高二下学期第一次月考数学试卷
安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题(含答案解析)
安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设()*211111N 123n a n n n n n n=++∈+++,则2a 等于()A .14B .1123+C .111234++D .11112345+++2.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .23.若命题()()*A n n N ∈在()*n k k N =∈时命题成立,则有1n k =+时命题成立,现知命题对()*00n n n N=∈时命题成立,则有().A .命题对所有正整数都成立B .命题对小于0n 的正整数不成立,对大于或等于0n 的正整数都成立C .命题对小于0n 的正整数成立与否不能确定,对大于或等于0n 的正整数都成立D .以上说法都不正确4.我国古代著作《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭.”其含义是:一尺长的木棍,每天截去它的一半,永远也截不完.在这个问题中,记第n 天后剩余木棍的长度为n a ,数列{}n a 的前n 项和为n S ,则使得不等式6164n S >成立的正整数n 的最小值为().A .6B .5C .4D .35.已知正项等比数列{an }满足6856846832a a a =+,若存在两项m a ,n a ,12a =,则14m n+的最小值为()A .9B .73C .94D .1336.已知数列{}n a 的前n 项和122n n S +=-,若*n ∀∈N ,24n n a S λ≤+恒成立,则实数λ的最大值是()A .3B .4C .5D .67.等差数列{}n a 满足:10a >,31047a a =.记12n n n n a a a b ++=,当数列{}n b 的前n 项和n S 取最大值时,n =A .17B .18C .19D .208.“提丢斯数列”,是由18世纪德国数学家提丢斯给出,具体如下:0,3,6,12,24,48,96,192,…,容易发现,从第3项开始,每一项是前一项的2倍;将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,…;再将每一项除以10后得到:“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中,正确的是()A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9832410⋅+C .“提丢斯数列”前31项和为30321012110⋅+D .“提丢斯数列”中,不超过20的有9项二、多选题9.(多选题)已知三角形的三边构成等比数列,它们的公比为q ,则q 可能的一个值是()A .52B .32C .34D .1210.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则()A .45n a n =-B .23n a n =+C .223n S n n=-D .24n S n n=+11.(多选题)已知等比数列{}n a 的公比23q =-,等差数列{}n b 的首项112b =,若99a b >且1010a b >,则以下结论正确的有()A .9100a a ⋅<B .910a a >C .100b >D .910b b >12.设{}n a 是无穷数列,若存在正整数k ,使得对任意*N n ∈,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是()A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列C .已知2(1)nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22022n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<三、填空题13,…,则________项.14.已知数列{}n a 的前n 项和23nn S =-,则数列{}n a 的通项公式是______.15.如图,第n 个图形是由正2n +边形扩展而来的,则第2n -个图形中共有______个顶点.16.设等差数列{}n a 的前n 项和为n S ,若376,28S S ==,则14nn a a S ++的最大值是__四、解答题17.在数列{}n a 中,11a =,13n n a a +=.(1)求{}n a 的通项公式;(2)数列{}n b 是等差数列,n S 为{}n b 前n 项和,若1123b a a a =++,33b a =,求n S .18.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.19.已知数列{}n a 的前n 项和为n S ,且()22n n S a n N *=-∈(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .20.已知函数()f x 满足()()()f x y f x f y +=⋅且1(1)2f =.(1)当*n N ∈时,求()f n 的表达式;(2)设*()n a n f n n N =⋅∈,,求证:1232n a a a a +++⋯+<;21.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求n a ﹔(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <.22.习近平总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.山东某新能源公司年初购入一批新能源汽车充电桩,每台12800元,第一年每台设备的维修保养费用为1000元,以后每年增加400元,每台充电桩每年可给公司收益6400元.(15.7≈)(2)每台充电桩在第几年时,年平均利润最大.参考答案:1.C【分析】由已知通项公式,令2n =写出2a 即可.【详解】()*211111N 123n a n n n n n n=++++⋯+∈+++ ,2111234a ∴=++.故选:C.2.C【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{an }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.C【详解】由已知可得00(*)n n n =∈N 时命题成立,则有01n n =+时命题成立,在01n n =+时命题成立的前提下,可推得0(1)1n n =++时命题也成立,以此类推可知命题对大于或等于0n 的正整数都成立,但命题对小于0n 的正整数成立与否不能确定.本题选择C 选项.4.B【解析】将问题转化为等比数列求和问题,利用等比数列求和公式求得n S ,解不等式求得结果.【详解】由题意可知:数列{}n a 是以12为首项,12为公比的等比数列,11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,若6164n S >,则1611264n ->,即31642n >,6423n ∴>,又n N *∈,4642163=<,5642323=>,∴使得不等式6164n S >成立的正整数n 的最小值为5.故选:B.5.B【分析】利用等比数列的通项公式求出公比q 及m 与n 的关系式4m n +=,由于*,N m n ∈,所以采取逐一代入法求解最值即可.【详解】依题意,正项等比数列{an }满足6856846832a a a =+,所以6846836821112a qa q a q =+,即220q q --=,解得q =2或q =-1.因为数列{an }是正项等比数列,所以2q =,所以11·2n n a a -=.12a =,所以4m n +=,且*,N m n ∈,当m =1,n =3时,1473m n +=,当m =n =2时,1452m n +=,当m =3,n =1时,14133m n +=,则14m n +的最小值为73.故选:B .6.C【解析】先由n S 求出n a ,根据24n n a S λ≤+得到24n nS a λ+≤,求出24nn S a +的最小值,即可得出结果.【详解】因为数列{}n a 的前n 项和122n n S +=-,当2n ≥时,()()1122222n n nn n n a S S +-=-=---=;当1n =时,211222a S ==-=满足上式,所以2n n a =()*n N ∈,又*n ∀∈N ,24n n a S λ≤+恒成立,所以*n ∀∈N ,24nnS a λ+≤恒成立;令22121142222222224n n n n n n n n nS b a ++++-+====++,则211112212220222n n n n n n n n b b +++++⎛⎫⎛⎫-=+-+=-> ⎪⎝⎭⎝⎭对任意*n ∈N ,显然都成立,所以1222n n n b +=+单调递增,因此()21min 2252n b b ==+=,即24n n S a +的最小值为5,所以5λ≤,即实数λ的最大值是5.故选:C【点睛】思路点睛:根据数列不等式恒成立求参数时,一般需要分离参数,构造新数列,根据新数列的通项公式,判断其单调性,求出最值,即可求出参数范围(或最值).7.C【解析】根据已知条件求得1,a d 的关系,由此求得n b 的表达式,根据判断n b 的符号,由此求得数列{}n b 的前n 项和n S 取最大值时n 的值.【详解】设等差数列{}n a 的公差为d ,依题意10a >,31047a a =,则()()114279a d a d +=+,即1550,03a d d =-><.所以数列{}n a 的通项公式为()()155581133n a a n d d n d dn d =+-=-+-⋅=-.所以12n n n n b a a a ++=585552333dn d dn d dn d ⎛⎫⎛⎫⎛⎫=-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3585552333d n n n ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于30d <,所以当117n ≤≤时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当33185855528181818033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,331958555210191919033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=-⋅> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当20n ≥时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于318192027b b d +=->,所以当19n =时,n S 取得最大值.故选:C【点睛】本小题主要考查等差数列通项公式的基本量计算,考查分析、思考与解决问题的能力,属于中档题.8.C【分析】根据已知定义,结合等比数列的通项公式、前n 项和公式进行判断即可.【详解】记“提丢斯数列”为数列{}n a ,则当3n ≥时,310462n n a --=⋅,解得232410n n a -⋅+=,当2n =时,20.7a =,符合该式,当1n =时,10.550.4a =≠,故20.4,1324,2,10n n n a n n N -*=⎧⎪=⎨⋅+≥∈⎪⎩,故A 错误,而979932410a ⋅+=,故B 错误;“提丢斯数列”前31项和为()3002923232121223051051010⋅++⋅⋅⋅++⨯=+,故C 正确;令23242010n -⋅+≤,则219623n -≤,故2,3,4,5,6,7,8n =,而120a <,故不超过20的有8项,故D 错误,故选:C 9.BC【分析】由题意可设三角形的三边分别为aq,a ,aq (aq ≠0),再对q 分类讨论,解不等式即得解.【详解】解:由题意可设三角形的三边分别为aq,a ,aq (aq ≠0).因为三角形的两边之和大于第三边,①当q >1时,a q +a >aq ,即q 2-q -1<0,解得1<q;②当0<q <1时,a +aq >a q ,即q 2+q -1>0,解得12-+<q <1.综上,q 的取值范围是1(2-+∪,则可能的值是32与34.故选:BC 10.AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=,所以()4445n a a n d n =+-=-,()2451232n n nS n n --==-.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.11.AD【分析】根据等比数列{}n a 的公比203q =-<,可知9100a a ⋅<,A 正确;由于不确定9a 和10a 的正负,所以不能确定9a 和10a 的大小关系;根据题意可知等差数列{}nb 的公差为负,所以可判断出C 不正确,D 正确.【详解】对A , 等比数列{}n a 的公比23q =-,9a ∴和10a 异号,9100a a ∴<,故A 正确;对B ,因为不确定9a 和10a 的正负,所以不能确定9a 和10a 的大小关系,故B 不正确;对C D ,9a 和10a 异号,且99a b >且1010a b >,9b ∴和10b 中至少有一个数是负数,又1120b => ,0d ∴<910b b ∴>,故D 正确,10b ∴一定是负数,即100b <,故C 不正确.故选:AD.12.BCD【分析】设等比数列{}n a 的公比为(1)q q >,则11(1)n kn k n a a a q q -+-=-,当10a <时,n k n a a +<,可判断A ;24()n kn n kn a a k n k n++--=⋅+,令24()f n n kn =+-,利用其单调性可判断B ;]21()[(1)1n k n k n a a k +-=-⋅+--,分n 为奇数、偶数两种情况讨论可判断C ;若{}n a 是间隔递增数列且最小间隔数是3,则22)0(n k n a a k n t k +-=+->,*N n ∈成立,问题转化为对于22)2(2()0k n t k k t k +-≥+->,存在3k ≥使之成立,且对于20()2k t k +-≤,存在2k ≤使之成立,求解可判断D .【详解】设等比数列{}n a 的公比为(1)q q >,则111111()1n k n n k n k n a a a qa q a q q +---+-=-=-.因为1q >,所以当10a <时,n k n a a +<,故A 错误;244441()()n kn n kn a a n k n kk n k n n k n n k n +⎛⎫+-⎛⎫-=++-+=-=⋅⎪ ⎪+++⎝⎭⎝⎭,令24()f n n kn =+-,则()y f n =在*N n ∈上单调递增,令0(1)14f k =+->,解得3k >,此时0())1(f n f ≥>,n k n a a +>,故B 正确;()()[()]21212111]()[()n k n n k n k n a a n k n k ++-=++--+-⋅-=+--,当n 为奇数时,2()11kn k n a a k +-=--+,存在1k ≥,使0n k n a a +->成立;当n 为偶数时,2()11kn k n a a k +-=+--,存在2k ≥,使0n k n a a +->成立.综上{}n a 是间隔递增数列且最小间隔数是2,故C 正确;若{}n a 是间隔递增数列且最小间隔数是3,则2222()202202220()()()n k n a a n k t n k n tn k n t k +-=+-++--+=+->,*N n ∈成立,则对于22)2(2()0k n t k k t k +-≥+->,存在3k ≥使之成立,且对于20()2k t k +-≤,存在2k ≤使之成立.即对于(2)0k t +->,存在3k ≥使之成立,且对于0()2k t +-≤,存在2k ≤使之成立,所以23t -<,且22t -≥,解得45t ≤<,故D 正确.故选:BCD.13.7【分析】根据题中所给的数据,推出数列的通项公式,即可得出答案.【详解】解:∵1a =2a =3a =4a =n a =.=3n -1=20⇒n =7,∴7项.故答案为:7.14.1112,2n n n a n --=⎧=⎨≥⎩,【分析】根据21n n S =-求出首项、第二项,从而得出公比,从而求出数列{}n a 的通项公式.【详解】解:当1n =时,111231a S ==-=-,所以11a =-,当2n =时,2212231a a S +==-=,即得到22a =,因为23n n S =-①,所以当2n ≥时,1123n n S --=-②,①-②得()()11123232n n n n n n a S S ---=-=---=,当1n =时,11121a -==不满足11a =-,所以1112,2n n n a n --=⎧=⎨≥⎩,,故答案为:1112,2n n n a n --=⎧=⎨≥⎩,.【点睛】本题考查由数列的前n 项和求数列的通项公式,注意验证1n =的情况,属于中档题.15.()1n n +【分析】由n 边形有n 个顶点及图形的生成规律确定.【详解】由题意第2n -个图形是由n 边形的每边中间向外扩展n 边形得到,顶点数为2(1)n n n n +=+.故答案为:(1)n n +.16.17【分析】根据题意求得n a n =及4(4)(5)2n n n S +++=,化简14212(1)71n n a a S n n ++=++++,结合基本不等式,即可求解.【详解】设等差数列{}n a 的公差为d ,因为376,28S S ==,可得1133672128a d a d +=⎧⎨+=⎩,解得11,1a d ==,所以n a n =,所以4(4)(14)(4)(5)22n n n n n S ++++++==,则141221(4)(5)12127(1)747214n n a a n n n S n n +++==≤=++++++++,当且仅当3n =时,等号成立,所以14n n a a S ++的最大值是17.故答案为:17.17.(1)13n n a -=;(2)214n n -+.【分析】(1)由等比数列的定义可知数列{}n a 是首项为1,公比为3的等比数列,则{}n a 的通项公式易求;(2)由(1)得:1313,19b b ==,由此求得公差d ,代入等差数列前n 公式计算即可.【详解】(1)因为111,3n na a a +==所以数列{}n a 是首项为1,公比为3的等比数列,所以13n n a -=.(2)由(1)得:1123313913,19b a a a b =++=++==,则3124,2b b d d -==-=-,,所以()()21132142n n n n S n S n n +=+⨯-⇒=-+.【点睛】本题考查等差数列,等比数列的基本量计算,属基础题.18.(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--==-++,当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n ,有222221112221212121k k nn n k k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑,和223111211352321444444n n k k n n k k k n n c -==---==+++++∑∑ ①由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑ ,由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯-⨯=-⨯-,从而得:21565994n k n k n c =+=-⨯∑.因此,2212111465421949n n n n k k k n k k k n c c c n -===+=+=--+⨯∑∑∑.所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯.【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.19.(1)2nn a =(2)332n nn T +=-【分析】(1)根据11,1,2,N n nn S n a S S n n -=⎧=⎨-≥∈⎩,再结合等比数列的定义,即可求出结果;(2)由(1)可知12n nn b +=,再利用错位相减法,即可求出结果.【详解】(1)解:因为22n n S a =-,当1n =时,1122S a =-,解得12a =当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n n n a -=⨯=.(2)解:由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,所以2323412222n n n T +=++++L ①231123122222n n n n n T ++=++++ ②,①-②得23111111122222n n n n T ++⎛⎫=++++- ⎝⎭L 21111112211212n n n -+⎛⎫- ⎪+⎝⎭=+--1111133122222n n n n n ++++=+--=-.所以数列{}n b 的前n 项和332n n n T +=-20.(1)()*1()2n f n n ⎛⎫=∈ ⎪⎝⎭N ;(2)详见解析.【分析】(1)令1y =,将函数表示为等比数列,根据等比数列公式得到答案.(2)将n a 表示出来,利用错位相减法得到前N 项和,最后证明不等式.【详解】(1)令1y =,得()()()11f x f x f +=⋅,∴()()()11f n f n f +=⋅,即()()()()*111,22n f n f n n N f n +⎛⎫=∴=∈ ⎪⎝⎭(2)12n n a n ⎛⎫=⋅ ⎪⎝⎭,设121n a n n T a a a a a -=+++⋯++,则()23111111123122223n n n T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,①()()23111111111221322322n n n n T n n n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅++-+-+⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,②来①-②得11122n n ⎛⎫⎛⎫=-+⋅ ⎪ ⎪⎝⎭⎝⎭,23111111221111111112222222212n n n n n n T n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=+++++-⋅=-⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭- ()12222n n T n ⎛⎫∴=-+⋅< ⎪⎝⎭【点睛】本题考查了函数与数列的关系,错位相减法,综合性强,意在考查学生的计算能力和综合应用能力.21.条件选择见解析;(1)32n a n =-;(2)证明见解析.【解析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- -+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =;②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=;选择①②、①③、②③条件组合,均得11a =,3d =,故()13132n a n n =+-=-.(2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n nT b b b b =++++ 11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111331n ⎛⎫=- ⎪+⎝⎭,∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.22.(1)公司从第3年开始获利;(2)在第8年时,每台充电桩年平均利润最大【分析】(1)由题意知每年的维修保养费用是以1000为首项,400为公差的等差数列,由此可得第n 年时累计利润的解析式()6400[10001400(400600)]12800f n n n =-++++-L ,则()0f n >,解之即可;(2)每台充电桩年平均利润为()6420028f n n n n ⎛⎫=-+- ⎪⎝⎭,由基本不等式可求出最大值,注意等号成立的条件.【详解】(1)由题意知每年的维修保养费用是以1000为首项,400为公差的等差数列,设第n 年时累计利润为()f n ,()6400[10001400(400600)]12800f n n n =-++++-L 6400(200800)12800n n n =-+-2200560012800n n =-+-()22002864n n =--+,开始获利即()0f n >,∴()220028640n n --+>,即228640n n -+<,解得1414n -<<+5.7≈,∴2.625.4n <<,∴公司从第3年开始获利;(2)每台充电桩年平均利润为()642002828)2400f n n n n ⎛⎫=-+--= ⎪⎝⎭,当且仅当64n n=,即8n =时,等号成立.即在第8年时每台充电桩年平均利润最大为2400元.【点睛】本题考查等差数列的实际应用和利用基本不等式求最值,考查学生分析问题,解决问题的能力,根据条件列出符合题意的表达式是解本题的关键,属中档题.。
贵州省高二下学期第一次月考数学试题(解析版)
