超级电容器原理及电特性

合集下载

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器是一种储能元件,具有高能量密度、高功率密度、长循环寿命等优点。

它在许多领域都有着重要的应用,比如电动车、电子设备等。

那末,超级电容器是如何工作的呢?下面我们将详细介绍超级电容器的工作原理。

一、电容器基本原理1.1 电荷分布:超级电容器由两块带电极的导体板和介质组成。

当电容器充电时,正极板上的电子会被吸引到负极板上,形成正负电荷分布。

1.2 电场形成:正负电荷之间形成电场,这个电场会储存能量,使得电容器具有储能功能。

1.3 电容量:电容器的电容量取决于电极之间的距离、介质的介电常数等因素。

二、超级电容器与普通电容器的区别2.1 电介质:超级电容器的电介质通常是活性炭或者氧化铝等高表面积材料,具有更高的比表面积和更好的电导率。

2.2 极板材料:超级电容器的极板材料通常是活性炭或者导电聚合物,具有更好的导电性和化学稳定性。

2.3 极板结构:超级电容器的极板结构设计更为复杂,可以实现更高的电容量和更低的内阻。

三、超级电容器的工作原理3.1 双层电容效应:超级电容器利用双层电容效应储存能量,即电荷在电极表面形成两层电荷层,实现高能量密度的储能。

3.2 离子迁移:在充放电过程中,离子在电解质中迁移,形成电荷分布,实现能量的储存和释放。

3.3 电荷传输:电荷在电极和电解质之间传输,实现能量的转换和储存。

四、超级电容器的应用4.1 电动车:超级电容器可以作为电动车的辅助储能装置,提供瞬时大功率输出,减轻电池负荷,延长电池寿命。

4.2 可再生能源:超级电容器可以与太阳能、风能等可再生能源结合使用,平衡能源供需,提高能源利用效率。

4.3 电子设备:超级电容器可以用于电子设备的快速充放电,提高设备的性能和响应速度。

五、超级电容器的发展趋势5.1 提高能量密度:超级电容器的能量密度仍然相对较低,未来的发展方向是提高能量密度,实现更高的储能效率。

5.2 降低成本:超级电容器的成本相对较高,未来的发展方向是降低成本,推动其在更广泛领域的应用。

超级电容器原理及电特性

超级电容器原理及电特性

超级电容器原理及电特性超级电容器(Supercapacitor)是一种高能量密度和高功率密度的电子储存设备,也被称为超级电容器或电化学电容器。

它是一种介于传统电容器和化学电池之间的电子器件,具有高容量和高电流输出的特性,在能量存储和释放方面相比传统的电池具有很大的优势。

超级电容器的原理是基于电荷在电解质中的吸附原理,它由两个带有相互交替排列的互连电极和电解质组成。

电极通常由活性材料制成,如活性炭、过渡金属氧化物、活性金属等。

电容器的两个电极中,一个电极带正电,一个带负电,当电解质通过电极时,正极会吸引负电荷,而负极则会吸引正电荷,从而形成了一个电荷分离的状态,储存着电能。

超级电容器与传统电容器的最大区别在于其电解质的性质。

超级电容器使用的电解质是有机盐溶液或聚合物溶液,相比之下,传统电容器使用的是固体或液体介质。

由于电解质的存在,超级电容器具有较高的离子导电性,使其能够在短时间内获得较大的充电和放电电流,从而实现高功率输出。

超级电容器的电特性主要包括容量、电压和内电阻。

容量是用来衡量超级电容器储存电能的大小,单位通常是法拉(F)。

对比传统电容器,超级电容器的容量通常要大得多,可以达到几千法拉甚至更高。

电压是电容器的工作电压范围,超级电容器的电压一般在1.2-2.7伏之间。

内电阻是超级电容器放电时的阻抗,也称为超级电容器的等效串联电阻。

内电阻较低则能够提供更大的电流输出。

超级电容器具有很多优点。

首先,它具有很高的循环寿命和快速充放电特性。

传统电池在充放电过程中会有能量损失,导致其循环寿命较短,而超级电容器可以进行数万次的充放电循环而不损失能量。

其次,超级电容器具有很高的功率密度,能够在短时间内释放出大量电能,因此在需要高功率输出的场合具有很大的优势。

此外,超级电容器具有良好的可靠性和环保性,不含重金属等有害物质,对环境友好。

然而,超级电容器的能量密度还不如传统电池高。

虽然超级电容器的容量较大,但其能量存储量仍然不及化学电池,这限制了其在一些应用中的使用。

