2014年江苏省高考数学模拟试卷(3)

合集下载

2014年江苏高考数学试题含答案(WORD版)

2014年江苏高考数学试题含答案(WORD版)

绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长.圆柱的体积公式:Sh V =圆柱,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2.已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3.右图是一个算法流程图,则输出的n 的值是 ▲ .4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5.已知函数x y cos =与)2sin(ϕ+=x y (0ϕπ≤<),它们的图象有一 个横坐标为3π的交点,则ϕ的值是 ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

(第3题)6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{n a 中,若21a =, 4682a a a +=,则6a 的值是 ▲ .8.设甲、乙两个圆柱的底面分别为1S ,2S ,体积 分别为1V ,2V ,若它们的侧面积相等,且4921=S S , 则21V V 的值是 ▲ . 9.在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ . 10.已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .11.在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12.如图,在平行四边形ABCD 中,已知8=AB ,5=AD , 3=,2=⋅,则⋅的值是 ▲ .13.已知)(x f 是定义在R 上且周期为3的函数,当[0,3)x ∈时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间[3,4]-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14.若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.ABD CP (第12题)底部周长/cm(第6题)16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1)直线//PA 平面DEF ; (2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若1F C AB ⊥,求椭圆离心率e 的值.18.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.(第17题)P DC EF B A (第16题) (第18题)绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两......小题,并在....相应的...答题区域内作答........若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:D OCB ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵⎥⎦⎤⎢⎣⎡-=x A 121,⎥⎦⎤⎢⎣⎡-=1211B ,向量⎥⎦⎤⎢⎣⎡=y 2α,x ,y 为实数. 若ααB A =,求y x +的值.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

2014年高考江苏数学试题及答案

2014年高考江苏数学试题及答案

2014 年一般高等学校招生全国一致考试(江苏卷)数学Ⅰ注意事项考生在答题前请仔细阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第 14 题)、解答题(第15 题第20题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务势必自己的姓名、准考据号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点.3.请在答题卡上依据次序在对应的答题地区内作答,在其余地点作答一律无效.作答一定用毫米黑色墨水的署名笔.请注意字体工整,字迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面洁净,不要折叠、损坏.一律禁止使用胶带纸、修正液、可擦洗的圆珠笔.参照公式:圆柱的体积公式:V圆柱sh ,此中 s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱 =cl ,此中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14 小题,每题 5 分,合计70 分.请把答案填写在答题卡相应地点上.........( 1)【 2014 年江苏, 1, 5 分】已知会合A{ 2 , 1,3,4} , B{1,2,3} ,则A I B _______ .【答案】 {1,3}【分析】由题意得 A I B {1,3} .( 2)【 2014 年江苏, 2, 5 分】已知复数z(52i)2( i 为虚数单位),则z的实部为_______.【答案】 21【分析】由题意z(52i) 225 2 52i(2i) 22120i,其实部为 21.( 3)【 2014 年江苏, 3, 5 分】右图是一个算法流程图,则输出的n 的值是 _______.【答案】 5【分析】此题本质上就是求不等式2n20的最小整数解.2n20整数解为 n5,所以输出的 n 5.( 4)【 2014 年江苏, 4, 5 分】从 1,2 ,3,6 这 4 个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是 _______.【答案】132 个数共有 C42【分析】从1,2,3,6这 4 个数中任取6种取法,此中乘积为 6 的有1,6和2,3两种取法,所以所求概率为P2 1 .63( 5)【 2014年江苏, 5, 5 分】已知函数y cosx 与y sin(2 x)(0 ≤) ,它们的图象有一个横坐标为的交点,则的值是 _______ .3【答案】6【分析】由题意 cos sin(23) ,即 sin(2) 1 , 2k( 1)k, (k Z ) ,因为 0,所33236以.6( 6)【 2014 年江苏, 6, 5 分】为了认识一片经济林的生长状况,随机抽测了此中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频次散布直方图如下图,则在抽测的 60 株树木中,有株树木的底部周长小于 100 cm.【答案】 24【分析】由题意在抽测的60 株树木中,底部周长小于100cm 的株数为(0.0150.025) 10 6024 .( 7)【 2014 年江苏, 7,5 分】在各项均为正数的等比数列 { a n } 中,若 a 2 1 ,a 8 a 6 2a 4 ,则 a 6 的值是 ________.【答案】 4【分析】设公比为 q ,因为 a 21 ,则由 a 8a 6 2a 4 得 q 6 q 42a 2 , q 4 q 2 2 0 ,解得 q 22 ,所以a 6 a 2 q 4 4 .( 8)【 2014 年江苏, 8,5 分】设甲、乙两个圆柱的底面积分别为S 1 ,S 2 ,体积分别为 V 1 ,V 2 ,若它们的侧面积相等,且S 19,则V 1的值是 _______.S 24V 2【答案】32r2h r 2S9 【分析】设甲、乙两个圆柱的底面和高分别为r 1、h 1 , r 2、h 2 ,则 2 r 1 h 12 r 2 h 2 ,1,又11,所h 2r 1S 22r 24以r 1 3V 1r 12 h 1r 12 h 1 r 12 r 2r 1 3r 22 ,则r 22 h 2 r 22 h 2 r 22 r 1 r 2 .V 2 2( 9)【 2014 年江苏, 9,5 分】在平面直角坐标系 xOy 中,直线 x 2 y 3 0 被圆 ( x 2)2 ( y 1)2 4 截得的弦长为 ________.【答案】 2 555【分析】圆 (x2) 2 ( y 1)2 4 的圆心为 C (2, 1) ,半径为 r 2 ,点 C 到直线 x 2y 3 0 的距离为2 2 ( 1)3 3 ,所求弦长为 l 2 r 2 d 2 24 9 2 55 . d12 2255 5 ( 10)【 2014 年江苏, 10, 5 分】已知函数 f ( x)x 2 mx 1 ,若对随意 x [ m ,m 1] ,都有 f (x) 0 成立,则实数 m 的取值范围是 ________.【答案】2 ,2【分析】据题意 f (m)m 2 m 2 1 0,解得2 m 0 .f (m 1) (m1)2 m(m 1) 1 0 2( 11)【 2014 年江苏, 11, 5 分】在平面直角坐标系 xOy 中,若曲线 y ax 2bx ( a ,b 为常数 ) 过点 P(2 , 5) ,且该曲线在点 P 处的切线与直线 7 x 2 y 3 0 平行,则 a b 的值是 ________. 【答案】3【分析】曲线y ax 2b过点 P(2, 5) ,则 4ab 5 ①,又 y ' 2ax b 2 ,所以 4a b 7②,由①②解得x2x42a1,所以 ab2 .b 1( 12)【 2014 年江苏, 12, 5 分】如图,在平行四边形 ABCD 中,已知, AB 8,AD 5 ,uuur uuur uuur uuur uuur uuurCP 3PD , BP 2 ,则 AB AD 的值是 ________.AP【答案】 22 uuur uuur uuur uuur 1 uuur uuur uuur uuur uuur 3 uuur uuur 3 uuur【分析】由题意, AP AD DP AD AB ,BP BC CP BC 4 CD AD AB ,4 3 uuur 1 uuur 4uuur uuur uuur 1 uuur uuur uuur 2 uuur 3 uuur 2所以 AP BP ( AD AB) (AD AB) AD AD AB AB ,4 4 2 16即 2 1 uuur uuur 3 uuur uuur25 AD AB 16 64 ,解得 AD AB 22.21( 13)【 2014 年江苏, 13,5 分】已知 f ( x) 是定义在 R 上且周期为 3 的函数, 当 x [0 ,3) 时,2.2f ( x) x 2x若函数 y f ( x)a 在区间 [ 3 ,4] 上有 10 个零点 ( 互不同样 ) ,则实数 a 的取值范围是 ________.【答案】 10 ,2【分析】作出函数f ( x)x22x 1 , x [0,3) 的图象,可见 f (0)1,当 x 1时, f ( x)极大1 ,222f (3)7,方程 f (x) a 0 在 x [ 3,4] 上有 10 个零点,即函数y f ( x) 和图象与直线2ya 与函数ya 在 [ 3,4] 上有 10 个交点,因为函数f ( x) 的周期为 3,所以直线f ( x)x 2 2 x 1 , x [0,3) 的应当是4 个交点,则有 a (0, 1 ) .22( 14)【 2014 年江苏, 14, 5 分】若 ABC 的内角知足 sin A 2 sin B 2sin C ,则 cosC 的最小值是 _______ .【答案】6 24a 2b 22a 2b 2( a2b )2【分析】由已知 sin A2sin B 2sin C 及正弦定理可得 a2b 2c , cosCc 22ab2ab3a22b 22 2ab2 6ab 22ab6 2,当且仅当 3a 22b2,即 a2时等号成立, 所以 cosC8ab8ab4b3的最小值为6 2 .4二、解答题:本大题共6 小题,合计 90 分.请在答题卡指定地区内 作答,解答时应写出必需的文字说明、证明........过程或演算步骤.( 15)【 2014 年江苏, 15, 14 分】已知, , sin 5 .25( 1)求 sin4的值;( 2)求 cos62的值.解:( 1)∵2, ,sin 5,∴ cos1 sin 22 5 ,55sinsin coscos sin2(cos sin)10 .444210( 2)∵ sin 22sincos4,cos 2cos 2 sin 23 ,55∴cos62cos 6 cos2sinsin 233 14 3 3 4 .6 25 2 5 10( 16)【 2014 年江苏, 16, 14 分】如图,在三棱锥 PABC 中, D ,E ,F 分别为棱 PC ,AC ,AB 的中点.已知PA AC ,PA 6,BC 8,DF 5 .( 1)求证:直线 PA ∥平面 DEF ;( 2)平面 BDE ⊥平面 ABC .解:( 1)∵ D ,E 为 PC ,AC 中点∴ DE ∥ PA ∵ PA平面 DEF , DE 平面 DEF ∴PA ∥平面 DEF .( 2)∵ D ,E 为 PC ,AC 中点,∴ DE1PA3∵E ,F 为 AC ,AB 中点,∴EF1BC 4 ,2,∴ DE ⊥ EF ,∵2∴222,∴,,∴,DEEFDFDEF90°DE //PA PA ACDEAC∵ ACI EF E ,∴ DE ⊥平面 ABC ,∵ DE 平面 BDE ,∴平面 BDE ⊥平面 ABC .( 17)【 2014 年江苏, 17,14 分】如图,在平面直角坐标系 xOy 中, 1 2 y 21(a b 0)的左、2分别是椭圆 x22F ,Fab右焦点,极点 B 的坐标为 (0 ,b) ,连结2C ,BF 并延伸交椭圆于点 A ,过点 A 作 x 轴的垂线交椭圆于另一点连结 FC 1 .( 1)若点 C 的坐标为4 1,且 BF 22 ,求椭圆的方程;3 ,3( 2)若 FC 1AB ,求椭圆离心率 e 的值.4 1 16 1解:( 1)∵ C9922 2 2 2( 2)2 22,,∴ a 2b 22b c a ,∴a,∴ b 1 ,3 39,∵ BF∴椭圆方程为x 2y 2 1 .( 2)设焦点 212A Cx 轴对称,∴A(xy),∵ , ,, 对于∵2b b y ,即 bx cy bc 0 ①B ,F ,A 三点共线,∴cx∵ 1AB ,∴ x yb1 ,即xc byc20 ②ccFCx ca 2a 2 c 2bc 2 ①②联立方程组,解得b 2c 2∴ C2bc 2b 2 2 , 2 2yc b cb 2c 2a 2c22bc 22C 在椭圆上,∴b 2c 2b 2c 222c55a 2b 2 1 ,化简得 5c a ,∴ a 5 , 故离心率为 5 .( 18)【 2014 年江苏, 18,16 分】如图,为保护河上古桥 ,规划建一座新桥 ,同时建立一个圆形保护区.规OABC划要求:新桥 BC 与河岸 AB 垂直;保护区的界限为圆心M 在线段 OA 上并与 BC 相切的圆,且古桥两头 O和 A 到该圆上随意一点的距离均许多于 80m .经丈量,点 A 位于点 O 正北方向 60m 处,点 C 位于点 O 正东方向170m 处 ( OC 为河岸 ) , tan BCO 43 .( 1)求新桥 BC 的长;( 2)当 OM 多长时,圆形保护区的面积最大?.解:解法一:( 1)如图,以 O 为坐标原点, OC 所在直线为 x 轴,成立平面直角坐标系xOy .由条件知 A (0, 60) , C (170, 0) ,直线 BC 的斜率 k BC-tan BCO4 .3又因为⊥,所以直线 的斜率k AB3.设点 B 的坐标为 ( a , b ) ,AB BCAB4则 k BC = b 04, kAB =b603,解得 a =80, b=120.a 1703a 04所以 =22.所以新桥 的长是 .BC(17080)(0120) 150 150 mBC( 2)设保护区的界限圆M 的半径为 r m,OM =d m,(0 ≤ d ≤60) .由条件知,直线BC 的方程为 y4( x 170) ,即 4 x 3y680 0,3| 3d 680 |680 3d .因为圆 M 与直线 BC 相切,故点 M (0 ,d ) 到直线 BC 的距离是 r ,即 r因为 O 和 A 到圆 M 上随意一点的距离均许多于 80 m ,5 5rd ≥ 806803dd ≥ 805,解得 10≤ d ≤35.所以 ,即r (60 d ) ≥ 80 3d680 (60 d ) ≥ 805故当 d =10 时 , r 6803d最大,即圆面积最大. 所以当 OM = 10 m 时,圆形保护区的面积最大. 解法二: 5( 1)如图,延伸 OA , CB 交于点 F .因为 tan ∠ BCO = 4 .所以 sin ∠ FCO = 4 ,cos ∠ FCO = 3.3 5 5 因为 OA =60, OC =170,所以 OF =OC tan ∠ FCO = 680. CF = OC 850 ,3 cos FCO 3进而500 .因为 ⊥ ,所以 ∠ ∠4,又因为⊥ ,所以=AF OF OAcos AFB =sin AB BCBF AF3OA OC FCO = 5cos ∠ AFB ==400,进而 BC =CF -BF =150.所以新桥 BC 的长是 150 m .3( 2)设保护区的界限圆 M 与 BC 的切点为 D ,连结 MD ,则 MD ⊥BC ,且 MD 是圆 M 的半径,并设 MD =r m ,OM =d m(0≤ d ≤60) .因为 OA ⊥ OC ,所以 sin ∠ CFO =cos ∠ FCO ,故由( 1)知, sin ∠ CFO =MDMD r 3所以 r 680 3d .MFOF OM680 d 553因为 O 和 A 到圆 M 上随意一点的距离均许多于80 m ,rd ≥ 80680 3dd ≥ 80510≤ d ≤ 35所以,即,解得 ,r (60 d ) ≥ 80 680 3d(60 d ) ≥ 805故当 d =10 时, r6805 3d最大,即圆面积最大.所以当 OM = 10 m 时,圆形保护区的面积最大.f (x) e x e x 此中 e 是自然对数的底数.( 19)【 2014 年江苏, 19, 16 分】已知函数( 1)证明: f ( x) 是 R 上的偶函数;( 2)若对于 x 的不等式 mf x ≤ e x m1在 (0 ,)上恒成立,务实数m( )的取值范围;( 3)已知正数 a 知足:存在[1,a(x 3a 1 与a e 1的大小,并证明x) ,使得 f ( x )3x ) 成立.试比较 e你的结论.解:( 1)xR ,f (x ) e xe xf ( )x ,∴ f (x) 是 R 上的偶函数.( 2)由题意, xxxxxxxx(e e )≤e m 1,即m(ee 1)≤ e 1,∵x (0 ,) ,∴e e 1 0 ,m即 m ≤x e xx 1对 x(0 , ) 恒成立.令te x ( 1),则 m ≤21 t对随意 t (1,) 恒成立.ee1ttt 1∵t 21 t1 (t2t11) 1 11≥ 1,当且仅当 t 2 时等号成立,∴ m ≤ 1 .t1)(tt 1t 11 33'( ) e xe x( 3) f ,当时∴在 ,上单一增, 令 h( x)33x) ,,x 1f '( x)f (x)) a( x3ax( x 1)(1h'( x)∵ a0 ,x 1,∴ h '(x)0 ,即 h( x) 在 x (1,) 上单一减,∵存在 x 0e-1∵ lnaa 1ea1e2[1,ln a e 11e .当 ) ,使得f ( x 0 ) a( x 0 33x 0 ) ,∴ f (1) e 1 2a ,即 a1 e 1 . e2 eln e a 1 (e 1)ln a a 1 , 设 m(a) (e 1)ln a a1 , 则 m'(a)e1 1 e 1 a ,a a1 e 1a e1时, m'(a) 0 , m(a ) 单一增;当 a e1 时, m'(a ) 0 , m(a ) 单一2e减,所以 m(a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时, m(a) 0 , a e 1 e a 1 ;当1e 1 a e 时, m(a) 0 , a e 1 e a 1;当 a e 时, m(a) 0 , a e 1 e a 1 .2 e( 20)【 2014 年江苏,20,16 分】设数列 { n} 的前 n nn ,总存在正整数nm,a 项和为 S .若对随意的正整数m ,使得 Sa 则称 { a n } 是“ H 数列”.( 1)若数列 { n }nnN )na 的前 n 项和 S 2 (n ,证明: { a } 是“ H 数列”;( 2)设 a} 是等差数列,其首项 a1,公差 d.若 { a }是“ H 数列”,求 d 的值;{ n1n( 3)证明:对随意的等差数列{ a n}nn,使得 a nnnN)成立.解:( 1)当 n ≥ 2 时,,总存在两个“ H 数列” { b } 和 { c }bc (na nnn 12n2 n 12n 1 ,当n 1 时,11,S Sa S 2∴n 1 时,11na n 1,∴n} 是“ H 数列”.S a ,当 n ≥ 2 时, S{ a( 2) n1n(n 1) d nn(n 1) dn N , m N nmn n(n1)d 1 (m 1)dS na,对,22使 Sa ,即21取 n 2 得 1 d( m 1)d , m 2 ,∵ d 0 ,∴ m 2 ,又 m N ,∴ m 1,∴ d1.d( 3)设 ad ,令 b a (n 1)a (2 n) a ,对 n N, b b a c (n 1)(a d),{ n} 的公差为 n111n 1n1, n1对 n N , c c a d ,则 b c na 1(n 1)d a ,且 { b } ,{c } 为等差数列.n 1n1nnnnn的前 n 项和 T nna 1 n( n 1) ( a 1 ) ,令n1,则 mn(n 3)2 .{ b }2T (2m)a2当 n 1时 m1;当 n 2 时 m 1;当 n ≥ 3 时,因为 n 与 n 3 奇偶性不一样, 即 n(n 3) 非负偶数, m N .所以对n ,都可找到 m N T b {b } 为“ H 数列”.,使 n m 成立,即 n{c n } 的前n项和 R nn(n1)(a 1d ) ,令 c n(m 1)(a 1 d ) R m ,则 m n(n 1) 1n22∵对N , n(n 1) 是非负偶数,∴ mN,即对n N,都可找到 mN,使得Rcnm成立,即 {c n } 为“ H 数列”,所以命题得证.数学Ⅱ注意事项考生在答题前请仔细阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试,21 题有 A 、 B 、 C 、 D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了 3 题或 4 题,则按选做题中的前 2 题计分.第 22、 23 题为必答题.每题10 分,共 40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2. 答题前, 请您务势必自己的姓名、 准考据号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点. 3. 请在答题卡上依据次序在对应的答题地区内作答,在其余地点作答一律无效.作答一定用毫米黑色墨水的署名笔.请注意字体工整,字迹清楚. 4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】此题包含A 、B 、C 、D 四小题,请选定此中两题,并在相应的答题地区内作答 ,若多做,则按作答...... ............的前两题评分.解答时应写出文字说明、证明过程或演算步骤.( 21-A )【 2014 年江苏, 21-A , 10 分】(选修 4-1 :几何证明选讲)如图,AB 是圆 O 的直径, C 、 D是圆 O 上位于 AB 异侧的两点.证明:∠ OCB =∠ D .解:因为 , 是圆 O 上的两点,所以 = .故∠ =∠ .又因为 ,是圆 O 上位于 AB 异侧B COB OCOCBBC D的两点,故∠ B ,∠ D 为同弧所对的两个圆周角,所以∠B =∠ D .所以∠ OCB =∠ D .( 21-B )【 2014 年江苏, 21-B ,10 分】(选修 4-2 :矩阵与变换) 已知矩阵 A1 2112 1, B2,向量,x1yx ,y 为实数,若 A α= B α,求 x ,y 的值.解: A 2 y 2 , B α 2 y ,由 A α= B α得2 y 2 2,1,y 4 .y解得 x2 xy 4 y2 xy 4 y , 2( 21-C )【 2014 年江苏, 21-C , 10 分】(选修 4-4 :坐标系与参数方程)在平面直角坐标系xOy 中,已知直线 lx1 2t , 的参数方程为2 ( t 为参数 ) ,直线 l 与抛物线 y 2 4x 交于 A ,B 两点,求线段 AB 的长. y22 t2解:直线 l :x y 3 代入抛物线方程 y 2 4x 并整理得 x 2 10x 9 0,∴交点 A(1,2) ,B(9, 6),故| AB | 8 2 .( 21-D )【 2014 年江苏,21-D ,10 分】(选修 4-5 :不等式选讲)已知 x 0 ,y 0 ,证明: 1 x y 21 x2 y 9 xy .解:因为 x >0, y >0, 所以 1+x +y 2≥ 3 3 xy 2 0 ,1+x 2+y ≥ 33 x 2 y0 ,所以 (1+ x +y 2)( 1+x 2+y ) ≥ 3 3 xy 2 33 x 2 y =9xy . 【必做】第 22、 23 题,每题 10 分,计 20 分.请把答案写在答题 卡的指定地区内 . .... ....... ( 22)【 2014 年江苏, 22,10 分】盒中共有 9 个球,此中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完整同样.( 1)从盒中一次随机拿出 2 个球,求拿出的 2 个球颜色同样的概率 ;P( 2)从盒中一次随机拿出 4 个球,此中红球、黄球、绿球的个数分别记为x 1 ,x 2 ,x 3 ,随机变量 X 表示 x 1 ,x 2 ,x 3中的最大数,求 X 的概率散布和数学希望 E ( X ) .解:( 1)一次取 2 个球共有 C 92 36 种可能状况, 2 个球颜色同样共有 C 42C 32 C 22 10种可能状况,∴拿出的 2 个球颜色同样的概率P10536 18 .43131( 2)X 的全部可能取值为 4 ,3,2 ,则 P( X4)C 4 1;P(X 3)C 4 C 5C 3C 613 ;43C 9126C 963P( X 2) 1 P( X3) P( X4)11 .∴ X 的概率散布列为: X142 3 4P11 13114 63126故X 的数学希望E(X )2 113 134 1 20 .14631269( 23)【 2014 年江苏, 23, 10 分】已知函数 f 0 ( x)sin x (x 0) ,设 f n (x) 为 f n 1 ( x) 的导数, n N .x( 1)求2 f 1 2 2 f 2 2的值;( 2)证明:对随意的 n N ,等式 nf n14f n 4 2成立.42解:( 1)由已知,得 f (x)f (x) sin xcos x sin x ,1x x x 2于是 f 2 ( x)f 1 (x)cos xsin x sin x 2cos x2sin x,所以 f 1 () 4) 216 xx 2xx 2x 32 2 , f 2 (3 ,2故 2 f 1 ( ) f 2 ( ) 1 .2 2 2 x 求导,得( 2)由已知,得 xf (x) sin x, 等式两边分别对 f 0(x) xf ( x) cosx ,即 f 0( x) xf ( x) cos x sin( x 2 ) ,近似可得 2 f 1(x) xf (x) sin x sin(x ) ,123 f 2 ( x) xf 3 ( x)cos x sin( x3 ) ,4 f 3 ( x) xf 4 (x) sinx sin(x 2 ) .2下边用数学概括法证明等式nf n 1 ( x) xf n ( x) sin( xn ) 对全部的 n N * 都成立. ( i )当 n =1 时,由上可知等式成立.2( ii )假定当 n =k 时等式成立 ,即 kf k 1 ( x) xf k (x) sin( x k ) .2因为 [kf k 1 ( x) xf k (x)] kf k 1 (x) f k ( x) xf k ( x)(k 1) f k ( x) f k 1 ( x),[sin( xk )]cos( x k ) ( xk ) sin[ x ( k 1) ],所以22( k 1) 22( k 1) f k( x) f k 1( x) sin[ x ] .2所以当 n=k +1时, 等式也成立.综合 (i),(ii)可知等式 nf n 1 ( x) xf n ( x) sin( x n ) 对全部的 n N * 都成立.2n *2*令 x 4 ,可得 nf n 1 ( 4 )4 f n ( 4 ) sin( 42 ) ( n N ) .所以 nf n 1 ( 4 )4 f n ( 4 )2 ( n N ) .。