一、单选题1.设集合,集合N 为函数的定义域,则( ){}|12M x x =-≤≤()lg 1y x =-M N ⋂=A . B . C . D . ()12,[]12,[)12,(]12,【答案】D【分析】根据对数的真数为正数化简集合,进而由集合的交运算即可求解. (1,)N =+∞【详解】由,所以, 101x x ->⇒>(1,)N =+∞又,所以, {}|12M x x =-≤≤(]1,2M N = 故选:D2.若,则( ) 43z i =-zz =A .1 B .-1C .D .4355i +4355i -【答案】C【分析】根据共轭复数与模长的求解计算即可.【详解】因为,故. 43z i =-4355z i z==+故选:C.3.已知椭圆中,长轴长为10 )22221(0)x y a b a b +=>>A .B .10C .D .【答案】A【分析】根据椭圆长轴和离心率的概念即可求解.【详解】,所以;又因为 210a = 5a =c e a ==得c =2c =故选:A.4.设是直线,,是两个不同的平面,下列命题中正确的是( ) l αβA .若,,则 //l α//l β//αβB .若,,则 αβ⊥l α⊥l β⊥C .若,,则 αβ⊥//l αl β⊥D .若,,则 //l αl β⊥αβ⊥【答案】D【解析】由线面平行的性质和面面平行的判定可判断选项A ;由面面垂直的性质定理和线面平行的性质可判断选项B ;由面面垂直的性质定理和线面位置关系可判断选项C ;由线面平行的性质和面面垂直的判定定理可判断选项D ;【详解】对于选项A :若,,则或与相交,故选项A 不正确; //l α//l β//αβαβ对于选项B :若,,则或,故选项B 不正确;αβ⊥l α⊥//l βl β⊂对于选项C :若,,则或或与相交,故选项C 不正确;αβ⊥//l α//l βl β⊂l β对于选项D :若,由线面平行的性质定理可得过的平面,设,则,所以//l αl γm γα= //m l ,再由面面垂直的判定定理可得,故选项D 正确;m β⊥αβ⊥故选:D5.已知{}是等差数列,且,则=( ) n a 466,4a a ==10a A .2 B .0C .D .2-4-【答案】B【分析】根据等差数列基本量的计算即可求解.【详解】设等差数列的首项为,公差为,由,即,解得. {}n a 1a d 4664a a =⎧⎨=⎩113654a d a d +=⎧⎨+=⎩191a d =⎧⎨=-⎩所以,所以. 1(1)9(1)10n a a n d n n =+-=--=-+1010100a =-+=故选:B6.已知点P (x ,y )是曲线上的一动点,则点P (x ,y )到直线的距离的最小值为2y x =240x y --=( ) ABCD .35【答案】C【分析】当曲线在点P 处的切线与已知直线平行时点P 到该直线的距离最小,结合导数的几何意义和点到直线的距离公式计算即可求解.【详解】当曲线在点P 处的切线与直线平行时,点P 到该直线的距离最小,240x y --=,2y x '=由直线的斜率,则, 240x y --=2k =22x =得,有,所以, 1x =21y x ==(1,1)P ∴到直线距离. (1,1)P 240x y --=d ==故选:C.7.如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是( )A .B .C .D .22sin 1xy x =+321x xy x -=+22cos 1x xy x =+3231x xy x -+=+【答案】D【分析】利用赋值法,结合图形和排除法即可判断ABC ;利用导数和零点的存在性定理研究函数的单调性,结合图形即可判断D. 【详解】A :设,由得, ()22sin 1x f x x =+π3π2<<sin 30>则,结合图形,不符合题意,故A 错误; ()2sin 33010f =>B :设,则,结合图形,不符合题意,故B 错误;()321x xg x x -=+()10g =C :设,当时,,,22cos ()1x x h x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦cos [0,1]x ∈212x x +≥所以,即, 222cos 20111x x xx x ≤≤≤++0()1h x ≤≤当且仅当时等号成立,结合图形,不符合题意,故C 错误;1x =D :设,则, 323()1x xu x x -+=+(0)x >422263()(1)x x u x x --+'=+(0)x >设,则,42()63v x x x =--+(0)x >3()4120v x x x '=--<所以函数在上单调递减,且, ()v x (0,)+∞(0)30,(1)40v v =>=-<故存在,使得,0(0,1)x ∈0()0v x =所以当时,即,当时,即,0(0,)x x ∈()0v x >()0u x '>0(,)x x ∈+∞()0v x <()0u x '<所以函数在上单调递增,在上单调递减,结合图形,符合题意,故D 正确. ()u x 0(0,)x 0(,)x +∞故选:D.8.已知△ABC 的三个内角分别为A ,B ,C ,且满足,则的最大值为222sin 2sin 3sin C A B =-tan B ( ) ABCD .54【答案】B【分析】利用正弦定理及余弦定理表示,结合基本不等式求得的取值范围,从而求得cos B cos B 的取值范围,即得.tan B 【详解】依题意,222sin 2sin 3sin C A B =-由余弦定理得,, 22223c a b =-2222133b ac =-所以 222222222222114143333cos 2226a c a c a ca cb ac B ac ac ac ac+-+++-+====⋅,当且仅当时等号成立, 1263≥=2a c =即为锐角,,, B 2cos 13B ≤<22419cos 1,19cos 4B B ≤<<≤,222222sin 1cos 15tan 10,cos cos cos 4B B B B B B -⎛⎤===-∈ ⎥⎝⎦所以. tan B 故选:B.二、多选题9.下列说法正确的是( ) A .直线在y 轴上的截距为2 24y x +=B .直线必过定点(2,0) ()20R ax y a a --=∈C .直线的倾斜角为10x +=2π3D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】BD【分析】根据直线的截距式方程即可判断A ,根据直线恒过定点的求法即可判断B ,根据直线斜率的定义即可判断C ,根据垂直直线斜率之积为-1,结合直线的点斜式方程即可判断D. 【详解】A :直线在轴上的截距为,所以A 不正确; 24y x +=y 2-B :由,得,20ax y a --=(2)0x a y --=令,解得:,所以该直线恒过定点,故B 正确;200x y -=⎧⎨=⎩20x y =⎧⎨=⎩(2,0)C :设直线的倾斜角为,,斜率为 10x +=α(]0,απ∈由,故C 错误;tan α=56πα=D :由直线,得该直线的斜率为,230x y -+=12所以过点且垂直于直线的直线斜率为, (2,3)-230x y -+=2故其方程为,即,故D 正确. 32(2)y x -=-+210x y ++=故选:BD.10.斜率为1的直线l 经过抛物线的焦点F ,且与抛物线相交于两点则下24y x =()()1122,,,A x y B x y 列结论正确的有( ) A .B .抛物线的准线方程为 (1,0)F 1y =-C .D .3OA OB ⋅=-10AB =【答案】AC【分析】由抛物线的性质判断AB ;联立直线l 和抛物线方程,利用韦达定理,以及数量积公式、抛物线的定义判断CD.【详解】由抛物线知,焦点,准线方程为,所以A 正确,B 不正确.24y x =(1,0)F =1x -由,消去得:,所以, 214y x y x=-⎧⎨=⎩y 2610x x -+=126x x +=121=x x 所以,所以C 正确; 121212121212(1)(1)2()13OA OB x x y y x x x x x x x x ⋅=+=+--=-++=- 所以,所以D 不正确. 12||28AB x x =++=故选:AC11.已知函数,其图像相邻两条对称轴之间的距离为,且函数()()cos (0,2f x x πωϕωϕ=+><π2是奇函数,则下列判断正确的是( )π3f x ⎛⎫- ⎪⎝⎭A .函数f (x )的最小正周期为B .函数f (x )的图像关于点(,0)对称 ππ6C .函数f (x )在上单调递增D .函数f (x )的图像关于直线对称 3ππ4⎡⎤⎢⎥⎣⎦,7π12=-x 【答案】ABD【分析】利用函数图像相邻两条对称轴之间的距离为和函数是偶函数,求出π2π()3f x -,从而可判断选项A 正确;再利用余弦函数的图像与性质,可以判断出选项()cos(2π)6=+f x x BCD 的正误.【详解】因为函数图像相邻两条对称轴之间的距离为,则,π2π22T =πT ∴=又,2π,0T ωω=>2ω∴=又函数是偶函数,因为, π()3f x -ππ2π()cos(2())cos(2)333f x x x ϕϕ-=-+=-+所以,即, 2πππ(Z)32k k ϕ-+=+∈7ππ(Z)6k k ϕ=+∈又,,则.π2ϕ<π6ϕ∴=()cos(2π)6=+f x x 函数最小正周期,故选项A 正确; πT =函数图像对称点的横坐标为:,即, ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈令时,,故选项B 正确; 0k =π6x =又由:,得到 ππ2π22π(Z)6k x k k -+≤+≤∈7ππππ(Z)1212k x k k -+≤≤-+∈所以函数的单调增区间为:, ()cos(2π)6=+f x x 7πππ,π(Z)1212k k k ⎡⎤-+-+∈⎢⎥⎣⎦令时,得到一个增区间为: 1k =-5π11π,1212⎡⎤⎢⎥⎣⎦故选项C 错误;函数图像的对称所在直线方程为;, πππ2π,(Z)6122k x k x k +==-+∈令时,,故选项D 正确. 1k =-7π12=-x 故选:ABD12.将全体正整数按照以下排列的规律排成一个三角形数阵,下列结论正确的是( )A .第8行最右边的数为38B .第10行从右向左第个5数为51C .第10行所有数的和为505D .第64行从左向右第7个数为2023 【答案】BCD【分析】根据三角数阵可知第行共有个数,且第行的最后一个数字是:,即为n n n 123n ++++ .结合等差数列前n 项求和公式计算,依次判断选项即可. (1)2n n +【详解】由三角形数阵可知, ①第行共有个数;n n ②第行的最后一个数字是:,即为. n 123n ++++ (1)2n n +A :因为,故A 错误; 1234567836+++++++=B :因为,1234567891055+++++++++=所以第行中的个数字依次为.故B 正确; 101046,47,48,49,50,51,52,53,54,55C :由,故C 正确;()5545104655464748495051525354555052S S ⨯+-=+++++++++==D :由,知第行最后的一个数为;()6316312346320162⨯++++++== 632016所以第行中的数字从左到右依次为642017,2018,2019,2020,2021,2022,2023,2024,,第7个数为2023,故D 正确. L 故选:BCD.三、填空题13.已知函数的最小正周期为,则___________. ()()sin 0f x x ωω=>πω=【答案】2【分析】利用正弦型函数的周期公式可求得的值.ω【详解】因为函数的最小正周期为,则. ()()sin 0f x x ωω=>π2π2πω==故答案为:.214.已知直线和圆相交于、两点,则弦长:210l x y --=22:210C x y y +--=A B AB =__________.【详解】由圆方可知其圆心坐标为,半径∴C (0,1)r =d. AB ===点睛:本题主要考查了直线与圆相交求截得弦长问题,属于基础题;求直线被圆所截得的弦长时,根据圆的性质通常考虑由弦心距,弦长的一般作为直角边,圆的半径作为斜边,利用勾股定理来解决问题,通常还会用到点到直线的距离公式.15.已知双曲线,若过右焦点F 且倾斜角为的直线与双曲线的右支有两个22221(0,0)x y a b a b-=>>30 交点,则此双曲线离心率的取值范围是___________.【答案】【分析】根据题意可知双曲线的渐近线方程的斜率需小于直线的斜率,得,结合b y x a =b <.b =【详解】由题意知,双曲线的渐近线方程为, by x a=±要使直线与双曲线的右支有两个交点, 需使双曲线的渐近线方程的斜率小于直线的斜率, by x a=即,即,由tan 30b a ︒<=b <b =,整理得,所以 <2234c a <c e a =<因为双曲线中,所以双曲线的离心率的范围是, 1e >故答案为:. 16.已知三棱锥的所有顶点都在球O 的球面上,SC 是球O 的直径若平面平面S ABC -.SCA ⊥SCB ,,,三棱锥的体积为9,则球O 的表面积为______. SA AC =SB BC =S ABC -【答案】36π【详解】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得 ,解得r=3. 112932r r r ⨯⨯⨯⨯=球O 的表面积为: .2436r ππ=点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.四、解答题17.已知数列{a n }的前n 项和为S n ,且满足,. 13a =123n n S a ++=(1)求数列{a n }的通项公式;(2)若等差数列{b n }的前n 项和为T n ,且,,求数列的前n 项和Q n .11T a =33T a =11{}n n b b +【答案】(1)(2)3nn a =9(21)nn +【分析】(1)根据数列的通项与的关系,化简求得,得到数列是首项为n a n S 13()n n a a n N ++=∈{}n a 3、公比为3的等比数列,即求解通项公式; (2)由(1)可得,得到,利用裂项法,3(21)n b n =-()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭即可求解.【详解】(1)当时,得, 1n =29a =由,得,123n n S a ++=123(2)n n S a n -+=≥两式相减得,又,∴,112()n n n n S S a a -+-=-1n n n S S a --=13(2)n n a a n +=≥又,∴,显然, 213a a =13()n n a a n N ++=∈10,3n n na a a +≠=即数列是首项为3、公比为3的等比数列,∴;{}n a 1333n nn a -=⨯=(2)设数列的公差为,则有,{}n b d 13b =由得,解得,∴,33T a =13327b d +=6d =3(1)63(21)n b n n =+-⨯=-又, ()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭∴==. n 111111Q 1183352n 12n 1⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111182n 1⎛⎫- ⎪+⎝⎭()n 92n 1+【点睛】本题主要考查等比数列的定义及通项公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“裂项法”之后求和时,弄错项数导致错解,能较好的考查逻辑思维能力及基本计算能力等.18.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足.222sin sin sin sin sin A B C B C --=(1)求角A ;(2)若,求△ABC 周长的取值范围. 6a =【答案】(1) 2π3A =(2)(12,6+【分析】(1)根据正弦定理边角互化,可得,由余弦定理即可求解,222a b c bc --=(2)根据正弦定理得,由内角和关系以及和差角公式可得b B=1sin 2c B B ⎫=-⎪⎪⎭,进而由三角函数的性质即可求解.【详解】(1)由正弦定理可得:,222a b c bc --=,, 2221cos 22c b a A bc +-∴==-()0,πA ∈ 2π3A ∴=(2)因为,,所以,故πA B C ++=2π3A =π3B C +=ππ(0)33C BB =-<<由正弦定理得: 62πsin sin sin sin3a bc A B C====所以,b B=π1sin 32c C B B B ⎫⎛⎫==-=-⎪ ⎪⎪⎝⎭⎭所以周长 ABCA 1π6sin 623a b cB B B B ⎫⎛⎫=++=++-=++⎪ ⎪⎪⎝⎭⎭因为,则π03B <<ππ2π<333B <+πsin 13B ⎛⎫<+≤ ⎪⎝⎭故π12663B ⎛⎫<++≤+ ⎪⎝⎭求周长的取值范围为.ABC A (12,6+19.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.x y 21s 22s(1)求,,,;x y 21s 22s(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高). 【答案】(1);(2)新设备生产产品的该项指标的均值较旧设221210,10.3,0.036,0.04x y s s ====备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】(1), 9.810.31010.29.99.81010.110.29.71010x +++++++++==, 10.110.410.11010.110.310.610.510.410.510.310y +++++++++==, 22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==. 222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==(2)依题意,, 0.320.15y x -==⨯===,所以新设备生产产品的该项指标的均值较旧设备有显著提高. y x -≥20.设函数,其中.22()3ln 1f x a x ax x =+-+0a >(1)讨论的单调性;()f x (2)若的图象与轴没有公共点,求a 的取值范围.()y f x =x 【答案】(1)的减区间为,增区间为;(2). ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭1a e >【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据及(1)的单调性性可得,从而可求a 的取值范围.()10f >()min 0f x >【详解】(1)函数的定义域为,()0,∞+又, ()23(1)()ax ax f x x+-'=因为,故,0,0a x >>230ax +>当时,;当时,; 10x a<<()0f x '<1x a >()0f x '>所以的减区间为,增区间为. ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭(2)因为且的图与轴没有公共点,()2110f a a =++>()y f x =x 所以的图象在轴的上方,()y f x =x 由(1)中函数的单调性可得, ()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭故即. 33ln 0a +>1a e>【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化. 21.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥体积最大时,求面MAB 与面MCD 所成二面角的正切值.M ABC -【答案】(1)证明见解析;(2)2.【分析】(1)证得平面,结合面面垂直的判定定理即可证出结论;DM ⊥BMC (2)当在的中点位置时体积最大,建立空间直角坐标系,利用空间向量的夹角坐标公式即M A AB 可求出结果.【详解】(1)由题设知,平面平面,交线为.CMD ⊥ABCD CD 因为,平面,BC CD ⊥BC ⊂ABCD 所以平面,平面,BC ⊥CMD DM ⊂CMD 故,因为是上异于,的点,且为直径, BC DM ⊥M A CDC D DC 所以,又,平面,DM CM ⊥BC CM C =I ,BC CM ⊂BMC 所以平面,而平面,DM ⊥BMC DM ⊂AMD故平面平面;AMD ⊥BMC (2)以D 为坐标原点,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间DA x DC y 直角坐标系.D xyz -当三棱锥M −ABC 体积最大时,M 为的中点.CD 由题设得,()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设是平面MAB 的法向量,则(),,n x y z = 即,可取, 00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ 2020x y z y -++=⎧⎨=⎩()1,0,2n = 又是平面的一个法向量,因此 DAMCD, cos ,n DA n DA n DA ⋅=== []0π,,n DA ∈ 得, sin ,n DA = tan ,2n DA = 所以面与面所成二面角的正切值是.MAB MCD 222.已知椭圆的左,右焦点分别为、,离心率为,直线l 经过点2222:1(0)x y C a b a b+=>>1F 2F 122F 且与椭圆C 交于不同两点A ,B ,当A 是椭圆C 上顶点时,l 与圆相切.223x y +=(1)求椭圆C 的标准方程;(2)求的取值范围.11F A F B ⋅ 【答案】(1) 2211612x y +=(2)[]12.7-【分析】(1)根据题意列出方程组,解之即可;22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩(2)当直线的斜率不存在时,易得;当直线的斜率存在时,设直线方程为l 117F A F B ⋅= l ,,,联立椭圆方程,利用韦达定理和平面向量数量积的坐标表示可得(2)y k x =-11(,)A x y 22(,)B x y ,令得,结合不等式的性质计算即可求解. 11F A F B ⋅= 22283634k k -+2343t k =+≥11577F A F B t ⋅=- 【详解】(1)当A 为椭圆的上顶点时,直线l 与圆相切, 则圆心到直线l ,a =有,得,1122bc a =bc =则,解得22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩4,a b ==所以椭圆的标准方程是; C 2211612x y +=(2)由(1)知,则椭圆的左焦点,当直线的斜率不存在时,2c =1(2,0)F -l 易求得,,则;(2,3)A (2,3)B -11443(3)7F A F B ⋅=⨯+⨯-= 当直线的斜率存在时,设直线方程为,,. l (2)y k x =-11(,)A x y 22(,)B x y 由,消得,, ()22211612y k x x y ⎧=-⎪⎨+=⎪⎩y 2222(34)1616480k x k x k +-+-=, 21221634k x x k ∴+=+2122164834k x x k-=+ 21112121212(2)(2)(2)(2)(2)(2)F A F B x x y y x x k x x ⋅=+++=+++--2221212(1)2(1)()4(1)k x x k x x k =++-+++, 2222222221648162836(1)2(1)4(1)343434k k k k k k k k k --=+⨯+-⨯++=+++令,则, 2343t k =+≥2112283675757734k t F A F B k t t--⋅===-+ ,,, 3t ≥ 1103t <≤571277t -≤-<综上可知,的取值范围是. 11F A F B ⋅ []12,7-。
新疆高二下学期第一次月考数学试题(解析版)
高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。
高二月考数学试卷及答案
高二年级第一次月考数学试卷说明:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,总分150分,考试时间为120分钟。
2.第Ⅰ卷为单项选择题,共60分;第Ⅱ卷为非选择题,共90分。
请将答案答在答题卡上,交卷时只交答题卡。
第Ⅰ卷 选择题 (共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求)1.命题“∀x >0,都有x 2-x ≤0”的否定是 BA .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >02.一个年级有12个班,每个班有50名学生,随机编为1~50号,为了了解他们的课外兴趣爱好,要求每班编号是40号的学生留下来进行问卷调查,这里运用的抽样方法是 DA .分层抽样法B .抽签法C .随机数表法D .系统抽样法3. 设x 是实数,则“x >0”是“|x |>0”的 AA .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要4.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.有下列几种说法:①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.其中正确的个数为 DA .1B .2C .3D .45. 从装有2个红球和2个白球的袋内任取2个球,则互斥而不对立的两个事件是CA.至少有1个红球和全是白球B.至少有1个白球和全是白球C.恰有1个白球和恰有两个白球D.至少有1个白球和全是红球6.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是DA.81B. 83C. 85D. 87 7.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为 CA .14B .20C .30D .558根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 BA .63.6万元B .65.5万元C .67.7万元D .72.0万元9. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 DA .2B .3C .5D .710. 动点P 与点1(05)F ,与点2(05)F -,满足126PF PF -=,则点P 的轨迹方程为D A.221916x y -=B.221169x y -+=C.221(3)169x y y -+=≥D.221(3)169x y y -+=-≤ 11.双曲线两条渐近线的夹角为60º,该双曲线的离心率为 AA .332或2B .332或2 C .3或2 D .3或2 12. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为 D A.12 B .-12 C.13 D .-13解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a 2, 所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13, 即k 1·k 2的值为-13. 答案 D第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分)13. 两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率为 . 1314.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 02+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.a ≤-2或a ≥115.椭圆2214x y +=的弦AB 的中点为1(1,)2P ,则弦AB 所在直线的方程是 . 220x y +-=16.如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.27-5解 直线A 1B 2的方程为x -a +y b =1,直线B 1F 的方程为x c +y -b=1,二者联立,得 T (2ac a -c ,b (a +c )a -c ),则M (ac a -c ,b (a +c )2(a -c ))在椭圆x 2a 2+y 2b 2=1(a >b >0)上, ∴c 2(a -c )2+(a +c )24(a -c )2=1, c 2+10ac -3a 2=0,e 2+10e -3=0,解得e =27-5.三.解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(1)已知x,y (2)估计使用年限为10年时,维修费用是多少?( ∑i =15x 2i =90,∑i =15x i y i =112.3, b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2)解: (1)计算得:x =4,y =5,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=112.3-5×4×590-5×42=1.23, 于是:a ^=y -b ^ x =5-1.23×4=0.08,即得线性回归方程y ^=1.23x +0.08.8分(2)把x =10代入线性回归方程y ^=1.23x +0.08得y =12.38,因此,估计使用10年维修费用是12.38万元.……………………………………………………………12分18. (本小题满分12分) 已知命题p :方程x 22m +y 29-m=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈(62,2),如果p ∨q 真,p ∧q 假,求实数m 的取值范围.解: 若p 真,则有9-m >2m >0,即0<m <3.若q 真e 2=1+b 2a 2=1+m 5∈(32,2),即52<m <5. ∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假.①若p 真、q 假,则0<m <3,且m ≥5或m ≤52,即0<m ≤52; ②若p 假、q 真,则m ≥3或m ≤0,且52<m <5,即3≤m <5. 故所求范围为:0<m ≤52或3≤m <5. 19. (本小题满分12分) 黄种人群中各种血型的人所占的比例如下:不能互相输血,小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1)对任一人,其血型为A 、B 、AB 、O 型血的事件分别记为A ′、B ′、C ′、D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.因为B 、O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B ′∪D ′.根据互斥事件的加法公式,有P (B ′∪D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64.(2)由于A 、AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A ′∪C ′,且P (A ′∪C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.∴任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.20. (本小题满分12分) 一汽车厂生产A 、B 、C 三类轿车,每类轿车均有舒适型和标准A 类轿车10辆.(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解:(1)设该厂本月生产轿车为n 辆,由题意得,50n =10100+300,所以n =2 000. z =2 000-100-300-150-450-600=400. ……………………………………4分(2)设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以4001 000=m 5,解得m =2,也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2,B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,S 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).所以从中任取2辆,至少有1辆舒适型轿车的概率为710.…………………………8分 (3)样本的平均数为x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9, 那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8.所以该数与样本平均数之差的绝对值不超过0.5的概率为68=0.75. …………12分 21.(本小题满分12分)已知椭圆C :22221x y a b+= (0)a b >>的一个顶点为A (2,0),离心率为2,直线(1)y k x =-与椭圆C 交于不同的两点M ,N.(1)求椭圆C 的方程;(2)当AMN ∆的面积为3时,求k 的值. 【答案】22142x y += 1k =± 22.(本小题满分12分)设F 1、F 2分别为椭圆C :22228by a x + =1(a >b >0)的左、右两个焦点. (1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A (1,23)在椭圆上,因此222)23(21b+=1得b 2=3,于是c 2=1. 所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111y y x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程. (3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222b n a m -=1. 又设点P 的坐标为(x ,y ),由mx n y k m x n y k PN PM ++=--=,, 得k PM ·k PN =2222mx n y m x n y m x n y --=++⋅--, 将22222222,a b n b x a b y =-=m 2-b 2代入得k PM ·k PN =22a b .。