超级电容器基本原理及性能特点

超级电容器基本原理及性能特点

聚焦超级电容选型与应用上网时间:2010-05-27 作者:Zoro 来源:电子元件技术网超级电容和电池都是能量的存储载体,但二者有不同的特点。

超级电容通过介质分离正负电荷的方式储存能量,是物理方法储能,电池是通过化学反应的方法来储能。

超级电容充放电次数可达百万次,而电池只有1000次,显然超级电容寿命要远大于电池,降低维护成本且有利于环保。

超级电容充放电速度快,能够在机车启动时提供能量,刹车时捕获能量,因为超级电容充放电的时间在1秒左右,正好与机车刹车或启动的时间匹配。

其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。

而电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电为0.03秒。

超级电容放电速度快,而且容量大,能够瞬间释放巨大的能量,能够用作备用电源,在系统突然断电时,在极短时间内为系统提供能量。

超级电容也可以用作发动机或动力电池的辅助,提高发动机的运行效率和能量利用效率。

在系统启动时,超级电容将捕获的能量释放,满足峰值功率要求,从而减轻电池或发动机的负担。

除此之外,超级电容还能用于自动抄表系统中的智能电表(水表,燃气表)、相机闪光灯、混合动力汽车。

超级电容节能、环保、高效的特点迎合了当下节能减碳的设计诉求。

本期半月谈聚焦超级电容,通过以下三个方面介绍超级电容:超级电容器基本原理及性能特点超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容与电池的比较相对铅酸电池、镍镉电池、锂离子电池,超级电容具有节能、超长使用寿命、安全、环保、宽温度范围、充电快速、无需人工维护等优点。

本文通过图表来对比各种不同储能产品的特点。

超级电容的典型应用与选型超级电容容量大,充放电速度快,而且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理引言概述:超级电容器是一种新兴的电子元件,具有高能量密度、快速充放电和长寿命等特点,被广泛应用于电子设备、汽车、航空航天等领域。

本文将详细介绍超级电容器的工作原理。

一、电容器基本原理1.1 电容器的定义和结构电容器是一种能够存储电荷的电子元件,由两个导体板和介质组成。

导体板上的电荷会在两板之间形成电场,存储电能。

1.2 电容器的充放电过程充电过程:当电容器接入电源时,电荷从电源流入导体板,导体板上的电荷逐渐增加,电场强度增大,电容器储存的电能增加。

放电过程:当电容器与电源断开连接时,导体板上的电荷会通过电路释放出来,电场强度减小,电容器储存的电能逐渐减小。

1.3 电容器的电容量和电压电容量是电容器存储电荷的能力,单位为法拉(F)。

电容量越大,电容器存储的电能越多。

电压是电容器两板之间的电势差,单位为伏特(V)。

电压越高,电容器存储的电能越大。

二、超级电容器的结构和特点2.1 超级电容器的结构超级电容器由两个电极和电解质组成。

电极通常采用活性炭材料,具有大表面积和高导电性。

电解质是一种能够导电的液体或者固体,能够提高电容器的电导率和存储电荷的能力。

2.2 超级电容器的高能量密度超级电容器的电极具有大表面积,能够存储更多的电荷,因此具有高能量密度。

相比之下,传统电容器的电能密度较低。

2.3 超级电容器的快速充放电由于超级电容器的电极和电解质具有低电阻性质,电荷在电容器内部的传输速度非常快,因此具有快速充放电的特点。

三、超级电容器的工作原理3.1 双电层电容效应超级电容器的电极表面存在双电层结构,即电极表面的电荷分布形成两层电荷层。

这种双电层结构使得超级电容器能够存储更多的电荷。

3.2 电化学反应超级电容器的电解质能够发生电化学反应,将电能转化为化学能。

这种反应可以增加电容器的电能存储能力。

3.3 电容器的电压稳定性超级电容器具有较好的电压稳定性,即在充放电过程中,电容器的电压变化较小。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器,也被称为超级电容,是一种能够存储和释放大量电荷的电子元件。