2014年江苏省苏北四市(徐州、连云港、淮安、宿迁)高考数学一模试卷

2014年江苏省苏北四市(徐州、连云港、淮安、宿迁)高考数学一模试卷

2014年江苏省苏北四市(徐州、连云港、淮安、宿迁)高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.设复数z1=2-i,z2=m+i(m∈R,i为虚数单位),若z1•z2为实数,则m的值为______ .【答案】2【解析】解:∵z1•z2=(2-i)(m+i)=2m+1+(2-m)i为实数,∴2-m=0,解得m=2.故答案为:2.利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.2.已知集合A={2+,a},B={-1,1,3},且A⊆B,则实数a的值是______ .【答案】1【解析】解:∵集合,,B={-1,1,3},且A⊆B,∴a=-1或a=1或a=3,当a=-1时,无意义,∴不成立.当a=1时,A={3,1},满足条件.当a=3时,A={2+,3},不满足条件,故答案为:1.根据集合A⊆B,确定元素之间的关系即可求解a的值.本题主要考查集合关系的应用,根据集合关系确定元素关系是解决本题的关键,注意要进行检验.3.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为______ .【答案】20【解析】解:设样本中松树苗的棵数为x,则由题意知,解得x=20,故答案为:20.根据分层抽样的定义进行求解即可.本题主要考查分层抽样的定义和应用,比较基础.4.在△ABC的边AB上随机取一点P,记△CAP和△CBP的面积分别为S1和S2,则S1>2S2的概率是______ .【答案】【解析】解:由题意,设AB边上的高为h,则S1=,S2=,∵S1>2S2,∴AP>2BP,∴S1>2S2的概率是.故答案为:.由S1>2S2,可得AP>2BP,以长度为测度,即可求得概率.本题考查概率的计算,考查三角形面积的计算,确定AP>2BP,以长度为测度是解题的关键.5.已知双曲线的一条渐近线方程为y=2x,则其离心率为______ .【答案】【解析】解:∵双曲线的一条渐近线方程为y=2x,∴=2,即b=2a,∴c=,∴e===.故答案为:.由双曲线的一条渐近线方程为y=2x,知b=2a,由此能求出该双曲线的离心率.本题考查双曲线的离心率的求法,解题时要认真审题,注意等价转化思想的合理运用.6.如图是一个算法流程图,则输出S的值是______ .【答案】25【解析】解:S的初值为0,n的初值为1,满足进行循环的条件,经过第一次循环得到的结果为S=1,n=3,满足进行循环的条件,经过第二次循环得到的结果为S=4,n=5,满足进行循环的条件,经过第三次循环得到的结果为S=9,n=7,满足进行循环的条件,经过第四次循环得到的结果为S=16,n=9,满足进行循环的条件,经过第五次循环得到的结果为S=25,n=11,不满足进行循环的条件,退出循环,故输出的S值为25故答案为:25按照程序框图的流程,写出前几次循环的结果,并判断每个结果是否满足判断框中的条件,直到不满足条件,输出结论.本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找出规律.7.函数f(x)=lg(2x-3x)的定义域为______ .【答案】(-∞,0)【解析】解:要使函数有意义,则2x-3x>0,即2x>3x>0,∴>,解得x<0,∴函数的定义域为(-∞,0),故答案为:(-∞,0).根据对数函数的性质,以及指数函数和幂函数的性质求函数的定义域即可.本题主要考查函数定义域的求法,利用指数函数和幂函数的性质是解决本题的关键.8.若正三棱锥的底面边长为,侧棱长为1,则此三棱锥的体积为______ .【答案】【解析】解:正三棱锥的底面边长为,侧棱长为1如图:过S作SO⊥平面ABC,∴OC为底面正三角形的高,且OC=××=,∴棱锥的高SO==,∴三棱锥的体积V=×××××=.故答案是.过S作SO⊥平面ABC,根据正三棱锥的性质求的高SO,代入体积公式计算.本题考查了正三棱锥的性质及体积计算,解题的关键是利用正三棱锥的性质求高.9.在△ABC中,已知AB=3,A=120°,且△ABC的面积为,则BC边长为______ .【答案】7【解析】解:∵AB=c=3,A=120°,△ABC的面积为,∴S△ABC=bcsin A=b=,即b=5,由余弦定理得:a2=b2+c2-2bccos A=25+9+15=49,则BC=a=7.故答案为:7利用三角形面积公式列出关系式,将c,sin A及已知面积代入求出b的值,再利用余弦定理列出关系式,把b,c,cos A的值代入计算即可求出a的值.此题考查了余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.10.已知函数f(x)=x|x-2|,则不等式的解集为______ .【答案】[-1,+∞)【解析】解:当x≤2时,f(x)=x|x-2|=-x(x-2)=-x2+2x=-(x-1)2+1≤1,当x>2时,f(x)=x|x-2|=x(x-2)=x2-2x=(x-1)2-1,此时函数单调递增.由f(x)=(x-1)2-1=1,解得x=1+.由图象可以要使不等式成立,则,即x≥-1,∴不等式的解集为[-1,+∞).故答案为:[-1,+∞).化简函数f(x),根据函数f(x)的单调性,解不等式即可.本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想.11.已知函数>的最大值与最小正周期相同,则函数f(x)在[-1,1]上的单调增区间为______ .【答案】,【解析】解:函数>的最大值为2,最小正周期,∴,∴ω=,函数,由,k∈Z,解得:,k∈Z,∴当k=0时,函数f(x)在[-1,1]上的单调增区间:,.故答案为:,.求出函数的最大值以及函数最小正周期,即可求出ω,然后利用正弦函数的单调性,求出函数的单调增区间.本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,熟练掌握正弦函数的图象与性质是解本题的关键.12.设等比数列{a n}的前n项和为S n,若a4,a3,a5成等差数列,且S k=33,S k+1=-63,其中k∈N*,则S k+2的值为______ .【答案】129【解析】解:设数列{a n}的首项为a1,公比为q,由已知得2a3=a4+a5,∴2a1q2=a1q3+a1q4∵a1≠0,q≠0,∴q2+q-2=0,解得q=1或q=-2,当q=1时,与S k=33,S k+1=-63矛盾,故舍去,∴q=-2,∴,解之得q k=-32,a1,=3,∴S k+2==129,故答案为:129.首先根据a4,a3,a5成等差数列,求出公比q,代入S k=33,S k+1=-63,求出q k-1代入S k+2即可求出结果.本题主要考查等比数列的性质,解本题的关键是运用等差数列的重要性质a n-1+a n+1=2a n,要准确把握等差数列和等比数列的性质.属于中档题.13.在平面四边形ABCD中,已知AB=3,DC=2,点E,F分别在边AD,BC上,且=3,=3.若向量与的夹角为60°,则•的值为______ .【答案】7【解析】解:如图所示:设直线AB和DC相交于点H,则由题意可得∠AHD=60°.∵=++①,又=++②,①×2+②可得3=2+,∴=+.∴=+=×32+||•||•cos∠AHD=6+•3•2•=7.故答案为:7.设直线AB和DC相交于点H,则由题意可得∠AHD=60°,利用两个向量加减法及其几何意义,用两种方法求得,进而求得=+,从而求得的值.本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦定理的应用,体现了数形结合的数学思想,属于中档题.14.在平面直角坐标系x O y中,若动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为,则a2+b2的最大值为______ .【答案】18【解析】解:∵动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为,∴,化为|a-b|+|a+b-2|=4.分为以下4种情况:或<或>或<.可知点(a,b)是如图所示的正方形的4条边.可知:当取点A时,取得最大值=.∴a2+b2的最大值为18.故答案为:18.利用点到直线的距离公式可得:|a-b|+|a+b-2|=4.通过分类讨论可知:点(a,b)是如图所示的正方形的4条边.即可得到最大值.本题考查了点到直线的距离公式、含绝对值的等式、分类讨论等基础知识与基本技能方法,属于中档题.二、解答题(本大题共12小题,共162.0分)15.已知向量=(cosθ,sinθ),=(2,-1).(1)若⊥,求的值;(2)若|-|=2,,,求的值.【答案】解:(1)若⊥,则=2cosθ-sinθ=0,tanθ==2,∴===.(2)∵||=1,||=,若|-|=2,,,则有-2+=4,即1-2+5=4,解得=1,即2cosθ-sinθ=1,平方可得4cos2θ-4sinθcosθ+sin2θ=1,化简可得3cos2θ-4sinθcosθ=0,即tanθ=.再利用同角三角函数的基本关系sin2θ+cos2θ=1,求得cosθ=,sinθ=,∴=sinθ+cosθ=.【解析】(1)由⊥,可得=2cosθ-sinθ=0,求得tanθ=2,从而求得=的值.(2)把已知等式平方求得=1,即2cosθ-sinθ=1,平方可得4cos2θ-4sinθcosθ+sin2θ=1,求得tanθ=.再利用同角三角函数的基本关系求得cosθ和sinθ的值,从而求得=sinθ+cosθ的值.本题主要考查两个向量的数量积的运算,同角三角函数的基本关系,两角和的正弦公式,属于中档题.16.如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:PA∥平面BEF;(2)若平面PAB⊥平面ABC,PB⊥BC,求证:BC⊥PA.【答案】证明:(1)∵点E,F分别是棱PC,AC的中点,∴EF∥PA,∵PA⊄平面BEF,EF⊂平面BEF,∴PA∥平面BEF;(2)作PO⊥AB,垂足为O,则∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,∴PO⊥平面ABC,∴PO⊥BC,∵PB⊥BC,PO∩PB=P,∴BC⊥平面PAB,∵PA⊂平面PAB,∴BC⊥PA.【解析】(1)根据三角形中位线的性质,可得EF∥PA,再利用线面平行的判定定理,可证PA∥平面BEF;(2)作PO⊥AB,垂足为O,根据平面PAB⊥平面ABC,可得PO⊥平面ABC,所以PO⊥BC,利用PB⊥BC,可得BC⊥平面PAB,从而可得结论.本题考查线面平行,线面垂直,考查面面垂直的性质,考查学生推理论证的能力,正确运用线面平行,线面垂直的判定定理是关键.17.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).(1)求θ关于x的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?【答案】解:(1)由题意,30=xθ+10θ+2(10-x),∴θ=(0<x<10);(2)花坛的面积为-==(10-x)(5+x);装饰总费用为xθ•9+10θ•9+2(10-x)•4=9xθ+90θ+8(10-x)=170+10x,∴花坛的面积与装饰总费用的比为y=.令17+x=t,则y=,当且仅当t=18时取等号,此时x=1,θ=,∴当x=1时,y取得最大值.【解析】(1)利用扇形的弧长公式,结合环面的周长为30米,可求θ关于x的函数关系式;(2)分别求出花坛的面积、装饰总费用,可求y关于x的函数关系式,换元,利用基本不等式,可求最大值.本题考查利用数学知识解决实际问题,考查扇形的弧长公式,考查基本不等式的运用,确定函数模型是关键.18.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为⊙H.(1)若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程;(2)对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点M,N,使得点M是线段PN的中点,求⊙C的半径r的取值范围.【答案】解:(1)由题意,A(-1,0),B(1,0),C(3,2),∴AB的垂直平分线是x=0∵BC:y=x-1,BC中点是(2,1)∴BC的垂直平分线是y=-x+3由,得到圆心是(0,3),∴r=∵弦长为2,∴圆心到l的距离d=3.设l:y=k(x-3)+2,则d==3,∴k=,∴l的方程y=x-2;当直线的斜率不存在时,x=3,也满足题意.综上,直线l的方程是x=3或y=x-2;(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y).因为点M是点P,N的中点,所以M(,),又M,N都在半径为r的圆C上,所以,即因为该关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2<(3-6+m)2+(2-4+n)2<(r+2r)2,又3m+n-3=0,所以r2<10m2-12m+10<9r2对任意m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为[,10],又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对任意m∈[0,1]成立,即<.故圆C的半径r的取值范围为[,).【解析】(1)先求出圆H的方程,再根据直线l过点C,且被⊙H截得的弦长为2,设出直线方程,利用勾股定理,即可求直线l的方程;(2)设P的坐标,可得M的坐标,代入圆的方程,可得以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,由此求得⊙C的半径r的取值范围.本题考查圆的方程,考查直线与圆的位置关系,考查解不等式,考查学生分析解决问题的能力,有难度.19.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=-2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.【答案】解:(1)当a=-2时,函数f(x)=x3+x2-2x+b则f′(x)=3x2+5x-2=(3x-1)(x+2)令f′(x)<0,解得-2<x<,所以f(x)的单调递减区间为(-2,);(2)函数f(x)的导函数为由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则即x3+x2+(-3x2-5x-1)x+b=0存在唯一的实数根x0,故b=2x3+x2+x存在唯一的实数根x0,令y=2x3+x2+x,则y′=6x2+5x+1=(2x+1)(3x+1)=0,故x=-或x=-,则函数y=2x3+x2+x在(-∞,),(-,+∞)上是增函数,在(,-)上是减函数,由于x=-时,y=-;x=-时,y=-;故实数b的取值范围为:(-∞,-)∪(-,+∞);(3)设点A(x0,f(x0)),则在点A处的切线l1的切线方程为y-f(x0)=f′(x0)(x-x0),与曲线C联立得到f(x)-f(x0)=f′(x0)(x-x0),即(x3+x2+ax+b)-(x03+x02+ax0+b)=(3x02+5x0+a)(x-x0),整理得到(x-x0)2[x+(2x0+)]=0,故点B的横坐标为x B=-(2x0+)由题意知,切线l1的斜率为k1=f′(x0)=3x02+5x0+a,l2的斜率为k2=f′(-(2x0+))=12x02+20x0++a,若存在常数λ,使得k2=λk1,则12x02+20x0++a=λ(3x02+5x0+a),即存在常数λ,使得(4-λ)(3x02+5x0)=(λ-1)a-,故,解得λ=4,a=,故a=时,存在常数λ=4,使得k2=4k1;a≠时,不存在常数,使得k2=4k1.【解析】(1)先求原函数的导数,根据f′(x)<0求得的区间是单调减区间,即可;(2)由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则存在唯一的实数根x0,即b=2x3+x2+x存在唯一的实数根x0,就把问题转化为求函数最值问题;(3)假设存在常数λ,依据曲线C在点A处的切线l1与曲线C交于另一点B,曲线C 在点B处的切线l2,得到关于λ的方程,有解则存在,无解则不存在.本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查曲线的切线,同时还考查了方程根的问题,一般要转化为函数的最值来解决.20.已知数列{a n}满足a1=x,a2=3x,,,S n 是数列{a n}的前n项和.(1)若数列{a n}为等差数列.(ⅰ)求数列的通项a n;(ⅱ)若数列{b n}满足,数列{c n}满足,试比较数列{b n}前n项和B n与{c n}前n项和C n的大小;(2)若对任意n∈N*,a n<a n+1恒成立,求实数x的取值范围.【答案】解:(1)(ⅰ)∵,,①∴=3n2-6n+5(n≥3,n∈N*).②①-②,得=6n-3.∵数列{a n}为等差数列,∴a n+1+a n-1=2a n.∴3a n=6n-3.∴a n=2n-1(n≥3)③当n=1时,a1=1,a2=3符合③式.∴数列{a n}的通项公式为a n=2n-1.(ⅱ)∵a n=2n-1.∴=22n-1,∴=(16t2-4t-1)b n.∴B n=b1+b2+…+b n,C n=c1+c2+…+c n=(16t2-4t-1)(b1+b2+…+b n).当16t2-4t-1=1,即t=或t=时,B n=C n.当16t2-4t-1>1,即t>或t<时,B n<C n.当16t2-4t-1<1,即<<时,B n>C n.(2)∵,,④∴(n∈N*)⑤④-⑤,得,.⑥∴⑦⑥-⑦,得a n+3-a n=6(n≥2,n∈N*).∴当n=1时,a n=a1=x.当n=3k-1时,a n=a3k-1=a2+(k-1)×6=3x+6k-6=2n+3x-4.当n=3k时,a n=a3k=a3+(k-1)×6=14-9x+6k-6=2n-9x+8.当n=3k+1时,a n=a3k+1=a4+(k-1)×6=1+6x+6k-6=2n+6x-7,∵对任意n∈N*,a n<a n+1恒成立,∴a1<a2且a3k-1<a3k<a3k+1<a3k+2.∴<<<<解得,<<.∴实数x的取值范围为,.【解析】(1)(ⅰ)由已知可得,=6n-3.再结合等差中项的性质即可求出数列的通项公式a n;(ⅱ)根据(ⅰ)可知=22n-1,=(16t2-4t-1)b n.从而B n=b1+b2+…+b n,C n=c1+c2+…+c n=(16t2-4t-1)(b1+b2+…+b n).只需比较16t2-4t-1与1的大小即可得出B n与C n的大小关系;(2)利用已知条件得出a n+3-a n=6(n≥2,n∈N*).然后分n=3k-1,n=3k,n=3k+1三种情况讨论,列出不等式组解答即可.本题考查等差数列,等比数列的性质,数列与不等式的综合问题的解答等知识,属于难题.21.如图,锐角△ABC的内心为D,过点A作直线BD的垂线,垂足为F,点E为内切圆D与边AC的切点.若∠C=50°,求∠DEF的度数.【答案】解:∵⊙D切AC于点E,∴DE⊥AC,得∠AED=90°,又∵AF⊥DF,可得∠AFD=90°,∴∠AED=∠AFD=90°,因此,A、D、F、E四点共圆,在此圆中∠DEF与∠DAF对同弧,∴∠DEF=∠DAF.∵锐角△ABC的内心为D,∴AD、BD分别是∠BAC、∠ABC的平分线,可得∠DAB=∠BAC,∠DBA=∠ABC,因此,∠DAB+∠DBA=(∠BAC+∠ABC)=(180°-∠C)=(180°-50°)=65°.∵∠ADF为△ABD的外角,∴∠ADF=∠DAB+∠DBA=65°,R t△ADF中,∠DAF=90°-∠ADF=25°,可得∠DEF=∠DAF=25°.【解析】根据切线的性质,结合题意证出∠AED=∠AFD=90°,因此A、D、F、E四点共圆,得到∠DEF=∠DAF.由点D是△ABC的内心,可得∠DAB=∠BAC且∠DBA=∠ABC,结合三角形内角和定理证出∠DAB+∠DBA=(180°-∠C)=65°,进而得到∠ADF=65°.最后在R t△ADF中算出∠DAF=90°-∠ADF=25°,可得∠DEF=25°.本题给出△ABC的内切圆,求∠DEF的度数.着重考查了三角形内角和定理、切线的性质定理、四点共圆的判定和三角形的内切圆的性质等知识,属于中档题.22.设矩阵(其中a>0,b>0),若曲线C:x2+y2=1在矩阵M所对应的变换作用下得到曲线′:,求a+b的值.【答案】解:设P(x,y)是曲线C:x2+y2=1上的任意一点,P′(x′,y′)为曲线′:上与P对应的点,则=′′,即′′,代入得(′+(by′)2=1,这与x2+y2=1是同一方程,∴a=2,b=1,则a+b=3.【解析】设P(x,y)是曲线C:x2+y2=1上的任意一点,P′(x′,y′)为曲线′:上与P对应的点,根据题意建立(x,y)于(x′,y′)的等量关系,由此能够求出a和b 的值,即可求出所求.本题主要考查了矩阵的变换,解题时要认真审题,注意矩阵变换性质的灵活运用.属于基础题.23.在平面直角坐标系x O y中,已知直线l的参数方程是,(t为参数);以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为.由直线l上的点向圆C引切线,求切线长的最小值.【答案】解:把直线l的参数方程,(t为参数)化为普通方程为x-y+4=0.圆C的极坐标方程为,即ρ2=2ρ•cosθ-2ρ•sinθ,即x2+y2=x-y,即+=1,表示以C(,-)为圆心,半径等于1的圆.由于圆心C到直线x-y+4=0的距离为d==5,故圆和直线相离.要使切线长最小,只有直线l上的点到圆C的距离最小,此时,直线l上的点到圆心C的距离的最小值为d=5,故切线的最小值为==2.【解析】把参数方程和极坐标方程化为直角坐标方程,可得圆和直线相离.由于直线l上的点到圆C的距离最小值为圆心到直线的距离d=5,可得切线的最小值为,计算求得结果.本题主要考查把参数方程和极坐标方程化为直角坐标方程,直线和圆的位置关系,点到直线的距离公式,属于中档题.24.已知a,b,c均为正数,证明:.【答案】证明:∵a,b,c均为正数,∴左边≥≥2=2=6,当且仅当a=b=c时取等号,∴.【解析】两次运用基本不等式即可证明结论.本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.25.某品牌汽车4S店经销A,B,C三种排量的汽车,其中A,B,C三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1)求该单位购买的3辆汽车均为B种排量汽车的概率;(2)记该单位购买的3辆汽车的排量种数为X,求X的分布列及数学期望.【答案】解:(1)∵A,B,C三种排量的汽车依次有5,4,3款不同车型,∴该单位购买的3辆汽车均为B种排量汽车的概率为=;(2)由题意,X的取值为1,2,3,则P(X=1)==,P(X=3)==,P(X=2)=1-P(X=1)-P(X=3)=,∴X的分布列为∴EX==.【解析】(1)利用古典概型概率公式,可求该单位购买的3辆汽车均为B种排量汽车的概率;(2)确定该单位购买的3辆汽车的排量种数X的取值,求出相应的概率,即可求X的分布列及数学期望.本题考查概率的计算,考查随机变量的分布列及数学期望,考查学生的计算能力,正确求概率是关键.26.已知点A(-1,0),F(1,0),动点P满足•=2||.(1)求动点P的轨迹C的方程;(2)在直线l:y=2x+2上取一点Q,过点Q作轨迹C的两条切线,切点分别为M,N.问:是否存在点Q,使得直线MN∥l?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】解:(1)设P(x,y),则∵点A(-1,0),F(1,0),动点P满足,∴(x+1,y)•(2,0)=2,∴2(x+1)=2,∴y2=4x;(2)直线l方程为y=2(x+1),设Q(x0,y0),M(x1,y1),N(x2,y2).过点M的切线方程设为x-x1=m(y-y1),代入y2=4x,得=0,由△=,得,所以过点M的切线方程为y1y=2(x+x1),同理过点N的切线方程为y2y=2(x+x2).所以直线MN的方程为y0y=2(x0+x),又MN∥l,所以,得y0=1,而y0=2(x0+1),故点Q的坐标为(,1).【解析】(1)设出P的坐标,利用动点P满足,建立方程,化简可得结论;(2)求出过点M、N的切线方程,可得直线MN的方程,利用MN∥l,可求点Q的坐标.本题考查轨迹方程,考查抛物线的切线,考查学生分析解决问题的能力,求出直线MN 的方程是关键.。