高二数学下学期第一次月考试卷(含解析)-人教版高二全册数学试题
某某市奉贤区奉城中学2014-2015学年高二(下)第一次月考数学试卷一、选择题(每个小题5分,共12个小题)1.设命题p:∀x>0,2x>log2x,则¬p为()A.∀x>0,2x<log2x B.∃x>0,2x≤log2xC.∃x>0,2x<log2x D.∃x>0,2x≥log2x2.已知命题p:∃x0∈R,sinx0≥,则¬p是()A.∃x0∈R,sinx0≤B.∃x0∈R,sinx0<C.∀x∈R,sinx≤D.∀x∈R,sinx<3.在△ABC中,“A=B”是“sinA=sinB”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如果命题p∨q为真命题,p∧q为假命题,那么()A.命题p、q都是真命题B.命题p、q都是假命题C.命题p、q至少有一个是真命题D.命题p、q只有一个真命题5.设命题p和命题q,“p∨q”的否定是真命题,则必有()A. p真q真B. p假q假C. p真q假D. p假q真6.下列说法中正确的是()A.合情推理就是正确的推理B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理过程D.类比推理是从特殊到特殊的推理过程7.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理出错在()A.大前提B.小前提C.推理过程D.没有出错8.下列几种推理过程是演绎推理的是()A.某校高三1班55人,2班54人,3班52人,由此得高三所有班级的人数超过50人B.由圆的周长C=πd推测球的表面积S=πd2C.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°D.在数列{a n}中,a1=1,a n=(a n﹣1+)(n≥2),由此归纳数列{a n}的通项公式9.已知i是虚数单位,则复数z=的虚部是()A. 0 B. i C.﹣i D. 110.已知z+5﹣6i=3+4i,则复数z为()A.﹣4+20i B.﹣2+10i C.﹣8+20i D.﹣2+20i 11.=()A.B.C. i D.﹣i12.i是虚数单位,复数=()A. 2﹣i B. 2+i C.﹣1﹣2i D.﹣1+2i二、填空题(每个小题5分,共4个小题)13.命题“∀x∈R,x2+x+1≥0”的否定是.14.已知“凡是9的倍数的自然数都是3的倍数”和“自然数n是9的倍数”,根据三段论推理规则,我们可以得到的结论是.15.已知复数z=2﹣i(i是虚数单位),则|z|=.16.若复数z=(m2﹣1)+(m+1)i为纯虚数,则实数m的值等于.三、解答题(共计6个小题,其中17小题10分,其他小题各12分)17.计算:(1+2i)÷(3﹣4i).18.写出命题“若a<b,则ac2<bc2”的逆命题,否命题,逆否命题.19.判断下列语句是不是命题,如果是,说明是全称命题还是特称命题.(1)任何一个实数除以1,仍等于这个数;(2)三角函数都是周期函数吗?(3)有一个实数x,x不能取倒数;(4)有的三角形内角和不等于180°.20.在数列{a n}中,a1=1,,试猜想这个数列的通项公式.21.实数m取什么值时,复数(m2﹣5m+6)+(m2﹣3m)i是(1)实数;(2)虚数;(3)纯虚数.22.m取何实数时,复数.(1)是实数?(2)是虚数?(3)是纯虚数?某某市奉贤区奉城中学2014-2015学年高二(下)第一次月考数学试卷参考答案与试题解析一、选择题(每个小题5分,共12个小题)1.设命题p:∀x>0,2x>log2x,则¬p为()A.∀x>0,2x<log2x B.∃x>0,2x≤log2xC.∃x>0,2x<log2x D.∃x>0,2x≥log2x考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题p:∀x>0,2x>log2x,则¬p为∃x>0,2x≤log2x.故选:B.点评:本题考查命题的否定同学明天与全称命题的否定关系,是基础题.2.已知命题p:∃x0∈R,sinx0≥,则¬p是()A.∃x0∈R,sinx0≤B.∃x0∈R,sinx0<C.∀x∈R,sinx≤D.∀x∈R,sinx<考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题所以,命题p:∃x0∈R,sinx0≥,则¬p是∀x∈R,sinx<.故选:D.点评:本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.在△ABC中,“A=B”是“sinA=sinB”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义结合正弦定理进行判断即可.解答:解:在△ABC中中,若A=B,则a=b,由正弦定理得sinA=sinB,即充分性成立,若sinA=sinB,则由正弦定理得a=b,即A=B,即必要性成立,故,“A=B”是“sinA=sinB”的充要条件,故选:C点评:本题主要考查充分条件和必要条件的判断,结合正弦定理是解决本题的关键.4.如果命题p∨q为真命题,p∧q为假命题,那么()A.命题p、q都是真命题B.命题p、q都是假命题C.命题p、q至少有一个是真命题D.命题p、q只有一个真命题考点:复合命题的真假.专题:简易逻辑.分析:根据p∨q,p∧q的真假和p,q真假的关系即可判断出p,q的真假情况.解答:解:由p∨q为真命题,p∧q为假命题知,p,q一真一假;即p,q中只有一个真命题;∴D正确.故选D.点评:考查“∨”“∧”两个符号的含义,以及p∧q,p∨q真假和p,q真假的关系.5.设命题p和命题q,“p∨q”的否定是真命题,则必有()A. p真q真B. p假q假C. p真q假D. p假q真考点:复合命题的真假.专题:简易逻辑.分析:由于“p∨q”的否定是真命题,可得p∨q是假命题,即可判断出p与q的真假.解答:解:∵“p∨q”的否定是真命题,∴p∨q是假命题,因此p与q都是假命题.故选:B.点评:本题考查了复合命题的真假判断方法,属于基础题.6.下列说法中正确的是()A.合情推理就是正确的推理B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理过程D.类比推理是从特殊到特殊的推理过程考点:合情推理的含义与作用.专题:阅读型.分析:合情推理的结论不一定正确可判定选项A,合情推理包含归纳推理与类比推理可判定选项B,归纳推理是从特殊到一般的推理过程可判定选项C,类比推理是从特殊到特殊的推理过程可判定选项D.解答:解:合情推理的结论不一定正确,有待证明,而演绎推理的结论是一定正确的,故选项A不正确;合情推理包含归纳推理与类比推理,故选项B不正确;所谓归纳推理,就是从个别性知识推出一般性结论的推理,是从特殊到一般的推理过程,故选项C不正确;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,是从特殊到特殊的推理过程.故选项D正确.故选D.点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到特殊的推理过程.7.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理出错在()A.大前提B.小前提C.推理过程D.没有出错考点:演绎推理的基本方法.专题:阅读型.分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.解答:解:∵任何实数的平方大于0,因为a是实数,所以a2>0,其中大前提是:任何实数的平方大于0是不正确的,故选A.点评:本题考查演绎推理的基本方法,考查实数的性质,这种问题不用进行运算,只要根据所学的知识,判断这种说法是否正确即可,是一个基础题.8.下列几种推理过程是演绎推理的是()A.某校高三1班55人,2班54人,3班52人,由此得高三所有班级的人数超过50人B.由圆的周长C=πd推测球的表面积S=πd2C.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°D.在数列{a n}中,a1=1,a n=(a n﹣1+)(n≥2),由此归纳数列{a n}的通项公式考点:演绎推理的意义.专题:探究型.分析:分别根据归纳推理,类比推理以及演绎推理的定义进行判断.解答:解:A.由高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人,属于归纳推理.B.由圆的周长C=πd推测球的表面积S=πd2,属于类比推理.C.直线平行的性质得到结论为演绎推理.D.根据条件推出数列的通项公式为归纳推理.故选C.点评:本题主要考查归纳推理,类比推理和演绎推理的判断,要求熟练掌握它们的区别和联系.9.已知i是虚数单位,则复数z=的虚部是()A. 0 B. i C.﹣i D. 1考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、虚部的定义即可得出.解答:解:复数z====i的虚部是1.故选:D.点评:本题考查了复数的运算法则、虚部的定义,属于基础题.10.已知z+5﹣6i=3+4i,则复数z为()A.﹣4+20i B.﹣2+10i C.﹣8+20i D.﹣2+20i考点:复数的代数表示法及其几何意义;复数相等的充要条件.专题:数系的扩充和复数.分析:直接利用复数的代数形式的混合运算,求出复数z即可.解答:解:∵z+5﹣6i=3+4i,∴z=3+4i﹣5+6i=﹣2+10i.故选:B.点评:本题考查复数的代数形式的混合运算,基本知识的考查.11.=()A.B.C. i D.﹣i考点:复数代数形式的混合运算.分析:化简复数的分母,再分子、分母同乘分母的共轭复数,化简即可.解答:解:故选A.点评:本题考查的知识点复数的运算,(乘法和除法),比较简单.12.i是虚数单位,复数=()A. 2﹣i B. 2+i C.﹣1﹣2i D.﹣1+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,即可.解答:解:复数=故选A点评:本题是基础题,考查复数代数形式的乘除运算,注意分母实数化,考查计算能力,常考题型.二、填空题(每个小题5分,共4个小题)13.命题“∀x∈R,x2+x+1≥0”的否定是∃x∈R,x2+x+1<0 .考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题“∀x∈R,x2+x+1≥0”的否定是:∃x∈R,x2+x+1<0;故答案为:∃x∈R,x2+x+1<0.点评:本题考查命题的否定特称命题与全称命题的关系,基本知识的考查.14.已知“凡是9的倍数的自然数都是3的倍数”和“自然数n是9的倍数”,根据三段论推理规则,我们可以得到的结论是自然数n是3的倍数.考点:演绎推理的基本方法.专题:规律型.分析:三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理.在三段论中,含有大项的前提叫大前提,如本例中的“凡是9的倍数的自然数都是3的倍数”;含有小项的前提叫小前提,如本例中的“自然数n是9的倍数”叫小前提.另外一个是结论.解答:解:由演绎推理三段论可得“三段论”推理出一个结论,则这个结论是:“自然数n是3的倍数”.故答案为:自然数n是3的倍数.点评:三段论推理是演绎推理中的一种简单判断推理.它包含两个性质判断构成的前提,和一个性质判断构成的结论.一个正确的三段论有仅有三个词项,其中联系大小前提的词项叫中项;出现在大前提中,又在结论中做谓项的词项叫大项;出现在小前提中,又在结论中做主项的词项叫小项.15.已知复数z=2﹣i(i是虚数单位),则|z|=.考点:复数求模.专题:数系的扩充和复数.分析:根据复数模长的定义直接进行计算即可.解答:解:∵复数z=2﹣i,∴|z|===.故答案为:.点评:本题主要考查复数的长度的计算,比较基础.16.若复数z=(m2﹣1)+(m+1)i为纯虚数,则实数m的值等于 1 .考点:复数的基本概念.专题:计算题.分析:由复数z的是不等于0,虚部不等于0列式计算m的值.解答:解:复数z=(m2﹣1)+(m+1)i当z是纯虚数时,必有:m2﹣1=0且m+1≠0解得,m=1.故答案为1.点评:本题考查了复数的基本概念,考查了复数是纯虚数的条件,复数为纯虚数,当且仅当实部等于0而虚部不等于0,是基础题.三、解答题(共计6个小题,其中17小题10分,其他小题各12分)17.计算:(1+2i)÷(3﹣4i).考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数除法的运算法则进行化简即可.解答:解:(1+2i)÷(3﹣4i)====+i.点评:本题主要考查复数的基本运算,根据复数除法的运算法则是解决本题的关键.18.写出命题“若a<b,则ac2<bc2”的逆命题,否命题,逆否命题.考点:四种命题间的逆否关系.专题:简易逻辑.分析:把原命题的题设和结论互换,得到原命题的逆命题;同时否定原命题的题设和结论,得到原命题的否命题;否定原命题的题设作结论,否定原命题的结论作题设,得到原命题的逆否命题.解答:解:命题“若a<b,则ac2<bc2”的逆命题:若ac2<bc2,则a<b;否命题:若a≥b,则ac2≥bc2;逆否命题:若ac2≥bc2,则a≥b.点评:本题考查四种命题的相互转化,解题时要注意四种命题的变换方法.19.判断下列语句是不是命题,如果是,说明是全称命题还是特称命题.(1)任何一个实数除以1,仍等于这个数;(2)三角函数都是周期函数吗?(3)有一个实数x,x不能取倒数;(4)有的三角形内角和不等于180°.考点:特称命题.专题:简易逻辑.分析:根据命题的定义以及特称命题与全称命题的定义,对题目中的语句进行判断即可.解答:解:对于(1),任何一个实数除以1,仍等于这个数,是命题,且是全称命题;对于(2),三角函数都是周期函数吗?不是命题;对于(3),有一个实数x,x不能取倒数,是命题,是特称命题;对于(4),有的三角形内角和不等于180°,是命题,是特称命题.点评:本题考查了命题的概念以及特称命题与全称命题的应用问题,是基础题目.20.在数列{a n}中,a1=1,,试猜想这个数列的通项公式.考点:数列递推式.专题:计算题.分析:根据已知的递推关系,可以构造出我们熟悉的等差数列.再用等差数列的性质进行求解.解答:解:根据,得2a n+1+a n+1a n=2a n,两边同时除以a n+1a n,得到,所以数列是公差为1的等差数列,且,所以,所以.点评:构造数列是对已知数列的递推关系式变形后发现规律,创造一个等差或等比数列,借此求原数列的通项公式,是考查的重要内容.21.实数m取什么值时,复数(m2﹣5m+6)+(m2﹣3m)i是(1)实数;(2)虚数;(3)纯虚数.考点:复数的基本概念.专题:计算题.分析:(1)当复数的虚部等于零,复数为实数,由此求得m的值.(2)当复数的虚部不等于零,复数为虚数,由此求得m的值.(3)当复数的实部等于零且虚部不等于零时,复数为纯虚数,即,由此求得m的值.解答:解:(1)当复数(m2﹣5m+6)+(m2﹣3m)i的虚部等于零,即m2﹣3m=0,求得m=0,或 m=3,即m=0,或 m=3时,复数为实数.(2)当复数(m2﹣5m+6)+(m2﹣3m)i的虚部不等于零,即m2﹣3m≠0,求得m≠0,且m≠3,即m≠0,且m≠3时,复数为虚数.(3)当复数的实部等于零且虚部不等于零时,复数为纯虚数,由,求得 m=2,即当 m=2时,复数为纯虚数.点评:本题主要考查复数的基本概念,属于基础题.22.m取何实数时,复数.(1)是实数?(2)是虚数?(3)是纯虚数?考点:复数的基本概念.专题:计算题.分析:(1)由虚部等于0且实部分母不等于0列式求解m的值;(2)由虚部不等于0且实部分母不等于0列式求解m的值;(3)由实部等于0且虚部不等于0列式求解m的值.word解答:解:(1)当,即,即m=5时,z的虚部等于0,实部有意义,∴m=5时,z是实数.(2)当,即时,z的虚部不等于0,实部有意义,∴当m≠5且m≠﹣3时,z是虚数.(3)当,即时,z为纯虚数,∴当m=3或m=﹣2时,z是纯虚数.点评:本题考查了复数的基本概念,考查了复数是实数、虚数、纯虚数的条件,关键是注意实部的分母不等于0,此题是基础的计算题.11 / 11。
吉林省长春市重点中学2022-2023学年高二下学期第一次月考数学试题
长春市重点中学2022—2023学年度下学期高二年级第一次月考数学试卷考试时间:90分钟 满分:120分一、单选题(本题共8小题,每小题5分,共40分.给出的四个选项中,只有一项符合题目要求.)1. 从1,2,3,4,5这五个数中任取两个不同的数,则这两个数都是奇数的概率是( ) A .0.1B .0.2C .0.3D .0.62. 函数()ln 2f x x x =-在1x =处的切线方程为 ( ) A.20x y += B.240x y --= C.30x y --=D.10x y ++=3. 已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,点F 到双曲线C 的一条渐近线的距离为12a ,则双曲线C 的渐近线方程为( )A .12y x =± B .2y x =± C .4y x =±D .14y x =±4.不论k 为任何实数,直线(21)(3)(11)0k x k y k --+--=恒过定点,则这个定点的坐标为( ) A.(2,3)-B.(2,3)C.(2,3)-D.(2,3)--5. 等差数列{}n a 的前n 项和记为n S ,满足2n =,则数列{}n a 的公差为( ) A .5B .6C .7D .86. 圆221:4C x y +=与圆222:44120C x y x y +-+-=的公共弦的长为( )B.2C. D.7. 某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植量是8万斤,每种植一斤藕,成本增加0.5元. 已知销售额函数是32191()8162f x x ax x =-++(x 是莲藕种植量,单位:万斤;销售额的单位:万元,a 是常数),若种植2万斤,利润是2.5万元,则要使利润最大,每年需种植莲藕( )A. 6万斤B. 8万斤C. 3万斤D. 5万斤8.已知F 是椭圆C :22221x y a b +=(a>b>0)的右焦点,点P 在椭圆C 上,线段PF 与圆222()39c b x y -+=相切于点Q ,且,则椭圆C 的离心率等于( )A.23 B. 12C.22D. 5二、多选题(本题共4小题,每小题5分,全部选对得5分,部分选对得2分,有选错的得0分.)9. 某社团开展“建党100周年主题活动——学党史知识竞赛”,甲、乙两人能得满分的概率分别为34,23,两人能否获得满分相互独立,则下列说法错误的是:( )A .两人均获得满分的概率为12 B .两人至少一人获得满分的概率为712C .两人恰好只有甲获得满分的概率为34 D .两人至多一人获得满分的概率为111210. 下列说法中,正确的是( )A.直线40x y --=与两坐标轴围成的三角形的面积是8B.过()11,x y ,()22,x y 两点的直线方程为112121y y x x y y x x --=-- C.过点(1,1)且与直线210x y ++=相互平行的直线方程是23y x =-+ D.经过点(1,2)且在两坐标轴上截距都相等的直线方程为30x y +-= 11. 已知函数()y f x =在R 上可导且(0)1f =,其导函数()f x '满足()()01f x f x x '->-,对于函数()()e xf xg x =,则下列结论正确的是( ) A.函数()g x 在(1,)+∞上为单调递增函数 B.1x =是函数()g x 的极小值点C.函数()g x 至多有两个零点D.0x ≤时,不等式()e x f x ≤恒成立12.已知等比数列{}n a 的前n 项和为n S ,且214S a =,2a 是11a +与312a 的等差中项,数列{}n b 满足:1nn n n a b S S +=⋅,数列{}n b 的前n 项和为n T ,则下列命题正确的是( )A .数列{}n a 的通项公式123n n a -=⨯ B .C .数列{}n b 的通项公式为()()1233131nn nn b +⨯=-- D .n T 的取值范围是11,86⎡⎫⎪⎢⎣⎭三、填空题(共2小题,每小题5分,共10分)13. 已知数列{}n a 中,13a =,26a =,21n n n a a a ++=-,则2020a =___________. 14. 已知函数2e ()(2ln )x f x k x x x =+-和2e ()xg x x=,若()g x 的极小值点是()f x 的唯一极值点,则k 的最大值为___________.四、解答题(本题共4小题,共50分,解答应写出文字说明、证明过程或者演算步骤)15.(12分)已知函数2()x x f x e=.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间1,2⎡⎫-+∞⎪⎢⎣⎭上的值域.16.(12分)当顾客在超市排队结账时,“传统排队法”中顾客会选他们认为最短的队伍结账离开,某数学兴趣小组却认为最好的办法是如图(1)所示地排成一条长队,然后排头的人依次进入空闲的收银台结账,从而让所有的人都能快速离开,该小组称这种方法为“长队法”. 为了检验他们的想法,该小组在相同条件下做了两种不同排队方法的实验. “传统排队法”的顾客等待平均时间为5分39秒,图(2)为“长队法”顾客等待时间柱状图.(1)根据柱状图估算使用“长队法”的100名顾客平均等待时间,并说明选择哪种排队法更适合;(2)为进一步分析“长队法”的可行性,对使用“长队法”的顾客进行满意度问卷调查,发现等待时间为[8,10)的顾客中有5人满意,等待时间为[10,12]的顾客中仅有1人满意,在这6人中随机选2人发放安慰奖,求获得安慰奖的都是等待时间在[8,10)顾客的概率.17.(12分)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.18.(14分)已知抛物线()2:20C y px p =>的焦点F 到准线的距离为12. (1)求抛物线C 的方程;(2)设点E 是抛物线C 上任意一点,求线段EF 中点D 的轨迹方程;(3)过点()3,1P -的直线与抛物线C 交于M 、N 两个不同的点(均与点()1,1A 不重合),设直线AM 、AN 的斜率分别为1k 、2k ,求证:12k k 为定值.参考答案一、单选题(本题共8小题,每小题5分,共40分. 给出的四个选项中,只有一项符合题目要求.)题号 1 2 3 4 5 6 7 8 答案 CCABDCAD二、多选题(本题共4小题,每小题5分,全部选对得5分,部分选对得2分,有选错的得0分.)题号 9 10 11 12 答案BCDACABCABD三、填空题(共2小题,每小题5分,共10分)13. ‐3 14.四、解答题(共50分)15.(12分)(1)单调递增区间为(0,2),单调递减区间为(,0),(2,)-∞+∞; (2)240,e ⎡⎤⎢⎥⎣⎦.【详解】(1)由题意得,(2)()xx x f x e-'=,令()0f x '>,得02x <<,令()0f x '<,得2x >或0x <,故函数()f x 的单调递增区间为(0,2),单调递减区间为(,0),(2,)-∞+∞.(2)易知241(0)0,(2),2e f f f e ⎛⎫==-=⎪⎝⎭因为221416(2)2e e e f f e-⎛⎫--== ⎪⎝⎭ 22221628(22)(22)042e e e e e e --+->==>, 所以1(2)2f f ⎛⎫>- ⎪⎝⎭.(或由244(2)9f e =>,134329e f ⎛⎫-=< ⎪⎝⎭1(2)2f f ⎛⎫>- ⎪⎝⎭),又当0x >时,2()0x x f x e =>,所以函数()f x 在区间1,2⎡⎫-+∞⎪⎢⎣⎭上的值域为240,e ⎡⎤⎢⎥⎣⎦.16.(12分)【详解】 (1)183125257369151146100⨯+⨯+⨯+⨯+⨯+⨯=(分钟)因为使用“长队法”顾客的平均等待时间长于使用“传统排队法”的顾客平均等待时间, 所以选择“传统排队法”更适合;(2)记事件A =“获得安慰奖的都是等待时间在[8,10)的顾客”,用1,2,3,4,5表示等待时间在[8,10)的满意顾客,用a 表示等待时间在[10,12]的满意顾客,Ω={(1,2),(1,3),(1,4)(1,5),(1,a ),(2,3),(2,4),(2,5),(2,a ),(3,4),(3,5),(3,a ),(4,5),(4,a ),(5,a )}n (Ω)=15,事件A 包含的样本点为(1,2),(1,3),(1,4)(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5), ()10n A =,()102()()153n A p A n ===Ω.17.(12分)【详解】 (1)设{a n }的公比为q (q >1).由题设得a 1q +a 1q 3=20,a 1q 2=8.整理得2q 2-5q +2=0,即(2q -1)(q -2)=0.解得q =12 (舍去)或q =2. a 1=2,所以{a n }的通项公式为a n =2n . (2)由题设及(1)知b 1=0,且当2n ≤m <2n +1时,b m =n .所以S 100=b 1+(b 2+b 3)+(b 4+b 5+b 6+b 7)+…+(b 32+b 33+…+b 63)+(b 64+b 65+…+b 100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480. 18.(14分)(1)2y x =(2)211216y x =- (3)证明见解析【详解】(1)解:由题意抛物线2:2C y px =的焦点为,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,又焦点到准线的距离为12,所以1222p p ⎛⎫--= ⎪⎝⎭,即12p =,所以抛物线方程为2y x =.(2)解:由(1)知1,04F ⎛⎫⎪⎝⎭,设00(,)E x y ,(,)D x y ,则001422x x y y ⎧+⎪=⎪⎨⎪=⎪⎩,即001242x x y y ⎧=-⎪⎨⎪=⎩, 而点00(,)E x y 在抛物线C 上,200y x =,21(2)24y x ∴=-,即211216y x =-,此即所求点D的轨迹方程.(3)证明:设1(M x ,1)y ,2(N x ,2)y ,直线MN 的方程为(1)3x t y =++, 代入抛物线方程得230y ty t ---=.所以2(2)80t ∆=++>,12y y t +=,123y y t =--. 所以12121222121212111111111(1)(1)y y y y k k x x y y y y ----⋅=⋅=⋅=----++ 12121111312y y y y t t ===-+++--++,所以12k k 是定值.。
河北省石家庄市十五中2022-2023学年高二下学期第一次月考数学试题
A. 1
B.0
C.1
D.2
3.如图,在四面体
OABC
中,G
是
BC
的中点,设
uuur OA
r a
,OuuBur
r b
uuur ,OC
r c
,则
uuur AG
()
A.