它具有比传统电容器更高的电容量和能量密度,以及更高的充放电速度。

超级电容器的工作原理是基于电荷分离和电场存储的原理。

1. 电荷分离:超级电容器由两个电极和电解质组成。

电解质是一个导电液体或者固体,它能够在两个电极之间形成一个电荷分离的界面。

当超级电容器处于未充电状态时,电解质中的离子均匀分布,没有电荷分离。

2. 充电过程:当外部电源连接到超级电容器的两个电极上时,正极电极吸引负电荷,负极电极吸引正电荷。

这导致电解质中的离子开始向电极挪移,形成电荷分离。

正电荷会萃在负极电极上,负电荷会萃在正极电极上。

这个过程称为充电。

3. 电场存储:在充电过程中,电解质中的离子在电极表面形成一个电荷层。

这个电荷层产生了一个电场,用于存储电能。

超级电容器的电容量取决于电极表面积和电解质的性质。

由于电解质具有较高的离子迁移速度,超级电容器能够以非常高的速度存储和释放电能。

4. 放电过程:当超级电容器需要释放电能时,外部电路将电留连接到电容器的两个电极上。

电荷开始从电极中流出,电解质中的离子重新回到均匀分布状态。

这个过程称为放电。

由于超级电容器的内阻较低,它能够以很高的速度释放电能。

超级电容器的工作原理使其具有许多应用领域。

以下是一些常见的应用:1. 能量回收系统:超级电容器可以用于回收制动能量或者其他能量浪费过程中产生的能量。

它们能够快速充电和放电,可以有效地存储和释放能量。

2. 电动车辆:超级电容器可以用作电动车辆的辅助能量存储装置。

它们能够提供高功率输出和快速充放电速度,增加电动车辆的加速性能和续航里程。

3. 可再生能源系统:超级电容器可以与太阳能电池板或者风力发机电等可再生能源系统结合使用。

它们能够平衡能量的供应和需求,提供快速响应和稳定的电力输出。

4. 电子设备:超级电容器可以用于电子设备中的瞬态电源管理。

它们能够提供快速的电流脉冲,以满足高性能电子设备的需求。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理引言概述:超级电容器是一种能够存储和释放大量电荷的电子设备,它具有高能量密度、长寿命和快速充放电特性。

本文将详细介绍超级电容器的工作原理,包括电荷存储机制、电解质和电极材料选择、以及充放电过程中的物理过程。

一、电荷存储机制1.1 双电层电容机制超级电容器的主要电荷存储机制是双电层电容机制。

当超级电容器的正负极之间施加电压时,电解质溶液中的正负离子会迁移到电极表面,并在电极表面形成一个电荷层。

正极表面吸附的负离子形成负电荷,而负极表面吸附的正离子形成正电荷。

这种电荷层的形成使得电极表面形成一个电荷双层结构,从而形成了电容效应。

1.2 电化学吸附机制除了双电层电容机制,超级电容器还利用电化学吸附机制存储电荷。

在超级电容器的电极表面,电解质中的离子与电极表面的化学官能团发生化学反应,形成化学键。

这些化学键的形成使得电荷能够在电极表面进行吸附和释放,从而实现电荷的存储和释放。

1.3 电荷迁移机制电荷存储机制中的关键步骤是电荷的迁移。

当超级电容器充电时,电荷从电源流向电极,电解质中的离子也会随之迁移到电极表面。

而在放电过程中,电荷从电极流向负载,电解质中的离子也会从电极表面迁回到电解质中。

这种电荷的迁移过程是超级电容器工作的基础。

二、电解质和电极材料选择2.1 电解质选择超级电容器的电解质通常选择高离子浓度的溶液,以提供足够的离子进行电荷存储和迁移。

常用的电解质包括酸性、碱性和中性溶液,如硫酸、氢氧化钾和盐水等。

电解质的选择应根据超级电容器的工作环境和性能要求进行合理的选择。

2.2 电极材料选择超级电容器的电极材料需要具有良好的导电性和电化学性能。

常用的电极材料包括活性炭、金属氧化物和导电聚合物等。

活性炭具有高比表面积和良好的电化学吸附性能,适用于双电层电容机制。

金属氧化物和导电聚合物具有较高的电化学活性,适用于电化学吸附机制。

2.3 电极材料匹配超级电容器的电极材料需要与电解质相匹配,以确保电荷存储和迁移的效率。

超级电容器的工作原理

超级电容器的工作原理

超级电容器的工作原理
超级电容器是一种电子元件,其工作原理基于电荷的吸附和释放。

它由两个电极(通常是导电材料)和一个电解质介质构成。

工作原理如下:在充电阶段,当电容器与电源连接时,正极电极吸收电子而形成负电荷,同时负极电极释放出电子而形成正电荷。

这使得正电荷在电解质中向负极电极运动,负电荷则在电解质中向正极电极运动。

电池的电势差驱动电荷在电解质中运动,并在电极表面积上建立了一个电场。

电荷沿着电场线移动并吸附在电极表面。

通过控制充电时间,电容器可以积累更多的电荷。

在放电阶段,当电容器与负载电路连接时,电荷从电极表面释放出来并流入负载。

这使得电荷从正极电极向电解质转移,然后通过电解质进入负极电极。

通过这种方式,超级电容器能够快速地释放储存的电荷,提供电能供应给负载。

相比于传统电池,超级电容器的主要优势在于其高功率密度和良好的充放电循环寿命。

因此,超级电容器广泛应用于需要高峰功率和快速充放电的领域,如混合动力车辆、电动工具和再生能源存储等。

超级电容器原理及电特性详细分析

超级电容器原理及电特性详细分析

超级电容器原理及电特性详细分析超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。

1. 级电容器的原理及结构1.1 超级电容器结构图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(t etraetry lanmmonium perchlorate)。

工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定:其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界面的表面面积。

图1超级电容器结构框图由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。

电池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。

这种超级电容器有几点比电池好的特色。

1.2 工作原理超级电容器是利用双电层原理的电容器,原理示意图如图2。

当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。

当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。

由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器是一种高能量密度和高功率密度的电子器件,其工作原理基于电荷的分离和存储。