2014年江苏省南京市鼓楼区清江花苑高考数学模拟试卷(3)

2014年江苏省南京市鼓楼区清江花苑高考数学模拟试卷(3)

2014年江苏省南京市鼓楼区清江花苑高考数学模拟试卷(3)学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共8小题,共24.0分)1.已知A={x|1≤x≤2},B={x|x2+2x+a≥0},A、B的交集不是空集,则实数a的取值范围是______ .【答案】a≥-8【解析】解:若A,B的交集是空集时,即x2+2x+a<0在A={x|1≤x≤2}恒成立令f(x)=x2+2x+a因为对称轴为x=-1所以f(x)在A上递增所以f(2)<0即可所以a<-8所以A、B的交集不是空集时,实数a的取值范围是a≥-8故答案为a≥-8利用二次函数的图象,先求出A,B的交集是空集时a的范围,然后求出其补集即可.解决二次不等式恒成立求参数的范围问题,一般结合二次函数的图象列出不等式求出参数的范围.2.双曲线x2-=1的渐近线被圆x2+y2-6x-2y+1=0所截得的弦长为______ .【答案】4【解析】解:由题得双曲线x2-=1的渐近线是:y=±2x圆x2+y2-6x-2y+1=0的标准方程为:(x-3)2+(y-1)2=9∴圆心(3,1),半径r=3.∴(3,1)到直线y=2x的距离d=.故有,得到弦长l=4;∵(3,1)到直线y=-2x的距离d=>r,此时圆于直线相离.综上得:双曲线x2-=1的渐近线被圆x2+y2-6x-2y+1=0所截得的弦长为4.故答案为:4.求出渐近线方程,由点到直线的距离公式求出圆心到渐近线的距离,将此距离和半径作比较,得出结论,再求弦长即可.本题考查双曲线的简单性质,点到直线的距离公式的应用,直线和圆的位置关系.考查计算能力以及分类讨论能力.3.已知向量的模是,向量的模为1,与的夹角为,=3+2,=-,则以、为邻边的平行四边形的长度较小的对角线的长是______ .【答案】【解析】解:以、为邻边的平行四边行的两对角线之长可分别记为|+|,|-|∵+=(3+2)+(-)=4+.-=(3+2)-(-)=2+3.…(4分)∴|+|=|4+|===.…(8分)|-|=|2+3|===…(12分)∵>.故答案为:.以、为邻边作平行四边形,则此平行四边形的两条对角线分别为+,-,分别求出他们的模,然后进行比较,即可得到结论.本题考查向量的运算法则:平行四边形法则、向量的数量积的定义式以及向量的模计算公式.体现了数形结合的思想,同时也考查了学生应用知识分析解决问题的能力,此题是个中档题.4.若x,y满足不等式组且z=2x+4y的最小值为-6,则k的值为______ .【答案】【解析】解:画出x,y满足的可行域如下图:由于目标函数z=2x+4y的最小值是-6,可得直线x=3与直线-6=2x+4y的交点A(3,-3),使目标函数z=2x+4y取得最小值,将x=3,y=-3代入x+y-k=0得:k=0,故答案为:0.由目标函数z=2x+4y的最小值是-6,我们可以画出满足条件的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程,解之即可得到k的取值.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.5.如图是一个算法流程图,则输出的S的值是______ .【答案】-9【解析】解:程序在运行过程中各变量的值如下表示:是否继续循环S n循环前01第一圈是-32第二圈是-3+63第四圈是-3+6-94第五圈是-3+6-9+125第六圈是-3+6-9+12-156第七圈否故最后输出的S值为:-3+6-9+12-15=-9.故答案为:-9.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算不满足循环条件n<6时,输出变量S的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.求一个程序的运行结果我们常用模拟运行的方法,但在模拟过程中要注意对变量值的管理、计算及循环条件的判断.必要时可以用表格管理数据.6.lgx2=6-(|x|-2010)(|x|-2012)的解的个数为______ .【答案】6个【解析】解:方程lgx2=6-(|x|-2010)(|x|-2012)的解的个数即函数y=6-lgx2与y=(|x|-2010)(|x|-2012)的交点的个数.由于这两个函数都是偶函数,图象关于y轴对称,只要求出当x>0时的交点个数,再乘以2即得所求.当x>0时,这两个函数的解析式即y=6-2lgx,y=(x-2010)(x-2012),如图所示:故当x>0时,这两个函数的解析式即y=6-2lgx与y=(x-2010)(x-2012)有3个交点,(注意二次函数的图象可与y轴相交,而y=6-2lgx的图象不与y轴相交),故方程lgx2=6-(|x|-2010)(|x|-2012)的解的个数为6,故答案为:6个.本题即求函数y=6-lgx2与y=(|x|-2010)(|x|-2012)的交点的个数.由于这两个函数都是偶函数,图象关于y轴对称,只要求出当x>0时的交点个数,再乘以2即得所求.结合图象可得结论本题主要考查方程的根的存在性及个数判断,函数的奇偶性的应用,体现了化归与转化、数形结合的数学思想,属于中档题7.已知函数f(x)满足:①对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;②当x∈(1,2]时,f(x)=2-x.若f(a)=f(2012),则满足条件的最小的正实数a是______ .【答案】92【解析】解:取x∈(2m,2m+1),则∈(1,2];f()=2-,从而f(x)=2f()=…=2m f()=2m+1-x,其中,m=0,1,2,…f(2012)=210f()=211-2012=2048-2012=36=f(a)设a∈(2m,2m+1),则f(a)=2m+1-a=36∴a=2m+1-36∈(2m,2m+1)即m≥6,即a≥92,∴满足条件的最小的正实数a是92.故答案为:92.取x∈(2m,2m+1),得到∈(1,2],f()=2-,从而f(x)=2m+1-x,根据f(2012)=f(a)进行化简,能求出满足条件的最小的正实数a的值.本题主要考查了抽象函数及其应用,同时考查了计算能力,分析问题解决问题的能力,转化与划归的思想,属于中档题.8.函数y=的值域为______ .【答案】[-,0]【解析】解:∵函数y=,它的定义域是{x|x≤1},设=t,(t≥0);∴x=1-t2,∴y==,当t=0时,y=0;当t>0时,y=-<0,∵t+≥2,∴≤,∴-≥-,即0>y≥-;综上,y的值域为[-,0].故答案为:[-,0].由函数y=,设=t(t≥0),把函数化为关于t的函数,利用分类讨论思想,求出函数y的值域即可.本题考查了求函数值域的问题,解题时应根据函数的解析式的特征,利用换元法和分类讨论法,结合基本不等式,求出函数的值域,是易错题.三、填空题(本大题共5小题,共15.0分)10.如果一个正四位数的千位数a、百位数b、十位数c和个位数d满足关系(a-b)(c-d)<0,则称其为“彩虹四位数”,例如2012就是一个“彩虹四位数”.那么,正四位数中“彩虹四位数”的个数为______ .(直接用数字作答)【答案】3645【解析】解:当b>a时,c>d.a不能为零,所以a和b有36种组合,c和d有45种组合,共有36×45=1620个.当b<a时,d>c.a和b,c和d,都有45种组合,共有45×45=2025个.当b>a时,c>d,a和b有36种组合,c和d有45种组合,共有36×45=1620个.当b<a时,d<c,a和b,c和d,都有45种组合,共有45×45=2025个,相加即得所求.本题主要考查排列与组合及两个基本原理,体现了分类讨论的数学思想,属于中档题.11.己知实数a使得只有一个实数x满足关于x的不等式|x2+2ax+3a|≤2,求满足条件的所有的实数a的值______ .【答案】1或2【解析】解:∵|x2+2ax+3a|≤2,即-2≤x2+2ax+3a≤2.又∵只有一个实数x满足关于x的不等式|x2+2ax+3a|≤2,∴有且只有一个实数x使x2+2ax+3a≤2成立.即有且只有一个实数x使x2+2ax+3a-2≤0成立,∴可知函数y=x2+2ax+3a-2的图象与x轴相切.∴根的判别式=4a2-4(3a-2)=0,所以a2-3a+2=0∴a=1或2.故答案为:1或2.将绝对值符号去掉,问题转化为有且只有一个实数x使x2+2ax+3a≤2成立,利用相应二次函数可知函数y=x2+2ax+3a-2的图象与x轴相切,从而使问题得解.本题的考点是一元二次不等式的应用,主要考查一元二次不等式的解法,考查三个二次之间的关系,有一定的综合性.12.在△ABC中,已知b=6,c=5,cos(C-B)=,则cos A= ______ .【答案】【解析】解:在△ABC中,已知b=6,c=5,cos(C-B)=,作AD⊥BC,D为垂足.设BD=m,CD=n,AD=h,∠BAD=α,∠CAD=β,如图所示:则cos B cos C=,又cos B cos C=[cos(C-B)+cos(C+B)]=(-cos A),∴=(-cos A).∴cos A=cos(α+β)=cosαcosβ-sinαsinβ=-=-(-cos A),∴cos A=(-).∵cos(C-B)=cos C cos B+sin C sin B=+=,52-m2=62-n2=h2,解得m h2=,∴cos A=(-)=(-)=.则cos B cos C==[cos(C-B)+cos(C+B)]=[-cos A],再由cos A=cosαcosβ-sinαsinβ=-[-cos A],求得cos A=(-).再根据cos(C-B)=+=,52-m2=62-n2=h2,求得得m和h2的值,可得cos A的值.本题主要考查两角和差的三角公式、直角三角形中的边角关系,属于中档题.13.已知α、β为锐角,且,则tanαtanβ= ______ .【答案】1【解析】解:已知α、β为锐角,且=•=(1+tan)(1+tan)=1+tan+tan+tan tan,故有tan+tan=1-tan tan,∴tan==1,∴=,∴α+β=,即α与β互为余角,则tanαtanβ=1,故答案为1.由已知条件利用三角函数的恒等变换化简可得tan+tan=1-tan tan,求得tan=1,可得α+β=,即α与β互为余角,由此可得tanαtanβ的值.本题主要考查三角函数的恒等变换及化简求值,互余的两个角正切值间的关系,属于中档题.14.在复平面内,设点A、P所对应的复数分别为πi、cos(2t-)+isin(2t-)(i为虚数单位),则当t由连续变到时,向量所扫过的图形区域的面积是______ .【答案】【解析】解:由题意可得,点P在单位圆上,点A的坐标为(0,π),如图:t=时,点P的坐标为P1(,-);当t=时,点P的坐标为P2(,).向量所扫过的图形区域的面积是△AP1P2的面而△AP1P2的面积等于△OP1P2的面积(因为这两个三角形同底且等高),故向量所扫过的图形区域的面积是扇形P1OP2的面积.由于∠P1OP2=2×=,∴扇形P1OP2的面积为等于××12=,故答案为:.当t=时,求得点P的坐标为P1(,-),当t=时,点P的坐标为P2(,),当直线AP和单位圆相切时,设切点为M,向量所扫过的图形区域的面积是△AP1P2的面积与弓形的面积之和,即向量所扫过的图形区域的面积是扇形P1OP2的面积,从而求得向量所扫过的图形区域的面积.本题主要考查复数的代数表示及其几何意义,复数与复平面内对应点之间的关系,扇形的面积公式的应用,属于中档题.四、解答题(本大题共12小题,共144.0分)15.已知命题p:方程a2x2+ax-2=0在[-1,1]上有且仅有一解.命题q:只有一个实数x 满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,求a的取值范围.【答案】解:由a2x2+ax-2=0,得(ax+2)(ax-1)=0,显然a≠0,∴x=-或x=,∵方程a2x2+ax-2=0在[-1,1]上有且仅有一解,故>或>∴-2<a≤-1或1≤a<2.只有一个实数x满足不等式x2+2ax+2a≤0,∴△=4a2-8a=0,解得a=0或a=2.∵命题“p或q”是假命题,∴命题p和命题q都是假命题,∴a的取值范围为{a|a≤-2或-1<a<0或0<a<1或a>2}.【解析】若命题p真,即方程a2x2+ax-2=0在[-1,1]上有且仅有一解,可求得-2<a≤-1或1≤a <2;若命题q真,即只有一个实数x满足不等式x2+2ax+2a≤0,由△=0可求得a=0或a=2,依题意,理解与运算能力,属于中档题.16.已知集合A={x|x2-3(a+1)x+2(3a+1)<0},B=<,(1)当a=2时,求A∩B;(2)求使B⊆A的实数a的取值范围.【答案】解:(1)当a=2时,A={x|x2-3(a+1)x+2(3a+1)<0}={x|x2-9x+14=0}=(2,7),B=<={x|<}=(4,5),∴A∩B=(4,5)(2)∵B=(2a,a2+1),①当a<时,A=(3a+1,2)要使B⊆A必须,此时a=-1,②当时,A=∅,使B⊆A的a不存在.③a>时,A=(2,3a+1)要使B⊆A,必须,此时1≤a≤3.综上可知,使B⊆A的实数a的范围为[1,3]∪{-1}.【解析】(1)把a的值分别代入二次不等式和分式不等式,然后通过求解不等式化简集合A,B,再运用交集运算求解A∩B;(2)把集合B化简后,根据集合A中二次不等式对应二次方程判别式的情况对a进行分类讨论,然后借助于区间端点值之间的关系列不等式组求解a的范围.本题考查了交集及其运算,考查了集合的包含关系及其应用,考查了分类讨论的数学思想,解答此题的关键是对集合A的讨论,此题是中档题.17.某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别写出用x表示y和S的函数关系式(写出函数定义域);【答案】解:(1)由已知xy=3000,2a+6=y,则y=,(其中6≤x≤500);所以,运动场占地面积为S=(x-4)a+(x-6)a=(2x-10)a=(2x-10)•=(x-5)(y-6)=3030-6x-,(其中6≤x≤500);(2)占地面积S=3030-6x-=3030-(6x+)≤3030-2=3030-2×300=2430;当且仅当6x=,即x=50时,“=”成立,此时x=50,y=60,S max=2430.即设计x=50米,y=60米时,运动场地面积最大,最大值为2430平方米.【解析】(1)总面积为xy=3000,且2a+6=y,则y=,(其中6≤x≤500);所以,运动场占地面积为S=(x-4)a+(x-6)a,整理即得;(2)由(1)知,占地面积S=3030-6x-=3030-(6x+),由基本不等式可得函数的最大值,以及对应的x的值.本题以矩形的面积为函数模型,考查了列函数解析式,应用基本不等式求函数最值的问题,属于中档题目.18.已知椭圆C:+=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.(1)若P(-1,),PA是⊙O的切线,求椭圆C的方程;(2)是否存在这样的椭圆C,使得是常数?如果存在,求C的离心率,如果不存在,说明理由.【答案】解:(1)∵P(-1,)在⊙O:x2+y2=b2上,∴b2=4.(2分)∴•=0即(-1,)•(-1+a,)=0,解得a=4.∴椭圆C的方程为(5分)(2)∵c2=a2-b2,A(-a,0),F(-c,0),P(x1,y1)使得是常数,则有(x1+a)2+y12=λ[(c+x1)2+y12](λ是常数)∵x2+y2=b2即b2+2ax1+a2=λ(b2+2cx1+c2),(8分)比较两边,b2+a2=λ(b2+c2),a=λc,(10分)故cb2+ca2=a(b2+c2),即ca2-c3+ca2=a3,即e3-2e+1=0,(12分)(e-1)(e2+e-1)=0,符合条件的解有e=,即这样的椭圆存在,离心率为.(16分)【解析】(1)由P(-1,)在⊙O:x2+y2=b2上可求b,由PA是⊙O的切线可得,PA⊥OP 即•=0,根据向量的数量积可求b,进而可求椭圆C的方程(2)设F(c,0),由c2=a2-b2可求c,P(x1,y1),要使得是常数,则有(x1+a)2+y12=λ[(x1+c)2+y12]比较两边可得c,a的关系,结合椭圆的离心率的范围可求本题主要考查了由圆的切线的性质及向量的数量的基本运算求解椭圆的方程,椭圆的性质的应用,属于知识的综合性应用.19.已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,><(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?