r a
1
r b
1
r c
22
C. 13 3
D. 15 5
二、多选题 9.函数 y f (x) 的导函数 f (x) 的图象如图所示,则下列结论正确的是( )
A. x 3是函数 y f (x) 的极值点 C. y f (x) 在区间 (3,1) 上单调
B. x = 1是函数 y f (x) 的最小值点 D. y f (x) 在 x 0 处切线的斜率小于 0
10.已知等差数列 {an } 的前
n
项和为
S
n
,
且
a 1
>
0, 2a 5
+
a 11
=
0, 则
A. a8 0
B.当且仅当 n= 7 时, Sn 取得最大值
C. S4 S9
D.满足 Sn 0 的 n 的最大值为 12
11.如图,一个结晶体的形状为平行六面体 ABCD A1B1C1D1 ,其中,以顶点 A 为端点 的三条棱长都相等,且它们彼此的夹角都是 60°,下列说法中正确的是( )
19.已知△ ABC 的顶点 C 1,5 ,边 AB 所在直线的方程为 y 0 ,边 BC 上的高 AH 所
在直线的方程为 x y 2 0 . (1)求顶点 A 与 B 的坐标;
天津高二下学期第一次月考数学试题(解析版)
一、单选题1.下列各式正确的是( ) A .B . ()cos sin x x '=()ln x x a a a '=C . D .ππsin cos 1212'⎛⎫= ⎪⎝⎭()5615xx --'=-【答案】B【分析】根据基本初等函数的求导公式判断.【详解】;;,,只有B 正确.(cos )sin x x '=-πsin 012'⎛⎫= ⎪⎝⎭56()5x x --'=-()ln x xa a a '=故选:B .2.函数的单调递减区间是( ) (e 3)()x f x x =-A . B . C . D .(),2-∞()0,3()1,4()2,+∞【答案】A【分析】求出导函数,由得减区间. ()f x '()0f x '<【详解】由已知, ()(3)(2)x x x f x e x e x e '=+-=-时,,时,,2x <()0f x '<2x >()0f x '>所以的减区间是,增区间是; ()f x (,2)-∞(2,)+∞故选:A .3.曲线在处的切线l 与坐标轴围成的三角形的面积为( )()2ln f x x x =x e =A .B .C .D .24e 2e 22e 22e 【答案】D【解析】先利用导数的几何意义求出切线方程,再分别求出直线与两坐标轴的交点坐标,即可得l 到切线l 与坐标轴围成的三角形的面积.【详解】由,得,则,,所以曲线在()2ln f x x x =()22ln f x x '=+()2f e e =()224f e '=+=()f x 处的切线的方程为,即.令得;令得.所以直x e =l ()24y e x e -=-42y x e =-0x =2y e =-0y =2ex =线与两坐标轴的交点坐标分别为,,所以切线与坐标轴围成的三角形的面积为l ()0,2e -,02e ⎛⎫⎪⎝⎭l . 212222e e e ⨯⨯=故选D.4.若对任意的实数恒成立,则实数的取值范围是( ) 0,ln 0x x x x a >--≥a A . B .C .D .(,1]-∞-(,1]-∞[1,)-+∞[1,)+∞【答案】A【解析】构造函数,利用导数研究函数在单调性,并计算()ln f x x x x a =--()f x ()0,∞+,可得结果.()min 0f x ≥【详解】令,()ln f x x x x a =--()0,x ∈+∞则,令()'ln f x x =()'01f x x =⇒=若时,01x <<()'0f x <若时,1x >()'0f x >所以可知函数在递减,在递增 ()f x ()0,1()1,+∞所以()()min 11f x f a ==--由对任意的实数恒成立 0,ln 0x x x x a >--≥所以 ()min 101f x a a =--≥⇒≤-故选:A【点睛】本题考查利用导数解决恒成立问题,关键在于构建函数,通过导数研究函数性质,属基础题.5.已知R 上的可导函数的图象如图所示,则不等式的解集为( )()f x ()()20x f x '->A .B . ()(),21,-∞-+∞ ()()212-∞-,,UC .D .()(),12,-∞+∞ ()()1,12,-+∞ 【答案】D【分析】由函数图象得出和的解,然后用分类讨论思想求得结论. ()0f x '>()0f x '<【详解】由图象知的解集为,的解集为,()0f x '>(,1)-∞-(1,)⋃+∞()0f x '<(1,1)-或,(2)()0x f x '->20()0x f x -⇔'>⎧⎨>⎩20()0x f x -<<'⎧⎨⎩所以或,解集即为. 2x >11x -<<()()1,12,-+∞ 故选:D .6.若函数在区间内存在单调递增区间,则实数的取值范围是( )2()ln 2f x x ax =+-1,22⎛⎫⎪⎝⎭a A . B . C . D .(,2]-∞-1,8⎛⎫-+∞ ⎪⎝⎭12,8⎛⎫-- ⎪⎝⎭(2,)-+∞【答案】D【分析】求出函数的导数,问题转化为在有解,进而求函数的最值,即212a x >-1(,2)221()2g x x =可求出的范围.a 【详解】∵, 2()ln 2f x x ax =+-∴,1()2f x ax x'=+若在区间内存在单调递增区间,则有解,()f x 1(,2)21()0,(,2)2f x x '>∈故, 212a x >-令,则在单调递增, 21()2g x x =-21()2g x x =-1(,2)2,1()()22∴>=-g x g 故. 2 a >-故选:D.7.已知函数在处有极值10,则的值为( ) 322()f x x ax bx a =--+1x =a b 、A ., B .,或, 4a =-11b =3a =3b =-4a =-11b =C ., D .以上都不正确1a =-5b =【答案】A【解析】根据条件函数在处有极值10,则有且,解出的值,然后()f x 1x =1(1)0f =()01f '=a b 、再代入检验是否满足条件,得出答案【详解】解:函数的导数为, 2()32f x x ax b '=--因为函数在处有极值10, 322()f x x ax bx a =--+1x =所以且.1(1)0f =()01f '=即,解得或. 2320110a b a b a --=⎧⎨--+=⎩33a b =⎧⎨=-⎩411a b =-⎧⎨=⎩当,,,3a =3b =-22()3633(1)0f x x x x '=-+=-…此时函数单调递增,所以此时函数没有极值,所以不满足条件. 所以经检验值当,时,满足条件. 4a =-11b =故选:A .【点睛】本题考查函数取极值的情况,求参数的值,注意要检验,属于中档题. 8.定义在R 上的偶函数,其导函数,当x ≥0时,恒有,若()f x ()f x '()()02xf x f x '+-<,则不等式的解集为( ) 2()()g x x f x =()(12)g x g x <-A .(,1)B .(∞,)∪(1,+∞)13-13C .(,+∞)D .(∞,)13-13【答案】A【分析】由已知可得,即在上单调递减,再利用函数的奇偶()[2()()]0g x x f x xf x ''=+<()g x [0,)+∞性、单调性,求解题设不等式即可.【详解】当时,,又, 0x ≥2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+()()()()022x xf x f x f x f x ''+-=+<∴,即在上单调递减. ()0g x '<()g x [0,)+∞∵是定义在R 上的偶函数, ()f x ∴是定义在R 上的偶函数,()g x 由不等式,则有, ()(12)g x g x <-(||)(|12|)g x g x <-∴,解得:. |||12|x x >-113x <<∴不等式的解集为. ()(12)g x g x <-1(,1)3故选:A9.设函数与是定义在同一区间上的两个函敉,若对任意的,都有()f x ()g x [],a b [],x a b ∈,则称与在上是“k 度和谐函数”,称为“k 度密切区()()()0f x g x k k -≤>()f x ()g x [],a b [],a b 间”.设函数与在上是“e 度和谐函数”,则m 的取值范围是( ) ()ln f x x =()1mx g x x -=1,e e ⎡⎤⎢⎥⎣⎦A .B .[]e 1,1--[]1,e 1-+C .D .1e,1e e ⎡⎤-+⎢⎥⎣⎦11e,1e e ⎡⎤+-+⎢⎥⎣⎦【答案】B【分析】由新定义转化为不等式恒成立,再转化为求函数的最值,从而得出结论. 【详解】由题意在时恒成立,即在时恒成1ln e mx x x --≤1[e]e x ∈,1e ln e m x m x-≤+≤+1[e]e x ∈,立, 设,则,1()ln h x x x=+22111()x h x x x x -'=-=时,,单调递减,时,,单调递增, 11ex ≤<()0h x '<()h x 1e x <≤()0h x '>()h x 所以,又,,所以,min ()(1)1h x h ==1(e 1e h =-1(e)1e 1e h =+<-max ()e 1h x =-因此由在时恒成立得:1e ln e m x m x-≤+≤+1[e]e x ∈,且,所以.e 1m -≤e e 1m +≥-1e 1m -≤≤+故选:B .【点睛】方法点睛:不等式恒成立问题的处理方法,解决函数不等式恒成立的常用方法是分离参数法,即不等式变形把参数与自变量分离,然后构造新函数,利用导数求得函数的最值,然后解相x 应不等式得参数范围.二、填空题10.已知函数的导函数为,且满足,则________. ()f x ()f x '()()121f x xf x'=+()1f '=【答案】1【分析】根据题意,求导可得,然后令,即可得到结果. ()f x '1x =【详解】因为,则, ()()121f x xf x '=+()()2121f x f x''=-令,可得,解得. 1x =()()1211f f ''=-()11f '=故答案为: 111.函数的单调减区间为_______ . ()219ln 2f x x x =-【答案】.()0,3【解析】利用导数研究函数单调性即可得到结论. 【详解】解:∵,, ()219ln 2f x x x =-0x >则,299()x f x x x x'-=-=由,即,解得 ,()0f x '<290x -<33x -<<,即函数的单调减区间为, 0,03x x >∴<< ()0,3故答案为:.()0,3【点睛】本题主要考查函数单调区间的求解,根据函数的导数和单调性之间的关系是解决本题的关键.12.函数的图象在点处的切线的倾斜角为__________ ()cos x f x e x =(0,(0))f 【答案】4π【详解】因为, ()cos sin x x f x e x e x -'=00(0)cos 0sin 01f e e -'==所以函数的图象在点处的切线的倾斜角为()cos x f x e x =(0,(0))f 4π13.已知函数对区间上任意的都有,则实数m 的最小3()3f x x x =-[3,2]-1,x 2x ()()12f x f x m -≤值是________. 【答案】20【分析】求出在上的最大值和最小值后由两者差可得的范围,即得的最小值、 ()f x [3,2]-m m 【详解】,则=0,,当或时,,3()3f x x x =-2()33f x x '=-1x =±31x -≤<-12x <≤()0f x '>递增,当时,,递减.()f x 11x -<<()0f x '<()f x 所以,,又,, ()(1)2f x f =-=极大值()2f x =-极小值(3)18f -=-(2)2f =所以在上,,[3,2]-()2,()18f x f x ==-最大值最小值所以的最大值为,即,所以的最小值为20. 12()()f x f x -2(18)20--=20m ≥m 故答案为:20.【点睛】本题考查用导数研究函数的最值,解题关键是命题对区间上任意的都有[3,2]-1,x 2x ,转化继.()()12f x f x m -≤12()()()()f x f x f x f x -≤-最大值最小值14.当时,函数有两个极值点,则实数m 的取值范围___________.0x >()22x f x e mx =-+【答案】 2e m >【分析】函数有两个极值点转化为方程有两个不同的实数根,等价于与有两个2xe m x =y m =2x e y x=不同的交点,构造函数,即可求出结果.()(0)2xe h x x x =>【详解】有两个极值点, 2()2xf x e mx =-+所以有两个不同的实数根,'()20x f x e mx =-+=即有两个不同的实数根,2xe m x=等价于与有两个不同的交点,y m =2xe y x =设, ()(0)2x e h x x x =>2(1)'()(0)2x e x h x x x -=>当单调递减, (0,1),'()0,()x h x h x ∈<当单调递增, (1+),'()0,()x h x h x ∈∞>,所以 min ()(1)2eh x h ==当;0()x h x →→+∞,+()x h x →∞→+∞,所以与要有两个不同的交点,只需y m =2xe y x=2e m >故答案为:2em >【点睛】方法点睛:含参方程有根的问题转化为函数图像的交点问题,数形结合,是常用的方法.本题考查了运算求解能力和数形结合思想,属于一般题目.三、双空题15.(1)设函数,其中,若存在唯一的整数,使得,则()()e 21xf x x ax a =--+1a <0x ()00f x <a 的取值范围是________.(2)已知,,若,,使得成立,则实数a 的()e xf x x =()()21g x x a =-++1x ∃2x ∈R ()()21f x g x ≤取值范围________. 【答案】3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭【分析】(1)根据题意转化为存在唯一的整数,使得在直线的下方,求导得0x ()0g x y ax a =-,然后结合图像即可得到结果;()g x '(2)根据题意,将问题转化为,然后求导得极值,即可得到结果.()()min max f x g x ≤【详解】(1)函数,其中,()()e 21xf x x ax a =--+1a <设,()()e 21,xg x x y ax a =-=-因为存在唯一的整数,使得,0x ()00f x <所以存在唯一的整数,使得在直线的下方, 0x ()0g x y ax a =-因为,所以当时,,()()e 21xg x x '=+12x <-()0g x '<当时,,12x =-()12min 12e 2g x g -⎛⎫=-=- ⎪⎝⎭当时,, 0x =()()01,1e>0g g =-=直线恒过点,斜率为,y ax a =-()1,0a 故,且,解得 ()01a g ->=-()113e g a a --=-≥--32ea >所以的取值范围是a 3,12e ⎡⎫⎪⎢⎣⎭(2),,使得成立,等价于,1x ∃2x ∈R ()()21f x g x ≤()()min max f x g x ≤因为,所以,()e x f x x =()()1e xf x x '=+当时,,则函数递减; 1x <-()0f x '<()f x 当时,,则函数递增; 1x >-()0f x ¢>()f x 所以时,,=1x -()min 1ef x =-因为,所以,()()21g x x a =-++()max g x a =所以,则实数的取值范围是.1e a -≤m 1,e ⎡-+∞⎫⎪⎢⎣⎭故答案为: (1);(2)3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭四、解答题16.已知函数(a ,),其图象在点处的切线方程为()()322113f x x ax a x b =-+-+b ∈R ()()1,1f .30x y +-=(1)求a ,b 的值;(2)求函数的单调区间和极值; ()f x (3)求函数在区间上的最大值. ()f x []2,5-【答案】(1),;1a =83b =(2)的增区间是和,减区间是,极大值是,极小值是;()f x (,0)-∞(2,)+∞(0,2)8(0)3f =()423f =(3)最大值是,最小值是. 5834-【分析】(1)由出导函数,计算和,由切线方程列方程组解得; ()f x '(1)f '(1)f ,a b (2)由得增区间,由得减区间,从而可得极值;()0f x '>()0f x '<(3)结合(2)可得函数在上的单调性,再计算出区间端点处的函数值,,与[2,5]-(2)f -(5)f (2)中极值比较可得最值.【详解】(1),,22()21f x x ax a '=-+-22(1)1212f a a a a '=-+-=-,2212(1)133f a a b a a b =-+-+=-+-又图象在点处的切线方程为,()()1,1f 30x y +-=所以,解得; 222121(303a a a a b ⎧-=-⎪⎨+-+--=⎪⎩183a b =⎧⎪⎨=⎪⎩(2)由(1)得,,3218()33f x x x =-+2()2(2f x x x x x '=-=-)或时,,时,,0x <2x >()0f x '>02x <<()0f x '<所以的增区间是和,减区间是, ()f x (,0)-∞(2,)+∞(0,2)极大值是,极小值是;8(0)3f =()423f =(3)由(2)知在和上递增,在上单调递减, ()f x [2,0]-[2,5](0,2)又,, (2)4f -=-58(5)3f =所以在上的最大值是,最小值是. ()f x [2,5]-5834-17.已知函数,其中是自然对数的底数,.()()21e xf x ax x =+-e a R ∈(1)若,求的单调区间;a<0()f x (2)若,函数的图象与函数的图象有个不同的交点,求实数的1a =-()f x ()321132g x x x m =++3m 取值范围.【答案】(1)答案见解析(2) 31,1e 6⎛⎫--- ⎪⎝⎭【分析】(1)求得,对实数的取值进行分类讨论,分析导数的符号变()()221e xf x ax a x '⎡⎤=++⎣⎦a 化,由此可得出函数的增区间和减区间;()f x (2)由可得出,构造函数()()f x g x =()232111e 32xm x x x x -=-+++,可知直线与函数的图象有三个交点,利用导数分析函()()232111e 32x h x x x x x =-+++y m =-()h x 数的单调性与极值,数形结合可得出实数的取值范围.()h x m 【详解】(1)解:当时,因为,该函数的定义域为, 0a <()()21e xf x ax x =+-R ,()()()()2221e 1e 21e x x xf x ax ax x ax a x '⎡⎤=+++-=++⎣⎦由可得或. ()0f x '=0x =21a x a+=-①当时,即当时,210a a+-<12a <-由可得或,由可得, ()0f x '<21a x a +<-0x >()0f x ¢>210a x a+-<<此时函数的单调递减区间为、,单调递增区间为; ()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+21,0a a +⎛⎫-⎪⎝⎭②当时,即当时,对任意的,且不恒为零, 210a a+-=12a =-x R ∈()0f x '≤()f x '此时函数的减区间为,无增区间; ()f x (),-∞+∞③当时,即当时,210a a+->102a -<<由可得或,由可得, ()0f x '<0x <21a x a +>-()0f x ¢>210a x a+<<-此时函数的单调递减区间为、,单调递增区间为.()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭210,a a +⎛⎫- ⎪⎝⎭综上所述,当时,函数的单调递减区间为、,单调递增区间为12a <-()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+; 21,0a a +⎛⎫- ⎪⎝⎭当时,函数的减区间为,无增区间; 12a =-()f x (),-∞+∞当时,函数的单调递减区间为、,单调递增区间为102a -<<()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭. 210,a a +⎛⎫- ⎪⎝⎭(2)解:当时,,1a =-()()21e x f x x x =-+-由可得,可得, ()()f x g x =()232111e 32x x x x x m -+-=++()232111e 32x m x x x x -=-+++令,则, ()()232111e 32x h x x x x x =-+++()()()2e 1x h x x x '=++由可得或,由可得.()0h x '>1x <-0x >()0h x '<10x -<<所以,函数的增区间为、,减区间为,()h x (),1-∞-()0,∞+()1,0-函数的极大值为,极小值为, ()h x ()311e 6h -=+()01h =因为函数、的图象有三个交点,()f x ()g x 所以,直线与函数的图象有三个交点,如下图所示:y m =-()h x由图可知,当时,即当时, 311e 6m <-<+311e 6m --<<-直线与函数的图象有三个交点,y m =-()h x 因此,实数的取值范围是. m 31,1e 6⎛⎫--- ⎪⎝⎭【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化x 归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数()0f x =()a g x =y a =的图象的交点问题.()y g x =18.已知函数()ln 1x f x me x =--(1)设是的极值点,求m ,并求的单调区间;2x =()f x ()f x (2)当时,求证:1m >()1f x >(3)当时,求证: 1m e>()0f x >【答案】(1),在上单调递减,在上单调递增; 21=2m e ()y f x =()0,2()2,∞+(2)证明见解析;(3)证明见解析.【分析】(1)先由是的极值点求出m ,再直接求单调区间;2x =()f x (2)用分析法,只需证明即可,构造函数,利用导数证明ln 20x e x -->()()ln 20x g x e x x =-->,即证;()min 0g x >(3)先判断时,,构造函数,利用导数证明当1m e >()ln 1xe f x x e >--()()ln 10x e p x x x e=-->时,,即证.0x >()()10p x p =≥【详解】解:定义域为 ()ln 1x f x me x =--()01()x f x me x=∞'+-,,(1)∵是的极值点,2x =()f x ∴,解得:. 21(2)=02f me '=-21=2m e 此时, 22111()ln 1()22x x f x e x f x e e e x'=--=-,当时;当时;02x <<()0f x '<2x >()0f x '>所以在上单调递减,在上单调递增.()y f x =()0,2()2,∞+(2)当时,,只需证即可.1m >()1ln 2ln 2x x f x me x e x -=-->--ln 20x e x -->令,则 ()()ln 20x g x e x x =-->()()111x x g x e =xe x x=--'令,则,()()10x h x xe x =->()0x x h x e xe '=>+∵∴存在,使得即,也可化为()121110,110,22h e h e ⎛⎫=-<=-> ⎪⎝⎭01,12x ⎛⎫∈ ⎪⎝⎭()00h x =0010x x e =-00ln 0x x +=∴在上,,则单调递减;在上,,则单调递增.()00x ,()0g x '<()g x ()0x +∞,()0g x '>()g x 所以 ()()000000000min 1ln 221221012x x g x g x =e x =e x x x x x ⎛⎫=--+->++-=-><< ⎪⎝⎭∵即证.(3)当时,, 1m e >()ln 1xe f x x e>--令,则 ()()ln 10x e p x x x e=-->()1x e p x e x '=-令,解得x =1, ()10x e p x =e x'=-∴在上,,则单调递减;在上,,则单调递增. ()01,()0p x '<()p x ()1+∞,()0p x '>()p x ∴,故当时,.()()min 10p x =p =0x >()()10p x p =≥∴时,都有. 1m e>()0f x >【点睛】导数的应用主要有:(1)利用导数研究原函数的单调性,求极值(最值);(2)利用导数求参数的取值范围.(3)构造新函数,利用导数判断单调性,证明不等式成立19.已知函数,.()ln f x x x =()()1g x a x a =+-(1)求函数的极值;()()()h x f x g x =-(2)若存在时,使成立,求的取值范围.[]1,e x ∈()223f x x ax ≥-+-a (3)若不等式对任意恒成立,求实数的取值范围.()()()12e x h x x a a -≤--+[)1,x ∈+∞a 【答案】(1)函数有极小值,无极大值;()h x ()ee a a h a =-(2); 32e e a ≤++(3).(],0-∞【分析】(1)由题可得,然后根据导数与函数极值的关系即得;()()ln 1x x x h x a a =-++(2)由题可得存在,成立,构造函数,利用导[]1,e x ∈32ln a x x x ≤++()[]32ln ,1,e F x x x x x=++∈数求函数的最值即得;(3)设,由题可得对任意恒成立,利用导数可得()()1e xg x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞,进而可得只需在上单调递增,即在0ln 1x x ≤≤-()()1e x g x x a =--[)0,+∞()()e 0x g x x a '=-≥上恒成立,即得.[)0,+∞【详解】(1)因为,()()()()ln 1h x x x x a x a f x g =-=++-∴,()()ln 1n 1l h x x a x a -+='+-=由,可得,由,可得,()0h x '<0e a x <<()0h x '>e a x >∴在上单调递减,在上单调递增, ()h x ()0,e a ()e ,a+∞所以,当时,函数有极小值,无极大值;e a x =()h x ()e e a a h a =-(2)由,可得, ()222ln 3f x x x x ax =≥-+-32ln a x x x≤++即存在,成立, []1,e x ∈32ln a x x x≤++设,则, ()[]32ln ,1,e F x x x x x =++∈()()()22132310x x F x x x x -+'=+-=≥所以函数在上单调递增,, ()F x []1,e ()()max 3e 2e eF x F ==++所以; 32e ea ≤++(3)由题可知对任意恒成立, ()()()1ln 12ex x x a x x a --+≤--[)1,x ∈+∞即对任意恒成立, ()()()1ln ln 1e 11ex x x a x a ---≤---⎡⎤⎣⎦[)1,x ∈+∞设,则对任意恒成立,()()1e x g x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞下面证明对任意恒成立,0ln 1x x ≤≤-[)1,x ∈+∞设,,()ln 1t x x x =-+[)1,x ∈+∞则在上恒成立,且仅在时取等号, ()1110x t x x x-'=-=≤[)1,+∞=1x 所以在上单调递减,()ln 1t x x x =-+[)1,+∞∴,即,()()10t x t ≤=0ln 1x x ≤≤-所以对任意恒成立,只需在上单调递增, ()()ln 1g x g x ≤-[)1,x ∈+∞()()1e xg x x a =--[)0,+∞即在上恒成立,()()e 0x g x x a '=-≥[)0,+∞所以在上恒成立,a x ≤[)0,+∞所以,即实数的取值范围为.0a ≤a (],0-∞【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;; ()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
2023-2024学年陕西省西安市西工大附中高二(下)第一次月考数学试卷(含解析)
2023-2024学年陕西省西安市西工大附中高二(下)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架上任取1本书,不同的取法有( )A. 3种B. 6种C. 9种D. 24种2.(x−2)5的展开式中x3的系数为( )A. 40B. −40C. 80D. −803.高中数学新教材有必修一和必修二,选择性必修有一、二、三共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是( )A. 72B. 144C. 48D. 364.设等差数列{a n}的前n项的和为S n,若a2+a8+a17=6,则S17=( )A. 17B. 34C. 51D. 1025.若函数f(x)=xlnx−ax+1在[e,+∞)上单调递增,则实数a的取值范围是( )A. (−∞,2)B. (−∞,2]C. (2,+∞)D. [2,+∞)6.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左,右焦点分别为F1、F2,过F1的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若|F1P|=2|F1H|,则双曲线C的离心率为( )A. 132B. 5C. 25D. 137.中国救援力量在国际自然灾害中为拯救生命作出了重要贡献,很好地展示了国际形象,增进了国际友谊,多次为祖国赢得了荣誉.现有5支救援队前往A,B,C三个受灾点执行救援任务,若每支救援队只能去其中的一个受灾点,且每个受灾点至少安排1支救援队,其中甲和乙两支救援队必须去同一个受灾点,则不同的安排方法数是( )A. 18B. 24C. 36D. 488.已知函数f(x)=(x2−x−1)e x,设关于x的方程f2(x)−mf(x)=5e(m∈R)有n个不同的实数解,则n的所有可能的值为( )A. 3B. 1或3C. 4或6D. 3或4或6二、多选题:本题共3小题,共18分。
安徽省蚌埠市第二中学20222023学年高二下学期第一次月考数学试卷(学生用卷)
