统在达到一定条件下,从稳定状态转化为不稳定状态的过程。
失稳临界值是指系统在达到一定条件下,从稳定状态转化为不稳定状态的临界值。
例如,一个平衡在桌子边缘的物体,在达到一定角度时会失去平衡,这个角度就是失稳临界值。
三、物理临界值的解题思路在解决物理临界值问题时,我们需要掌握一些基本的解题思路。
下面列举几个常用的解题思路:1. 分析物理量的变化趋势在解题时,我们需要分析物理量的变化趋势,找出其变化的规律。
例如,水的温度随着时间的变化呈现出一定的上升趋势,我们需要通过分析这个趋势,找出水的相变临界值。
2. 利用公式计算在解题时,我们可以利用相关的公式计算物理量的临界值。
例如,计算物体的失稳临界值时,我们可以利用牛顿第二定律、重心高度等公式计算。
高考物理 考前冲刺Ⅰ专题03 临界法解题方法及其应用
2012考前冲刺物理在物理现象中存在大量的临界问题,所谓临界问题,是指在一种运动形(或者物理过程和物理状态)转变为另一种运运形式(或者物理过程和物理状态)的过程中,存在着分界限的现象.这是从量变到质量的规律在物理中的生动表现.这种分界限,通常以临界和临界状态的形式出现在不同的问题中.如热学中的临界温度,力学中的弹性限度、临界速度、临界加速度、临界力、平衡位置。
电磁学中的临界电压、临界电阻、临界电流、发电机的中性面,几何光学中的全反射临界角,光电效应中的极限频率,链式反应中的铀块的临界体积,等等。
通常情况下,解决临界问题有两种基本方法:演绎法和临界法。
演绎法是以原理、定理或者定律为依据,先找出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。
临界法是以原理、定理或者定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解;然后,以此对一般情况进行分析、讨论和推理,即采用从特殊到一般的推理方法。
临界法不同于归纳法,因为仅以临界状态和相应的临界量为前提,作为分析、讨论和推理的出发点,可能并不是最终要求的结果。
中学物理解题中应用的临界法,以原理,定理或者定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊性;然后,以此对一般情况且进行分析、讨论和推理,即采用从特殊到一般的推理方法.临界法不同行归纳法,因为仅以临界状态和相应的临界量为前提,作为分析、讨论和推理的出发点.1.临界量v = Rg 的应用. 物体在竖直平面内的以半径R 作圆周运动,如果通过最高点所需的向心力F n 正好由重力提供,则相应速度为v 0 . ,2Rv m m g ∴ v 0 = Rg 这时,物体与其接触的物体无径向接触力.利用这一临界状态和相应的临界量,可以极为简便地解决物体在竖直平面内作圆周运动的各种临界问题.例1. 试证明:近地人造卫星的环绕速度(v )、环绕加速度(a )环绕周期(T )分别是v = 7.9km/s a =9.8 m/s 2 T = 84.5min分析与解:当人造地球卫星沿地球表面做匀速圆周运动时,轨道半径r =R .所需的向心力正好由重力mg 提供,根据近似关系mg = 2r Mm G = m Rv 20 v 0 = Rg = 7.9km/s 向心加速度a = g=9.8m/s 2环绕周期最小为 T 0 = 2 π gR =84.5min 近地面人造卫星的环绕速度和加速度,是人造地球卫星的最大环绕速度和加速度,而环绕周期则是人造地还需卫星的最小周期.由万有引力定律和向心力公式得r v m r Mm G 22=,所以在半径为r 的轨道上的环绕速度为 v =r g R rM G 2=∝r1 当 r = R 时,环绕速度最大为v max = Rg 向心加速度为a = 222r g R r v =∝ 21r ,所以当r =R 时向心加速度最大为a max = g 环绕周期 T = g R r v r 2322ππ=∝3r ,当r=R 时环绕周期最小为 T min = 2π gR 例2..半径为R 的半圆槽固定在水平地面上.质量为m 的小球,以一定速度从A 点无摩擦地沿半圆槽向上运动,通过最高点后落在水平地面的B 点,且AB=2R .求小球在半圆槽最低点A 的速度和在最高点对槽的压力。
高考物理解题方法:图象法及临界条件法
高考物理解题方法:图象法及临界条件法
高考物理频道为大家提供高考物理解题方法:图象法及临界条件法,赶紧学习一下吧!更多高考资讯请关注我们网站的更新!