【答案】解:(1)∵f(-1)=0,∴a-b+1=0①(1分)又函数f(x)的值域为[0,+∞),所以a≠0且由知即4a-b2=0②由①②得a=1,b=2(3分)∴><(5分)(2)由(1)有g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=,(7分)当或时,即k≥6或k≤-2时,g(x)是具有单调性.(9分)(3)∵f(x)是偶函数∴f(x)=ax2+1,∴><,(11分)∵m>0,n<0,则m>n,则n<0.又m+n>0,m>-n>0,∴|m|>|-n|(13分)∴F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0,∴F(m)+F(n)能大于零.(16分)【解析】(1)f(-1)=0⇒a-b+1=0,又值域为[0,+∞)即最小值为0⇒4a-b2=0,求出f(x)的表达式再求F(x)的表达式即可;(2)把g(x)的对称轴求出和区间端点值进行分类讨论即可.(3)f(x)为偶函数⇒对称轴为0⇒b=0,把F(m)+F(n)转化为f(m)-f(n)=a (m2-n2)再利用m>0,n<0,m+n>0,a>0来判断即可.本题是对二次函数性质的综合考查.其中(1)考查了二次函数解析式的求法.二次函数解析式的确定,应视具体问题,灵活的选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移,对称,函数的周期性,奇偶性等知识有机的结合在一起.20.已知数列{a n},{b n},且满足a n+1-a n=b n(n=1,2,3,…).(1)若a1=0,b n=2n,求数列{a n}的通项公式;(2)若b n+1+b n-1=b n(n≥2),且b1=1,b2=2.记c n=a6n-1(n≥1),求证:数列{c n}为常数列;(3)若b n+1b n-1=b n(n≥2),且a1=1,b1=1,b2=2.求数列{a n}的前36项和S36.【答案】解:(1)当n≥2时,有a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+b1+b2+…+b n-1=2×1+2×2+…+2×(n-1)=2×=n2-n,又当n=1时此式也成立.∴数列{a n}的通项为a n=n2-n.∴数列{b n}是一个以6为周期的循环数列又∵b1=1,b2=2,∴b3=b2-b1=1,b4=b3-b2=-1,b5=b4-b3=-2,b6=b5-b4=-1.∴c n+1-c n=a6n+5-a6n-1=a6n+5-a6n+4+a6n+4-a6n+3+…+a6n-a6n-1=b6n+4+b6n+3+b6n+2+b6n+1+b6n+b6n-1=b4+b3+b2+b1+b6+b5=-1+1+2+1-1+-2=0(n≥1),所以数列{c n}为常数列.(3)∵b n+1b n-1=b n(n≥2),且b1=1,b2=2,∴b3=2,b4=1,b5=,b6=,且对任意的n∈N*,有b n+6====b n,设c n=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6},∴c n+1-c n=a6n+6+i-a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=b1+b2+b3+b4+b5+b6=1+2+2+1++=7(n≥0).所以数列{a6n+i}均为以7为公差的等差数列.∵a1=1,a2=2,a3=4,a4=6,a5=7,a6=,∴数列{a n}的前36项和S36=6(a1+a2+a3+a4+a5+a6)+6(7+14+21+28+35)=165+630=795.【解析】(1)利用“累加求和”和等差数列的前n项和公式即可求出;(2)通过已知条件先探究数列{b n}是一个以6为周期的循环数列,进而即可证明数列{c n}为常数列.(3)由条件探索出:数列{a6n+i}均为以7为公差的等差数列,由此能求出数列{a n}的前36项和S36.熟练掌握等差数列的前n项和公式、“累加求和”、探究数列{b n}是一个以6为周期的循环数列,本题较好的考查了学生的探究能力和计算能力,本题有一点的难度.21.如图,在梯形ABCD中,AD∥BC,点E,F分别在边AB,CD上,设ED与AF相交于点G,若B,C,F,E四点共圆,求证:AG•GF=DG•GE.【答案】证明:连接EF.∵B,C,F,E四点共圆,∴∠ABC=∠EFD.(2分)∵AD∥BC,∴A,D,F,E四点共圆.(8分)∵ED交AF于点G,∴AG•GF=DG•GE.(10分)【解析】连接EF.由B,C,F,E四点共圆,得∠ABC=∠EFD,从而可得A,D,F,E四点共圆,再根据相交弦定理即可解决问题.本题主要考查圆內接多边形的性质与判定以及圆中线段的相交弦定理,属于基础题.22.[选修4-2:矩阵与变换]已知矩阵有特征值λ1=4及对应的一个特征向量,求曲线5x2+8xy+4y2=1在M的作用下的新曲线方程.【答案】解:由题意得=,即2+3b=8,2c+6=12,解得b=2,c=3,所以.设曲线上任一点P(x,y),P在M作用下对应点P′(x′,y′),则′′,即′′,解之得′′′,代入5x2+8xy+4y2=1,得x′2+y′2=2.即曲线5x2+8xy+4y2=1在M的作用下的新曲线方程是x2+y2=2.…(10分)【解析】由矩阵M=有特征值λ1=4及对应的一个特征向量,可得=,即2+3b=8,2c+6=12,解得b,c值后可得矩阵M;再设曲线上任一点P(x,y),P在M作用下对应点为P′(x′,y′),利用矩阵变换得出两点坐标的关系式,代入曲线5x2+8xy+4y2=1后化简可得曲线5x2+8xy+4y2=1在M的作用下的新曲线方程.本题考查的知识点是特征值与特征向量的计算,熟练掌握矩阵的运算法则是解答的关键.23.[选修4-4:坐标系与参数方程]在直角坐标系xoy中,直线l的参数方程为(t为参数),若以直角坐标系xoy的O点为极点,O x为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-).直线l与曲线C交于A,B两点,求|AB|.【答案】解:l的直角坐标方程为y=+,ρ=2cos(θ-)的直角坐标方程为(x-)2+(y-)2=1,所以圆心(,)到直线l的距离d==,∴|AB|=2=2=.…(10分)【解析】利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得曲线C的极坐标方程为ρ=2cos(θ-)的直角坐标方程,曲线C表示以(,)为圆心,以R=1为半径的圆,最后利用直线和圆的相交关系中弦长公式求解即可.本题考查了极坐标、直角坐标方程及参数方程的互化,圆中弦长计算方法等.属于基础题.24.设f(x)=x2-x+13,实数a满足|x-a|<1,求证:|f(x)-f(a)|<2(|a|+1).【答案】证明:∵f(x)=x2-x+13,∴|f(x)-f(a)|=|x2-x-a2+a|=|x-a|•|x+a-1|,∵实数a满足|x-a|<1,∴|x-a|•|x+a-1|<|x+a-1|.又|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a-1|≤1+|2|a|+1=2(|a|+1),∴|f(x)-f(a)|<2(|a|+1).【解析】由题意可得,|f(x)-f(a)|=|x-a|•|x+a-1|<|x+a-1|.再根据|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|,再利用条件以及绝对值不等式的性质证得结论.本题主要考查二次函数的性质,绝对值不等式的性质,属于基础题.25.在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是,甲、丙二人都回答错的概率是,乙、丙二人都回答对的概率是.(Ⅰ)求乙、丙二人各自回答对这道题的概率;(Ⅱ)设乙、丙二人中回答对该题的人数为X,求X的分布列和数学期望.【答案】解:(Ⅰ)设甲、乙、丙回答对这道题分别为事件A、B、C,则,且有,故,解得,.…(4分)(Ⅱ)由题意,X=0,1,2,,..所以随机变量X的分布列为:.…(10分)【解析】(Ⅰ)设甲、乙、丙回答对这道题分别为事件A、B、C,则,且有,解之可得;(Ⅱ)由题意,X=0,1,2,分别可得所对应的概率,可得X的分布列,由期望的定义可得期望.本题考查离散型随机变量的期望与方差,涉及相互独立事件的概率乘法公式,属中档题.26.已知数集A={a1,a2,…,a n},其中0≤a1<a2<…<a n,且n≥3,若对∀i,j(1≤i≤j≤n),a j+a i与a j-a i两数中至少有一个属于A,则称数集A具有性质P.(Ⅰ)分别判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P,说明理由;(Ⅱ)已知数集A={a1,a2,…,a8}具有性质P.①求证:0∈A;②判断数列a1,a2,…,a8是否为等差数列,若是等差数列,请证明;若不是,请说明理由.解:(Ⅰ)∵对任意i,j(1≤i≤j≤n),a j+a i与a j-a i两数中至少有一个是该数列中的项,∴数列0,1,3中,a2+a3=1+3=4和a3-a2=3-1=2都不是该数列中的数;数列0,2,4,6,a j+a i与a j-a i(1≤i≤j≤3)两数中都是该数列中的项,并且a4-a3=2是该数列中的项,∴数集{0,1,3}不具有性质P,数集{0,2,4,6}具有性质P;(Ⅱ)①证明:∵0≤a1<a2<…<a n,n∈N*,n≥3,∴a n+a n=2a n>a n,则a n-a n=0=a1∈A,②∵A={a1,a2,…,a8}具有性质P,所以a8+a8与a8-a8中至少有一个属于A,由0≤a1<a2<…<a8,有a8+a8>a8,故a8+a8∉A,∴0=a8-a8∈A,故a1=0.∵0=a1<a2<…<a8,∴a8+a k>a8,故a8+a k∉A(k=2,3,…,8).由A具有性质P知,a8-a k∈A(k=2,3,…,8).又∵a8-a8<a8-a7<…<a8-a2<a8-a1,∴a8-a8=a1,a8-a7=a2,...,a8-a2=a7,a8-a1=a8,即a i+a9-i=a8(i=1,2,...,8). (1)由a2+a7=a8知,a3+a7,a4+a7,…,a7+a7均不属于A,由A具有性质P,a7-a3,a7-a4,…,a7-a7均属于A,∴a7-a7<a7-a6<…<a7-a4<a7-a3<a8-a3,∴a7-a7=0,a7-a6=a2,a7-a5=a3,...,a7-a3=a5,即a i+a8-i=a7(i=1,2...7). (2)由(1)(2)可知a i=a8-a9-i=a8-(a7-a i-1)(i=1,2…7,8),即a i-a i-1=a8-a7(i=2,3,…,8).故a1,a2,…a8构成等查数列.【解析】(Ⅰ)根据数列:a1,a2,…a n(0≤a1<a2…<a n),n≥3时具有性质P,对任意i,j (1≤i≤j≤n),a j+a i与a j-a i两数中至少有一个是该数列中的一项,逐一验证;(Ⅱ)①)根据a1、a2、…a n的大小关系和性质P,可得a n+a n=2a n>a n,则a n-a n=0=a1∈A;②根据数集A={a1,a2…a8}具有性质P,可得a i+a9-i=a8,a i+a8-i=a7,由此可知a i=a8-a9-i=a8-(a7-a i-1),即a i-a i-1=a8-a7,从而得到a1,a2,…a8构成等查数列.本题考查数列的综合应用,考查等差关系的确定,等差数列的定义,新定义,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二、选择题(本大题共1小题,共3.0分)9.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【答案】B【解析】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC=,AE=CF=,BE=EF=FD=,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A-BD-C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B 正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选B先根据翻折前后的变量和不变量,计算几何体中的相关边长,再分别筛选四个选项,若A成立,则需BD⊥EC,这与已知矛盾;若B成立,则A在底面BCD上的射影应位于线段BC上,可证明位于BC中点位置,故B成立;若C成立,则A在底面BCD上的射影应位于线段CD上,这是不可能的;D显然错误本题主要考查了空间的线面和面面的垂直关系,翻折问题中的变与不变,空间想象能力和逻辑推理能力,有一定难度,属中档题。

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.答案:1.考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础.2.考点:复数的基本概念;复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的有关概念,即可得到结论.解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.考点:程序框图.专题:算法和程序框图.分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.考点:三角方程;函数的零点.专题:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.考点:频率分布直方图.专题:概率与统计.分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).专题:立体几何.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.考点:直线与圆的位置关系.专题:直线与圆.分析:求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.15.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC 即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x 的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n 项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.21.考点:弦切角.专题:直线与圆.分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.22.考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.23.考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.24.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.25.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。

2014江苏省高考数学模拟试题word版

2014江苏省高考数学模拟试题word版

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),xkb1它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)xkb1过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,(第3题)100 80 90 110 /cm(第6题)PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥A B C P -中,D ,E ,F 分xkb1别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程; (2)若,1AB C F ⊥求椭圆离心率e 的值.(第16题)P D C EF BAxkb118.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直。