安徽省蚌埠市第二中学2022-2023学年高二下学期第一次月考数学试卷一、单选题(共8小题,每题5分,共40分)1. 已知数列{a n}的通项公式为a n=,则该数列的前4项依次为( )A. 1,0,1,0B. 0,1,0,1C. ,0,,0D. 2,0,2,02.设a n=++++…+(n∈N*),则a2等于( )A. B. + C. ++ D. +++3. 已知数列{a n}的通项公式a n=log(n+1)(n+2),则它的前30项之积是( )A. B. 5 C. 6 D.4. 若数列的通项公式为a n=,则这个数列中的最大项是( )A. 第12项B. 第13项C. 第14项D. 第15项5. 已知数列{a n}的通项公式是a n=,那么这个数列是( )A. 递增数列B. 递减数列C. 摆动数列D. 常数列6. 已知各项均为正数的等比数列{a n}的前4项的和为15,且a5=3a3+4a1,则a3等于( )A. 16B. 8C. 4D. 27. 如果数列a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1,公比为的等比数列,那么a n=( )A. B. C. D.8. 已知数列{a n}满足a n=(n∈N*),且数列{a n}是递增数列,则实数a的取值范围是( )A. (2,3)B. [2,3)C.D. [2,3]二、多选题(共4小题,共20分)9. 在数列{a n}中,如果对任意n∈N*都有=k(k为常数),则称{a n}为等差比数列,k称为公差比,现给出下列命题,其中正确的是( )A. 等差比数列的公差比一定不为0B. 等差数列一定是等差比数列C. 若a n=-3n+2,则数列{a n}是等差比数列D. 若等比数列是等差比数列,则其公比等于公差比10. 设等差数列的前n项和为S n,且S4=S5,S6=21,若++…+<λ恒成立,则λ的值不可以是( )A. 1B. 0C. -1D. 211. 已知数列是各项均为正数且公比不等于1的等比数列,对于函数f,若数列{ln f(a n)}为等差数列,则称函数f为“保比差数列函数”,则定义在(0,+∞)上的如下函数中是“保比差数列函数”的有( )A. f(x)=为“保比差数列函数”B. f=x2为“保比差数列函数”C. f=e x为“保比差数列函数”D. f=为“保比差数列函数”12. 已知各项均为正数的等差数列中,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列的前三项,则( )A. a2=5B. b n=5·2n-1C. a n=2n-1D. 设c n=a n b n,则数列的前n项和T n=(2n-1)2n+1三、填空题(共4小题,共20分)13. 已知数列{a n}满足a1=,a n+1=,若b n=-1,则数列{b n}的通项公式为b n=________.14. 已知f(x)=,利用课本中推导等差数列前n项和的公式的方法,可求得f+f+…+f=________.15. 如果数列{a n}满足-=k(k为常数),那么数列{a n}叫做等比差数列,k叫做公比差.给出下列四个结论:①若数列{a n}满足=2n,则该数列是等比差数列;②数列{n·2n}是等比差数列;③所有的等比数列都是等比差数列;④存在等差数列是等比差数列.其中所有正确结论的序号是________.16. 若数列{a n}满足a n+2a n+1+a n+1a n=q(q为常数),则称数列{a n}为等比和数列,q称为公比和,已知数列{a n}是以3为公比和的等比和数列,其中a1=1,a2=2,则a2 019=.四、解答题(共6小题)17. (10分)设数列{a n}满足a1=0且-=1.(1)求{a n}的通项公式;(2)设b n=,记S n=b1+b2+…+b n,求证:S n<1.18. (10分)已知等差数列{a n}的各项均为正数,a1=3,前n项和为S n,{b n}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求a n与b n;(2)求++…+.19. (12分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.20. (12分)已知{a n}(n∈N*)是各项均为正数的等比数列,a1=16,2a3+3a2=32.(1)求{a n}的通项公式;(2)设b n=3log2a n,求数列{b n}的前n项和S n,并求S n的最大值.21. (12分)已知等比数列{a n}的前n项和为S n,且当n∈N*时,S n是2n+1与2m的等差中项(m为实数).(1)求m的值及数列{a n}的通项公式.(2)令b n=1+log2a n(n∈N*),是否存在正整数k,使得++…+>对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.22. (14分)已知等差数列{a n}的公差为d(d≠0),前n项和为S n,且满足________(从①S10=5(a10+1);②a1,a2,a6成等比数列;③S5=35这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求a n;(2)设b n=,数列{b n}的前n项和为T n,求证:T n<.。
宁夏六盘山高级中学2023-2024学年高二下学期第一次月考数学试题
宁夏六盘山高级中学2023-2024学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.下列问题属于排列问题的是( )A .从6人中选2人分别去游泳和跳绳B .从10人中选2人去游泳C .从班上30名男生中选出5人组成一个篮球队D .从数字5,6,7,8中任取三个数组成没有重复数字的三位数10.已知函数()323f x x x =-,则( )A .()f x 在()0,1上单调递减B .()f x 的极大值点为2C .()f x 的极大值为2-D .()f x 有2个零点11.已知函数()()ln f x x a x =-在区间[]1,2上存在单调递减区间,则a 可能的值为( )A .0B .1C .2D .e12.设函数()()2e x f x x =-,若不等式()()22sin 1sin f k f k q q ---³-对任意的四、解答题17.已知函数()()1e x=+.f x x(1)求函数()0,1的切线方程;f x的图象在点()(2)求函数()f x的单调区间.18.工厂需要围建一个面积为2512m的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,我们知道,砌起的新墙的总长度y(单位:m)是利用原有墙壁长度x(单位:m)的函数.(1)写出y关于x的函数解析式,并确定x的取值范围;(2)当堆料场的长、宽比为多少时,需要砌起的新墙用的材料最省?(运用导数知识解决)19.已知函数()()31R=--Î.f x x ax a【详解】根据f(x)<0x ⇔2-2ax<00<x<2a ⇔,可排除选项A ,C ,f′(x)=[x 2+(2-2a)x -2a]e x ,由f′(x)=0,即x 2+(2-2a)x -2a =0,Δ=(2-2a)2+8a =4a 2+4>0可知方程必存在两个根.设小的根为x 0,则f(x)在(-∞,x 0)上必定是单调递增的,故选B.9.AD【分析】根据给定的条件,利用排列的定义逐项判断作答.【详解】对于A ,从6个人中选2人分别去游泳和跳绳,选出的2人有分工的不同,是排列问题;对于B ,从10个人中选2人去游泳,与顺序无关,不是排列问题;对于C ,从班上30名男生中选出5人组成一个篮球队,与顺序无关,不是排列问题;对于D ,从数字5,6,7,8中任取三个数组成没有重复数字的三位数,各数位上的数字有顺序性,是排列问题.故选:AD10.AD【分析】求得()3(2)f x x x -¢=,得出函数的单调区间和极值,再结合函数零点的定义,即可求解.【详解】由函数()323f x x x =-,可得()2363(2)f x x x x x =¢=--,令()0f x ¢>,解得0x <或2x >;令()0f x ¢<,解得02x <<,所以函数()f x 在(0,2)上单递减,在(,0),(2,)-¥+¥单调递增,当0x =时,函数()f x 取得极大值,极大值为()00f =;当2x =时,函数()f x 取得极小值,极小值为()24f =-,又由x ®+¥时,()f x ¥®+且()240f =-<,()00f =,所以函数()f x 只有两个零点,所以A 、D 正确,B 、C 不正确.故选:AD.11.CD。
扬州中学2021-2022学年高二(下)第一次月考数学试卷(后附答案解析)
扬州中学2021-2022学年高二(下)第一次月考真题卷数学一、单项选择题1.点()2,1,3P -关于Oxy 平面的对称点的坐标为()A.()2,1,3-B.()2,1,3C.()2,1,3-- D.()2,1,3--2.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A.()()22211x y ++-= B.()()22214x y ++-=C.()()22211x y -++= D.()()22214x y -++=3.已知向量()1,1,0a =r ,()1,0,2b =-- ,且ka b + 与2a b -互相垂直,则k 的值是().A.1B.15C.35D.754.已知函数()f x 的导函数为()f x ',且满足()cos 2f x x xf π⎛⎫'=-⎪⎝⎭,则曲线()y f x =在0x =处的切线方程是()A.210x y --= B.210x y ++= C.220x y -+= D.210x y ++=5.小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A.6B.12C.24D.486.在四棱锥P ABCD -中,底面ABCD 是正方形,E 是PD 的中点,若,,PA a PB b PC c === ,则BE = ()A.111222a b c -+B.131222a b c --C.131222a b c -+ D.113222a b c -+ 7.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(biēnào ).如图,在鳖臑M ABC -中,MA ⊥平面ABC ,P ,Q 分别为MA ,MC 的中点,2MA AB BC ===,则异面直线BQ 与CP 所成角的余弦值为()A.39B.6C.33D.08.已知 2.12.2a =, 2.22.1b =, 2.12.1c =,则()A.a c b<< B.c b a<< C.b<c<aD.c<a<b二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知函数()y f x =的导函数的图象如图所示,则下列结论正确的是()A.-1是函数()f x 的极小值点B.-4是函数()f x 的极小值点C.函数()f x 在区间(,4)-∞-上单调递减D.函数()f x 在区间(4,1)--上先增后减10.已知空间三点()1,0,1A -,()1,2,2B -,()3,0,4C-,则下列说法正确的是()A.3AB AC ⋅=B.//AB ACC.BC =D.3cos ,65AB AC =11.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则()A.直线BD 1⊥平面A 1C 1DB.三棱锥P ﹣A 1C 1D 的体积为定值C.异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D.直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为312.已知1F ,2F 为双曲线C :x 2–24y =1的左、右焦点,在双曲线右支上取一点P ,使得PF 1⊥PF 2,直线PF 2与y 轴交于点Q ,连接QF 1,△PQF 1,的内切圆圆心为I ,则下列结论正确的有()A.F 1,F 2,P ,I 四点共圆B.△PQF 1的内切圆半径为1C.I 为线段OQ 的三等分点D.PF 1与其中一条渐近线垂直三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知集合{}1,2,3M ∈-,{}4,5,6,7N ∈--,从两个集合中各取一个元素作为点的坐标,则这样的坐标在平面直角坐标系中表示第二象限内不同的点的个数是______.14.已知向量(1,2,2),(2,1,1)a b ==-,则向量b 在向量a上的投影向量的坐标为__________.15.已知函数()321,2{3,2x x f x x x x -≥=-+<,若函数y=f (x )-m 有2个零点,则实数m 的取值范围是________.16.已知正方体1111ABCD A B C D -的棱长为4,点P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM 面积的最小值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知()33210n n f n A A =-(n N ∈,且3n ≥).(1)求()4f 的值;(2)若()0f n =,求n 的值.18.如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a = ,OB b = ,OC c = .(1)用a ,b ,c 表示向量OP;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π=== a b b c c a ;②,,,,32ππ=== a b c a c ;③2,,,,23a b c a b c ππ=== ,则可求出OP 的值;并求出OP 的大小.19.如图,已知四边形ABCD 是正方形,PD ⊥平面,2ABCD PD AD ==.(1)求点D 到平面PAC 的距离;(2)在线段PB 上是否存在点E ,使PC ⊥平面ADE ?若存在,求PEEB的值;若不存在,说明理由.20.如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AB AD ⊥,AB CD ∕∕,PC ⊥底面ABCD ,224AB AD CD ===,2PC a =,E 是PB 的中点.(1)若二面角P AC E --的余弦值为63,求a 的值;(2)在(1)的条件下求直线PA 与平面EAC 所成角的正弦值.21.已知椭圆C :()222210x y a b a b+=>>的离心率为12,且椭圆C 上的点到右焦点F 的距离最长为3.(1)求椭圆C 的标准方程.(2)过点F 的直线l 与椭圆C 交于,A B 两点,AB 的中垂线1l 与x 轴交于点G ,试问AB FG是否为定值?若是,求出该定值;若不是,说明理由.22.已知函数121()(1)e (0)2x f x x a x ax x -=---+>.(1)讨论()f x 的单调性.(2)当2a ≤时,若()f x 无最小值,求实数a 的取值范围.扬州中学2021-2022学年高二(下)第一次月考真题卷数学答案一、单项选择题1.点()2,1,3P -关于Oxy 平面的对称点的坐标为()A.()2,1,3-B.()2,1,3C.()2,1,3-- D.()2,1,3--【答案】B 【解析】【分析】根据点关于坐标轴,坐标平面对称时,关于谁对称谁不变可得.【详解】关于Oxy 平面对称的点的x ,y 坐标不变,只有z 坐标相反,所以点()2,1,3P -关于Oxy 平面的对称点的坐标为()2,1,3.2.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A.()()22211x y ++-= B.()()22214x y ++-=C.()()22211x y -++= D.()()22214x y -++=【答案】B 【解析】【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.3.已知向量()1,1,0a =r,()1,0,2b =-- ,且ka b + 与2a b - 互相垂直,则k 的值是().A.1B.15C.35D.75【答案】D 【解析】【分析】向量的垂直用坐标表示为1212120x x y y z z ++=,代入即可求出答案.【详解】=(1,1,0)(1,0,2)(1,,2)ka b k k k ++--=--,2=a b -2(1,1,0)(1,0,2)---=(3,2,2),因为ka b + 与2a b -互相垂直,所以(1,,2)k k --⋅(3,2,2)=0,所以57=0k -,所以7=5k .故选:D.4.已知函数()f x 的导函数为()f x ',且满足()cos 2f x x xf π⎛⎫'=- ⎪⎝⎭,则曲线()y f x =在0x =处的切线方程是()A.210x y --= B.210x y ++= C.220x y -+= D.210x y ++=【答案】C 【解析】【分析】求得()f x '后,代入2x π=即可求得2f π⎛⎫' ⎪⎝⎭,从而得到()(),f x f x ';利用导数的几何意义即可求得结果.【详解】()cos 2f x x xf π⎛⎫'=-⎪⎝⎭ ,()sin 2f x x f π⎛⎫''∴=-- ⎪⎝⎭,sin 12222f f f ππππ⎛⎫⎛⎫⎛⎫'''∴=--=-- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,解得:122f π⎛⎫'=- ⎪⎝⎭,()1cos 2f x x x ∴=+,()1sin 2f x x '=-+,()01f ∴=,()102f '=,()y f x ∴=在0x =处的切线方程为112y x -=,即220x y -+=.故选:C.5.小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A. 6B. 12C. 24D. 48【答案】B 【解析】【分析】将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序即可.【详解】将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序,则232312A A =,故所求的坐法种数为12,故选:B .6.在四棱锥P ABCD -中,底面ABCD 是正方形,E 是PD 的中点,若,,PA a PB b PC c === ,则BE =()A.111222a b c -+B.131222a b c --C.131222a b c -+ D.113222a b c -+ 【答案】C 【解析】【分析】根据向量加减法,和空间向量基本定理直接求解即可.【详解】()()()11112222BE PE PB PD PB PB BD PB BD PB BA BC PB=-=-=+-=-=+-()11312222PA PB PC PB PB PA PB PC =-+--=-+131222a b c -+= .故选:C【点睛】本题主要考查向量在几何中的应用以及向量共线定理,空间向量基本定理,属于基础题.7.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(biēnào ).如图,在鳖臑M ABC -中,MA ⊥平面ABC ,P ,Q 分别为MA ,MC 的中点,2MA AB BC ===,则异面直线BQ 与CP 所成角的余弦值为()A.39B.36C.33D.0【答案】A 【解析】【分析】以B 点为原点建立空间直角坐标系,用向量法可解.【详解】由题意得,ABC 为直角三角形,且90ABC ∠=︒,建立如图所示的空间直角坐标系,则()0,0,0B ,()2,0,2M ,()2,0,1P ,()0,2,0C ,()1,1,1Q ,则()1,1,1BQ =,()2,2,1CP =-.设异面直线BQ 与CP 所成角为θ,则()1212113cos cos ,93441BQ CP θ⨯+⨯-+⨯==⨯++ .故选:A.8.已知 2.12.2a =, 2.22.1b =, 2.12.1c =,则()A.a c b<< B.c b a<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用幂函数的单调性可得出a 、c 的大小关系,利用指数函数的单调性可得出b 、c 的大小关系,构造函数()ln xf x x=,利用函数()f x 在()0,e 上的单调性可得出a 、b 的大小关系,即可得出结论.【详解】因为 2.1 2.12.2 2.1>, 2.2 2.12.1 2.1>,即a c >,b c >,构造函数()ln xf x x=,则()21ln x f x x -'=,当0e x <<时,()0f x ¢>,故函数()f x 在()0,e 上为增函数,因为0 2.1 2.2e <<<,则()()2.1 2.2f f <,即ln 2.1ln 2.22.1 2.2<,可得2.2ln 2.1 2.1ln 2.2<,即 2.2 2.1ln 2.1ln 2.2<,故 2.2 2.12.1 2.2<,因此c b a <<.故选:B.二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知函数()y f x =的导函数的图象如图所示,则下列结论正确的是()A.-1是函数()f x 的极小值点B.-4是函数()f x 的极小值点C.函数()f x 在区间(,4)-∞-上单调递减D.函数()f x 在区间(4,1)--上先增后减【答案】BC 【解析】【分析】根据导函数图象确定()f x 的单调性,由此确定正确选项.【详解】由()'fx 图象可知,()f x 在(),4-∞-上递减,在()4,-+∞上递增,所以1-不是极值点,A 选项错误;4-是极小值点,B 选项正确;C 选项正确;D 选项错误.故选:BC10.已知空间三点()1,0,1A -,()1,2,2B -,()3,0,4C-,则下列说法正确的是()A.3AB AC ⋅=B.//AB ACC.BC =D.3cos ,65AB AC =【答案】AC 【解析】【分析】由条件可得,,AB AC BC的坐标,然后逐一判断即可.【详解】因为()1,0,1A -,()1,2,2B -,()3,0,4C-,所以()()()0,2,1,2,0,3,2,2,2AB AC BC ==-=--所以0033AB AC ⋅=++=uu u r uuu r,365cos ,65AB AC AB AC AB AC ⋅==⋅,BC ==所以,AB AC不共线.故选:AC11.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则()A.直线BD 1⊥平面A 1C 1DB.三棱锥P ﹣A 1C 1D 的体积为定值C.异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D.直线C 1P 与平面A 1C 1D所成角的正弦值的最大值为3【答案】ABD 【解析】【分析】在选项A 中,推导出111A C BD ⊥,11DC BD ⊥,从而直线1BD ⊥平面11AC D ;在选项B 中,由1//B C 平面11AC D ,得到P 到平面11AC D 的距离为定值,再由△11AC D 的面积是定值,从而三棱锥11P AC D -的体积为定值;在选项C 中,异面直线AP 与1A D 所成角转化为直线AP 与直线1B C 的夹角,可求取值范围;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法进行求解即可.【详解】对于选项A ,正方体中1111A C B D ⊥ ,111A C BB ⊥,1111B D BB B ⋂=,且11B D ,1BB ⊂平面11BB D ,11A C ∴⊥平面11BB D ,1BD ⊂平面11BB D ,111A C BD ∴⊥,同理,11DC BD ⊥,1111A C DC C ⋂= ,且11A C ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,A 选项正确;对于选项B ,正方体中11//A D B C ,1A D ⊂平面11AC D ,1B C ⊂/平面11AC D ,1//B C ∴平面11AC D ,点P 在线段1B C 上运动,P ∴到平面11AC D 的距离为定值,又△11AC D 的面积是定值,∴三棱锥11P AC D -的体积为定值,B 选项正确;对于选项C ,11//A D B C ,∴异面直线AP 与1A D 所成角为直线AP 与直线1B C 的夹角.易知△1AB C 为等边三角形,当P 为1B C 的中点时,1AP B C ⊥;当P 与点1B 或C 重合时,直线AP 与直线1B C 的夹角为60 .故异面直线AP 与1A D 所成角的取值范围是[60,90] ,C 选项错误;对于选项D ,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为1,点P 竖坐标为a ,01a ≤≤,则(,1,)P a a ,1(0,1,1)C ,(1,1,0)B ,1(0,0,1)D ,所以1(,0,1)C P a a =-,1(1,1,1)D B =- .由选项A 正确:可知1(1,1,1)D B =-是平面11AC D 的一个法向量,∴直线1C P 与平面11AC D 所成角的正弦值为:1111C P D B C P D B⋅==⋅ ∴当12a =时,直线1C P 与平面11AC D所成角的正弦值的最大值为3,D 选项正确.故选:ABD .12.已知1F ,2F 为双曲线C :x 2–24y =1的左、右焦点,在双曲线右支上取一点P ,使得PF 1⊥PF 2,直线PF 2与y 轴交于点Q ,连接QF 1,△PQF 1,的内切圆圆心为I ,则下列结论正确的有()A.F 1,F 2,P ,I 四点共圆B.△PQF 1的内切圆半径为1C.I 为线段OQ 的三等分点D.PF 1与其中一条渐近线垂直【答案】ABD 【解析】【分析】根据双曲线的定义可得1||4PF =,2||2PF =,由双曲线的对称性可判断A ;由双曲线的定义可判断B ;根据122Rt Rt F PF QOF ∽可判断C 、D.【详解】解析:由勾股定理及双曲线的定义可得:1||4PF =,2||2PF =对于A:易知I 在y 轴上,由对称性可得112GF I EF I IF Q ∠=∠=∠,则1290F IF ∠=︒,可知1F ,2F ,P ,I 四点共于以12F F 为直径的圆上;A 正确对于B:11||||||2PF PQ F Q r +-=1212||||||||||122PF PQ F Q PF PF a +--====,正确对于C:121222||||Rt Rt ||22||||||F P PF F PF QOF QO OI QO OF ⇒=⇒=∽△△,故I 为QO 中点,C 错误.D 显然正确.故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知集合{}1,2,3M ∈-,{}4,5,6,7N ∈--,从两个集合中各取一个元素作为点的坐标,则这样的坐标在平面直角坐标系中表示第二象限内不同的点的个数是______.【答案】6【解析】【分析】根据题意,可得所取的横坐标为负数,纵坐标为正数,结合所给集合列举分析即可得答案【详解】因为两个集合中各取一个元素作为点的坐标,且该点表示第二象限内的点,所以所取的横坐标为负数,纵坐标为正数,若横坐标为-2,则纵坐标可为5、6,即点为(2,5),(2,6)--,若横坐标为-4,则纵坐标可为1、3,即点为(4,1),(4,3)--,若横坐标为-7,则纵坐标可为1、3,即点为(7,1),(7,3)--,所以点的个数为6.故答案为:614.已知向量(1,2,2),(2,1,1)a b ==-,则向量b 在向量a 上的投影向量的坐标为__________.【答案】244,,999⎛⎫ ⎪⎝⎭【解析】【分析】由已知求得向量b 在向量a 上的投影,设向量b 在向量a上的投影向量为m ,则(0)m a λλ=> 且2||3m = ,由向量的模列式求解λ值,即可求解.【详解】∵(1,2,2),(2,1,1)a b ==-,∴1(2)21212a b ⋅=⨯-+⨯+⨯=,∴向量b 在向量a上的投影为2||3a b a ⋅==,设向量b 在向量a 上的投影向量为m ,则(0)m a λλ=> 且2||3m =.∴(,2,2)m λλλ= ,则22222443λλλ⎛⎫++= ⎪⎝⎭,解得29λ=.∴244,,999m ⎛⎫=⎪⎝⎭.故答案为:244,,999⎛⎫⎪⎝⎭.15.已知函数()321,2{3,2x x f x x x x -≥=-+<,若函数y=f (x )-m 有2个零点,则实数m 的取值范围是________.【答案】m=2或m≥3【解析】【详解】【分析】分析:画出函数()f x 的图象,结合图象,求出m 的范围即可.详解:画出函数()f x的图象,如图:若函数 y=f (x )﹣m 有 2 个零点,结合图象:m =2 或m ≥3 .故答案为m =2 或m ≥3 .点睛:对于“a =f (x )有解”型问题,可以通过求函数 y =f (x )的值域来解决,解的个数也可化为函数y =f (x )的图象和直线y =a 交点的个数.16.已知正方体1111ABCD A B C D -的棱长为4,点P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM 面积的最小值为________.【答案】5【解析】【分析】取AB 的中点N ,AD 的中点\Q ,连接11,,,D Q QN B N AC ,容易证得⊥CP 平面11D QNB ,要使1⊥CP D M ,进而得1∈M B N ,进而得当1⊥BM B N 时,BM 最小,此时,BCM 的面积最小,再根据几何关系求解即可.【详解】如图,取AB 的中点N ,AD 的中点\Q ,连接11,,,.D Q QN B N AC 由于CP 在面ABCD 内的射影为AC ,QN AC ⊥,故⊥QN CP 因为CP 在面11ADD A 内的射影为DP ,1⊥D Q DP ,所以1⊥D Q CP .故由⊥QN CP ,1⊥D Q CP ,因为1D Q QN Q ⋂=,所以⊥CP 平面11D QNB .要使1⊥CP D M ,必须点M 在平面11D QNB 内,又点M 在侧面11AA B B 内,所以点M 在平面11D QNB 与平面11AA B B 的交线上,即1∈M B N .因为CB ⊥平面11ABB A ,所以CB BM ⊥,所以12BCM S CB BM ⨯⨯=当1⊥BM B N 时,BM 最小,此时,BCM 的面积最小.又14,2BB BN ==,故1B N =由1Rt B BN 的面积可得455BM ==,所以145854255BCM S =⨯⨯=.故答案为:5【点睛】本题考查空间线面垂直的证明,考查空间想象能力,运算求解能力,是中档题.本题解题的关键在于根据题意寻求M 的轨迹,即1∈M B N ,进而根据几何关系求解.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知()33210n n f n A A =-(n N ∈,且3n ≥).(1)求()4f 的值;(2)若()0f n =,求n 的值.【答案】(1)96(2)8【解析】【分析】(1)由排列数计算公式即可求解;(2)由排列数计算公式即可求解方程.【小问1详解】解:()()3384487610432564069610f A A =⨯⨯-⨯⨯⨯=-⨯=-=;【小问2详解】解:由33210n n A A =,得()()()()221221012n n n n n n --=--,又3n ≥,*n ∈N ,所以()()22152n n -=-,即8n =,∴正整数n 为8.18.如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a = ,OB b = ,OC c =.(1)用a ,b ,c 表示向量OP;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π=== a b b c c a ;②,,,,32ππ=== a b c a c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.【答案】(1)111344OP a b c=++(2)①67||12OP ⇒=②58||12OP ⇒= ③5||12OP ⇒=【解析】【分析】(1)连接ON 由()121232⎡⎤=++⎢⎥⎣⎦O OA OB P OC 可得答案;(2)选①,对111344=++a b P c O 两边平方代入已知再开方可得答案;选②,对111344=++a b P c O 两边平方代入已知再开方可得答案;③对111344=++a b P c O 两边平代入已知再开方可得答案.【小问1详解】连接ON ,因为N 是棱BC 的中点,所以()12=+OM ON OP ,因为M 是棱OA 上靠近A 的三等分点,所以()()121121111232232344⎡⎤⎡⎤=++=++=++⎢⎥⎢⎥⎣⎦⎣⎦ OA OC OB a c b O a P b c .【小问2详解】选①,,,3π=== a b c a ,因为1a b c === ,111344=++ a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c Pc b111111116798626282144=++⨯+⨯+⨯=,所以6712= OP ;选②,,,,32ππ=== a b c a b c ,因为1a b c === ,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c Pc b1111112998626272=++⨯+⨯=,所以5812= OP ;③2,,,,23ππ=== a b c a c ,因为1a b c === ,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ O a b c a b c a b a c Pc b1111259882144=+-⨯=,所以512= OP .19.如图,已知四边形ABCD 是正方形,PD ⊥平面,2ABCD PD AD ==.(1)求点D 到平面PAC 的距离;(2)在线段PB 上是否存在点E ,使PC ⊥平面ADE ?若存在,求PEEB的值;若不存在,说明理由.【答案】(1)233(2)1【解析】【分析】(1)建立空间直角坐标系,利用向量法,即可求解.(2)设PE PB λ=,根据位置关系,解出λ即可.【小问1详解】以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,则()()()0,0,2,2,0,00,2,0,P A C .设平面PAC 的法向量(,,)n x y z =,00n PA x z n PC y z ⎧⋅=-=⎨⋅=-=⎩,令1x =,得(1,1,1)n =,(2,0,0)DA =点D 到平面PAC 的距离||||3DA n d n ⋅===.【小问2详解】假设在PB 上存在E 点,使PC ⊥平面ADE ,则PE PB λ=,因为()2,2,2PB =- ,所以()2,2,2PE λλλ=-,所以()2,2,22E λλλ-,所以()22,2,22AE λλλ=-- ,若PC ⊥平面ADE ,则PC ⊥AE ,即840PC AE λ⋅=-=,故12λ=,此时E 为PB 的中点时,1PE EB =.20.如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AB AD ⊥,AB CD ∕∕,PC ⊥底面ABCD ,224AB AD CD ===,2PC a =,E 是PB 的中点.(1)若二面角P AC E --的余弦值为63,求a 的值;(2)在(1)的条件下求直线PA 与平面EAC 所成角的正弦值.