它由两个电极和一个电解质组成,电解质通常是一个电解质溶液或固体。

电容器的两个电极之间存在电位差,当电容器充电时,电荷从一个电极移动到另一个电极,形成电场。

超级电容器的工作原理可以分为两个阶段:充电和放电。

充电阶段:在充电阶段,电容器的正极接通正极电源,负极接通负极电源。

电流从正极流入电容器,电荷在电解质中分离,正电荷聚集在正极,负电荷聚集在负极。

这个过程中,电容器的电势逐渐增加,直到达到所需的电压。

放电阶段:在放电阶段,电容器的正极和负极相连,形成一个闭合回路。

电荷从正极流向负极,通过外部电路,产生电流。

这个过程中,电容器释放储存的电能,电势逐渐降低。

超级电容器的工作原理与普通电容器不同之处在于其电解质的特殊性质。

超级电容器使用的电解质具有高比表面积和高离子导电性。

高比表面积可以提供更多的电荷分离和存储空间,而高离子导电性可以使电荷更快地在电容器中移动。

这些特性使得超级电容器具有更高的能量密度和功率密度。

超级电容器的应用广泛,特别是在需要短时间高功率输出的领域。

例如,电动车辆使用超级电容器作为辅助能量储存装置,以提供启动和加速时的额外功率。

此外,超级电容器还可以用于储能系统、电子设备的备份电源、风力和太阳能发电站的功率平衡等领域。

总结:超级电容器是一种高能量密度和高功率密度的电子器件,其工作原理基于电荷的分离和存储。

它由两个电极和一个电解质组成,电解质通常是一个电解质溶液或固体。

超级电容器的工作原理可以分为充电和放电两个阶段。

在充电阶段,电容器的正极接通正极电源,负极接通负极电源,电荷在电解质中分离,形成电场。

在放电阶段,电容器的正极和负极相连,电荷从正极流向负极,通过外部电路产生电流,释放储存的电能。

超级电容器的特殊电解质使得其具有高能量密度和高功率密度,广泛应用于需要短时间高功率输出的领域。

超级电容器基本原理及性能特点

超级电容器基本原理及性能特点

超级电容器基本原理及性能特点中心议题:•超级电容器的原理、结构和特点•Maxwell超级电容器结构•超级电容选型与应用超级电容的容量比通常的电容器大得多。

由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。

超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容器原理电化学双层电容器(EDLC)因超级电容器被我们所熟知。

超级电容器利用静电极化电解溶液的方式储存能量。

虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。

这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。

超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。

对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。

这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。

传统的电解电容器存储区域来自平面,导电材料薄板。

高电容是通过大量的材料折叠。

可能通过进一步增加其表面纹理,进一步增加它的表面积。

过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。

电介质越薄,在空间受限的区域越可以获得更多的区域。

可以实现对介质厚度的表面面积限制的定义。

超级电容器的面积来自一个多孔的碳基电极材料。

这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。

超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。

这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。

巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。

超级电容可以用做后备电源,类似于UPS,在系统突然断电后,负责在极短时间内为系统提供能量。

在这种应用中,需要后备电源有快速的启动时间。

由于超级电容是物理反应的方式储存电能,充放电速度快,相对电池有着更为快速的响应时间。

超级电容器原理及电特性

超级电容器原理及电特性

超级电容器原理及电特性Principle & Electric characteristics of Ultra capacitor辽宁工学院陈永真孟丽囡宁武Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。

关键词:超级电容器 ESR 放电电流Abstract: Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward.Key words: ultra-capacitor ESR Discharging current超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。