江苏省2014年高考数学二轮专题复习素材:阶段检测卷3

江苏省2014年高考数学二轮专题复习素材:阶段检测卷3

阶段检测卷(三)一、填空题(每小题5分,共70分)1.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=________.解析 由a 3a 11=16,得a 27=16,故a 7=4=a 5×22⇒a 5=1.答案 12.若{a n }为等差数列,S n 是其前n 项的和,且S 11=223π,则tan a 6=________. 解析 S 11=11(a 1+a 11)2=11a 6=223π,∴a 6=2π3,∴tan a 6=- 3. 答案 - 33.设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析 由已知得⎩⎨⎧a 1+a 1q =3a 1q +2, ①a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2, ②②-①得a 1q 2+a 1q 3=3a 1q (q 2-1),即2q 2-q -3=0.解得q =32或q =-1(舍). 答案 324.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. 解 由题意S 9=S 4,得a 5+a 6+a 7+a 8+a 9=0,∴5a 7=0,即a 7=0,又a k +a 4=0=2a 7,a 10+a 4=2a 7,∴k =10. 答案 105.在等差数列{a n }中,a 8=12a 11+6,则数列{a n }前9项的和S 9等于________. 解析 设等差数列{a n }的公差为d ,则a 1+7d =12(a 1+10d )+6,即a 1+4d =a 5=12,∵S 9=9(a 1+a 9)2=9a 5=108.答案 1086.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n } 的前n 项和S n =________.解析 设等差数列{a n }的公差为d ,由已知得a 23=a 1a 6,即(2+2d )2=2(2+5d ),解得d =12,故S n =2n +n (n -1)2×12=n 24+7n 4. 答案 n 24+7n47.若-9,a ,-1成等差数列,-9,m ,b ,n ,-1成等比数列,则ab =________. 解析 由已知得a =-9-12=-5,b 2=(-9)×(-1)=9且b <0,∴b =-3,∴ab =(-5)×(-3)=15. 答案 158.已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x ,当x =b 时取到极大值c ,则ad 等于________.解析 由等比数列的性质,得ad =bc , 又⎩⎪⎨⎪⎧f ′(b )=1b +2-1=0,f (b )=ln (b +2)-b =c ,解得⎩⎨⎧b =-1,c =1,故ad =bc =-1.答案 -19.设y =f (x )是一次函数,f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )=________.解析 设f (x )=kx +b (k ≠0),又f (0)=1,所以b =1,即f (x )=kx +1(k ≠0).由f (1),f (4),f (13)成等比数列,得f 2(4)=f (1)·f (13),即(4k +1)2=(k +1)(13k +1).因为k ≠0,所以k =2,所以f (x )=2x +1,所以f (2)+f (4)+…+f (2n )=5+9+…+4n +1=n (5+4n +1)2=n (2n +3). 答案 n (2n +3)10.S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3…a n ,则使T n 取最小值的n 值为________.解析 设等比数列的公比为q ,故由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故T n T n -1=a n =120×2n -1,易得当n ≤5时,T nT n -1<1,即T n <T n -1;当n ≥6时,T n >T n -1,据此数列单调性可得T 5为最小值. 答案 511.已知数列{a n }的通项公式是a n =-n 2+12n -32,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n -S m 的最大值是________.解析 由于a n =-(n -4)(n -8),故当n <4时,a n <0,S n 随n 的增加而减小,S 3=S 4,当4<n <8时,a n >0,S n 随n 的增加而增大,S 7=S 8,当n >8时,a n <0,S n 随n 的增加而减小,故S n -S m ≤S 8-S 4=a 5+a 6+a 7+a 8=a 5+a 6+a 7=10. 答案 1012.(2013·南京师大附中模拟)已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v =________.解析 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则⎩⎨⎧3+d =q ,3(3+4d )=q 2,解得d =6,q =9,所以a n =6n -3,b n =9n -1,6n -3=3n log u 9+v -3log u 9对任意正整数n 恒成立,所以⎩⎨⎧log u 9=2,v -3log u 9=-3,解得u =v =3,故u +v =6. 答案 613.(2012·宿迁联考)第30届奥运会在伦敦举行.设数列a n =log n +1(n +2)(n ∈N *),定义使a 1·a 2·a 3…a k 为整数的实数k 为奥运吉祥数,则在区间[1,2 012]内的所有奥运吉祥数之和为________.解析 因为a 1·a 2·a 3…a k =log 23×log 34×…×log k +1(k +2)=log 2(k +2),当log 2(k +2)=m (m ∈Z )时,k =2m -2∈[1,2 012](m ∈Z ),m =2,3,4,…,10,所以在区间[1,2 012]内的所有奥运吉祥数之和为(22-2)+(23-2)+…+(210-2) =(22+23+…+210)-18=211-22=2 026. 答案 2 02614.(2013·盐城模拟)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由题意可知a n =4n -3,且(S 2n +3-S n +1)-(S 2n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=18n +9+18n +5-14n +1<0,所以{S 2n +1-S n }是递减数列,故(S 2n +1-S n )max=S 3-S 1=1a 2+1a 3=1445≤m 15,解得m ≥143,故正整数m 的最小值为5. 答案 5二、解答题(共90分)15.(本小题满分14分)已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n=(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.(1)证明 假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列. (2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n ·(a n -3n +21)=-23b n .又b 1=-(λ+18),所以当λ=-18时, b n =0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由b n +1=-23b n . 可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.16.(本小题满分14分)已知数列{a n }的前n 项和是S n ,且S n +12a n =1. (1)求数列{a n }的通项公式;(2)记b n =log 3a 2n4,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n ·b n +2的前n 项和为T n ,证明:T n <316. (1)解 当n =1时,a 1=S 1,由S 1+12a 1=1,解得a 1=23.当n ≥2时,∵S n =1-12a n ,S n -1=1-12a n -1,∴S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ).∴a n =13a n -1.∴{a n }是以23为首项,13为公比的等比数列,其通项公式为a n =23×⎝ ⎛⎭⎪⎫13n -1=2×3-n . (2)证明 ∵b n =log 3a 2n4=2 log 33-n =-2n . ∴1b n ·b n +2=1(-2n )×[-2(n +2)]=14n (n +2)=18⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =18×⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -2-1n +⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=181+12-1n +1-1n +2=18⎝ ⎛⎭⎪⎫32-1n +1-1n +2<316. 17.(本小题满分14分)已知等差数列{a n }满足:a 2=5,a 4+a 6=22,数列{b n }满足b 1+2b 2+…+2n -1b n =na n ,设数列{b n }的前n 项和为S n . (1)求数列{a n },{b n }的通项公式; (2)求满足13<S n <14的n 的集合.解 (1)设等差数列{a n }的公差为d ,则a 1+d =5,(a 1+3d )+(a 1+5d )=22. 解得a 1=3,d =2.∴a n =2n +1.在b 1+2b 2+…+2n -1b n =na n 中,令n =1,则b 1=a 1=3,又b 1+2b 2+…+2n b n+1=(n +1)a n +1,∴2n b n +1=(n +1)a n +1-na n .∴2n b n +1=(n +1)(2n +3)-n (2n +1)=4n +3. ∴b n +1=4n +32n .∴b n =4n -12n -1(n ≥2).经检验,b 1=3也符合上式,则数列{b n }的通项公式为b n =4n -12n -1.(2)S n =3+7·12+…+(4n -1)·⎝ ⎛⎭⎪⎫12n -1,12S n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -1+(4n -1)⎝ ⎛⎭⎪⎫12n.两式相减得12S n =3+4⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(4n -1)·⎝ ⎛⎭⎪⎫12n,∴12S n =3+4·12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(4n -1)⎝ ⎛⎭⎪⎫12n .∴S n =14-4n +72n -1.∴∀n ∈N *,S n <14. ∵数列{b n }的各项为正, ∴S n 单调递增.又计算得S 5=14-2716<13,S 6=14-3132>13, ∴满足13<S n <14的n 的集合为{n |n ≥6,n ∈N *}. 18.(本小题满分16分)已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,2)成中心对称.(1)求函数f (x )的解析式; (2)若数列{a n }满足a 1=2,a n +1=f (a n ),试证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1为等比数列,并求出数列{a n }的通项公式. (1)解 ∵f (0)=0,∴c =0. ∵f (x )=bx +cx +1的图象关于点(-1,2)成中心对称, ∴f (x )+f (-2-x )=4,解得b =2. ∴f (x )=2x x +1. (2)证明 ∵a n +1=f (a n )=2a na n +1,∴当n ≥2时,a na n -1a n -1a n -1-1=a n a n -1·a n -1-1a n -1=2a n -1a n -1+12a n -1a n -1+1-1·a n -1-1a n -1=2a n -1a n -1-1·a n -1-1a n -1=2. 又a 1a 1-1=2≠0,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1是首项为2,公比为2的等比数列,∴a na n -1=2n,∴a n =2n 2n -1.19.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且满足S n =n 2,数列{b n }满足b n =1a n a n +1,T n 为数列{b n }的前n 项和.(1)求数列{a n }的通项公式a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +(-1)n 恒成立,求实数λ的取值范围. 解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,验证当n =1时,也成立;所以a n =2n -1.b n =1a n a n +1=1(2n -1)(2n +1)=12[ 12n -1-12n +1],所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1].(2)由(1)得λ<(2n +1)[n +(-1)n ]n,当n 为奇数时,λ<(2n +1)(n -1)n =2n -1n -1恒成立, 因为当n 为奇数时,2n -1n -1单调递增, 所以当n =1时,2n -1n -1取得最小值为0, 此时,λ<0. 当n 为偶数时,λ<(2n +1)(n +1)n =2n +1n +3恒成立,因为当n 为偶数时,2n +1n +3单调递增,所以当n =2时,2n +1n +3取得最小值为152. 此时,λ<152.综上所述,对于任意的正整数n ,原不等式恒成立,λ的取值范围是(-∞,0).20.(本小题满分16分)已知数列{a n }满足a 1=a (a >0,a ∈N *),a 1+a 2+…+a n-pa n +1=0(p ≠0,p ≠-1,n ∈N *). (1)求数列{a n }的通项公式a n ;(2)若对每一个正整数k ,若将a k +1,a k +2,a k +3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k .①求p 的值及对应的数列{d k }. ②记S k 为数列{d k }的前k 项和,问是否存在a ,使得S k <30对任意正整数k 恒成立?若存在,求出a 的最大值;若不存在,请说明理由.解 (1)因为a 1+a 2+…+a n -pa n +1=0,所以n ≥2时,a 1+a 2+…+a n -1-pa n =0,两式相减,得a n +1a n =p +1p (n ≥2),故数列{a n }从第二项起是公比为p +1p 的等比数列,又当n =1时,a 1-pa 2=0,解得a 2=ap , 从而a n =⎩⎪⎨⎪⎧a (n =1),a p ⎝ ⎛⎭⎪⎫p +1p n -2(n ≥2).(2)①由(1)得a k +1=a p ⎝⎛⎭⎪⎫p +1p k -1, a k +2=a p ⎝⎛⎭⎪⎫p +1p k ,a k +3=a p ⎝ ⎛⎭⎪⎫p +1p k +1, 若a k +1为等差中项,则2a k +1=a k +2+a k +3, 即p +1p =1或p +1p =-2,解得p =-13; 此时a k +1=-3a (-2)k -1,a k +2=-3a (-2)k , 所以d k =|a k +1-a k +2|=9a ·2k -1,若a k +2为等差中项,则2a k +2=a k +1+a k +3, 即p +1p =1,此时无解;若a k +3为等差中项,则2a k +3=a k +1+a k +2, 即p +1p =1或p +1p =-12,解得p =-23, 此时a k +1=-3a 2⎝ ⎛⎭⎪⎫-12k -1,a k +3=-3a 2⎝ ⎛⎭⎪⎫-12k +1,所以d k =|a k +1-a k +3|=9a 8·⎝ ⎛⎭⎪⎫12k -1, 综上所述,p =-13,d k =9a ·2k -1或p =-23, d k =9a 8·⎝ ⎛⎭⎪⎫12k -1. ②当p =-13时,S k =9a (2k -1). 则由S k <30,得a <103(2k -1),当k ≥3时,103(2k -1)<1,所以必定有a <1,所以不存在这样的最大正整数. 当p =-23时,S k =9a 4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,则由S k <30,得a <403⎣⎢⎡1-⎝ ⎛⎭⎪⎫12k],因为403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k >403,所以a =13满足S k <30恒成立;但当a =14时,存在k =5,使得a >403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 即S k <30,所以此时满足题意的最大正整数a =13.。