【答案】(1)2a =(2)3【解析】【分析】(1)如图建系,求得各点坐标,根据线面垂直的判定定理,可证BC ⊥平面 PAC ,即可求得平面PAC 的法向量,再求得平面EAC 的法向量,根据二面角的向量求法,代入计算,即可得答案.(2)由(1)可得平面EAC 的法向量n ,求得PA,根据线面角的向量求法,即可求得答案.【小问1详解】以点C 为原点,作CD 的垂线为x 轴,以CD ,CP分别为y 轴、z 轴正方向,建立空间直角坐标系,如图,则()0,0,0C ,()2,2,0A ,()2,2,0B -,设()()0,0,20P a a >,则()1,1,E a -,所以()2,2,0CA = ,()0,0,2CP a = ,()1,1,CE a =- ,(2,2,0)CB =-,在直角梯形ABCD中,==AC,BC =所以222AC BC AB +=,即ACBC ⊥,又PC ⊥平面ABCD ,BC ⊂平面ABCD ,所以PC BC ⊥,所以BC ⊥平面PAC ,即CB即为平面PAC 的一个法向量,设(),,n x y z =为平面EAC 的法向量,则00n CA n CE ⎧⋅=⎨⋅=⎩ ,即00x y x y az +=⎧⎨-+=⎩,取x a =,y a =-,2z =-,则(),,2n a a =--,依题意,cos ,3CB n CB n CB n⋅<>==,解得2a =.【小问2详解】由(1)可得()2,2,2n =-- ,()2,2,4PA =-.设直线PA 与平面EAC 所成角为θ,则2sin cos ,3PA n PA n PA nθ⋅=<>====⋅,即直线PA 与平面EAC 所成角的正弦值为3.21.已知椭圆C :()222210x y a b a b+=>>的离心率为12,且椭圆C 上的点到右焦点F 的距离最长为3.(1)求椭圆C 的标准方程.(2)过点F 的直线l 与椭圆C 交于,A B 两点,AB 的中垂线1l 与x 轴交于点G ,试问AB FG是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1)22143x y +=;(2)是定值,定值为4.【解析】【分析】(1)由离心率,椭圆上的点到右焦点距离最大值为a c +和椭圆,,a b c 关系可构造方程组求得,a b ,进而得到椭圆标准方程;(2)当直线l 的斜率不为0时,设:1l x my =+,与椭圆联立可得韦达定理的形式,利用弦长公式可求得AB ,并利用中点坐标公式求得AB 中点H 坐标,由此可表示出1l 方程,从而求得G 点坐标,得到FG ,化简可得定值;当直线l 的斜率为0时,易求得满足所求定值;综合两种情况可得结论.【详解】(1)设椭圆的半焦距为c ,由题意可得:222312a c c a a b c+=⎧⎪⎪=⎨⎪=+⎪⎩,解得:2a =,b =,1c =,∴椭圆C 的标准方程为22143x y +=.(2)当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,AB的中点为()00,H x y .联立221143x my x y =+⎧⎪⎨+=⎪⎩整理得:()2234690m y my ++-=,由题意可知:0m ≠,则122634m y y m +=-+,122934y y m =-+,()2212134m AB m +∴=+.H 为AB 的中点,02334my m -∴=+,0024134x my m =+=+,即2243,3434m H m m ⎛⎫- ⎪++⎝⎭.直线1l 的方程可设为221343434m x y m m m ⎛⎫=-++ ⎪++⎝⎭,令0y =得:2134x m =+,则()22231113434m FG m m +=-=++,()()22221213443134m ABm FG m m ++∴==++.当直线l 的斜率为0时,24AB a ==,1FG c ==,则4AB FG=.综上所述:AB FG为定值,且定值为4.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求量;④化简所得式子,消元可得定值.22.已知函数121()(1)e(0)2x f x x a x ax x -=---+>.(1)讨论()f x 的单调性.(2)当2a ≤时,若()f x 无最小值,求实数a 的取值范围.【答案】(1)当0a ≤时,()f x 在()0,1上单调递减,在()1,+¥上单调递增;当01a <<时,()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增;当1a =时,()f x 在()0,+¥上单调递增;当1a >时,()f x 在()1,a 上单调递减,在(0,1),(,)a +∞上单调递增.(2)1,22e ⎛⎤- ⎥⎝⎦.【解析】【分析】(1)对()f x 求导,然后对a 分类讨论分别得出()f x ¢所对应的x 的取值范围即为函数的单调增区间,()f x ¢所对应的x 的取值范围即为函数的单调减区间.(2)结合(1)中的单调性结论对函数的最小值进行讨论.对于第四种情况,得出关于a 的不等式后,需要构造新的函数分析求解.【详解】解:(1)因为121()(1)e(0)2x f x x a x ax x -=---+>,所以()1()(1)(0)x f x x a e x -'=-->.令()0f x ¢=,得x a =或1x =.①当0a ≤时,由()0f x ¢>,得1x >;由()0f x ¢<,得01x <<.则()f x 在()0,1上单调递减,在()1,+¥上单调递增;②当01a <<时,由()0f x ¢>,得0x a <<或1x >;由()0f x ¢<,得1<<a x .则()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增.③当1a =时,()0f x ¢³恒成立,则()f x 在()0,+¥上单调递增.④当1a >时,由()0f x ¢>,得01x <<或x a >;由()0f x ¢<,得1x a <<.则()f x 在()1,a 上单调递减,在(0,1)和(,)a +∞上单调递增.综上,当0a ≤时,()f x 在()0,1上单调递减,在()1,+¥上单调递增;当01a <<时,()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增;当1a =时,()f x 在()0,+¥上单调递增;当1a >时,()f x 在()1,a 上单调递减,在(0,1)和(,)a +∞上单调递增.(2)①当0a ≤时,由(1)可知()f x 在()0,1上单调递减,在()1,+¥上单调递增,则()f x 有最小值()112f =-,故0a ≤不符合题意.②当01a <<时,由(1)可知()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增,因为()f x 无最小值,所以()()01f f <,即11<2a e +--,解得112e a -<<;③当1a =时,由(1)可知()f x 在()0,+¥上单调递增,所以()f x 无最小值,所以1a =符合题意;④当12a <≤时,由(1)可知()f x 在()1,a 上单调递减,在()()0,1,,a +∞上单调递增.因为()f x 无最小值,所以()()0f f a <,即2111<2a a a e e -+--,即121102a a e a e-+--<.设()()1211122x x g x ex x e -+=--<≤,则()()1112x g x e x x e-'=--<≤设()()()1112x h x g x e x x e-'==--<≤,则()110x h x e -'=->在(]1,2上恒成立.故()h x 在(]1,2上单调递增,即()g x '在(]1,2上单调递增.因为()()1110,220g g e e e''=-<=-->,所以存在唯一的(]01,2x ∈,使得()00g x '=.故()g x 在()01,x 上单调递减,在(]0,2x 上单调递增.因为()()124310,22022e g g e e e e-=--=<=--<,所以()0g x <在(]1,2上恒成立,即1211<02a a ea e-+--在(]1,2恒成立,即12a <≤符合题意.综上,实数a 的取值范围为1,22e ⎛⎤-⎥⎝⎦.【点睛】本题主要考查分类讨论思想,首先利用函数求导公式对函数求导,然后再利用导函数大于 0 或者小于 0 讨论函数单调性,分类时一般利用 f ¢(x )有无解对参数进行分类.常见注意点如下:(1)对二次项系数的符号进行讨论;(2)导函数是否有零点进行讨论;(3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.。
高二第一次月考数学试卷
1、一个数的三分之一加上5等于16,这个数是多少?A. 36B. 33C. 45D. 30(答案:A)2、如果一个矩形的长度是8厘米,宽度是3厘米,则它的周长是多少?A. 30厘米B. 22厘米C. 24厘米D. 20厘米(答案:B)3、在一个等边三角形中,每个角的度数是多少?A. 45度B. 60度C. 75度D. 90度(答案:B)4、某班有40名学生,男生占三分之二,男生有多少人?A. 20人B. 25人C. 30人D. 28人(答案:C)5、一辆车以每小时60公里的速度行驶,3小时能行驶多远?A. 180公里B. 150公里C. 200公里D. 180米(答案:A)6、一个立方体的边长是4厘米,则它的体积是多少立方厘米?A. 16B. 32C. 48D. 64(答案:D)7、在一个排列中,数字1到5的排列组合中,有多少种不同的排列方式?A. 60B. 120C. 100D. 80(答案:B)8、如果一个圆的半径是7厘米,那么它的面积大约是多少平方厘米?(取π为3.14)A. 150.86B. 140.00C. 120.56D. 120.88(答案:A)9、一个角的补角是30度,这个角是多少度?A. 60度B. 90度C. 120度D. 150度(答案:A)10、在一次班级测验中,平均分数为75分,如果全部学生人数是20人,那么总分数是多少?A. 1500B. 1600C. 1700D. 1800(答案:A)。
山西省高二下学期第一次月考数学试题(解析版)
一、单选题1.已知集合,,则( ) {}12M x x =-<(){}ln 1N x y x ==+A . B .C .D .N M ⊆M N ⊆M N ⋂=∅M N =R 【答案】B【分析】化简集合,判断两个集合之间的关系即可得答案. 【详解】由题可得,, {}13M x x =-<<{}1N x x =>-所以,且 ,,. M N ⊆M N M N M =≠∅I R M N N =≠ 故选:B.2.已知向量,,且,则实数( ) ()2,a m = ()3,4b m =- a b ⊥ m =A .3 B .1C .D .131-【答案】B【分析】根据向量垂直的坐标表示可直接构造方程求得结果. 【详解】由得:,a b ⊥ ()2340a b m m ⋅=-+= 解得:. 1m =故选:B.3.在中,角,,的对边分别为,,,若,且,则角的余弦值为ABC A A B C a b c 3a c =13c b =A ( )A .B .C .D .15141613【答案】C【分析】根据余弦定理即得. 【详解】由题可得,,3a c =3b c =试题. ()()22222233cos 223c c c b c a A bc c c+-+-==⋅⋅16=故选:C .4.设为所在平面内一点,,则( )D ABC A 3BC CD =A .B .1433AD AB AC =-+1334AD AB AC =-C .D .4133AD AB AC =+ 4133AD AB AC =- 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解作答.【详解】在中,,ABC A 3BC CD =.1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+故选:A5.在中,三角形三条边上的高之比为,则为( ) ABC A 2:3:4ABC A A .钝角三角形 B .直角三角形C .锐角三角形D .等腰三角形【答案】A【分析】由题可得三角形三条边之比为,然后利用余弦定理,求出最大边所对角的余弦值,6:4:3即可判断出结果.【详解】因为三角形三条边上的高之比为,2:3:4所以三角形三条边之比为,即,111::2346:4:3不妨设,6,4,3,0a x b x c x x ===>则最大角的余弦值为,22216911362c 44os 023x x x A x x +-==-<⋅⋅因此角为钝角,三角形为钝角三角形. A 故选:A.6.定义在上的偶函数满足,且在区间上递增,则( ) R ()f x ()()22f x f x +=-[]2,0-A .B .()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log 3f f f⎛⎫<< ⎪⎝⎭C .D . ()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log3f ff ⎛⎫<< ⎪⎝⎭【答案】B【分析】由条件求出函数的周期,再根据函数的单调性结合条件即得. 【详解】∵定义在R 上的偶函数,所以, ()()f x f x -=又满足,()f x ()()22f x f x +=-所以, ()()()()()42222f x f x f x f x f x +=++=--=-=所以是周期为4的函数,又函数在区间上递增, ()f x ()f x []2,0-所以在区间上递减,()f x []0,2所以,,()()62f f =()2222161616log log 4log log 3333f f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,,所以,3223<3223<322222log 4log 3l 3g 202o ==>>>>所以,即.()()22log 3f f f <<()2166log 3f f f ⎛⎫<< ⎪⎝⎭故选:B .7.已知是的外心,,,则( ) O ABC A 4AB =u u u r 2AC = ()AO AB AC ⋅+=A .10B .9C .8D .6【答案】A【分析】根据三角形外心的性质,结合数量积的几何意义以及数量积运算律,即可求得答案. 【详解】如图,O 为的外心,设为的中点, ABC A ,D E ,AB AC 则,,OD AB OE AC ⊥⊥故()AO AB AC AO AB AO AC ⋅+=+⋅⋅||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅||||||||AD AB AE AC +=⋅⋅ , 2222111||41||2222210AB AC +=⨯+⨯⋅==故选:A8.在中,角所对的边分别为,,,若,则ABC A ,,A B C a b c 2022sin sin sin c C b B a A -=的值为( )()sin sin tan tan tan cos cos A BC A B A B ⋅+⋅⋅A .2013 B .C .2029D .2029220212【答案】D【分析】对,利用正、余弦定理整理得,根据题意结2022sin sin sin c C b B a A -=22021cos 2ab C c =合三角恒等变换分析运算即可.【详解】∵,由正弦定理可得:, 2022sin sin sin c C b B a A -=2222022c b a -=整理得:,22222021a b c c +-=由余弦定理可得:,故 22cos 2021ab C c =22021cos 2ab C c =()sin sin sin sin sin sin tan tan tan cos cos tan cos cos cos cos A BA B A B C A B A BC A BA B ⋅⋅=+⋅⋅⎛⎫+⋅⋅ ⎪⎝⎭()()22sin sin sin sin sin sin cos cos sin tan sin cos cos sin sin sin cos A B A B A B C ab CC C A B A B C c A B C⋅⋅⋅⋅====⋅⋅+⋅⋅+. 222021202122cc ==故选:D.二、多选题9.下列说法中错误的是( )A .若,,则B .a b ∥ b c∥a c ∥()()()a b c a b c b a c ⋅=⋅=⋅C .若,则D .a b a c ⋅=⋅b c = ()2222a ba ab b +=+⋅+ 【答案】ABC【分析】根据共线向量的概念,向量数量积的概念及运算法则逐项分析即得.【详解】对于A ,若时,,不一定能推出,故A 错误;0b →→=a b ∥b c ∥ a c ∥ 对于B ,不妨考虑不共线且不互相垂直时,向量与向量不共线,所以不能推,,a b c →→→()a b c ⋅()a b c ⋅ 出,故B 错误;()()a b c a b c ⋅=⋅对于C ,若且时,则,而不一定相等,故C 错误;a b ⊥ a c ⊥ a b a c ⋅=⋅,b c 对于D ,根据数量积的运算法则可知,故D 正确.()2222a ba ab b +=+⋅+故选:ABC.10.在中,,则的面积可以是( )ABC ∆1,6AB AC B π===ABC ∆AB .1 CD【答案】AD【分析】由余弦定理求出,再根据三角形的面积公式即可求出答案. BC 【详解】解:∵,1,6AB AC B π===由余弦定理得,2222cos AC AB BC AB BC B =+-⋅⋅∴, 2320BC BC -+=∴,或, 1BC =2BC =∴由的面积公式得或, ABC ∆1sin 2ABC S AB BC B ∆=⋅⋅⋅ABC S ∆=ABC S ∆=故选:AD .【点睛】本题主要考查三角形的面积公式的应用,考查余弦定理解三角形,属于基础题. 11.在中,,,则下列说法正确的是( ) ABC A cos 2C 1BC =5AC =A . B .的面积为2 4sin 5C =ABC A C.D .ABC A ABC A 【答案】ABD【分析】利用二倍角公式求出,根据同角三角函数的基本关系求出,再由余弦定理求出cosC sin C ,由正弦定理求出外接圆的直径,利用面积公式及等面积法判断B 、D ;c 【详解】解:因为,cos 2C 223cos 2cos 12125C C =-=⨯-=所以,,故A 、B 正确; 4sin 5==C 114sin 152225ABC S ab C ==⨯⨯⨯=A 由余弦定理,即,所以,2222cos c a b ab C =+-222315215205c =+-⨯⨯⨯=c =所以外接圆的直径,故C 错误; 2sin c R C ===设的内切圆半径为,则,即,所以ABC A r ()12ABCS a b c r =++△(11522r ++=r =D 正确; 故选:ABD12.设P 为所在平面内一点,则下列说法正确的是( )ABC A A .若,则点P 是的重心0PA PB PC ++=ABC A B .若,则点P 是的垂心PA PB PB PC PC PA ⋅=⋅=⋅ABC A C .若,,则点P 是的内心 (||||AB ACAP AB AC λ=+,[)0λ∈+∞ABC A D .若,则点P 是的外心()()()0PA PB BA PB PC CB PC PA AC +⋅=+⋅=+⋅=ABC A 【答案】ABD【分析】对于A :以,为邻边作平行四边形PADB ,M 为PD 的中点,利用向量的线性运算PA PB得到,即可证明;对于B :利用数量积运算证明出,,得到P 为||2||PC PM =PB CA ⊥PA BC ⊥的垂心,即可证明;对于C :在边AB ,AC 上分别取点E ,F ,使,,ABC A ||ABAE AB =||AC AF AC = 以AE ,AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形,即可判断;对于D :证明出,,,即可证明.||||PA PB = ||||PB PC = ||||PC PA =【详解】对于A :若,则.0PA PB PC ++= PA PB PC +=-以,为邻边作平行四边形PADB ,M 为PD 的中点,则,所以,又PA PBPA PB PD += PD PC =- ,所以,故P 为的重心. 2PD PM=||2||PC PM = ABC A 所以A 正确;对于B :若,则,即,即,所以PA PB PB PC ⋅=⋅ 0PA PB PB PC ⋅-⋅=()0PB PA PC ⋅-= 0PB CA ⋅= .PB CA ⊥同理,则,故P 为的垂心.PA PB PA PC ⋅=⋅u u r u u r u u r u u u rPA BC ⊥ABC A 故B 正确;对于C :在边AB ,AC 上分别取点E ,F ,使,,则,以AE ,||ABAE AB =||AC AF AC = ||||1AE AF == AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形.连接AG ,则AG 为的角平分线,由,所以点P 在角平分线AG 上,故点P 的||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭轨迹一定通过的内心. ABC A 所以C 错误;对于D :若,则,同理有22()()()0PA PB BA PA PB PA PB PA PB +⋅=+⋅-=-= ||||PA PB = ,,故P 为的外心.||||PB PC = ||||PC PA =ABCA所以D 正确. 故选:ABD三、填空题13.在△ABC 中,,则=__________ ()()()a c a c b b c +-=+A ∠【答案】2π3【分析】由可得,再由余弦定理可得结果. ()()()a c a c b b c +-=+222b c a bc +-=-【详解】 ()()()a c a c b b c +-=+ 222a c b bc ∴--=222b c a bc -∴+=-,2221cos 222b c a bc A bc bc +--===-所以,故答案为. 23A π∠=23π【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条2222cos a b c bc A =+-222cos 2b c a A bc+-=件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数30,45,60o o o 值,以便在解题中直接应用.14.若,且,则的最小值为______.0a >20a b +=21a b -+【答案】5【分析】由,且,得到,进而有,利用基本不等式求0a >20a b +=20a b =->22121a b b b -+=--+解.【详解】解:因为,且, 0a >20a b +=所以,20a b =->则,2212115a b b b -+=--+≥=当且仅当,即时,等号成立, 22b b-=-1b =-所以的最小值为5,21a b -+故答案为:515.探空气球是将探空仪器带到高空进行温度、大气压力、湿度、风速、风向等气象要素测量的气球,利用探空仪将实时探测到的大气垂直方向上的气象数据反馈给地面雷达,通过数据处理,成为全球预报员制作天气预报的重要依据.大气压强对气球能达到的最大高度和停留时间有非常大的影响.已知大气压强随海拔高度的变化规律是,其中是海平面()Pa p ()m h ()0e 0.000126k hp p k -⋅==0p 大气压强.若探空气球在两处测得的大气压强分别为,,且,那么两处的海,A B 1p 2p 122p p =,A B 拔高度的差约为______m.(参考数据:) ln20.693≈【答案】5500【分析】根据题意结合对数运算求解. 【详解】设两处的海拔高度分别为,,A B 12,h h 由题意可得:,且, 121020e e k h k h p p p p -⋅-⋅⎧=⋅⎨=⋅⎩122p p =即,且,12002ee k h k h p p -⋅-⋅⋅=⋅00p ≠可得,两边同时取对数可得:,122e e k h k h -⋅-⋅=()1212,ln lne 2ln 2e k h k h k h k h -⋅-⋅-⋅-⋅==即,整理得, 12ln 2k h k h -⋅-⋅=21ln 20.69355000.000126h h k -=≈=即两处的海拔高度的差约为5500 m. ,A B 故答案为:5500.16.已知为的垂心(三角形的三条高线的交点),若,则H ABC A 1235AH AB AC =+sin BAC ∠=______.【分析】由题可得,,利用,得2235=-+BH AB AC 1335=- CH AB AC 0BH AC ⋅= 0CH AB ⋅= ,,可得, 再利用平方关系结合条件即得.3cos 5AC BAC AB∠= 5cos 9AB BAC AC ∠= 21cos 3BAC ∠=【详解】因为,1235AH AB AC =+所以,同理,2235BH BA AH AB AC =+=-+1335CH CA AH AB AC =+=-由H 为△ABC 的垂心,得,即, 0BH AC ⋅= 22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭可知,即, 222cos 53AC AC AB BAC =∠ 3cos 5AC BAC AB∠=同理有,即,可知,即0CH AB ⋅= 13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭213cos 35AB AC AB BAC =∠ ,5cos 9ABBAC AC∠= 所以, ,又, 21cos 3BAC ∠=2231cos 2sin 113∠∠=-=-=BAC BAC ()0,πBAC ∠∈所以 sin BAC ∠四、解答题17.已知,,且与的夹角为.1a = 2b = a b 2π3(1)求.()()23a b a b +⋅-(2)求.2a b +【答案】(1)5-【分析】(1)先求得,再利用数量积的运算律求解;a b ⋅(2)先求得,根据向量模的求法,结合数量积的运算律求解.a b ⋅【详解】(1)解:因为,,且与的夹角为,1a = 2b = a b 2π3所以,c 2π3o 1s a b a b ⋅-⋅=⋅=所以()()2223253a b a b a a b b +⋅-=-⋅- ;()22151325=⨯-⨯--⨯=-(2), 2a b +===18.在中,角,,的对边为,,,已知. ABC A A B C a b c ()12cos b A c +=(1)证明:; 2A B =(2)若,求的值. 23a b =cb【答案】(1)证明见解析; (2). 54【分析】(1)根据给定条件,利用正弦定理边化角,再利用和差角的正弦公式推理作答. (2)由已知结合余弦定理角化边,代入计算作答.【详解】(1)在中,由及正弦定理得:, ABC A ()12cos b A c +=sin 2sin cos sin B B A C +=而,因此, ()C A B π=-+sin 2sin cos sin()sin cos cos sin B B A A B A B A B +=+=+即有,显然,有, sin sin cos cos sin sin()B A B A B A B =-=-sin 0B >sin()0A B ->即,角B 为锐角,又,,因此, 0A B ->0πA B <-<()πB A B A +-=<B A B =-所以. 2A B =(2)在中,由及余弦定理得:,整理得,ABC A ()12cos b A c +=22222b c a b b c bc+-+⋅=22bc a b =-而,即,于是,又,即23a b =32a b =22235()24bc b b b =-=0b >54c b =所以. 54c b =19.如图,在矩形中,和分别是边和上的点,满足,.OACB E F AC BC 3AC AE =3BC BF=(1)若,其中,,求,的值;OC OE OF λμ=+ λμ∈R λμ(2)连接分别交,于,两点.记,,以,为基底来表示.AB OC OE M N CO a = CA b = a b CN 【答案】(1); 33,44λμ==(2). 1142CN a b =+【分析】(1)根据给定的图形,利用作基底,结合平面向量基本定理求解作答.,OA OB (2)结合(1)中信息,利用平面向量基本定理确定点的位置,即可求解作答.N 【详解】(1)在矩形中,,,则OACB 3AC AE = 3BC BF = 1133OE OA AE OA AC OA OB =+=+=+ ,,因此1133OF OB BF OB BC OB OA =+=+=+ , 11()()()()3333O OA OB OB OA C OA OB λμμλλμ++=+++=+ 又,不共线,于是,解得, OC OA OB =+ ,OA OB 1313μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩33,44λμ==所以. 33,44λμ==(2)为与的交点,则, N AB OE 1(),R 33t ON tOE t OA OB tOA OB t ==+=+∈ ,, (1)33t t AN ON OA tOA OB OA t OA OB =-=+-=-+ AB OB OA =- 又,即存在,,则, //AN AB R m ∈AN mAB = (1)3t t OA OB mOA mOB -+=-+ 因为不共线,因此,解得, ,OA OB 13t m t m -=-⎧⎪⎨=⎪⎩31,44t m ==显然与的交点是线段、的中点,则,即是线段的中AB OC M AB OC 1142AN AB AM == N AM 点,所以. 11111111()22224242CN CA AN CA AM CA CM CA CM CA CM CA a b =+=+=+-=+=+=+ 20.已知函数的最小正周期为,的图象过点,且()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T ()f x (),1T ,将的图象向左平移个单位长度后得到函数的图象. ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π4()g x (1)求函数在上的值域; ()g x π0,2⎡⎤⎢⎥⎣⎦(2)在上恰有两个不同的实数解,求的取值范围. ()()2x g x +=[]0,m m【答案】(1)⎡-⎣(2) 11π5π,124⎡⎤⎢⎥⎣⎦【分析】(1)利用函数的最小正周期公式表示点,代入求解角,再根据对称性()f x (),1T ()f x ϕ求解,得到函数,根据图像平移变换得到函数,并求其在给定区间上的值域;ω()f x ()g x(2)化简变形,通过恰有两个不同的实数()()()F x x g x =+()()2x g x +=解,限制的取值范围,从而得解.m 【详解】(1)因为函数的最小正周期为, ()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T 所以,. 2πT ω=0ω>由于的图象过点,即过,代入得 ()f x (),1T 2π,1ω⎛⎫ ⎪⎝⎭,即. ()()2π2sin 2sin 2π2sin 1f x ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭1sin 2ϕ=则,或,又, πZ π2,6k k ϕ=+∈5π2π,Z 6k k ϕ=+∈π2ϕ<所以取. π0,6k ϕ==由于,则的图象关于对称, ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π6x =故,则. ππππ,Z 662k k ω+=+∈26,Z k k ω=+∈又因为,则令.03ω<<0,2k ω==故. ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭将的图象向左平移个单位长度后得. ()f x π4()ππ2π2sin 22sin 2463g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当,, π0,2x ⎡⎤∈⎢⎣⎦2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦令,在单调递减,在单调递增, 2π23t x =+()2sin h t t =2π3π,32⎡⎤⎢⎥⎣⎦3π5π,32⎡⎤⎢⎥⎣⎦当时,取最小值,最小值为;当时,3π2t =()h t 2-2π3t =()h t所以,()h t ⎡∈-⎣所以函数在上的值域为. ()g x π0,2⎡⎤⎢⎥⎣⎦⎡-⎣(2)因为,, ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭令 ()()()π2π22sin 263F x x g x x x ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭, πππ22cos 24sin 2663x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由于在上恰有两个不同的实数解,()2F x =[]0,m 则在上恰有两个不同的实数解, π1sin 232x ⎛⎫+= ⎪⎝⎭[]0,m 当,, []0,x m ∈πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦当时,,或,或, π1sin 232x ⎛⎫+= ⎪⎝⎭π5π236x +=π13π236x +=π17π236x +=所以依题意,解得. 13ππ17π2636m ≤+<11π5π124m ≤<所以的取值范围. m 11π5π,124⎡⎤⎢⎥⎣⎦21.在中,内角,,所对的边分别为,,.ABC AA B C a b c cos sin C c A =(1)求角的大小;C(2)已知,若为锐角三角形,求的取值范围.c =ABC A a b +【答案】(1) π3(2)【分析】(1,再根据cos sin C c A =cos sin sin A C C A =求解;(),0,πA C ∈(2)由(1)求得,再由,利用三角函数24sin c R C ==2sin 2sin a b R A R B +=+6A π⎛⎫=+ ⎪⎝⎭的性质求解.【详解】(1)解:在中, ,ABCA cos sin C c A =,cos sin sin A C C A =因为,(),0,πA C ∈所以,即sin sin A C C ≠=tan C =则; π3C =(2)由(1)知:, 24sin c R C ===所以,2sin 2sin a b R A R B +=+, 2π4sin sin 3A A ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 34sin2A A ⎛⎫= ⎪ ⎪⎝⎭, 6A π⎛⎫=+ ⎪⎝⎭因为为锐角三角形,ABC A 所以所以,则,解得, π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π022ππ032A B A ⎧<<⎪⎪⎨⎪<=-<⎪⎩ππ62A <<所以,则,ππ2π663A <+<1sin 126A π⎛⎫<+≤ ⎪⎝⎭所以a b <+≤所以的取值范围是.a b +22.已知函数.()()2ln e 2e 3x x f x a =-+(1)若的定义域为,求的取值范围;()f x R a (2)若,使得在区间上单调递增,且值域为,求的取值范围.,m n ∃∈R ()f x [],m n [],m n a 【答案】(1); 13a >(2). 2334a ≤< 【分析】(1)由题可得恒成立,然后利用参变分离结合函数的性质即得; 2e 2e 30x x a -+>(2)根据复合函数的单调性结合条件可得,且,进而可得在上0a >1e m a ≤2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭有两个不等实根,然后根据二次函数的性质即得.【详解】(1)因为的定义域为,, ()f x R ()()2ln e 2e 3x x f x a =-+所以,即恒成立, 2e 2e 30x x a -+>2222e 3321113e e e e 33x x x x x a -⎛⎫>=-+=--+ ⎪⎝⎭因为,,当时等号成立, 10e x >23211113333e e e x x x ⎛⎫+=--+≤ ⎪⎝⎭-1e 13x =所以,即的取值范围为; 13a >a 13a >(2)因为函数在其定义域上为增函数,要使在区间上单调递增, ln y x =()f x [],m n 则函数在区间上单调递增,又为增函数,2e 2e 3x x u a =-+[],m n e x t =所以在上为增函数,显然时不合题意,223y at t =-+e ,e m n ⎡⎤⎣⎦0a ≤所以,且, 0a >1e m a≤又在区间上单调递增,且值域为,()f x [],m n [],m n 所以,即, ()()()()22ln e 2e 3ln e 2e 3m m n n f m a m f n a n ⎧=-+=⎪⎨=-+=⎪⎩22e 3e 30e 3e 30m m n n a a ⎧-+=⎨-+=⎩所以在上有两个不等实根, 2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭则,解得, ()22Δ312031211330a a aa a a ⎧⎪=-->⎪⎪>⎨⎪⎪⎛⎫⋅-⋅+≥⎪ ⎪⎝⎭⎩2334a ≤<所以的取值范围为. a 2334a ≤<【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;;()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