1. 级电容器的原理及结构1.1 超级电容器结构图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。

超级电容工作原理

超级电容工作原理

超级电容工作原理一、引言超级电容是一种高能量密度的电子储存器件,具有极高的功率密度和长寿命等特点。

它是由两个电极和介质构成的,其中介质通常是活性炭或氧化物等材料。

超级电容广泛应用于电动汽车、风力发电机、太阳能发电等领域。

二、超级电容的基本结构超级电容的基本结构包括两个极板(即正负极)、隔离介质和导体。

其中,正负极板分别由活性炭或氧化物材料制成,隔离介质则是导体与正负极板之间的隔离层。

三、超级电容充放电过程1. 充电过程当超级电容器处于空载状态时,其两个端子间不存在任何电荷。

在充电时,将正极连接到正极端子上,将负极连接到负极端子上,则正极板上会积聚大量的正离子,而负极板上则会积聚大量的负离子。

由于两者之间存在巨大的静电场,所以在两者之间形成了一个强烈的静态能场。

2. 放电过程当超级电容器需要释放其储存的电能时,将两个端子短接即可。

此时,由于正负极板之间的静态能场被破坏,积聚在两个极板上的离子开始运动,从而形成了一个电流。

这个电流会随着时间的推移而逐渐减小,直到最终超级电容器完全放空。

四、超级电容的工作原理1. 双层结构超级电容器主要依靠其双层结构来实现高能量密度和高功率密度。

当两个极板之间施加一定的电压时,会在它们之间形成一个双层区域。

该区域由吸附在正负极板表面的离子组成,并且具有非常高的比表面积。

这种双层结构可以使得超级电容器具有非常高的储能密度和放电速率。

2. 介质效应除了双层效应外,介质效应也是超级电容器实现高能量密度和长寿命的重要因素之一。

介质通常是活性炭或氧化物等材料,具有很好的导体性和稳定性。

当两个极板之间施加电压时,介质会被极板表面的离子激活,从而形成一个更大的电容器。

这种介质效应可以使得超级电容器具有更高的储能密度和更长的寿命。

3. 电化学效应在超级电容器中,还存在着一种称为“伪电池”的现象。

当两个极板之间存在不同的化学反应时,就会形成一个类似于电池的结构。

这种结构可以产生额外的电势差,并且可以增加超级电容器的能量密度。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理引言概述:超级电容器是一种高容量、高功率密度的电子元件,其工作原理基于电荷的吸附和电解质的离子迁移。