2014年江苏省南京市高考数学三模试卷

2014年江苏省南京市高考数学三模试卷

2014年江苏省南京市高考数学三模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.已知全集U=R,集合A={x|x≤-2,x∈R},B={x|x<1,x∈R},则(∁U A)∩B= ______ .【答案】{x|-2<x<1}【解析】解:∵全集U=R,集合A={x|x≤-2},∴∁U A={x|x>-2},∵B={x|x<1},∴(∁U A)∩B={x|-2<x<1}.故答案为:{x|-2<x<1}根据全集U及A求出A的补集,找出A补集与B的交集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知(1+)2=a+bi(a,b∈R,i为虚数单位),则a+b= ______ .【答案】-7【解析】解:∵,且(1+)2=a+bi,∴.则a+b=-7.故答案为:-7.利用复数代数形式的乘除运算化简等式左边,然后利用复数相等的条件求得a,b的值,则a+b可求.本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.3.某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为______ .【答案】30【解析】解:因为甲校有学生800人,乙校有学生500人,所以设乙校应抽取学生人数为x,则x:48=500:800,解得x=30,故在乙校应抽取学生人数为30,故答案为:30根据分层抽样的定义,建立比例关系即可等到结论.本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.4.现有红心1,2,3和黑桃4,5共五张牌,从这五张牌中随机取2张牌,则所取2张牌均为红心的概率为______ .【答案】【解析】解:这五张牌中随机取2张牌,共有=10种不同情况,而且这些情况是等可能发生的,其中所取2张牌均为红心,共有=3种不同情况,故所取2张牌均为红心的概率P=,故答案为:先计算从五张牌中随机取2张牌的基本事件总数,再计算所取2张牌均为红心的基本事件个数,代入古典概型公式,可得答案.此题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.5.执行如图所示的伪代码,输出的结果是______ .【答案】11【解析】解:本题程序为当型循环结构的算法,算法的功能是求满足S=1×3×5×…×I>0的I+2的值,∵S=1×3×5×7=105<200,S=1×3×5×7×9=945>200,∴输出的I=9+2=11.故答案为:11.根据当型循环结构的算法的流程,判断算法的功能是求满足S=1×3×5×…×I>200的I+2的值,由此可得输出的I值.本题考查了当型循环结构的算法语句,根据程序的流程判断算法的功能是关键.6.抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为______ .【答案】【解析】解:∵抛物线y2=2px过点M(2,2),∴4=4p,∴p=1,∴抛物线的标准方程为:y2=2x,其准线方程为x=-,∴点M到抛物线焦点的距离为2+=.故答案为:.先求出抛物线的方程,再利用抛物线的定义,将点M到抛物线焦点的距离转化为点M 到准线的距离.本题考查抛物线的标准方程,考查抛物线定义的运用,正确运用抛物线的定义是关键.7.已知tanα=-2,且<α<π,则cosα+sinα= ______ .【答案】【解析】解:∵tanα=-2,且<α<π,∴cosα=-=-,sinα==,∴cosα+sinα=-+=.故答案为:由tanα的值及α的范围,利用同角三角函数间的基本关系求出sinα与cosα的值,代入原式计算即可得到结果.此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.8.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥n,则n⊥α;④若m∥α,m⊂β,则α∥β.其中所有真命题的序号是______ .【答案】②【解析】解:①若α⊥β,m⊥α,则m∥β或m⊂β,故①错;②若m⊥α,m⊥β,由面面平行的判定定理得α∥β,故②正确;③若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故③错;④若m∥α,m⊂β,则α∥β或α,β相交,故④错.故答案为:②.由面面垂直和线面垂直的性质即可判断①;由垂直于同一直线的两平面平行,可判断②;由线面平行的性质和线面垂直的判定,即可判断③;由线面平行的性质和面面平行的判定,即可判断④.本题考查空间直线与平面的位置关系,主要考查直线与平面平行、垂直的判定和性质,平面与平面平行、垂直的判定和性质的运用,熟记这些知识是解题的关键.9.将函数f(x)=sin(3x+)的图象向右平移个单位长度,得到函数y=g(x)的图象,则函数y=g(x)在[,]上的最小值为______ .【答案】-【解析】解:∵f(x)=sin(3x+),∴g(x)=f(x-)=sin[3(x-)+)]=sin(3x-),∵x∈[,],∴3x-∈[,],∴sin(3x-)∈[-,1],当x=时,y=g(x)取到最小值-.故答案为:-.利用函数y=A sin(ωx+φ)的图象变换可求得g(x)=f(x-)=sin(3x-),利用正弦函数的单调性即可求得x∈[,]时函数的最小值.本题考查函数y=A sin(ωx+φ)的图象变换,考查正弦函数的单调性与最值,考查运算求解能力,属于中档题.10.已知数列{a n}满足a n=a n-1-a n-2(n≥3,n∈N*),它的前n项和为S n.若S9=6,S10=5,则a1的值为______ .【答案】1【解析】解:∵a n=a n-1-a n-2(n≥3,n∈N*),∴a n+1=a n-a n-1(n≥3,n∈N*),即a n+1=a n-a n-1=a n-1-a n-2-a n-1=-a n-2,∴a n+3=-a n,即a n+6=a n,即数列{a n}是周期为6的周期数列,∵S9=6,S10=5,∴a10=S10-S9=5-6=-1,则a10=a4=-a1=-1,∴a1=1,故答案为:1.根据数列的递推公式求出数列{a n}是周期为6的周期数列,即可得到结论.本题主要考查数列项的计算,根据条件求出{a n}是周期为6的周期数列是解决本题的关键,考查学生的计算能力.11.已知函数f(x)=,,<,则关于x的不等式f(x2)>f(3-2x)的解集是______ .【答案】(-∞,-3)∪(1,3)【解析】解:∵f(x)=,,<,由x2≥0,得f(x2)=x2,从而原不等式f(x2)>f(3-2x)化为x2>f(3-2x).①当3-2x≥0即x≤时,原不等式进一步化为x2>3-2x,得x>1,或x<-3,∴1<x≤,或x<-3.②当3-2x<0即x>时,原不等式进一步化为x2>(3-2x)2,得1<x<3,∴<<.综合①、②得原不等式的解集为(-∞,-3)∪(1,3).故填(-∞,-3)∪(1,3).先利用f(x)=,,<,将f(x2)化为x2,再分“3-2x≥0”及“3-2x<0”进行讨论,可将原不等式进一步化为一元二次不等式,即得x的范围.1.本题考查了分段函数不等式的解法,关键是对函数进行分段处理,体现了分类讨论的思想.2.利用分类讨论法解不等式时,一般在同类中取交集,类与类之间取并集.12.在R t△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN=,则•的取值范围为______ .【答案】[,2]【解析】解:以C为坐标原点,CA为x轴建立平面坐标系,则A(2,0),B(0,2),∴AB所在直线的方程为:,则y=2-x,设M(a,2-a),N(b,2-b),且0≤a≤2,0≤b≤2不妨设a>b,∵MN=,∴(a-b)2+(b-a)2=2,∴a-b=1,∴a=b+1,∴0≤b≤1∴•=(a,2-a)•(b,2-b)=2ab-2(a+b)+4=2(b2-b+1),0≤b≤1∴当b=0或b=1时有最大值2;当b=时有最小值∴•的取值范围为[,2]故答案为[,2]通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将•=2(b-1)2,0≤b≤1,求出范围.熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.13.在平面直角坐标系x O y中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,则圆M的方程为______ .【答案】(x-1)2+y2=1【解析】解:∵在平面直角坐标系x O y中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,∴存在一个定圆M,圆心与圆C的方程为(x-1)2+y2=4,的圆心重合,如图:|PC|=2,当R M=1时,∠APM=30°,∠MPB=30°;此时∠APB=60°,圆M的方程为(x-1)2+y2=1.故答案为:(x-1)2+y2=1.先设点P的坐标为(x,y),则可得|PO|,根据∠APB=60°可得∠AP0=30°,判断出|PO|=2|OB|,把|PO|代入整理后即可得到答案.本题考查轨迹方程的求法,圆的标准方程的求法,考查计算能力.14.设二次函数f(x)=ax2+bx+c(a,b,c为常数)的导函数为f′(x).对任意x∈R,不等式f(x)≥f′(x)恒成立,则的最大值为______ .【答案】2-2【解析】解:∵f(x)=ax2+bx+c,∴f′(x)=2ax+b,∵对任意x∈R,不等式f(x)≥f′(x)恒成立,∴ax2+bx+c≥2ax+b恒成立,即ax2+(b-2a)x+(c-b)≥0恒成立,故△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,即b2≤4ac-4a2,∴4ac-4a2≥0,∴c≥a>0,∴,故≤===≤=2-2,故答案为:2-2由已知可得ax2+(b-2a)x+(c-b)≥0恒成立,即△=(b-2a)2-4a (c-b)=b2+4a2-4ac≤0,且a>0,进而利用基本不等式可得的最大值.本题考查的知识点是二次函数的性质,导函数,恒成立问题,最值,基本不等式,是函数方程不等式导数的综合应用,难度大.二、解答题(本大题共12小题,共154.0分)15.在△ABC中,角A,B,C所对的边分别为a,b,c,且+1=.(1)求B;(2)若cos(C+)=,求sin A的值.【答案】解:(1)∵+1=,=,∴+1=,∴=,即=,∴=.∵在△ABC中,sin A≠0,sin C≠0,∴cos B=.∵B∈(0,π),∴B=.(2)∵0<C<,∴<C+<.∵cos(C+)=,∴sin(C+)=.∴sin A=sin(B+C)=sin(C+)=sin[(C+)+]=sin(C+)cos+cos(C+)sin=.【解析】(1)利用正弦定理把已知等式中的a和c,化成sin A和sin B,化简整理求得cos B的值,进而求得B.(2)利用同角三角函数关系,求得sin(C+)的值,进而利用两角和公式求得答案.本题主要考查了正弦定理的运用,两角和公式的运用.解题的过程中一定要特别注意角的范围.16.如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB⊥平面PAD,△PAD是正三角形,DC∥AB,DA=DC=2AB.(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;(2)求证:平面PBC⊥平面PDC.【答案】证(1)因为OE∥平面PBC,OE⊂平面PAC,平面PAC∩平面PBC=PC,所以OE∥PC,所以AO:OC=AE:EP.…(3分)因为DC∥AB,DC=2AB,所以AO:OC=AB:DC=1:2.所以=.…(6分)(2)法一:取PC的中点F,连结FB,FD.因为△PAD是正三角形,DA=DC,所以DP=DC.因为F为PC的中点,所以DF⊥PC.…(8分)因为AB⊥平面PAD,所以AB⊥PA,AB⊥AD,AB⊥PD.因为DC∥AB,所以DC⊥DP,DC⊥DA.设AB=a,在等腰直角三角形PCD中,DF=PF=a.在R t△PAB中,PB=a.在直角梯形ABCD中,BD=BC=a.因为BC=PB=a,点F为PC的中点,所以PC⊥FB.在R t△PFB中,FB=a.在△FDB中,由DF=a,FB=a,BD=a,可知DF2+FB2=BD2,所以FB⊥DF.…(12分)由DF⊥PC,DF⊥FB,PC∩FB=F,PC、FB⊂平面PBC,所以DF⊥平面PBC.又DF⊂平面PCD,所以平面PBC⊥平面PDC.…(14分)法二:取PD,PC的中点,分别为M,F,连结AM,FB,MF,所以MF∥DC,MF=DC.因为DC∥AB,AB=DC,所以MF∥AB,MF=AB,即四边形ABFM为平行四边形,所以AM∥BF.…(8分)在正三角形PAD中,M为PD中点,所以AM⊥PD.因为AB⊥平面PAD,所以AB⊥AM.又因为DC∥AB,所以DC⊥AM.因为BF∥AM,所以BF⊥PD,BF⊥CD.又因为PD∩DC=D,PD、DC⊂平面PCD,所以BF⊥平面PCD.…(12分)因为BF⊂平面PBC,所以平面PBC平面PDC.…(14分)【解析】(1)利用线线平行,平行线分线段成比例即可;(2)利用线面垂直,证明面面垂直.本题考查空间直线位置关系,即面面垂直,考查空间想象能力,运算能力和推理论证能力.17.某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足f(n)=,其中t=,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍.(1)栽种多少年后,该树木的高度是栽种时高度的8倍;(2)该树木在栽种后哪一年的增长高度最大.【答案】解:(1)由题意知f(0)=A,f(3)=3A.所以,解得a=1,b=8.…(4分)所以f(n)=,其中t=.令f(n)=8A,得=8A,解得t n=,即=,所以n=9.所以栽种9年后,该树木的高度是栽种时高度的8倍.…(6分)(2)由(1)知f(n)=.第n年的增长高度为△=f(n)-f(n-1)=-.…(9分)所以△==…(12分)≤=当且仅当64t n=时取等号,此时n=5.所以该树木栽种后第5年的增长高度最大.…(14分)【解析】(1)利用f(0)=A,f(3)=3A,确定函数解析式,令f(n)=8A,可得结论;(2)计算第n年的增长高度,利用基本不等式,可求该树木在栽种后哪一年的增长高度最大.本题考查利用数学知识解决实际问题,考查函数模型的建立,考查基本不等式,确定函数解析式是关键.18.已知椭圆C:+=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为-1,求△PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.【答案】(本小题满分16分)解:(1)因为椭圆C:+=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b,所以,且c2=2b2,所以a2=3b2,解得b2=,a2=4.所以椭圆方程为:+=1.…(3分)(2)设l1方程为y+1=k(x+1),联立,消去y得(1+3k2)x2+6k(k-1)x+3(k-1)2-4=0.因为P为(-1,-1),解得M(,).…(5分)当k≠0时,用-代替k,得N(,).…(7分)将k=-1代入,得M(-2,0),N(1,1).因为P(-1,-1),所以PM=,PN=2,所以△PMN的面积为××2=2.…(9分)(3)设M(x1,y1),N(x2,y2),则,两式相减得(x1+x2)(x1-x2)+3(y1+y2)(y1-y2)=0,因为线段MN的中点在x轴上,所以y1+y2=0,从而可得(x1+x2)(x1-x2)=0.…(12分)若x1+x2=0,则N(-x1,-y1).因为PM⊥PN,所以•=0,得x12+y12=2.又因为x12+3y12=4,所以解得x1=±1,所以M(-1,1),N(1,-1)或M(1,-1),N(-1,1).所以直线MN的方程为y=-x.…(14分)若x1-x2=0,则N(x1,-y1),因为PM⊥PN,所以•=0,得y12=(x1+1)2+1.又因为x12+3y12=4,所以解得x1=-或-1,经检验:x=-满足条件,x=-1不满足条件.综上,直线MN的方程为x+y=0或x=-.…(16分)【解析】(1)由已知条件推导出,且c2=2b2,由此能求出椭圆方程.(2)设l1方程为y+1=k(x+1),联立,得(1+3k2)x2+6k(k-1)x+3(k-1)2-4=0.由此能求出△PMN的面积.(3)设M(x1,y1),N(x2,y2),利用点差法能求出直线MN的方程为x+y=0或x=-.本题考查椭圆方程的求法,考查三角形面积的求法,考查直线方程的求法,解题时要认真审题,注意点差法的合理运用.19.已知函数f(x)=lnx-mx(m∈R).(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;(2)求函数f(x)在区间[1,e]上的最大值;(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2.【答案】解:(1)因为点P(1,-1)在曲线y=f(x)上,所以-m=-1,解得m=1.因为f′(x)=-1=0,所以切线的斜率为0,所以切线方程为y=-1.(2)因为f′(x)=-m=.①当m≤0时,x∈(1,e),f′(x)>0,所以函数f(x)在(1,e)上单调递增,则f(x)max=f(e)=1-me.②当≥e,即0<m≤时,x∈(1,e),f′(x)>0,所以函数f(x)在(1,e)上单调递增,则f(x)max=f(e)=1-me.③当1<<e,即<m<1时,函数f(x)在(1,)上单调递增,在(,e)上单调递减,则f(x)max=f()=-lnm-1.④当≤1,即m≥1时,x∈(1,e),f′(x)<0,函数f(x)在(1,e)上单调递减,则f(x)max=f(1)=-m.综上,①当m≤时,f(x)max=1-me;②当<m<1时,f(x)max=-lnm-1;③当m≥1时,f(x)max=-m.(3)不妨设x1>x2>0.因为f(x1)=f(x2)=0,所以lnx1-mx1=0,lnx2-mx2=0,可得lnx1+lnx2=m(x1+x2),lnx1-lnx2=m(x1-x2).要证明x1x2>e2,即证明lnx1+lnx2>2,也就是m(x1+x2)>2.因为m=,所以即证明>,即ln>.令=t,则t>1,于是lnt>.令ϕ(t)=lnt-(t>1),则ϕ′(t)=-=>0.故函数ϕ(t)在(1,+∞)上是增函数,所以ϕ(t)>ϕ(1)=0,即lnt>成立.所以原不等式成立.【解析】(1)中求出斜率,代入切线方程即可;(2)中需要讨论m的范围,m的取值范围不一样,求出的最值不同;(3)中将所证的结论转化为求新函数的单调区间问题得以解决.本题是关于导数的综合应用,利用导数求斜率,求函数的单调区间以及区间上的最值是最主要的题型之一.20.已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2,…,a m和正数b1,b2,…,b m,使a,a1,a2,…,a m,b是等差数列,a,b1,b2,…,b m,b是等比数列.(1)若m=5,=,求的值;(2)若b=λa(λ∈N*,λ≥2),如果存在n(n∈N*,6≤n≤m)使得a n-5=b n,求λ的最小值及此时m的值;(3)求证:a n>b n(n∈N*,n≤m).【答案】(1)解:设等差数列的公差为d,等比数列的公比为q,则d=,q=.所以a3=a+3d=,b3=aq3=.…(2分)因为=,所以2a-5+2b=0,解得=4或.…(4分)(2)解:因为λa=a+(m+1)d,所以d=a,从而得a n=a+a×n.因为λa=aq m+1,所以q=,从而得.因为a n-5=b n,所以a+×a=a×因为a>0,所以1+=(*).…(6分)因为λ,m,n∈N*,所以1+为有理数.要使(*)成立,则必须为有理数.因为n≤m,所以n<m+1.若λ=2,则为无理数,不满足条件.同理,λ=3不满足条件.…(8分)当λ=4时,.要使为有理数,则必须为整数.又因为n≤m,所以仅有2n=m+1满足条件.所以1+=2,从而解得n=15,m=29.综上,λ最小值为4,此时m为29.…(10分)(3)证明:设c n>0,S n为数列{c n}的前n项的和.先证:若{c n}为递增数列,则{}为递增数列.证明:当n∈N*时,<c n+1.因为S n+1=S n+c n+1>S n+=S n,所以<,即数列{}为递增数列.同理可证,若{c n}为递减数列,则{}为递减数列.…(12分)①当b>a时,q>1.当n∈N*,n≤m时,>.即>.因为b=aq m+1,b n=aq n,d=,所以d>,即a+nd>b n,即a n>b n.②当b<a时,0<q<1,当n∈N*,n≤m时,<.即<.因为0<q<1,所以>.以下同①.综上,a n>b n(n∈N*,n≤m).…(16分)【解析】(1)用a,b表示出d,q,利用=,即可求的值;(2)确定,利用a n-5=b n,可得1+为有理数,分类讨论,即可求λ的最小值及此时m的值;列.若{c n}为递减数列,则{}为递减数列,再分类讨论,即可证明结论.本题考查等差数列与等比数列的综合,考查数论知识,考查分类讨论,考查学生分析解决问题的能力,难度大.21.已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线,求证:CD2=BD•EC.【答案】证明:因为AE为圆O的切线,所以∠ABD=∠CAE.…(2分)因为△ACD为等边三角形,所以∠ADC=∠ACD,所以∠ADB=∠ECA,所以△ABD∽△EAC.…(6分)所以=,即AD•CA=BD•EC.…(8分)因为△ACD为等边三角形,所以AD=AC=CD,所以CD2=BD•EC.…(10分)【解析】先证明△ABD∽△EAC,可得AD•CA=BD•EC,再结合△ACD为等边三角形,所以AD=AC=CD,即可得出结论.本题考查三角形相似的判断,考查圆的切线的性质,考查学生分析解决问题的能力,属于中档题.22.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.【答案】解:设特征向量为α=,对应的特征值为λ,则=λ,即因为k≠0,所以a=2.…(5分)因为A-1=,所以A=,即=,所以2+k=3,解得k=1.综上,a=2,k=1.…(10分)利用特征值与特征向量的定义,可求a;利用A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1),可求k的值.本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.23.在平面直角坐标系x O y中,已知M是椭圆+=1上在第一象限的点,A(2,0),B(0,2)是椭圆两个顶点,求四边形OAMB的面积的最大值.【答案】解:∵M是椭圆+=1上在第一象限的点,∴设M(2cosθ,2sinθ),,,由题意知,OA=2,OB=2,四边形OAMB的面积S===,,∴时,四边形OAMB的面积的最大值为.【解析】设M(2cosθ,2sinθ),,,四边形OAMB的面积S=利用三角函数的有界限求出四边形OAMB的面积的最大值.本题考查椭圆上的点的设法及三角函数的有界限求函数的最值,属于一道中档题.24.已知a,b,c∈R,a2+2b2+3c2=6,求a+b+c的最大值.【答案】解:因为已知a、b、c是实数,且a2+2b2+3c2=6,根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+2b2+3c2)(1++)≥(a+b+c)2故(a+b+c)2≤11,即a+b+c的最大值为,当且仅当a=2b=3c=时,等号成立.考虑到柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2的应用,构造出柯西不等式求出(a+b+c)2的最大值开方即可得到答案.此题主要考查一般形式的柯西不等式的应用,对于此类题目很多同学一开始就想到应用参数方程求解,这个方法可行但是计算量较高,而应用柯西不等式求解较简单,同学们需要很好的理解掌握.25.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(本小题满分10分)(1)证明:连接AC,BD交于点O,以OA为x轴正方向,以OB为y轴正方向,OP为z轴建立空间直角坐标系.∵PA=AB=,则A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).,得N(0,,0),由,得M(,0,),,,,,,,∵,∴MN⊥AD.(2)∵M在PA上,设,得M(λ,0,1-λ),∴,,,,,,设平面MBD的法向量,,,由,得,取z=λ,得,,,∵平面ABD的法向量为,,,二面角M-BD-A的大小为,∴cos=||,即,解得,∴M(,,),N(0,,0),∴|MN|==.(1)连接AC,BD交于点O,以OA为x轴正方向,以OB为y轴正方向,OP为z轴建立空间直角坐标系.利用向量法能证明MN⊥AD.(2)设,得M(λ,0,1-λ),,,,,,,分别求出平面MBD的法向量和平面ABD的法向量,利用向量法解得,由此能求出线段MN的长度.本题考查异面直线垂直的证明,考查线段长的求法,解题时要认真审题,注意向量法的合理运用.26.已知非空有限实数集S的所有非空子集依次记为S1,S2,S3,…,集合S k中所有元素的平均值记为b k.将所有b k组成数组T:b1,b2,b3,…,数组T中所有数的平均值记为m(T).(1)若S={1,2},求m(T);(2)若S={a1,a2,…,a n}(n∈N*,n≥2),求m(T).【答案】解:(1)S={1,2}的所有非空子集为{1},{2},{1,2},∴数组T为:1,2,∴m(T)=(2)∵S={a1,a2,…,a n}∴m(T)=又∵==∴m(T)==【解析】(1)先求出S={1,2}的所有非空子集为{1},{2},{1,2},利用m(T)的定义求出其值(2)利用组合数及m(T)的定义求出m(T)=,利用组合数的性质,化简求值.本题考查集合的子集及组合的应用,关键是弄清楚题中对新概念的理解,属于一道难题.。