贵州省遵义清华中学2022-2023学年高二下学期第一次月考数学试题及参考答案
遵义清华中学2022-2023学年度第二学期第一次月考试题高二年级数学试题(卷面分值:150分 考试时间:120分钟)注意事项:1.本试卷共4页,答题前,请考生务必将自己的学校、姓名、班级、考号等信息填写答卷的密封区内。
2.作答选择题必须用2B 铅笔在答题卡上将对应题目的选项涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案,作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题卡的指定位置上,请保持答题卡卡面清洁和答题纸清洁,不折叠、不破损。
3.考试结束后,请将试卷和答题卡交回。
第I 卷 (选择题 共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-2.已知随机变量ξ服从二项分布,1(3,)2B ξ,则()1ξ≥P 的值为( )A .18B .78C .38D .583.复数322iz i-=+,则复数z 在复平面上所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知随机变量X 的分布列如表(其中a 为常数): 则()13P X ≤≤等于( ) A .0.4 B .0.5C .0.6D .0.75.5位大学生在暑假期间主动参加A ,B ,C 三个社区的志愿者服务,且每个社区至少有1人参加,至多有2人参加,则不同的安排方法共有( ) A .30种 B .90种 C .120种 D .150种 6.某中学制订了“光盘计划”,为了了解师生们对这一倡议的关注度和支持度,开展了一次问卷调查,调查中的2000人的得分数据.据统计此次问卷调查的得分x (满分:100分)服从正态分布()293,2N ,则()9197P x <<=( )若随机变量()2,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=A .0.8186B .0.6827C .0.47725D .0.341357.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰X 0 1 2 3 4 5P 0.1 0.1 a 0.3 0.2 0.1 学校: 班级: 姓名: 考号: 线启用 前绝密宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有六种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( ) A .1560B .1180C .1020D .4208.艺术节即将到来,承办班级筹备节目单时,准备在前五个节目排三个歌唱节目,一个小品节目以及一个相声节目,若三个歌唱节目最多有两个相邻,则不同的排法总数为( ) A .75B .80C .84D .96二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若2155C C x x -=,则正整数x 的值是( )A .1B .2C .3D .410.下列说法正确的是( ) A .已知随机变量(),XB n p ,若()()30,10E X D X ==,则13p =B .两位男生和两位女生随机排成一列,则两位女生不相邻的概率是12C .已知23A C n n =,则8n =D .从一批含有10件正品、4件次品的产品中任取3件,则取得2件次品的概率为459111.已知2nx⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的( )A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为4512.将2n (n ∈N *)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限记2个盒子中最少的球数为X (0≤X ≤n ,X ∈N *),则下列说法中正确的有( ) A .当n =1时,方差1()4D X = B .当n =2时,3(1)8P X ==C .3n ∀≥,*0,) [(,)n k n N k ∃∈∈,使得P (X =k )>P (X =k +1)成立D .当n 确定时,期望222(2)()2n nn nn C E X -= 第II 卷 (非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过点()2,3-且与直线210x y ++=垂直的直线l 的方程是________.14.设随机变量X 服从二项分布()2,B p ,若()35136P X ≥=,则p =______. 15.学校有8个优秀学生名额,要求分配到高一、高二、高三,每个年级至少1个名额,则有种 分配方案.16. 某单位安排7位员工在春节期间大年初一到初七值班,每人值班1天,若7位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______ 四、解答题:本题共6小题,共70分.其中第17题10分,其余各题12分.解答应写出文字说明、证明过程或演算步骤.17.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求: (1)第1次取到黑球的概率;(2)在第1次取到黑球的条件下,第2次又取到黑球的概率. 18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 3a C c A +=,2a b =,记ABC 的面积为S .(1)求a ; (2)请从下面的三个条件中任选一个,探究满足条件的ABC 的个数,并说明理由. 条件:①()222312S a c b =+-,②2cos 2b A ac +=,③πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭. 注:如果选择多个条件分别解答,按第一个解答计分.19.近些年来,短视频社交软件日益受到追捧,用户可以通过软件选择歌曲,拍摄音乐短视频,创作自己的作品.某用户对自己发布的视频个数x 与收到的点赞个数之和y 之间的关系进行了分析研究,得到如下数据:(1)计算x ,y 的相关系数r (计算结果精确到0.01),并判断是否可以认为发布的视频个数与收到的点赞数之和的相关性很强; (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程.参考数据:0.430.656≈,0.0430.207≈.参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---⋅==--∑∑∑∑,ˆˆay bx =-,()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.x 34567y 45 50 60 65 70(1)证明:AE CD ⊥;(2)求直线AE 与平面PBD 所成角的正弦值21. 2021年9月,贵州省正式施行“312++”高考新模式.为调研新高考模式下,某校学生选择物理或历史与性别是否有关,统计了该校高三年级800名学生的选科情况,部分数据如表: (1)根据所给数据完成上述表格,并依据0.001a =的独立性检验,分析学生选择物理或历史与性别是否有关;(2)该校为了提高选择历史科目学生的数学学习兴趣,用分层抽样的方法从该类学生中抽取5人,组成数学学习小组.一段时间后,从该小组中抽取3人汇报数学学习心得.记3人中男生人数为X ,求X 的分布列和数学期望()E X .附:()()()()22()n ad bc a b c d a c b d χ-=++++.22. 已知椭圆22221x y a b +=的左右焦点分别为12,F F ,过1F 作直线L ,交椭圆于A 、B 两点,2F AB 的周长为8,且椭圆经过点⎭. (1)求椭圆的方程;(2)过坐标原点O 作直线L 的垂线,交椭圆于P ,Q 两点,试判断214AB PQ +是否为定值,若是,求出这个定值.遵义清华中学2022-2023学年度第二学期第一次月考高二年级数学参考答案一、选择题(每小题8分,共40分) 1.D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D. 2.B【分析】根据二项分布概率公式计算.【详解】()()()()()30317112310128P P P P P C ξξξξξ⎛⎫≥==+=+==-==-⨯= ⎪⎝⎭.故选:B 3.D【分析】先利用复数的除法化简复数z ,即得解. 【详解】由题得32(32)(2)47472(2)(2)555i i i i z i i i i ----====-++-, 所以复数对应的点为47(,)55-,在第四象限,故选:D. 3.D【分析】先利用复数的除法化简复数z ,即得解. 【详解】由题得32(32)(2)47472(2)(2)555i i i i z i i i i ----====-++-, 所以复数对应的点为47(,)55-,在第四象限,故选:D.4.【答案】C【解析】因为0.10.10.30.20.11a +++++=,所以0.2a =,所以()()()()13123P X P X P X P X ≤===++≤=0.10.20.30.6=++=. 故选:C. 5.【答案】B【解析】因为5位大学生在暑假期间主动参加A ,B ,C 三个社区的志愿者服务,且每个社区至少有1人参加,至多有2人参加,所以5名大学生分成3组,每组的人数分别为1,2,2,所以不同的安排方式有22353322C C A 90A ⋅=种,故选:B 6.【答案】A【点睛】本题主要考查古典概型的概率求法,还考查了分析求解问题的能力,属于基础题. 7.【答案】A【解析】第一步中间小正方形涂色,有6种方法,剩下5种颜色涂在四个直角三角形中,就按图中所示1234的顺序,1有5种方法,2有4种方法,3有4种方法,但要分类:与1相同和与1不相同,然后确定4的方法数, 所以所求方法数为654(1433)1560⨯⨯⨯⨯+⨯=. 故选:A. 8.【答案】C【解析】三个歌唱节目,一个小品节目以及一个相声节目的全排列的排列数为55A ,其中三个歌唱节目都相邻的排法数为3333A A ,故满足条件的排法数为533533A A A =120-36=84-,所以三个歌唱节目最多有两个相邻的排法总数为84, 故选:C.二、选择题(每小题5分,共20分) 9.【答案】AB【分析】由组合数的性质可以列出方程,求出正整数x 的值 【详解】由题意得:21x x =-或215x x +-=, 解得:1x =或2x =,经过检验,均符合题意. 故选:AB11.【答案】BCD【分析】先由已知条件得21024n =求出n 的值,然后求出二项式展开式的通项公式,再逐个12.【答案】ACD三、填空题(每小题5分,共20分)14.【答案】56【解析】因为随机变量X 服从二项分布()2,B p , 所以()()()2202=0C 11P X p p =-=-, 所以()()()23511=01136P X P X p ≥=-=--=, 因为0p >,所以56p =,故答案为:5615.【答案】21【解析】问题等价于将8个完全相同的小球,放入3个不同的盒子,每个盒子至少1个球,由隔板法可知,不同的分配方案种数为27C 21=.16. 【答案】1008【详解】分析:本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两元之间有一个排列,丙不排在初一,丁不排在初七,则可以甲乙排初一、初二和初六、初七,丙排初七和不排初七,根据分类原理得到结果. 详解:分两类:第一类:甲乙相邻排初一、初二或初六、初七,这时先安排甲和乙,有2224A =种,然后排丙或丁,有144A =种,剩下的四人全排有4424A =种,因此共有4424384⨯⨯=种方法;第二类:甲乙相邻排中间,有224A 种,当丙排在初七,则剩下的四人有44A 种排法,若丙排在中间,则甲有13A 种,初七就从剩下的三人中选一个,有13C 种,剩下三人有33A 种,所以共有24113243334()624A A A C A +=种,故共有3846241008+=种安排方案,故答案为1008.点睛:该题考查的是由多个限制条件的排列问题,在解题的过程中,注意相邻问题捆绑法,特殊元素优先考虑的原则,利用分类加法计数原理求得结果.四、解答题(第17题10分,其余各题12分,共70分)17.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求: (1)第1次取到黑球的概率;(2)在第1次取到黑球的条件下,第2次又取到黑球的概率.18.(1)a =(2)选①,满足条件的ABC 的个数为2;选②,满足条件的ABC 的个数为1;选③,不存在满足条件的三角形;理由见解析【分析】(1)利用余弦定理化简已知条件,由此求得,b a .(2)选①,利用三角形的面积公式化简已知条件,求得tan B ,进而求得B ,利用正弦定理求得A 有两个解,从而得出结论.选②利用正弦定理化简已知条件,求得B ,利用正弦定理求得A 有一个解,从而得出结论.选③,结合三角恒等变换求得B ,利用正弦定理求得sin 1A >,无解,从而得出结论.(1)因为cos cos a C c A +=22222222a b c b c a a c ab bc+-+-⋅+⋅=解得b =a =(2)选择①,因为)222S a c b =+-,所以)2221sin 2ac B a c b =+-,所以1sin 2cos 2ac B ac B =,化简得tan B =. 又0πB <<,故π6B =.由sin sin a b A B =,得sin sin a B A b ==. 因为a b >,所以π4A =或3π4A =,故满足条件的ABC 的个数为2.选择②,因为cos b A c =,所以sin cos sin B A A C =,即sin cos sin()2B A A A B +=+,sin cos A A B =,因为sin 0A ≠,所以cos B =,解得π4B =.由sin sin a bA B=,得sin sin 1a B A b ==,所以π2A =,故满足条件的ABC 的个数为1. 选择③,因为πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,所以πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭.又sin 0A ≠,所以πsin cos 6B B ⎛⎫=- ⎪⎝⎭,所以31sin cos sin 22BB B ,化简得tan B =又0πB <<,故π3B =.由sin sin a b A B =,得sin sin 1a B A b ==>,无解,不存在满足条件的三角形. 19.【解析】(1)因为3456755x ++++==,4550606570585y ++++==, 所以()()5165i i i x x y y =--=∑,()52110i i x x =-=∑.因为()521430i i y y =-=∑,所以()()5522114300i ii i x x y y ==--=∑∑所以()()5650.9965.6iix x y y r --=≈≈∑, 由此可以认为发布的视频个数与收到的点赞数之和的相关性很强. (2)由(1)知()()5165i i i x x y y =--=∑,()52110i i x x =-=∑,所以()()()5152165ˆ 6.510iii i i x x y y bx x ==--===-∑∑. 因为ˆ58 6.5525.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为 6.525.5y x =+. (0,1,1AE =,(2,0,2BP =-,(0,DP =-设平面PBD 的法向量(),,n x y z =,则00n BP n DP ⎧⋅=⎨⋅=⎩,即则()1,1,1n =.设直线AE 与平面PBD 所成角为θ,则26sin 323AE n AE nθ⋅===⨯⋅.21.【解析】(1)根据所给数据完成列联表:科目性别合计男生 女生物理 300 250 550 历史 100 150 250 合计 400400800222800(300150250100)(450250)16010.828,5502504004005525211χ⨯⨯-⨯-===>⨯⨯⨯⨯⨯所以推断该校学生选择物理或历史与性别有关,此推断犯错误的概率不大于0.001; (2)按照分层抽样的方法,抽取男生2人,女生3人, 随机变量X 的所有可能取值为0,1,2,()032335C C 10C 10P X ∴===()122335C C 31C 5P X ===()212335C C 32C 10P X ===X ∴的分布列为:X 01 2()1336012.105105E X ∴=⨯+⨯+⨯=22.(1)22143xy +=;(2)是定值;214712AB PQ +=. 【分析】(1)根据椭圆定义,由2F AB 的周长为8,求出2a =,再由椭圆过点⎭,求出b =(2)先讨论直线L 的斜率不存在时,求出214ABPQ+;再讨论直线L 的斜率存在时,设直线():1AB y k x =+,()11,A x y 、()22,B x y ,()33,P x y 、()44,B x y ,线1:PQ y x k=-,分别联立直线与椭圆方程,根据弦长公式求出AB 和PQ ,即可得出结果. 【详解】(1)由椭圆的定义可得,122a AF AF =+,122a BF BF =+, ∴2248AF BF AB a ++==,则2a =;又椭圆经过点⎭221b ⎝⎭=,解得b =所以椭圆的方程为22143x y +=; (2)当直线L 的斜率不存在时,直线L 的方程为=1x -,代入22143x y +=得294y =,所以3AB =,4PQ =,2141173412AB PQ +=+=; 当直线L 的斜率存在时,设直线():1AB y k x =+,()11,A x y 、()22,B x y ,()33,P x y 、()44,B x y , 将()1y k x =+代入22143x y +=,整理得:()22223484120k x k x k +++-=, ∴2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩,∴12 AB x=-===()2212134kk+=+=;又直线1:PQ y xk=-,代入22143x y+=整理得:()22234120k x k+-=,则3423421243x xkx xk+=⎧⎪⎨=-⎪+⎩,∴34PQ x=-=则()()()()()2222222434711443712121481121k kkAB k k kPQ++++=+==+++,综上所述214712AB PQ+=为定值.【点睛】本题主要考查求椭圆的标准方程,考查椭圆中的定值问题,熟记椭圆的标准方程,以及椭圆的简单性质即可,属于常考题型.。
高二数学第一次月考试卷及答案
高二数学月考试卷答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公共汽车上有15位乘客,沿途5个车站,乘客下车的可能方式有() A.515种B.155种C.50种D.50625种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有515种可能的下车方式,故选A.【答案】A2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有() A.6种B.12种C.18种D.24种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选C.【答案】C3.(1-x)6展开式中x的奇次项系数和为()A.32B.-32C.0D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】B4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.04B.0.16C.0.24D.0.96【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.【答案】D5.正态分布密度函数为f(x)=122πe-x-128,x∈R,则其标准差为()A.1B.2C.4D.8【解析】根据f(x)=1σ2πe-x-μ22σ2,对比f(x)=122πe-x-128知σ=2.【答案】B6.随机变量X的分布列如下表,则E(5X+4)等于()X024P0.30.20.5A.16B.11C.2.2D.2.3【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】A7.三名教师教六个班的数学,则每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种【解析】不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C26·C24·C22=90(种).【答案】D8.在(x2+3x+2)5的展开式中x的系数为()A.140B.240C.360D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x的系数为C45·25+C45·24=240.【答案】B9.设随机变量ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,则参数n,p 的值为()【导学号:97270066】A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1【解析】由二项分布的均值与方差性质得=2.4,1-p=1.44,=6,=0.4,故选B.【答案】B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是()A.16B.18C.112D.124【解析】由2个6,1个3,1个9这4个数字一共可以组成A44A22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P=1 12 .【答案】C11.利用下列盈利表中的数据进行决策,应选择的方案是()自然状况概率方案盈利(万元)S i PiA1A2A3A4S10.255070-2098S20.3065265282S30.45261678-10A.A1B.A2C.A3D.A4【解析】利用方案A 1,期望为50×0.25+65×0.30+26×0.45=43.7;利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5;利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6;因为A 3的期望最大,所以应选择的方案是A 3,故选C.【答案】C12.如图12,用五种不同的颜色给图中的A ,B ,C ,D ,E ,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.264种B.360种C.1240种D.1920种【解析】由于A 和E 或F 可以同色,B 和D 或F 可以同色,C 和D 或E 可以同色,所以当五种颜色都选择时,选法有C 13C 12A 55种;当五种颜色选择四种时,选法有C 45C 13×3×A 44种;当五种颜色选择三种时,选法有C 35×2×A 33种,所以不同的涂色方法共C 13C 12A 55+C 45C 13×3×A 44+C 35×2×A 33=1920.故选D.【答案】D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x 名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】由题意得C12·C2x=20,解得x=5.【答案】514.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a+a2+a4)·(a1+a3+a5)的值等于________.【解析】令x=1,得a0+a1+a2+a3+a4+a5=0,①再令x=-1,得a0-a1+a2-a3+a4-a5=25=32,②①+②得a0+a2+a4=16,①-②得a1+a3+a5=-16,故(a0+a2+a4)·(a1+a3+a5)的值等于-256.【答案】-25615.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.9的3次方×0.1;③他至少击中目标1次的概率是1-0.1的4次方.其中正确结论的序号是________(写出所有正确结论的序号).解析:②中恰好击中目标3次的概率应为C34×0.93×0.1=0.93×0.4,只有①③正确.答案:①③16.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=________.【解析】由下图可以看出P(550<X<600)=P(400<X<450)=0.3.【答案】0.3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10x n =C 2xn ,x +1n =113C x -1n,试求x ,n 的值.【解】∵C x n =C n -x n =C 2xn ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n ,得n !x +1!n -x -1!=113·n !x -1!n -x +1!,整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.18.(本小题满分12分)要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X 1的分布列为X 15678910P 0.030.090.200.310.270.10同学乙击目标的环数X 2的分布列为X 256789P 0.010.050.200.410.33(1)请你评价两位同学的射击水平(用数据作依据);(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?(1)利用期望和方差公式求出两变量的期望和方差;(2)根据第(1)问的结论选择水平高的选手解:(1)EX 1=,EX 2==8DX 1=1.50DX 2=0.8两位同学射击平均中靶环数是相等的,同学甲的方差DX1大于同学乙的方差DX2,因此同学乙发挥的更稳定。
福建省高二下学期第一次月考数学试题(Word版)