本文将详细介绍超级电容器的工作原理,包括电荷的吸附、电解质的离子迁移以及超级电容器的优势和应用领域。

一、电荷的吸附1.1 电荷吸附的概念电荷吸附是指超级电容器中的正极和负极表面通过吸引电子和离子,将电荷储存起来的过程。

1.2 电荷吸附的机制电荷吸附的机制主要包括物理吸附和化学吸附两种方式。

物理吸附是指电子在电极表面形成双电层结构,电荷储存在电极表面;化学吸附则是指离子通过氧化还原反应与电极表面发生化学反应,形成电荷储存。

二、电解质的离子迁移2.1 电解质的作用电解质是超级电容器中的重要组成部分,其主要作用是提供离子迁移的通道,以实现电荷的储存和释放。

2.2 离子迁移的过程离子迁移是指电解质中的离子在外加电压的作用下,从正极迁移到负极或从负极迁移到正极的过程。

这种迁移过程通过电解质中的孔隙和溶液中的离子进行。

三、超级电容器的优势3.1 高容量和高功率密度超级电容器相比传统电容器具有更高的容量和功率密度,能够在短时间内存储和释放大量的能量。

3.2 长寿命和低内阻超级电容器的寿命通常比电池更长,且内阻较低,能够快速响应电路的需求。

3.3 环境友好和可循环利用超级电容器不含有有害物质,且可以进行多次充放电循环,具有较好的环境友好性。

四、超级电容器的应用领域4.1 电动汽车超级电容器可以作为电动汽车的辅助能量存储装置,提供高功率的瞬时加速和能量回收功能。

4.2 可再生能源超级电容器可以储存可再生能源(如太阳能和风能)的电能,平衡能源供应和需求之间的差异。

4.3 电子设备超级电容器可以应用于电子设备中,提供快速充电和长寿命的能量存储功能,如智能手机和手表。

五、总结超级电容器的工作原理基于电荷的吸附和电解质的离子迁移。

通过电荷的吸附和离子的迁移,超级电容器能够实现高容量、高功率密度的能量存储和释放。

超级电容器的原理和特点

超级电容器的原理和特点

超级电容器的原理和特点一、超级电容器的原理超级电容器的工作原理是基于电荷在电解质中的吸附和解吸附机制。

其结构由正负两个电极和之间的电解质组成。

其中,正负两个电极间通过电解质产生的电场会引起电解质中的正负离子在电极表面上的吸附和解吸附。

当电容器充电时,正极电极表面吸附负离子,负极电极表面吸附正离子,这相当于电容器储存了电荷。

当电容器放电时,负极电极表面的负离子和正极电极表面的正离子解吸附,电荷释放。

二、超级电容器的特点1.高储能密度:相比于传统电容器和储能器件,超级电容器具有高储能密度的优势。

这是因为超级电容器采用了特殊的电极材料和电解质,提供了更大的电极表面积,从而能够储存更多电荷。

2.快速充放电:超级电容器具有快速充放电的特点,充电时间通常可以达到几秒至几分钟,而传统电池通常需要几个小时。

这是因为超级电容器可以利用其高电导率将电荷迅速传递到电极表面,从而实现快速充放电。

3.长寿命和可靠性:由于超级电容器不涉及化学反应,因此其使用寿命远远超过传统电池。

此外,由于超级电容器的电化学反应可逆,因此超级电容器可以进行数百万次的充放电循环,而不会降低其性能。

4.宽温度范围:超级电容器能够在极端温度下正常工作,在-40℃至70℃的温度范围内,其性能基本保持不变。

这种特点使得超级电容器在一些特殊工况下的应用得以实现。

5.环境友好:超级电容器不使用有害的化学物质,不产生有毒废弃物,具有较低的环境污染风险。

与传统电池相比,超级电容器更加环保。

6.可充电性:与传统的干电池相比,超级电容器具有可充电性。

这意味着超级电容器可以通过外部电源进行充电,并能够进行多次循环充放电。

总结:超级电容器具有高储能密度、快速充放电、长寿命和可靠性、宽温度范围、环境友好、可充电性等特点。

这些特点使得超级电容器在一些领域具有广泛的应用前景,如电动车、智能电网、可再生能源储能等领域。

随着科学技术的发展,超级电容器的性能将会更加优化,其应用范围也将进一步拓展。

超级电容器

超级电容器

超级电容器超级电容器(Supercapacitor,Ultracapacitor)又名化学电容器(Electrochemical Capacitor)是一种电荷的储存器,当电源的电压连接在电容器的两端时,电源的电荷就储存在电容器中。

超级电容器比能量高,功率释放能力强,清洁无污染,寿命长达百万次。

利用电容器能够储存大量电荷,快速、大电流冲放电的特性,可以为电动车辆的起动提供强大的电流,能够高效率的储存电动车辆制动反馈的电能,弥补了动力蓄电池的不足,延长蓄电池的寿命。