2014年江苏省徐州市、宿迁市高考数学三模试卷

2014年江苏省徐州市、宿迁市高考数学三模试卷

2014年江苏省徐州市、宿迁市高考数学三模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.已知集合M={3,2a},N={a,b}.若M∩N={4},则M∪N= ______ .【答案】{2,3,4}【解析】解:∵M={3,2a},N=(a,b),且M∩N={4},∴2a=4,且a=4或b=4,解得:a=2,b=4,∴M={3,4},N={2,4},则M∪N={2,3,4}.故答案为:{2,3,4}根据M与N的交集,得到4属于M,属于N,进而确定出a与b的值,即可求出两集合的并集.此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.已知复数z=(i是虚数单位),则z的虚部是______ .【答案】-2【解析】解:∵z==,∴z的虚部是-2.故答案为:-2.直接利用复数代数形式的除法运算化简,则复数z的虚部可求.本题考查了复数代数形式的除法运算,考查了复数的基本概念,是基础题.3.一个正方体玩具的6个面分别标有数字1,2,2,3,3,3.若连续抛掷该玩具两次,则向上一面数字之和为5的概率为______ .【答案】【解析】解:一共投掷可能性有6×6=36种.和为5的必须一次为2,一次为3,共有2=12种,则概率P==.故答案为:.古典概型,可用列举法列举出所有可能,然后找出数字之和为5的或者去掉数字之和不是5的事件.本题考查古典概型,必须注意保证每个基本事件的概率相等.4.从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为______ .【答案】30【解析】解:由频率分布直方图得:数据不在[130,140]之间的学生频率为(0.005+0.035+0.020+0.010)×10=0.7,∴数据在[130,140]之间的学生的频率为:1-0.7=0.3,∴成绩在[130,140)内的学生人数为0.3×100=30.故答案为:30由频率分布直方图得数据不在[130,140]之间的学生频率,再求出数据在[130,140]之间的学生的频率,得到成绩在[130,140)内的学生人数.本题考查读频率分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.执行如图所示算法的伪代码,则输出S的值为______ .【答案】16【解析】解:由算法语句知:S=0+1;S=1+3;S=1+3+5;S=1+3+5+7=16.∴输出S=16.故答案为:16.根据算法语句的含义,依次计算S的值,可得答案.本题考查了顺序结构的算法语句,读懂语句的含义是关键.6.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为______ .【答案】6π【解析】解:∵圆柱的底面半径为1,母线长与底面的直径相等,故圆柱的母线l=2,故圆柱的表面积S=2πr(r+l)=6π,故答案为:6π根据已知求出圆柱的母线长,代入圆柱表面积公式S=2πr(r+l)可得答案.本题考查的知识点是旋转体,圆柱的表面积,熟练掌握圆柱的表面积公式,是解答的关键.7.已知点P(1,0)到双曲线C:(a>0,b>0)的一条渐近线的距离为,则双曲线C的离心率为______ .【答案】【解析】解:∵双曲线的渐近线为bx±ay=0,∴点P(1,0)到bx±ay=0的距离d==,∴c=2b,∴a=b,∴e==.故答案为:.先求出双曲线的渐近线,再由点P(1,0)到bx±ay=0的距离d==,得到a=b,由此求解.本题考查双曲线的性质,考查学生的计算能力,比较基础.8.在等比数列{a n}中,已知a1=1,a4=8.设S3n为该数列的前3n项和,T n为数列{a n3}的前n项和.若S3n=t T n,则实数t的值为______ .【答案】7【解析】解:∵等比数列{a n}中a1=1,a4=8.∴等比数列{a n}的公比q==2,∴S3n===8n-1,又可得数列{a n3}是1为首项8为公比的等比数列,∴其前n项和T n==(8n-1)由S3n=t T n可得8n-1=t×(8n-1),解得t=7故答案为:7由题意可得等比数列{a n}的公比,可求S3n,可判数列{a n3}是1为首项8为公比的等比数列,可得T n,代入已知可解t值.本题考查等比数列的求和公式,属基础题.9.已知实数x,y满足条件,则y-()x的最大值为______ .【答案】【解析】解:作出不等式组对应的平面区域,设z=y-()x,则y=()x+z,平移曲线y=()x+z,当曲线y=()x+z经过点A时,z取得最大值,由,解得,即A(1,1),此时z=1-()1=,故答案为:.作出不等式组对应的平面区域,设z=y-()x,利用z的几何意义,结合数形结合即可得到结论.本题主要考查线性规划的应用,利用数形结合以及指数函数的图象是解决本题的关键.10.在平面直角坐标系x O y中,直线y=1与函数y=3sin x(0≤x≤10)的图象所有交点的横坐标之和为______ .【答案】30【解析】解:∵y=3sin x的周期T==4,∴当0≤x≤10时,其图象如下:由图知,直线y=1与正弦曲线y=3sin x(0≤x≤10)相交于A、B、C、D、E、F6个点,其横坐标如图所示,则x1+x2=2,x3+x4=10,x5+x6=18,∴所有交点的横坐标之和为2+10+18=30.故答案为:30.依题意,易求y=3sin x的周期为4,作出当0≤x≤10时的函数图象,从而可得线y=1与函数y=3sin x(0≤x≤10)的图象所有交点的横坐标之和.本题考查正弦函数的图象与性质,着重考查其周期性,作图是关键,也是难点,属于中档题.11.已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin()=,则的x1x2+y1y2值为______ .【答案】-【解析】解:由题意可得<θ<π,sin()=>0,∴还是钝角,∴cos()=-,∴,∴cosθ=-.∴•=x1•x2+y1•y2=||•||cosθ=1×1×(-)=-,故答案为:-.由条件求得cos()的值,可得cosθ的值,再利用两个向量的数量积的定义、两个向量的数量积公式求得x1x2+y1y2的值.本题主要考查同角三角函数的基本关系,两个向量的数量积的定义、两个向量的数量积公式,属于基础题.12.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=-x2-3x,则不等式f (x-1)>-x+4的解集是______ .【答案】(4,+∞)【解析】解:∵函数f(x)是奇函数,令x>0,则-x<0,∴f(-x)=-(-x)2+3x=-x2+3x=-f(x),∴f(x)=x2-3x,∴,当x-1≤0,即x≤1,f(x-1)=-(x-1)2-3(x-1)=-x2-x+2,∵f(x-1)>-x+4,∴x2<-2(舍去)当x-1>0,即x>1,f(x-1)=(x-1)2-3(x-1)=x2-5x+4,∵f(x-1)>-x+4∴x2-4x>0∴x<0或x>4,又x>1,∴x>4.故答案为:(4,+∞).首先,根据函数f(x)是奇函数,求解当x>0时,函数的解析式,然后,分别令x-1≤0和x-1>0两种情形进行讨论,求解不等式的解集.本题重点考察了函数为奇函数,且解析式为分段函数问题,不等式的性质等知识,考查比较综合,属于中档题.13.如图,在△ABC中,已知∠BAC=,AB=2,AC=3,=2,=3,则||= ______ .【答案】【解析】解:∵=2,=3,∴=,=,∴=-=-=()-=+=+×=+×(-)=∴====∴||=故答案为:.由向量的运算用向量和表示向量,可得的值,由模长公式可得.本题考查平面向量数量积的运算,涉及平面向量基本定理和模长公式,属中档题.14.已知函数f(x)=(a∈R).若存在实数m,n,使得f(x)≥0的解集恰为[m,n],则a的取值范围是______ .【答案】(0,)【解析】解:当a=0时,f(x)==>0,则不存在f(x)≥0的解集恰为[m,n],当a<0时,f(x)=>0,此时函数f(x)单调递减,则不存在f(x)≥0的解集恰为[m,n],当a>0时,由f(x)≥0得,当x<0,>0,<,此时(x)=>0,则f(x)≥0的解集为(-∞,0),不满足条件,当x>0时,不等式等价为a,设g(x)=,则g,当x>1时,g (x)<0,当0<x<1时,g (x)>0,即当x=1时,g(x)取得极大值,同时也是最大值g(1)=,∴若存在实数m,n,使得f(x)≥0的解集恰为[m,n],则必有a<,即0<a<,故答案为:(0,)分别讨论a的取值范围,利用参数分离法,结合导数研究函数的最值即可得到结论.本题主要考查导数的综合应用,考查分类讨论的数学思想,综合性较强,难度较大.二、解答题(本大题共12小题,共154.0分)15.在△ABC中,已知C=,向量=(sin A,1),=(1,cos B),且.(1)求A的值;(2)若点D在边BC上,且3=,=,求△ABC的面积.【答案】解:(1)∵=(sin A,1),=(1,cos B),且⊥,∴sin A+cos B=0,又C=,A+B+C=π,∴sin A+cos(-A)=0,即sin A-cos A+sin A=sin(A-)=0,又0<A<,∴A-∈(-,),∴A-=0,即A=;(2)设||=x,由3=,得||=3x,由(1)知A=C=,∴||=3x,B=,在△ABD中,由余弦定理,得13=9x2+x2+3x2,解得:x=1,∴AB=BC=3,则S△ABC=BA•BC•sin B=×3×3×sin=.【解析】(1)由两向量的坐标及两向量垂直,利用平面向量的数量积运算法则列出关系式,根据C的度数,利用内角和定理表示出B,代入得出的关系式中计算即可求出A的度数;(2)设||=x,由3=,得||=3x,由A的度数与C度数相等,可得出||=3x,B=,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AB与BC 的长,利用三角形面积公式即可求出三角形ABC面积.此题考查了余弦定理,三角形的面积公式,以及平面向量的数量积运算,熟练掌握余弦定理是解本题的关键.16.如图,在五面体ABCDEF中,已知DE⊥平面ABCD,AD∥BC,∠BAD=60°AB=2,DE=EF=1.(1)求证:BC∥EF;(2)求三棱锥B-DEF的体积.【答案】(1)证明:因为AD∥BC,AD⊂平面ADEF,BC⊄平面ADEF,所以BC∥平面ADEF,…(3分)又BC⊂平面BCEF,平面BCEF∩平面ADEF=EF,所以BC∥EF.…(6分)(2)解:在平面ABCD内作BH⊥AD于点H,因为DE⊥平面ABCD,BH⊂平面ABCD,所以DE⊥BH,又AD,DE⊂平面ADEF,AD∩DE=D,所以BH⊥平面ADEF,所以BH是三棱锥B-DEF的高.…(9分)在直角三角形ABH中,∠BAD=60°,AB=2,所以BH=,因为DE⊥平面ABCD,AD⊂平面ABCD,所以DE⊥AD,又由(1)知,BC∥EF,且AD∥BC,所以AD∥EF,所以DE⊥EF,…(12分)所以三棱锥B-DEF的体积V=×S△DEF×BH=.…(14分)【解析】(1)先证明BC∥平面ADEF,再利用线面平行的性质,证明BC∥EF;(2)在平面ABCD内作BH⊥AD于点H,证明BH是三棱锥B-DEF的高,即可求三棱锥B-DEF的体积.本题考查线面平行的判定与性质,考查三棱锥B-DEF的体积,考查学生分析解决问题的能力,属于中档题.17.根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率P与日产量x(件)之间近似地满足关系式P=,,,,(日产品废品率=日废品量日产量×100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润Y=日正品赢利额-日废品亏损额)(1)将该车间日利润y(千元)表示为日产x(件)的函数;(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?【答案】解:(1)由题意可知,y=2x(1-p)-px=,,,(2)考虑函数f(x)=px=,,,当1≤x≤9时,f (x)=2-,令f (x)=0,解得x=15-3,当1≤x<15-3时,f (x)>0,函数f(x)在[1,15-3)上单调递增,当15-3<x≤9时,f (x)<0,函数f(x)在(15-3,9]上单调递减,所以当x=15-3时,f(x)取得极大值,也是最大值,又x是整数,f(8)=,f(9)=9,所以当x=8时,f(x)有最大值.当10≤x≤20时,f (x)==≤0,所以函数f(x)在[10,20]上单调减,所以当x=10时,f(x)取得极大值,也是最大值.由于>,所以当该车间的日产量为10件时,日利润最大.答:当该车间的日产量为10件时,日利润最大,最大日利润是千元.【解析】(1)由题意可知y=2x(1-p)-px,然后把p代入即可.(2)由于所得函数是分段函数,需要分段讨论,利用导数来求最值,最后确定最大日利润本题的考点是函数模型的选择与应用,主要考查函数模型的建立,考查利用函数思想解决实际问题,关键是实际问题向数学问题的转化,即建模,同时又用来解决实际问题.18.如图,已知A1,A2,B1,B2分别是椭圆C:(a>b>0)的四个顶点,△A1B1B2是一个边长为2的等边三角形,其外接圆为圆M.(1)求椭圆C及圆M的方程;(2)若点D是圆M劣弧上一动点(点D异于端点A1,B2),直线B1D分别交线段A1B2,椭圆C于点E,G,直线B2G与A1B1交于点F.(Ⅰ)求的最大值;(Ⅱ)试问:E,F两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】解:(1)由题意知,B2(0,1),,,∴b=1,a=,∴椭圆C的方程为,…(2分)圆心M(-,0),半径,∴圆M的方程为(x+)2+y2=.…(4分)(2)(Ⅰ)设直线B1D的方程为y=kx-1,k<-,与直线A1B2的方程y=联立,解得点E(,),…(6分)联立,消去y并整理得,(1+3k2)x2-6kx=0,解得点G(,),…(9分)====1-=1+≤1+=,当且仅当k=-时,取“=”,∴的最大值为.…(12分)(Ⅱ)直线B2G的方程为y==-,与直线A1B1的方程y=-联立,解得点F(,),…(14分)∴E、F两点的横坐标之和为.故E、F两点的横坐标之和为定值,该定值为-2.…(16分)【解析】(1)由已知条件求出椭圆C的方程为,由此能求出圆M的方程.(2)(Ⅰ)设直线B1D的方程为y=kx-1,与直线A1B2的方程y=联立,解得点E(,),联立,解得点G(,,由此能求出的最大值.(Ⅱ)直线B2G的方程为y=-,与直线A1B1的方程y=-联立,解得点F (,),由此能求出E、F两点的横坐标之和为定值为-2.本题考查椭圆方程及圆的方程的求法,考查两条线段比值的最大值的求法,考查两点横坐标之各为定值的证明,解题时要认真审题,注意函数与方程思想的合理运用.19.已知数列{a n},{b n}满足a1=3,a n b n=2,b n+1=a n(b n-),n∈N*.(1)求证:数列{}是等差数列,并求数列{b n}的通项公式;(2)设数列{c n}满足c n=2a n-5,对于任意给定的正整数p,是否存在正整数q,r(p<q <r),使得,,成等差数列?若存在,试用p表示q,r;若不存在,说明理由.【答案】(1)证明:∵a n b n=2,∴,则b n+1=a n b n-=2-=2-=,…(2分)∴,又a1=3,∴,∴{}是首项为,公差为的等差数列,…(4分)即=,∴.…(6分)(2)解:由(1)知a n=n+2,∴c n=2a n-5=2n-1,∵,,成等差数列,则=,∴=,即2r-1=,∴r=,…(10分)欲满足题设条件,只需q=2p-1,此时r=4p2-5p+2,…(12分)∵对于任意给定的正整数p,存在正整数q,r(p<q<r),使得,,成等差数列,∴q=2p-1>p,r-q=4p2-7p+3=4(p-1)2+p-1>0,即r>q.且p>1.…(14分)综上所述,当p>2时,存在q=2p-1,r=4p2-5p+2,满足题设条件.…(16分)【解析】(1)由已知条件推导出b n+1=a n b n-=,由此能证明{}是等差数列,并能求出数列{b n}的通项公式.(2)由a n=n+2,得c n=2a n-5=2n-1,由此推导出当p>1时,存在q=2p-1,r=4p2-5p+2,满足题设条件.本题考查等差数列的证明,考查数列的通项公式的求法,考查使得数列为等差数列的正20.已知函数f(x)=ax2+(1-2a)x-lnx(a∈R).(1)当a>0时,求函数f(x)的单调增区间;(2)当a<0时,求函数f(x)在区间[,1]上的最小值;(3)记函数y=f(x)图象为曲线C,设点A(x1,x2),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.试问:曲线C 在点N处的切线是否平行于直线AB?并说明理由.【答案】解:(1)∵f(x)=ax2+(1-2a)x-lnx,∴=,∵a>0,x>0,∴2ax+1>0,解f (x)>0,得x>1,∴f(x)的单调增区间为(1,+∞);(2)当a<0时,由f (x)=0,得,x2=1,①当>1,即<<时,f(x)在(0,1)上是减函数,∴f(x)在[,]上的最小值为f(1)=1-a.②当,即-1时,f(x)在,上是减函数,在,上是增函数,∴f(x)的最小值为.③当<,即a<-1时,f(x)在,上是增函数,∴f(x)的最小值为.综上,函数f(x)在区间,上的最小值为:<<<(3)设M(x0,y0),则点N的横坐标为,直线AB的斜率==,曲线C在点N处的切线斜率=,假设曲线C在点N处的切线平行于直线AB,则k1=k2,即,∴,不妨设x1<x2,>,则,令>,则>,∴g(t)在(1,+∞)上是增函数,又g(1)=0,∴g(t)>0,即不成立,∴曲线C在点N处的切线不平行于直线AB.【解析】(1)求出函数f(x)的导函数,由a>0,定义域为(0,+∞),再由f (x)>0求得函数f(x)的单调增区间;(2)当a<0时,求出导函数的零点,,分>1,,<讨论函数f(x)在区间[,1]上的单调性,求出函数的最小值,最后表示为关于a的分段函数;(3)设出线段AB的中点M的坐标,得到N的坐标,由两点式求出AB的斜率,再由导数得到曲线C过N点的切线的斜率,由斜率相等得到,令后构造函数>由导数证明不成立.本题考查利用导数求函数的单调区间,考查了利用导数求函数的最值,体现了分类讨论的数学思想方法,训练了利用构造函数法证明等式恒成立问题,特别是对于(3)的证明,要求学生较强的应变能力,是压轴题.21.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.【答案】证明:∵AE=AC,∠CDE=∠AOC,又∠CDE=∠P+∠PDF,∠AOC=∠P+∠OCP,从而∠PDF=∠OCP.在△PDF与△POC中,∠P=∠P,∠PDF=∠OCP,故△PDF∽△POC.【解析】要证明△PDF∽△POC,由于已知两个三角形有个公共角∠P,而题目中未给出与线段对应成比例的条件,故可根据判断定理一来证明三角形相似,故我们还需要再找到一个相等的角.证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.22.已知矩阵A=(c,d为实数).若矩阵A属于特征值2,3的一个特征向量分别为,,求矩阵A的逆矩阵A-1.【答案】解:由题意知,=2,=3,所以,解得…(5分)所以A=,所以A-1=.…(10分)【解析】根据特征值的定义可知Aα=λα,利用待定系数法建立等式关系,求出矩阵A,即可求出逆矩阵A-1..本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.23.在极坐标系中,已知圆A的圆心为(4,0),半径为4,点M为圆A上异于极点O 的动点,求弦OM中点的轨迹的极坐标方程.【答案】解:由题意知,圆A的极坐标方程为ρ=8cosθ,设弦OM中点为N(ρ,θ),则M(2ρ,θ),因为点M在圆A上,所以2ρ=8cosθ,即ρ=4cosθ,又点M异于极点O,所以ρ≠0,所以弦OM中点的轨迹的极坐标方程为ρ=4cosθ(ρ≠0).【解析】由题意知,圆A的极坐标方程为ρ=8cosθ,设弦OM中点为N(ρ,θ),则M(2ρ,θ),根据点M在圆A上,建立关于ρ、θ的等式,即为所求.本题主要考查简单曲线的极坐标方程,求点的轨迹方程的方法,属于基础题.24.已知x,y,z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【答案】证明:因为:[(x-1)2+(y+2)2+(z-3)2](12+22+32)≥[(x-1)+(y+2)+(z-3)]2 =(x+2y+3z-6)2=142,…(8分)当且仅当,即x=z=0,y=-4时,取等号,所以:(x-1)2+(y+2)2+(z-3)2≥14.…(10分)【解析】由柯西不等式,可得:[(x-1)2+(y+2)2+(z-3)2](12+22+32)≥[(x-1)+(y+2)+(z-3)]2=(x+2y+3z-6)2,即可得出结论.此题主要考查一般形式的柯西不等式的应用,考查学生分析解决问题的能力.25.如图,在直三棱柱ABC-A1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1)求异面直线BA1与CB1夹角的余弦值;(2)求二面角B-AB1-C平面角的余弦值.【答案】解:(1)建立如下图所示的空间直角坐标系.2),∴=(0,1,2),=(1,-1,2),设异面直线BA1与CB1夹角为θ,则cosθ===…(4分)(2)由(1)得:=(-1,1,0),=(-1,1,2),设平面AB1C的法向量为=(x,y,z),则,即,取y=2,则平面AB1C的一个法向量为=(0,2,-1);设平面BAB1的法向量为=(r,s,t),则,即,取r=1,则平面BAB1的一个法向量为=(1,1,0);设二面角B-AB1-C平面角的平面角为α,则cosα===所以二面角B-AB1-C平面角的余弦值为.…(10分)【解析】(1)建立空间直角坐标系,求出异面直线BA1与CB1的方向向量,代入向量夹角公式,可得异面直线BA1与CB1夹角的余弦值;(2)求出平面AB1C的法向量和平面BAB1的一个法向量,代入向量夹角公式,可得二面角B-AB1-C平面角的余弦值.本题考查的知识点是直线与直线的夹角,二面角的平面角,建立空间坐标系,将空间夹角问题转化为向量夹角问题是解答的关键.26.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a n2-a n-1a n+1的值,判断a n2-a n-1a n+1是否为定值,并给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.【答案】解:(1)由已知得a3=70,a4=180.所以n=2时,a n2-a n-1a n+1=-500;当n=3时,a n2-a n-1a n+1=-500.…(2分)猜想:a n2-a n-1a n+1=-500(n≥2).…(3分)下面用数学归纳法证明:①当n=2时,结论成立.②假设当n=k(k≥2,k∈N*)时,结论成立,即a k2-a k-1a k+1=-500,将a k-1=3a k-a k+1,代入上式,可得a k2-3a k a k+1+a k+12=-500.则当n=k+1时,a k+12-a k+1a k+2=a k+12-a k(3a k+1-a k)=a k+12-3a k a k+1+a k2=-500.(2)将a n-1=3a n-a n+1代入a n2-a n-1a n+1=-500,得a n2-3a n a n+1+a n+12=-500,则5a n-1a n+1=(a n+a n+1)2+500,5a n-1a n+1+1=(a n+a n+1)2+501,设5a n-1a n+1+1=t2(t∈N*),则t2-(a n+a n+1)2+501,即[t-(a n+a n+1)][t+(a n+a n+1)]=501,…(7分)又a n+a n+1∈N,且501=1×501=3×167,故或所以或由a n+a n+1=250解得n=3;由a n+a n+1=82得n无整数解.所以当n=3时,满足条件.…(10分)【解析】(1)求出结果判断是否为定值,然后利用数学归纳法证明即可.(2)利用(1)化简求解a n+a n+1的值,通过5a n+1a n+1为完全平方数,求出所有的正整数n,即可.本题考查数列的综合运用,解题时要注意数学归纳法的证明技巧.。