高二下学期第一次月考数学试题(考试时间:120分钟 满分:150分)、、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数在处的导数为,则( )()f x 1x =6()()11lim 3x f x f x∆→+∆-=∆A .1B .2C .D .6232.如图所示是函数的图象,其中为的导函数,则下列大小关系正确()y f x =()f x '()f x 的是( )A .B . ()()()213f f f ''>>'-()()()231f f f ''>>'-C .D .()()()312f f f >>''-'()()()321f f f >->'''3.已知某物体在平面上作变速直线运动,且位移(单位:米)与时间(单位:秒)之s t 间的关系可用函数:表示,则该物体在秒时的瞬时速度为( )()2ln 1s t t t =++-3t =A .米/秒 B .米/秒C .米/秒 D .米秒214()62ln2+212()4ln2+4.函数的图象大致为( )sin x xx xy e e --=+A .B .C .D .5.若对任意的 ,,且,都有,则m 的最小值是1x ()2,x m ∈+∞12x x <122121ln ln 2x x x x x x -<-( ) A .B .C .1D .1ee 3e6.已函数及其导函数定义域均为,且,,则关于()f x ()f x 'R ()()0f x f x '->()01f =x的不等式的解集()e xf x >为( ) A . B .C .D .{}0x x >{}0x x <{}1x x <{}1x x >7.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数的取值范围是( ) ()()e ln xf x x a x =-a A . B .C .D .(],0-∞1,e ⎛⎤-∞ ⎝⎦(],1-∞(],e -∞8.已知,则( ) 1ln1.1,,11a b c ===A .B .C .D .a b c >>a c b >>c b a >>c a b >>二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数的求导正确的是( )A .B .C .D .211x x '⎛⎫= ⎪⎝⎭()sin cos x x '=()()'e 1e x x x x =+()1ln 22'=x x10.已知,下列说法正确的是( ) ()ln xf x x=A .在处的切线方程为B .若方程有两个不相等的实数()f x 1x =1y x =+()f x a =根,则 10a e<<C .的极大值为D .的极小值点为()f x 1e()f x e x =11.若函数在区间上存在最小值,则整数可以取( )()321233f x x x =+-()1,4a a -+a A .-3B .-2C .-1D .012.若存在实常数k 和b ,使得函数和对其公共定义域上的任意实数x 都满足:()F x ()G x 和恒成立,则称此直线为和的“隔离直线”,已()F x kx b ≥+()G x kx b ≤+y kx b =+()F x ()G x 知函数,,(e 为自然对数的底数),则下列结2()()f x x x R =∈1()(0)g x x x=<()2ln h x e x =论正确的是( ).A .函数在区间上单递减()()()m x f x g x =-,⎛-∞ ⎝B .和之间存在“隔离直线”,且k 的最小值为 ()f x ()g x 4-C .和之间存在“隔离直线”,且b 的取值范围是 ()f x ()g x [4,0]-D .和之间存在“隔离直线”,且“隔离直线”不唯一()f x ()h x 三、填空题:本题共4小题,每小题5分,共20分.13.函数在点处的切线方程为____________. 1()ln f x x x=-(1,1)-14.函数,则________. ()2(1)21xf x f x x '=+-()0f '=15.不等式对任意恒成立,则正实数的取值范围为________. 1e ln 0a x x a x --≥()1,x ∈+∞a 16.若函数在区间D 上有定义,且均可作为一个三角形的()g x ,,,(),(),()a b c D g a g b g c ∀∈三边长,则称在区间D 上为“M 函数”.已知函数在区间为()g x ()1ln x f x x k x -=-+1,e e ⎡⎤⎢⎥⎣⎦“M 函数”,则实数k 的取值范围为_________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数,,且.求:()32f x x ax =-a ∈R ()11f '=(1)a 的值及曲线在点处的切线方程; ()y f x =()()1,1f (2)函数在区间上的最大值. ()f x []0,218. (12分)已知函数在及处取得极值.()32f x x ax bx c =+++13x =-1x =(1)求a ,b 的值;(2)若方程有三个不同的实根,求c 的取值范围. ()0f x =19.(12分)已知函数.()2211ln 2a f x x x x a +=-+(1)当时,求函数的单调增区间. 2a =()f x (2)讨论函数的单调性. ()f x20.(12分)2022年2月4日,第二十四届冬季奥林匹克运动会开幕式在北京国家体育场举行,拉开了冬奥会的帷幕.冬奥会发布的吉祥物“冰墩墩”、“雪容融”得到了大家的广泛喜爱,达到一墩难求的地步.当地某旅游用品商店获批经销此次奥运会纪念品,其中某个挂件纪念品每件的成本为5元,并且每件纪念品需向税务部门上交元的税收,预计5a +(58)a ≤≤当每件产品的售价定为元时,一年的销售量为万件,x (1317)x ≤≤2(18)x -(1)求该商店一年的利润(万元)与每件纪念品的售价的函数关系式; L x (2)求出的最大值. L ()Q a21.(12分) 已知函数为的导数.()e cos 2,()x f x x f x '=+-()f x (1)当时,求的最小值;0x ≥()f x '(2)当时,恒成立,求的取值范围.π2x ≥-2e cos 20xx x x ax x +--≥a22.(12分)已知函数.2()e (e 2.718)=-= x f x ax (1)若在有两个零点,求实数的取值范围;()f x ()0,∞+a (2)设函数,证明:存在唯一的极大值点,且2()e [()1]x g x f x ax x =+--()g x 0x . 0321()e 4<<g x龙岩一中2024届高二下学期第一次月考数学试题参考答案题号1 2 3 4 5 6 7 8 9 10 11 12 答案BAABABBDBCBCBC DAB C13.14. 1 15. 16.23y x =-(],e -∞()2e 4,-+∞17.解:(1),解得:()32f x x ax =-Q ()'232f x x ax ∴=-()'1321f a ∴=-=1a =故,()32f x x x =-(1)0f =曲线在点处的斜率为,切线方程即 ...........5()y f x =()()1,1f 1k =(1)(1)y f k x -=-1y x =-分(2)由(1)可知:,令,解得()32f x x x =-()'232f x x x =-()'2320f x x x =-= 1220,3x x ==故当时,,所以单调递减;当时,,所以2[0,)3x ∈()'0f x <()f x 2[,2]3x ∈()'0f x >()f x 单调递增;区间内,当时取最大值,最大值为 ...........10分()f x []0,22x =(2)4f =18.解:(1)由题意得,函数在及处取得极值, ()232f x x ax b '=++()f x 13x =-1x =得,解得 .()11203331320af b f a b ⎧⎛⎫-=-+=⎪ ⎪⎝'⎭⎨⎪=++'=⎩11a b =-⎧⎨=-⎩此时,.()()()2321311x x x x f x --=+'-=当时,,函数在上单调递增; 13x <-()0f x ¢>()f x 1,3⎛⎫-∞- ⎪⎝⎭当时,,函数在上单调递减;113-<<x ()0f x '<()f x 1,13⎛⎫- ⎪⎝⎭当时,,函数在上单调递增. 1x >()0f x ¢>()f x ()1,+∞所以,在处取得极大值,在处取得极小值,满足题意. ...........6分 ()f x 13x =-1x =(2)由(1)知,在处取得极大值,在处取得极小值.又有三()f x 13x =-1x =()0f x =个不同的实根,由图象知,解得,所以实数c 的取值范围是()150327110fc f c ⎧⎛⎫-=+>⎪ ⎪⎝⎭⎨⎪=-+<⎩5127c -<<5,127⎛⎫- ⎪⎝⎭............12分19.解:(1)函数的定义域为,()2211ln 2a f x x x x a+=-+()0,∞+当时,,所以. 2a =()215ln 22f x x x x =-+()()221251252()22x x x x f x x x x x---+'=-+==故当时, ,函数在上单调递增;10,2x ⎛⎫∈ ⎪⎝⎭()0f x ¢>()f x 10,2⎛⎫ ⎪⎝⎭当时,,函数在上单调递减;1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,22⎛⎫ ⎪⎝⎭当时,,函数在上单调递增;()2,x ∈+∞()0f x ¢>()f x ()2,+∞所以函数的单调递增区间有和;...........4分()f x 10,2⎛⎫⎪⎝⎭()2,+∞(2)由可得:()2211ln 2a f x x x x a+=-+. ()2221()11(1)()ax x a a ax a x a f x x a x ax ax--+-++'=-+==①当时, ,在上单调递增;...........6分 a<0()0f x ¢>()f x ()0,∞+②当时,时,时,在上单调递增;01a <<()0,x a ∈()0f x ¢>()f x ()0,a 时,时,在上单调递减; 1,x a a ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,a a ⎛⎫⎪⎝⎭时, ,在上单调递增;............8分 1,x a ⎛⎫∈+∞ ⎪⎝⎭()0f x ¢>()f x 1,a ⎛⎫+∞ ⎪⎝⎭③当时,,且仅在时,,所以函数在上单调递增1a =()0f x '≥1x =()0f x '=()f x ()0,∞+;...........9分④当时,时,时,在上单调递增;1a >10,x a ⎛⎫∈ ⎪⎝⎭()0f x '>()f x 10,a ⎛⎫⎪⎝⎭时,时,在上单调递减; 1,x a a ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,a a ⎛⎫⎪⎝⎭时, ,在上单调递增;............11分(),x a ∈+∞()0f x ¢>()f x (),a +∞综上所述,当时,函数在上单调递增;a<0()f x ()0,∞+当时,函数在和上单调递增,在上单调递减;01a <<()f x ()0,a 1,a ⎛⎫+∞ ⎪⎝⎭1,a a ⎛⎫⎪⎝⎭当时,函数在上单调递增;1a =()f x ()0,∞+当时,函数在和上单调递增,在上单调递减;...........12分1a >()f x 10,a ⎛⎫ ⎪⎝⎭(),a +∞1,a a ⎛⎫⎪⎝⎭20.解(1)由题意,预计当每件产品的售价为元,而每件产品的成本为5x (1317)x ≤≤元,且每件产品需向税务部门上交元,(5)a +(58)a ≤≤所以商店一年的利润(万元)与售价的函数关系式为:L x 2(10)(18),[13,17]L x a x x =---∈............5分(2)∵,∴, 2(10)(18),[13,17]L x a x x =---∈(3823)(18)L a x x =+--'令,解得:或,而,则,...........7分 0L '=3823a x +=18x =58a ≤≤38216183a+≤≤①当,即时,当时,,单调递38216173a +≤<5 6.5a ≤<38213,3a x +⎛⎫∈ ⎪⎝⎭0L >'A A A A L 增,当时,,单调递减,∴当时,取最大值382,173a x +⎛⎫∈ ⎪⎝⎭0L '<L 3823a x +=L 34(8)27a -;...........9分 ②当,即时,当时,,单调递增, 38217183a+≤≤ 6.58a ≤≤()13,17x ∈0L >'A A A A L ∴当时,取最大值,...........11分17x =L 7a -综上, ...........12分 ()()348,5 6.5277,6.58a a Q a a a ⎧-≤<⎪=⎨⎪-≤≤⎩21.(1)由题意,,令,则, ()e sin x f x x '=-()e sin x g x x =-()e cos x g x x '=-当时,,,所以,从而在上单调递增, 0x ≥e 1x ≥cos 1≤x ()0g x '≥()g x [0,)+∞则的最小值为,故的最小值1;...........4分()g x (0)1g =()f x '(2)由已知得当时,恒成立,令,π2x ≥-()e cos 20xx x ax +--≥()e cos 2x h x x ax =+--,...........5分()e sin x h x x a '=--①当时,若时,由(1)可知,∴为增函数, 1a ≤0x ≥()10h x a '≥-≥()h x ∴恒成立,∴恒成立,即恒成立,()()00h x h ≥=()0x h x ⋅≥()e cos 20x x x ax +--≥若,令 则,令,则π,02x ⎡⎫∈-⎪⎢⎣⎭()e sin x m x x a =--()e cos x m x x '=-()e cos xn x x =-,()e sin x n x x '=+令,则,∵在在内大于零恒成立,()e sin x p x x =+()e cos x p x x '=+()p x 'π,02x ⎡⎫∈-⎪⎢⎣⎭∴函数在区间为单调递增,又∵,,,()p x π,02⎡⎫-⎪⎢⎣⎭π2πe 102p -⎛⎫-=-< ⎪⎝⎭()01p =∴上存在唯一的使得,∴当时,,此时()p x 0π,02x ⎛⎫∈- ⎪⎝⎭()00p x =0π,2x x ⎡⎫∈-⎪⎢⎣⎭()0n x '<为减函数,()n x 当时,,此时为增函数,又∵,,()0,0x x ∈()0h x '>()n x π2πe 02n -⎛⎫-=> ⎪⎝⎭()00n =∴存在,使得,∴当时,,为增函数,10π,2x x ⎛⎫∈- ⎪⎝⎭()10n x =1π,2x x ⎡⎫∈-⎪⎢⎣⎭()0m x '>()m x 当时,,为减函数,又∵,,()1,0x x ∈()0m x '<()m x π2πe 102m a -⎛⎫-=+-> ⎪⎝⎭()010m a =-≥∴时,,则为增函数,∴,∴π,02x ⎡⎫∈-⎪⎢⎣⎭()0h x '>()h x ()()00h x h ≤=()e cos 20x x x ax +--≥恒成立,..........9分②当时,在上恒成立,则在上为增函数, 1a >()e cos 0x m x x '=-≥[0,)+∞()m x [0,)+∞∵,, ()010m a =-<ln(1)(ln(1))e sin(ln(1))1sin(ln(1))0a m a a a a ++=-+-=-+≥∴存在唯一的使,()20,x ∈+∞()20h x '=∴当时,,从而在上单调递减,∴,20x x ≤<()0h x '<()h x [)20,x ()()00h x h <=∴,与矛盾,...........11分()e cos 20xx x ax +--<2e cos 20x x x x ax x +--≥综上所述,实数的取值范围为. ...........12分 a (,1]-∞22.(1)解:令,,则,2()0xf x e ax =-=()0,x ∈+∞2e xa x=23.因为在有两个零点,所以函数与的图象有两个不同的交点,()f x ()0,∞+y a =2ex y x=令,则, ()22e (),0,h x x x =∈+∞()()23e 2e (),0,xx x h x x x x -'==∈+∞当时,;当时,. (0,2)x ∈()0h x '<(2,)x ∈+∞()0h x '>所以在单调递减,在单调递增,所以,()h x (0,2)(2,)+∞()()2mine 24h x h ==又当时,,当时,,所以;...........4分0x +→()h x →+∞x →+∞()h x →+∞2e4a >(2) 证明:,故,()e (e 1)x x g x =x --()e (2e 2)x xg x =x '--令,, ()2e 2x m x =x --()2e 1x m x ='-当时,,当时,, 1ln2x <()0m x '<1ln 2x >()0m x '>所以在上单调递减,在上单调递增, ()m x 1(,ln )2-∞1(ln +)2∞,又,,,(0)0m =1ln 211(ln )2e ln 2ln 21022m =--=-<22(2)2e (2)20e 2m ==----->由零点存在性定理及的单调性知,方程在上有唯一根,...........6分()h x ()0m x =1(2,ln )2-设为且,从而有两个零点和,0x 002e 20xx =--()m x 0x 0当或时,,当时,,0x x <0x >()0g x '>00x x <<()0g x '<所以在单调递增,在上单调递减,在单调递增, ()g x 0(,)x -∞0(0)x ,(0+)∞,从而存在唯一的极大值点,由,得, ...........8分 ()g x 0x 002e 20x x =--002e 2xx +=,2000000000222111()e (e 1)(1)()(2)=224444x x x x x x g x x x x x ++-++∴=--=--=-+≤()当且仅当,即时,取等号,002x x -=+01x =-若,则,与题意矛盾,01x =-0102e 22e 10x x =----≠故,所以取等不成立,所以得证,...........10分 01x ≠-01()4g x <又,在单调递增,012ln2x -<< ()g x 0,x -∞()所以得证,...........11分 2242032()(2)e e (2)1e e e g x g ----⎡⎤>-=---=+>⎣⎦所以............12分 0321()e 4g x <<。
2023.3雅礼中学高二第一次月考数学参考答案
雅礼中学高二月考试卷2023.3数学参考答案一、单项选择题二、多项选择题三、填空题13.4-14.2816.1ln,2e ⎛⎫+∞ ⎪⎝⎭四、解答题17.【解析】(1)因为2sin 3sin C A =,根据正弦定理可知()2223c a a =+=,则4a =,故5b =,6c =,2221cos 028a b c C ab +-==>,(2)显然c b a >>,若ABC △为钝角三角形, 则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,又0a >,则2230a a --<, 即()()130a a +-<,解得13a -<<,则03a <<,由三角形三边关系可得12a a a ++>+, 可得1a >, ∵a Z ∈,故2a =.18.【解析】(1)显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且12112b a a ==+=, 所以{}n b 是以2为首项,3为公差的等差数列, 于是12b =,25b =,31n b n =-. (2)()()20123201351924620S a a a a a a a a a a a a =++++=++++++++()12310123101111b b b b b b b b =-+-+-++-+++++()110102103002b b +⨯=⨯-=.19.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=︒,由余弦定理可得DM , 所以222DM DC CM +=, ∴DM DC ⊥. 由题意DC PD ⊥且PDDM D =,∴DC ⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥, 又//AB DC , 所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥, 而AB 与DM 相交, 所以PM ⊥平面ABCD ,因为AM ,所以PM =,取AD 中点E ,连接ME ,则ME ,DM ,PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则()2,0A ,(0,0,P ,)D ,()0,0,0M ,)1,0C-,又N 为PC 中点,所以122N ⎛- ⎝,352AN ⎛=⎝. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量()0,1,0n =,从而直线AN 与平面PDM所成角的正弦值为5sin 27AN n AN nθ⋅===+. 20.【解析】(1)若乙笔试部分三个环节一个都没有通过或只通过一个,则不能参与面试,故乙末能参与面试的概率1211113211211143243243243224P =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. (2)X 的可能取值为0,1,2,3,4,5,()3110327P X ⎛⎫=== ⎪⎝⎭,()2131221C 339P X ⎛⎫==⋅⨯= ⎪⎝⎭, ()223211112C 334218P X ⎛⎫==⋅⨯⨯⨯= ⎪⎝⎭,()322321121113173C 34233424227P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯⨯+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 322321131213117434242334254PX C ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯+⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()3231153429P X ⎛⎫==⨯⨯= ⎪⎝⎭.则X 的分布列为故. (3)由(2)可知,甲成为在职教师的概率223121315C 9334218P ⎛⎫=+⨯⨯⨯⨯= ⎪⎝⎭甲, 乙成为在职教师的概率1123131243448P ⎛⎫=-⨯⨯=⎪⎝⎭乙. ()121717179012345279182754927E X =⨯+⨯+⨯+⨯+⨯+⨯=21.【解析】(1)抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p , 此时32pMF p =+=, 所以2p =,所以抛物线C 的方程为24y x =;(2)设211,4y M y ⎛⎫ ⎪⎝⎭,222,4y N y ⎛⎫ ⎪⎝⎭,233,4y A y ⎛⎫ ⎪⎝⎭,244,4y B y ⎛⎫⎪⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,0∆>,124y y =-, 由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-, 直线112:2x MD x y y -=⋅+, 代入抛物线方程可得()1214280x y y y --⋅-=,0∆>,138y y =-,所以322y y =,同理可得412y y =, 所以()34124422MN AB k k y y y y ===++,又因为直线MN 、AB 的倾斜角分别为α,β, 所以tan tan 22MN AB k k αβ===, 若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭, 设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 1242k k k k αβαβαβ--===≤=+++,当且仅当12k k =即k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,0∆>,34124416y y n y y =-==-,所以4n =,所以直线:4AB x =+.22.【解析】(1)∵()2ln 2a f x x x x =-+,定义域为()0,+∞, 由题意知()110f x ax x'=-+≥对任意的0x >恒成立,即221111124a x x x ⎛⎫≥-=--+ ⎪⎝⎭, ∵21111244x ⎧⎫⎪⎪⎛⎫--+=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭, 故14a ≥.因此,实数a 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭; (2)∵()2a f x ax =-, 即2ln 22a a x x x ax -+=-, 设()2ln 22a ag x x x x ax =-+-+,则()()()1111ax x g x ax a x x--'=-+-=,当1a =时,()()210x g x x-'=≥,函数()y g x =在()0,+∞上单调递增, ∵()11g =-,()14ln 402g =+>,故函数()y g x =有唯一零点; 当()1,a e ∈时,()()()11ax x g x x--'=,令()0g x '>,得10x a<<或1x >; 令()0g x '<,得11x a<<. 函数()y g x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,1a ⎛⎫⎪⎝⎭上单调递减,在()1,+∞上单调递增, 极大值为1111ln 1ln 12222a a g a a a a a a ⎛⎫=---+=---+⎪⎝⎭, 设()1ln 122a H a a a =---+, 则()()22211110222a H a a a a-'=-+=>恒成立, 故函数()y H a =单调递增, 故()()12022e H a H e e<=--<, 故函数()y g x =在()0,1上无零点. ∵()11g =-,()9144ln 4ln 4022g a =-+>+>, 故函数()y g x =在()1,+∞上有唯一零点. 综上所述,当[)1,a e ∈时,方程()2af x ax =-有且仅有一个根.。
高二数学下学期第一次月考试卷(含解析)(2021年整理)
湖北省武汉市2016-2017学年高二数学下学期第一次月考试卷一、选择题(本大题12小题,每小题5分,共60分)1.命题“∃x∈Z,使x2+2x+m<0”的否定是()A.∀x∈Z,使x2+2x+m≥0B.不存在x∈Z,使x2+2x+m≥0C.∀x∈Z,使x2+2x+m>0 D.∃x∈Z,使x2+2x+m≥02.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆"的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.过点(3,﹣2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为()A. +=1 B. +=1C. +=1 D. +=14.若p、q是两个命题,则“p∨q为真命题"是“(¬p)∧(¬q)为假命题"的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件5.若条件p:|x+1|>2,条件q:x>a且¬p是¬q的充分不必要条件,则a取值范围是()A.a≥1B.a≤1C.a≥﹣3 D.a≤﹣36.已知命题p:∀x∈(0,+∞),3x>2x,命题q:∃x∈(﹣∞,0),3x>2x,则下列命题为真命题的是()A.p∧q B.p∧(¬q)C.(¬p)∧q D.(¬p)∧(¬q)7.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是( )A.B.C.D.8.已知等差数列{a n}的前n项和为S n,且3a3=a6+4,则“a2<1”是“S5<10"的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知F1、F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=( )A.12 B.10 C.8 D.610.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2是锐角三角形,则该椭圆的离心率e的取值范围是( )A.(0,﹣1)B.(﹣1,1) C.(0,﹣1)D.(﹣l,1)11.已知椭圆C: +=1(a>b>0)的离心率为,四个顶点构成的四边形的面积为12,直线l与椭圆C交于A,B两点,且线段AB的中点为M(﹣2,1),则直线l的斜率为( )A.B.C.D.112.设e是椭圆的离心率,且,则实数k的取值范围是()A.(0,3)B. C.(0,2)D.二.填空题13.离心率,焦距2c=16的椭圆的标准方程为.14.已知:对∀x∈R+,a<x+恒成立,则实数a的取值范围是.15.直线y=kx+1(k∈R)与椭圆恒有两个公共点,则m的取值范围为.16.给出如下命题:①“在△ABC中,若sinA=sinB,则A=B"为真命题;②若动点P到两定点F1(﹣4,0),F2(4,0)的距离之和为8,则动点P的轨迹为线段;③若p∧q为假命题,则p,q都是假命题;④设x∈R,则“x2﹣3x>0”是“x>4”的必要不充分条件;⑤若实数1,m,9成等比数列,则圆锥曲线的离心率为.其中,所有正确的命题序号为.三。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巢湖春晖学校高二下学期第一次月考数学试卷
命题:宋燎原 审核:李良勋
(时间:120分钟 分数 150分)
参考公式:2
2
()K ()()()()
n ad bc a b c d a c b d -=++++,
回归直线方程:12
21
n
i i
i n i i x y
nx y
b x nx
==-=
-∑∑,
x b y a
ˆˆ-= 一、选择题(把你认为正确的选项填在答题卷对应的题号下,填在试卷上无效,本大题共10个小题,每小题5分,共50分)
1.i 为虚数单位,则
2011
11i i +⎛⎫
⎪-⎝⎭=( )A .- i B .-1 C .i D .1
2.下表中的由平面到空间的三个类比推理正确的个数( )
3、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2
R 如下 ,其中拟合效果最好的模型是( )
A .模型1的相关指数2R 为0.98 B. 模型2的相关指数2
R 为0.80 C. 模型3的相关指数2R 为0.50 D. 模型4的相关指数2
R 为0.25
4、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ≠
⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是
因为 ( )
A .大前提错误
B .小前提错误
C .推理形式错误
D .非以上错误
5 设4,0,0≤+>>b a b a 且,则有( ) A.
211≥ab B.2≥ab C.111≥+b a D.4
11≤+b a 6.设集合{}{}
|33,|2,12x A x x B y y x =-<<==≤≤,则()()R R C A C B =U ( ) A .[)2,3
B .()(),23,-∞+∞U
C .()[),23,-∞+∞U
D .()(),24,-∞+∞U
7.函数()34log 2
1-=
x y 的定义域为 ( )
A.(43,∞-) B.(1,∞-] C.(43,1] D.(4
3
,1)
8、用反证法证明命题:“,,,a b c d R ∈,1a b +=,1c d +=,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为( )
A .,,,a b c d 中至少有一个正数
B .,,,a b c d 全为正数
C .,,,a b c d 全都大于等于0
D .,,,a b c d 中至多有一个负数 9.执行如右图所示的程序框图,输出的T= ( )
A. 11
B. 12
C. 13
D. 14
10.设有一回归直线方程为ˆ4 1.5y
x =-,则变量x 增加一个单位时( ) A .y 平均增加 1.5 个单位
B .y 平均增加 2.5 个单位
C .y 平均减少 1.5 个单位
D .y 平均减少 2.5 个单位
二、填空题(将正确答案填在答题卷的对应题号后的横线上,每小题5分 ,
共25分)
11、回归直线方程为0.57514.9y x =-,则100x =时,y 的估计值为
12、若()()()(,),f a b f a f b a b N +=⋅∈且(1)2f =,则
(2)(4)(2010)
(1)(3)(2009)
f f f f f f +++=L 13.设函数(0)()ln (0)
x e x g x x x ⎧≤=⎨>⎩,则1
(())2g g =__________
14. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,这个常数叫做该数列的公和.已知数列{}n a 为等和数列,且12a =,公和为5,则18a 的值为
; 15.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数是 .
三、解答题:(你有能力正确解答下列题目,解答时要求写出详细的解答过程,解答过程写在答题卷规定的区域内,写在区域外无效)
16. 已知2i-3是实系数一元二次方程02
=-+q px x 的一个根,求p 和q 值(12分)
17、在数列{a n }中,1121,
()2n
n n
a a a n N a ++==
∈+,试写出这个数列的前4项,并猜
想这个数列的通项公式。
(12分)
18、求证:6+7>22+5(12分)
19、(本题满分12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个22⨯的列联表; (2)判断性别与休闲方式是否有关系。
(本题可以参考两个分类变量x 和y 有关系的可信度表:) P (k 2>k ) 0.50 0.40
0.25
0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.83
20、(本题满分13分)
如图,ABCD是正方形,O是正方形的中心,
PO⊥底面ABCD,E是PC的中点.
求证:(1)PA//平面BDE;
(2)平面PAC⊥平面BDE.
21.(本题满分14分)函数f (x) 对任意x∈ R都有
1 ()(1)
2 f x f x
+-=.
(1)求
1
()
2
f的值.
(2)数列{a n} 满足:
121
(0)()()()(1)
n
n
a f f f f f
n n n
-
=+++++
L,数列{}n a是等差数
列吗?请给予证明. (第20题图)
C。