超级电容器是电动车辆上重要的储能装置,其与蓄电池的主要性能比较见下表。

超级电容器与蓄电池主要性能比较1、电容器工作原理电容器是由两个彼此绝缘的平板形金属电容板组成,在两块电容板之间用绝缘材料隔开。

电容器极板上所储集的电量q与电压成正比。

电容器的计量单位为“法拉”(F)。

当电容充上1V的电压,如果极板上储存1F的电荷量,则该电容器的电容量就是1F。

电容器的电容量:C=εA/d F式中:ε——电介质的介电常数,F/m;A——电极表面积,m2;d——电容器间隙的距离,m。

电容器的容量只取决于电容板的面积,与面积的大小成正比,而与电容板的厚度无关。

另外,电容器的电容量还与电容板之间的间隙大小成反比。

当电容元件进行充电,电容元件上的电压增高,电场能量增大,电容器从电源上获得电能,电容器中储存的电量E为:E=CU2/2式中:U——外加电压,V。

当电容元件进行放电,电容元件上的电压降低,电场能量减小,电容器从电源上释放能量,释放的最大电量为E。

2、超级电容器的特性超级电容器可以大电流放电,可以补充主电源(蓄电池或燃料电池)在电动车辆起动时所需要的峰值电流,减小主电源的负荷。

上海“奥威”科技开发公司UCT-80000F超级电容器在不同放电电流时的放电曲线见图1,在不同温度时的放电曲线见图2。

电动车辆上所采用的超级电容器的单位容量要求在1500F以上,因此要将单体电容器进行串联组合。

超级电容器储能的原理

超级电容器储能的原理

超级电容器储能的原理
超级电容器储能的原理是通过电电解双层电容效应来实现的。

超级电容器由两个电极(通常是活性炭材料)和一个电解质介质组成。

当电容器连接到电源时,正极电极上的电子会向电解质中移动,同时负极电极上的电子会从电解质中移除。

这个过程导致了电解质中产生了带正电和带负电的离子。

由于离子的共吸引力,它们会聚集在电极和电解质界面附近形成一个双层电容,其中正离子聚集在负极附近,负离子聚集在正极附近。

当超级电容器处于充电状态时,电子从电源流向正极电极,然后通过电解质中的离子移动并沉积在负极电极上。

这个过程导致带电离子从电解质中交换,在双层电容中储存电能。

当需要释放电能时,超级电容器的电极连接到外部电路。

在连接后,储存的电能会通过电解质中的离子运动,在电容器的电极之间传递,并驱动电路中的负载工作。

超级电容器以其高能量密度、高电压和长寿命等优点而被广泛应用于需要短时间高功率输出和快速充电和放电的领域,如电动汽车、电子设备和可再生能源储能系统等。

超级电容的工作原理

超级电容的工作原理

超级电容的工作原理
超级电容(超级电容器,也称为超级电池)的工作原理是通过电荷在电介质上的吸附与释放来存储和释放能量。

超级电容器由两个电极和一个电解质(或电介质)层构成。

当超级电容器处于放电状态时,两个电极上的电荷开始从一个电极转移到另一个电极,通过电解质传导电荷。

电解质的高导电性使得电荷的传输速度非常快,使超级电容器能够在短时间内完成放电过程。

当超级电容器接通电源开始充电时,电荷从电源中通过电解质传输到电极上。

由于电解质的导电性,电荷的传输速度也非常快。

电荷在电极上被吸附,存储在表面的介电层中。

超级电容器的存储能力与电介质的表面积以及电解质的导电性相关。

通常,超级电容器会使用大面积的电极和高导电性的电介质,以增加能量的存储能力。

这种设计使得超级电容器能够在很短的时间内存储和释放大量的能量,具有良好的高功率特性。

需要注意的是,超级电容器与普通的电容器相比具有更高的电容量,但相对电池来说能量密度较低。

这使得超级电容器在短时间高功率输出方面表现出色,但相对较长时间的能量存储和释放方面相对较差。

因此,超级电容器常常与其他能量存储技术(如电池)结合使用,以实现高效能量管理和更长时间的持续能量供应。

超级电容原理

超级电容原理

超级电容原理
超级电容是一种相对较新的电子器件,它利用了电双层电容的原理来实现高能量密度和大功率密度的特性。

与传统电容相比,超级电容具有更高的电容值和更低的电压限制。

超级电容的核心原理是通过在电极表面形成电双层来存储电荷。

电双层是由电解质介质与电极表面形成的静电层,其内部电位差非常高。

当电压施加在电极上时,电解质中的离子会在电极表面附近形成双层,电子会在电极上积聚,从而形成存储电荷的效果。

在充放电过程中,电荷的移动是以离子在电解质中的迁移为主。

当超级电容充电时,电荷会通过电解质中的离子迁移到电极上形成电存储;而在放电时,电荷则会回到电解质中。

由于离子在电解质中迁移的速度非常快,所以超级电容具有很高的充放电效率。

值得一提的是,超级电容的电极材料也是影响性能的重要因素之一。

目前常用的电极材料有活性炭、氧化铱、氧化铑等。

这些材料具有较高的表面积和良好的电导性能,能够提高电极与电解质之间的接触面积,从而增强电容效果。

超级电容的应用非常广泛,特别是在需要瞬时大功率输出的场合。

比如,超级电容可用于电动车辆的动力系统中,可以通过存储和释放电荷来提供加速和爬坡时的额外动力。

此外,超级电容还可以用于储能系统、能量回收和备用电源等领域,具有很大的市场潜力。

总的来说,超级电容基于电双层电容的原理,具有高能量密度、大功率密度、高充放电效率等优点。

随着技术的不断发展,超级电容有望在各种领域发挥更重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超级电容器原理及电特性Principle & Electric characteristics of Ultra capacitor辽宁工学院陈永真孟丽囡宁武Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。

关键词:超级电容器 ESR 放电电流Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward.Key words: ultra-capacitor ESR Discharging current超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。

1. 级电容器的原理及结构1.1 超级电容器结构图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。

工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定:其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界面的表面面积。

由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。

电池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。

这种超级电容器有几点比电池好的特色。

图1超级电容器结构框图1.2 工作原理超级电容器是利用双电层原理的电容器,原理示意图如图2。

当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。

当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。

由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。

由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。

因此性能是稳定的,与利用化学反应的蓄电池是不同的。

2.3 主要特点由于超级电容器的结构及工作原理使其具有如下特点:①.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。

因此,一般双电层电容器容量很容易超过1F ,它的出现使普通电容器的容量范围骤然跃升了3??4个数量级,目前单体超级电容器的最大电容量可达5000F 。

②.充放电寿命很长,可达500 000次,或90 000小时,而蓄电池的充放电寿命很难超过1 000次,③.可以提供很高的放电电流(如2700F 的超级电容器额定放电电流不低于950A ,放电峰值电流可达1680A ,一般蓄电池通常不能有如此高的放电电流一些高放电电流的蓄电池在杂如此高的放电电流下的使用寿命将大大缩短。

④.可以数十秒到书分钟内快速充电,而蓄电池再如此短的时间内充满电将是极危险的或几乎不可能。

⑤.可以在很宽的温度范围内正常工作(-40??+70℃)而蓄电池很难在高温特别是低温环境下工作。

⑥.超级电容器用的材料是安全的和无毒的,而铅酸蓄电池、镍镉蓄电池军具有毒性。

⑦.等效串联电阻ESR 相对常规电容器大(10F/2.5V 的ESR 为110mΩ)。

⑧.可以任意并联使用一增加电容量,如采取均压后,还可以串联使用。

2. 级电容器特性超级电容器的主要特性:2.1 额定容量:单位:法拉(F ),测试条件:规定的恒定电流(如1000F 以上的超级电容器规定的充电电流为100A ,200F 以下的为3A )充电到额定电压后保持2??3分钟,在规定的恒定电流放电条件下放电到端电压为零所需的时间与电流的乘积再除以额定电压值,即:由于等效串联电阻(ESR )比普通电容器大,因而充放电时ESR 产生的电压降不可忽略,如2.7V/5 000F 超级电容器的ESR 为:0.4mΩ,在100A 电流放电时的ESR 电压降为40mV 占额定电压的1.5%,在950A 电流放电时的ESR 电压降为380mV 占额定电压的14%,表明在额定电流下放电容量将为额定容量减小88.5%,这一特性将在图3中看到。