高考物理解题方法:图象法及临界条件法
图象法:
运用图象解答物理问题的步骤
1.看清纵横坐标分别表示的物理量;
2.看图象本身,识别两物理量的变化趋势,从而分析具体的物理过程;
3.看两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义。
临界条件法:
物理系统由于某些原因而发生突变时所处的状态,叫做临界状态.临界状态可以理解为“恰好出现”或“恰好不出现”两种状态,突变的过程是从量变到质变的过程,在临界状态前后,系统服从不同的规律,按不同的规律运动和变化。
如光学中折射现象的“临界角”、超导现象中的“临界温度”、核反应中的“临界体积”、光电效应中的极限频率、静摩擦现象中的最大静摩擦力等。
在中学物理中像这样明确指出的临界值是容易理解和掌握的,但在高考题中常常是不明确的提出临界值,而又必须通过运用所学知识去分析临界条件、挖掘出临界值.在物理问题中,很多都涉及临界问题,分析临界问题的关键是寻找临界状态的条件。
解决临界问题,一般有两种基本方法:
1.以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解。
2.直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解。
高考物理题中的临界问题
当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。
解答临界问题的关键是找临界条件。
许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘内含规律,找出临界条件。
一、做直线运动的物体“达到最大(小)速度”的临界条件:物体加速度等于零 1.如图3—25所示,一个质量为m 的物体固定在劲度系数为k 的轻弹簧右端,轻弹簧的左端固定在竖直墙上,水平向左的外力推物体把弹簧压缩,使弹簧长度被压缩了b ,弹性势能为E 。
已知弹簧被拉长(或者压缩)x 时的弹性势能的大小221kx E p =,求在下述两种情况下,撤去外力后物体能够达到的最大速度? (1)地面光滑。
(2)物体与地面的动摩擦因数为μ。
3.如图(a )所示,光滑的平行长直金属导轨置于水平面内,间距为L 、导轨左端接有阻值为R 的电阻,质量为m 的导体棒垂直跨接在导轨上。
导轨和导体棒的电阻均不计,且接触良好。
在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B 。
开始时,导体棒静止于磁场区域的右端,当磁场以速度v 1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f 的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内,求导体棒所达到的恒定速度v 2;4如图所示,一根长 L = 1.5m 的光滑绝缘细直杆MN ,竖直固定在场强为 E == ×105N / C 、与水平方向成θ=300角的倾斜向上的匀强电场中。
杆的下端M 固定一个带电小球 A ,电荷量Q =+×10-6C ;另一带电小球 B 穿在杆上可自由滑动, 电荷量q =+ ×10一6C ,质量m =×10一2kg 。
现将小球B 从杆的上端N 静止释放,小球B 开始运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理解题方法与技巧
一、大题常见思路
1、等效思维在解决大题中的应用
例1、如图所示,已知回旋加速器中D 形盒内匀强磁场的磁感应强度B =1.5T ,盒的半径R =60cm ,两盒间隙d=1cm ,盒间电压U=2.0×104V ,今将α粒子从位于间隙中心某点向D 形盒内以近似于零的初速度垂直B 的方向射入,求粒子在加速器内运动的总时间。
例2、边长为a 的正方形导线框放在匀强磁场内静止不动。
匀强磁场的磁感应强度B 的方向与导线框平面垂直。
B 的大小随时间按 的正弦规律变化。
导线框内感应电动势的最大值为多少?
例3、半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有一个质量为m 、带正电的珠
子,空间存在水平向右的匀强电场,如右图所示,珠子所受静电力是其重力的3
4
倍.将珠子从环上最低
位置A 点静止释放,则珠子所能获得的最大动能是多少?