2.2 额定电压:可以使用的最高安全端电压(如2.3V 、2.5V 、2.7V 以及不久将来的3V ),除此之外还有承受浪涌电压电压(可以短时承受的端电压,通常为额定电压的105%),实际上超级电容器的击穿电压远高于额定电压(约为额定电压的1.5??3倍左右,与普通电容器的额定电压/击穿电压比值差不多。

2.3 额定电流: 5秒内放电到额定电压一半的电流,除此之外还有最大电流(脉冲峰值电流)2.4 最大存储能量:在额定电压是放电到零所释放的能量,以焦耳(J )或瓦时(Wh )为单位2.5 能量密度:最大存储能量除以超级电容器的重量或体积(Wh/kg 或Wh/l )图1 超级电容器结构框图图4 超级电容器阻抗频率特性图3 2.7v/2700F 超级电容器入电特性曲线2.6 功率密度:在匹配的负载下,超级电容器产生电/热效应各半时的放电功率,用kW/kg 或kW/l 表示。

2.7 等效串联电阻:测试条件:规定的恒定电流(如1 000F 以上的超级电容器规定的充电电流为100A ,200F 以下的为3A )和规定的频率(DC 和大容量的100Hz 或小容量的KHz )下的等效串联电阻。

通常交流ESR 比直流ESR 小,随温度上升而减小。

超级电容器等效串联电阻较大的原因是:为充分增加电极面积,电极为多孔化活性炭,由于多孔化活性炭电阻率明显大于金属,从而使超级电容器的ESR 较其它电容器的大。

2.8 阻抗频率特性超级电容器的阻抗频率特性如图4,相对较大的是ESR 造成平坦底部的原因,超级电容器的频率特性是电容器中频率特性最差的。

其原因是:一般电容器的电荷是导体中的以电子导电方式建立或泄放,而超级电容器的电荷的建立或泄放是以介质中的离子或介质电离极化实现,响应速度相对慢;大容量电容器在制造时均采用卷绕工艺,寄生电感相对无感电容器大。

2.9 工作与存储温度:通常为-40℃??+60℃或70℃,存储温度还可以高一些。

2.10 漏电流: 一般为10μA/F2.11 寿命:在25℃环境温度下的寿命通常在90 000小时,在60℃的环境温度下为4 000小时,与铝电解电容器的温度寿命关系相似。

寿命随环境温度缩短的原因是电解液的蒸发损失随温度上升。

寿命终了的标准为:电容量低于额定容量20%,ESR 增大到额定值的1.5倍。

2.12 循环寿命:20秒充电到额定电压,恒压充电10秒,10秒放电到额定电压的一半,间歇时间:10秒为一个循环。

一般可达500000次。

寿命终了的标准为:电容量低于额定容量20%,ESR 增大到额定值的1.5倍2.13 发热: 超级电容器通过纹波电流(充、放电)时,回发热,其发热量将随着纹波电流的增加而。

超级电容器发热的原因是纹波电流流过超级电容器的等效串联电阻(ESR )产生的功率(能量)损耗转变为热能。

由于超级电容器的(ESR )较大,因此在同样纹波电流条件下发热量比一般电容器大。

使用时应注意。

3. 注意事项超级电容器在串联应用时特别是较大电容量是应采用均压技术以保证每一个超级电容器单体端电压再额定电压内,目前国内已有各种规格的超级电容器均压电路商品。

4. 国内外状况超级电容器通常耐压为2.5??3V ,也有耐压为1.6V 的产品。

主要有美国、德国、日本、韩国、俄罗斯和中国等国家生产。

比较知名的公司有:Maxweii 、Epcos 、Nesscep 、ELNA 、NEC 、松下等。

我国有锦州超容等企业,从容量上看有机系的国外达到2.7V/5 000F ,国内的锦州超容接近这一水平。

体积在逐年减小,120F/2.7V 已做到直径20毫米高40毫米,3F/2.7V 直径8毫米高20毫米。

ESR 在小容量中接近0.3Ω.F,大容量接近0.45Ω.F,0.5Ω.F。

能量密度和功率密度分别达到5.82Wh/kg 、7.11Wh/l 、5.24Kw/kg 、6.4kW/l ,循环寿命和寿命分别达到500 000次和90 000小时。

图6 不同环境温度下纹波电流与寿命的关系图5 额定温度下纹波电流与寿命的关系双层电容与电池的比较Comparison of Double Layer Capacitors and BatteriesFrom:ELNAFor many years,rechargeable batteries are the only solution for temporary memory back of data of timing clock in various electronic devices.They are also been used as an emergency or short-term Secondary power source during the events when the ptimary power source is not sufficient.许多年以来,可充电池都是作为数据暂存后备电源或者在许多的电子时钟设计的唯一解决办法。

相关文档
最新文档