2、降维、等效、临界思维在大题当中的应用
例1、如图所示,一个质量为m 、电荷量为+q 的小球(可视为质点),沿光滑绝缘斜槽从比A 点高出H 的
C 点由静止下滑,并从A 点水平切入一个横截面为正方形且边长为a 、高为h (h 可变)的有界匀强磁场区内(磁场方向沿竖直方向),A 为横截面一条边的中点,已知小球刚好能在有界磁场区内运动,最后从A
t
B B ωsin 0=
点正下方的D 点离开有界磁场区,求:
(1)磁感应强度的大小和方向; (2)有界磁场区域高度h 应满足的条件;
(3)在AD 有最小值的情况下,小球从D 点射出的速度.
例2、(2013·黄冈市高三年级3月份质量检测)如图所示,在平面直角坐标系的第一象限虚线左侧有方向沿y 轴负方向的有界匀强电场,电场强度大小为E ,第三象限内充满着垂直坐标平面向里的匀强磁场,磁感应强度大小为B .在电场区
域内有一动点P ,当质量为m 、电量为q 的带正电粒子从P 点沿x 轴负方向以大小为v 0的初速度开始运动,粒子能从O 点离开电场进入磁场.(不计粒子重力) (1)求P 点的坐标x ,y 满足的关系;
(2)若当P 点位于电场的右边界时,粒子运动到O 点的速度方向与x 轴负方向成45°.求第三象限内粒子可能经过的区域的面积
二、极限与放缩法在解决选择题中的
例1、如图所示,一根轻弹簧上端固定,下端挂一个质量为m 0的平盘,盘中有一质量为m 的物体,当盘静止时,弹簧的长度比其自然长度伸长了l .今向下拉盘使弹簧再伸长Δl 后停止,然后松手放开,设弹簧总处在弹性限度之内,则刚松手时盘对物体的支持力等于( )
A .(1+
Δl l )mg B .(1+Δl l )(m +m 0)g C.Δl l mg D.Δl
l
(m +m 0)g 例2、[2014·新课标Ⅱ卷] 如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的
小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )
A .Mg -5mg
B .Mg +mg
C .Mg +5mg
D .Mg +10mg
例3、从地面以大小为 v1 的初速度竖直向上抛出一个皮球,经过时间 t 皮球落回地面,落地时皮球速度的大小为 v2。
已知皮球在运动过程中受到空气阻力的大小与速度的大小成正比,重力加速度大小为 g 。
下面给出时间 t 的四个表达式中只有一个是合理的,你可能不会求解 t ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。
根据你的判断,t 的合理表达式应为( )
例4、(2012·安徽卷)如下图甲所示,半径为R 的均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出:
E =2πk σ⎣
⎢
⎡
⎦
⎥⎤1-
x R 2+x 2
12,方向沿x 轴.现考虑单位面积带电量为σ0
的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图乙所示.则圆孔轴线上任意一点Q (坐标为x )的电场强度为( )
A .2πk σ0
x r 2
+x
2
1
2
B .2πk σ0
r r 2
+x
2
12
C .2πk σ0x r
D .2πk σ0r x
例5、一不可伸长的轻质细绳跨过定滑轮后,两端分别悬挂质量为m 1和m 2的物体A 和B .若滑轮有一定大小,质量为m 且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦.设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确的.请你根据所学的物理知识,通过一定的分析,判断正确的表达式是( )
A .T 1=m +2m 2m 1g
m +2m 1+m 2
B .T 1=
m +2m 1m 2g
m +4m 1+m 2
g
v v t C 2
1+=
、g
v v t D 2
1-=
、g
v
t B 2
=、g
v v t A 21=、
C.T1=m+4m
2
m
1
g
m+2m
1
+m2
D.T1=m+4m
1
m
2
g
m+4m
1
+m2
三、极值与函数的配合在大题中的应用
例1、如图所示,光滑水平面右端B处连接一个竖直的半径为R的光滑半圆轨道,B点为水平面与轨道的切点,在离B处距离为x的A点,用水平恒力F(大小未知)将质量为m的小球从静止开始推到B 处后撤去恒力,小球沿半圆轨道运动到C处后又正好落回A点.求:
(1)推力F对小球所做的功;
(2)x取何值时,完成上述运动推力所做的功最少?最少的功为多少?
(3)x取何值时,完成上述运动推力最小?最小推力为多少?。