江苏省南京市2014届高三第三次模拟考试数学试题(附答案)

江苏省南京市2014届高三第三次模拟考试数学试题(附答案)

南京市2014届高三年级第三次模拟考试 数 学 2014.05注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知全集U =R ,集合A ={x |x ≤-2,x ∈R},B ={x |x <1,x ∈R},则(∁U A )∩B = ▲ . 2.已知(1+2i)2=a +b i(a ,b ∈R ,i 为虚数单位),则a +b = ▲ .3.某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为 ▲ .4.现有红心1,2,3和黑桃4,5共五张牌,从这五张牌中随机取2张牌,则所取2张牌均为红心的概率为 ▲ .5.执行右边的伪代码,输出的结果是 ▲ .6.已知抛物线y 2=2px 过点M (2,2),则点M 到抛物线焦点的距离为 ▲ . 7.已知tan α=-2,,且π2<α<π,则cos α+sin α= ▲ .8.已知m ,n 是不重合的两条直线,α,β是不重合的两个平面.下列命题: ①若α⊥β,m ⊥α,则m ∥β; ②若m ⊥α,m ⊥β,则α∥β; ③若m ∥α,m ⊥n ,则n ⊥α; ④若m ∥α,m β,则α∥β. 其中所有真命题的序号是 ▲ .9.将函数f (x )=sin(3x +π4)的图象向右平移π3个单位长度,得到函数y =g (x )的图象,则函数y(第5题图)=g (x )在[π3,2π3]上的最小值为 ▲ .10.已知数列{a n }满足a n =a n -1-a n -2(n ≥3,n ∈N*),它的前n 项和为S n .若S 9=6,S 10=5,则a 1的值为 ▲ .11.已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0,,则关于x 的不等式f (x 2)>f (3-2x )的解集是 ▲ .12.在R t △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围为 ▲ .13.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60︒,则圆M 的方程为 .14.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c2的最大值为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tan B tan A +1=2ca .(1)求B ;(2)若cos(C +π6)=13,求sin A 的值.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,O 为AC 与BD 的交点,AB ⊥平面PAD ,△PAD 是正三角形, DC //AB ,DA =DC =2AB .(1)若点E 为棱PA 上一点,且OE ∥平面PBC ,求AEPE的值; (2)求证:平面PBC ⊥平面PDC.PAB CDOE (第16题图)17.(本小题满分14分)某种树苗栽种时高度为A (A 为常数)米,栽种n 年后的高度记为f (n ).经研究发现f (n )近似地满足 f (n )=9Aa +bt n ,其中t =2-23,a ,b 为常数,n ∈N ,f (0)=A .已知栽种3年后该树木的高度为栽种时高度的3倍.(1)栽种多少年后,该树木的高度是栽种时高度的8倍; (2)该树木在栽种后哪一年的增长高度最大.18.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (-1,-1),c 为椭圆的半焦距,且c =2b .过点P作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N . (1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积;(3)若线段MN 的中点在x 轴上,求直线MN 的方程.19.(本小题满分16分)已知函数f (x )=ln x -mx (m ∈R ).(1)若曲线y =f (x )过点P (1,-1),求曲线y =f (x )在点P 处的切线方程; (2)求函数f (x )在区间[1,e]上的最大值;(3)若函数f (x )有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.20.(本小题满分16分)已知a ,b 是不相等的正数,在a ,b 之间分别插入m 个正数a 1,a 2,…,a m 和正数b 1,b 2,…, b m ,使a ,a 1,a 2,…,a m ,b 是等差数列,a ,b 1,b 2,…,b m ,b 是等比数列. (1)若m =5,a 3b 3=54,求ba的值;(2)若b =λa (λ∈N *,λ≥2),如果存在n (n ∈N *,6≤n ≤m )使得a n -5=b n ,求λ的最小值及此时m 的值;(3)求证:a n >b n (n ∈N*,n ≤m ).南京市2014届高三年级第三次模拟考试 数学附加题 2014.05注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸内.试题的答案写在答.题纸..上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC .B .选修4—2:矩阵与变换 已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1 (k ≠0)的一个特征向量为α=⎣⎡⎦⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A (2,0),B (0,23)是椭圆两个顶点,求四边形OAMB 的面积的最大值.(第21题A 图)D .选修4—5:不等式选讲已知a ,b ,c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正四棱锥P -ABCD 中,PA =AB =2,点M ,N 分别在线段PA 和BD 上,BN =13BD .(1)若PM =13PA ,求证:MN ⊥AD ;(2)若二面角M -BD -A 的大小为π4,求线段MN 的长度.23.(本小题满分10分)已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,……,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,……,数组T 中所有数的平均值记为m (T ). (1)若S={1,2},求m (T );(2)若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m (T ).C·· PMABDN (第22题图)南京市2014届高三年级第三次模拟考试数学参考答案 2014.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,计70分.1.(-2,1) 2.-7 3.30 4.310 5.11 6.52 7.558.② 9.-22 10.1 11.(-∞,-3)∪(1,3) 12.[32,2] 13.(x -1)2+y 2=1 14.22-2 二、解答题:15.(本小题满分14分)解:(1)由tan B tan A +1=2c a 及正弦定理,得sin B cos A cos B sin A +1=2sin Csin A ,………………………………………2分所以sin B cos A +cos B sin A cos B sin A =2sin C sin A ,即sin(A +B )cos B sin A =2sin C sin A ,则sin C cos B sin A =2sin Csin A .因为在△ABC 中,sin A ≠0,sin C ≠0,所以cos B =12. (5)分因为B ∈(0,π),所以B =π3. (7)分(2)因为0<C <2π3,所以π6<C +π6<5π6.因为cos(C +π6)=13,所以sin(C +π6)=223. (10)分所以sin A =sin(B +C )=sin(C +π3)=sin[(C +π6)+π6] ………………………………………12分=sin(C +π6)cos π6+cos(C +π6)sin π6=26+16. ………………………………………14分16.(本小题满分14分)证 (1)因为OE ∥平面PBC ,OE ⊂平面PAC ,平面PAC ∩平面PBC =PC ,所以OE ∥PC , 所以AO ∶OC =AE ∶EP . ………………………………………3分因为DC //AB ,DC =2AB ,所以AO ∶OC =AB ∶DC =1∶2.所以AE PE =12. (6)分(2)法一:取PC 的中点F ,连结FB ,FD . 因为△PAD 是正三角形,DA =DC ,所以DP =DC .因为F 为PC 的中点,所以DF ⊥PC . ………………………………………8分因为AB ⊥平面PAD ,所以AB ⊥PA ,AB ⊥AD ,AB ⊥PD . 因为DC //AB ,所以DC ⊥DP ,DC ⊥DA .设AB =a ,在等腰直角三角形PCD 中,DF =PF =2a . 在Rt △PAB 中,PB =5a .在直角梯形ABCD 中,BD =BC =5a .因为BC =PB =5a ,点F 为PC 的中点,所以PC ⊥FB . 在Rt △PFB 中,FB =3a .在△FDB 中,由DF = 2a ,FB = 3a ,BD =5a ,可知DF 2+FB 2=BD 2,所以FB ⊥DF . ………………………………………12分由DF ⊥PC ,DF ⊥FB ,PC ∩FB =F ,PC 、FB ⊂平面PBC ,所以DF ⊥平面PBC . 又DF ⊂平面PCD ,所以平面PBC ⊥平面PDC . ………………………………………14分法二:取PD ,PC 的中点,分别为M ,F ,连结AM ,FB ,MF , 所以MF ∥DC ,MF =12DC .因为DC //AB ,AB =12DC ,所以MF ∥AB ,MF =AB ,即四边形ABFM 为平行四边形,所以AM ∥BF . ………………………………………8分 在正三角形PAD 中,M 为PD 中点,所以AM ⊥PD . 因为AB ⊥平面PAD ,所以AB ⊥AM . 又因为DC //AB ,所以DC ⊥AM . 因为BF //AM ,所以BF ⊥PD ,BF ⊥CD .又因为PD ∩DC =D ,PD 、DC ⊂平面PCD ,所以BF ⊥平面PCD .……………………………12分因为BF ⊂平面PBC ,所以平面PBC ⊥平面PDC . ………………………………………14分17.(本小题满分14分)解:(1)由题意知f (0)=A ,f (3)=3A .所以⎩⎪⎨⎪⎧9Aa +b =A ,9A a +14b =3A ,解得a =1,b =8. ………………………………………4分 所以f (n )=9A 1+8×tn ,其中t =2-23. 令f (n )=8A ,得9A 1+8×t n =8A ,解得t n=164, 即2-2n3=164,所以n =9.所以栽种9年后,该树木的高度是栽种时高度的8倍. ………………………………………6分 (2)由(1)知f (n )=9A1+8×t n.第n 年的增长高度为△=f (n )-f (n -1)=9A 1+8×t n -9A1+8×t n -1. ……………………………9分所以△=72At n -1(1-t )(1+8t n )(1+8t n -1)=72At n -1(1-t )1+8t n -1(t +1)+64t 2n -1=72A (1-t )1t n-1+64t n+8(t +1) (12)分 ≤72A (1-t )264t n ×1tn -1+8(t +1)=72A (1-t ) 8(1+t )2=9A (1-t )1+t. 当且仅当64t n =1t n -1,即2-2(2n -1)3=164时取等号,此时n =5. 所以该树木栽种后第5年的增长高度最大. ………………………………………14分 18.(本小题满分16分)解:(1)由条件得1a 2+1b 2=1,且c 2=2b 2,所以a 2=3b 2,解得b 2=43,a 2=4.所以椭圆方程为:x 24+3y 24=1. ………………………………………3分 (2)设l 1方程为y +1=k (x +1),联立⎩⎨⎧y =kx +k -1,x 2+3y 2=4,消去y 得(1+3k 2)x 2+6k (k -1)x +3(k -1)2-4=0. 因为P 为(-1,1),解得M (-3k 2+6k +11+3k 2,3k 2+2k -11+3k 2).………………………………………5分当k ≠0时,用-1k 代替k ,得N (k 2-6k -3k 2+3,-k 2-2k +3k 2+3). ………………………………………7分将k =-1代入,得M (-2,0),N (1,1). 因为P (-1,-1),所以PM =2,PN =22,所以△PMN 的面积为12×2×22=2. ………………………………………9分(3)解法一:设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧x 12+3y 12=4,x 22+3y 22=4,两式相减得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0, 因为线段MN 的中点在x 轴上,所以y 1+y 2=0,从而可得(x 1+x 2)(x 1-x 2)=0.…………………12分若x 1+x 2=0,则N (-x 1,-y 1).因为PM ⊥PN ,所以PM →·PN →=0,得x 12+y 12=2.又因为x 12+3y 12=4,所以解得x 1=±1,所以M (-1,1),N (1,-1)或M (1,-1),N (-1, 1). 所以直线MN的方程为y=-x . ………………………………………14分 若x 1-x 2=0,则N (x 1,-y 1),因为PM ⊥PN ,所以PM →·PN →=0,得y 12=(x 1+1)2+1. 又因为x 12+3y 12=4,所以解得x 1=-12或-1,经检验:x =-12满足条件,x =-1不满足条件.综上,直线MN 的方程为x +y =0或x =-12. ………………………………………16分解法二:由(2)知,当k ≠0时,因为线段MN 的中点在x 轴上,所以3k 2+2k -11+3k 2=--k 2-2k +3k 2+3,化简得4k(k 2-4k-1)=,解得k=2±5. ………………………………………12分若k =2+5,则M (-12,52),N (-12,-52),此时直线MN 的方程为x =-12.若k =2-5,则M (-12,-52),N (-12,52),此时直线MN 的方程为x =-12.…………14分当k =0时,M (1,-1),N (-1,1),满足题意,此时直线MN 的方程为x +y =0. 综上,直线MN的方程为x=-12或x+y=0. ………………………………………16分 19.(本小题满分16分)解:(1)因为点P (1,-1)在曲线y =f (x )上,所以-m =-1,解得m =1.因为f ′(x )=1x-1,所以切线的斜率为0,所以切线方程为y =-1.…………………………………3分(2)因为f ′(x )=1x -m =1-mx x. ①当m ≤0时, x ∈(1,e), f ′(x )>0,所以函数f (x )在(1,e )上单调递增,则f (x ) max =f (e )=1-me .②当1m ≥e ,即0<m ≤1e时,x ∈(1,e), f ′(x )>0,所以函数f (x )在(1,e )上单调递增,则f (x )max =f (e )=1-me . ………………………………………5分③当1<1m <e ,即1e <m <1时,函数f (x )在 (1,1m )上单调递增,在(1m,e )上单调递减, 则f (x ) max =f (1m)=-ln m -1. ………………………………………7分④当1m≤1,即m ≥1时,x ∈(1,e), f ′(x )<0,函数f (x )在(1,e )上单调递减,则f (x ) max =f (1)=-m .………………………………………9分综上,①当m ≤1e时,f (x )max =1-me ; ②当1e<m <1时,f (x )max =-ln m -1; ③当m ≥1时,f (x )max =-m . ………………………………………10分(3)不妨设x 1>x 2>0.因为f (x 1)=f (x 2)=0,所以ln x 1-mx 1=0,ln x 2-mx 2=0, 可得ln x 1+ln x 2=m (x 1+x 2),ln x 1-ln x 2=m (x 1-x 2).要证明x 1x 2>e 2,即证明ln x 1+ln x 2>2,也就是m (x 1+x 2)>2.因为m =ln x 1-ln x 2x 1-x 2,所以即证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2. ………………………………………12分令x 1x 2=t ,则t >1,于是ln t >2(t -1)t +1.令ϕ(t )=ln t -2(t -1)t +1(t >1),则ϕ ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0. 故函数ϕ(t )在(1,+∞)上是增函数,所以ϕ(t )>ϕ(1)=0,即ln t >2(t -1)t +1成立. 所以原不等式成立. ………………………………………16分20.(本小题满分16分)解:(1)设等差数列的公差为d ,等比数列的公比为q ,则d =b -a 6,q =6b a. a 3=a +3d =a +b 2,b 3=aq 3=ab . ………………………………………2分因为a 3b 3=54,所以2a -5ab +2b =0,解得b a =4或14. ………………………………………4分(2)因为λa =a +(m +1)d ,所以d =λ-1m +1a ,从而得a n =a +λ-1m +1a ×n . 因为λa =a ×q m +1,所以q =λ1m +1,从而得b n =a ×λnm +1.因为a n -5=b n ,所以a +(λ-1)(n -5)m +1×a =a ×λn m +1. 因为a >0,所以1+(λ-1)(n -5)m +1=λn m +1(*). ………………………………………6分因为λ,m ,n ∈N *,所以1+(λ-1)(n -5)m +1为有理数. 要使(*)成立,则λnm +1必须为有理数.因为n ≤m ,所以n <m +1.若λ=2,则λnm +1为无理数,不满足条件.同理,λ=3不满足条件. ………………………………………8分当λ=4时,4n m +1=22n m +1.要使22n m +1为有理数,则2n m +1必须为整数.又因为n ≤m ,所以仅有2n =m +1满足条件.所以1+3(n -5)m +1=2,从而解得n =15,m =29. 综上,λ最小值为4,此时m 为29. ………………………………………10分(3)证法一:设c n >0,S n 为数列{c n }的前n 项的和.先证:若{c n }为递增数列,则{S n n}为递增数列. 证明:当n ∈N*时,S n n <nb n +1n=b n +1. 因为S n +1=S n +b n +1>S n +S n n =n +1n S n ,所以S n n <S n +1n +1,即数列{S n n}为递增数列. 同理可证,若{c n }为递减数列,则{S n n}为递减数列. ………………………………………12分①当b >a 时,q >1.当n ∈N*,n ≤m 时,S m +1m +1>S n n. 即aq (q m +1-1)q -1m +1>aq (q n -1)q -1n ,即aq m +1-a m +1>aq n -a n . 因为b =aq m +1,b n =aq n ,d =b -a m +1, 所以d >b n -a n,即a +nd >b n ,即a n >b n . ②当b <a 时,0<q <1,当n ∈N*,n ≤m 时,S m +1m +1<S n n. 即aq (q m +1-1)q -1m +1<aq (q n -1)q -1n . 因为0<q <1,所以aq m +1-a m +1>aq n -a n .以下同①. 综上, a n >b n (n ∈N*,n ≤m ). ………………………………………16分证法二:设等差数列a ,a 1,a 2,…,a m ,b 的公差为d ,等比数列a ,b 1,b 2,…,b m ,b 的公比为q ,b =λa (λ>0,λ≠1).由题意,得d =λ-1m +1a ,q =aλ1m +1,所以a n =a +nd =a +λ-1m +1an ,b n =a λn m +1. 要证a n >b n (n ∈N*,n ≤m ),只要证1+λ-1m +1n -λn m +1>0(λ>0,λ≠1,n ∈N*,n ≤m ).………………………………………12分构造函数f (x )=1+λ-1m +1x -λx m +1(λ>0,λ≠1,0<x <m +1), 则f′(x )=λ-1m +1-1m +1λx m +1ln λ.令f′(x )=0,解得x 0=(m +1)log λλ-1ln λ. 以下证明0<log λλ-1ln λ<1. 不妨设λ>1,即证明1<λ-1ln λ<λ,即证明ln λ-λ+1<0,λln λ-λ+1>0. 设g (λ)=ln λ-λ+1,h (λ)=λln λ-λ+1(λ>1),则g′(λ)=1λ-1<0,h′(λ)=ln λ>0, 所以函数g (λ)=ln λ-λ+1(λ>1)为减函数,函数h (λ)=λln λ-λ+1(λ>1)为增函数. 所以g (λ)<g (1)=0,h (λ)>h (1)=0.所以1<λ-1ln λ<λ,从而0<log λλ-1ln λ<1,所以0<x 0<m +1.………………………………………14分因为在(0,x 0)上f′(x )>0,函数f (x )在(0,x 0)上是增函数;因为在(x 0,m +1)上f′(x )<0,函数f (x )在(x 0,m +1)上是减函数.所以f (x )>min{f (0),f (m +1)}=0.所以a n >b n (n ∈N*,n ≤m ).同理,当0<λ<1时,a n >b n (n ∈N*,n ≤m ). ………………………………………16分南京市2014届高三年级第三次模拟考试数学附加题参考答案及评分标准 2014.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷.纸.指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲证:因为AE 为圆O 的切线,所以∠ABD =∠CAE . ………………………………………2分因为△ACD 为等边三角形,所以∠ADC =∠ACD ,所以∠ADB =∠ECA ,所以△ABD ∽△EAC . ………………………………………6分所以AD BD =EC CA ,即AD ·CA =BD ·EC . ………………………………………8分因为△ACD 为等边三角形,所以AD =AC =CD ,所以CD 2=BD ·EC . ………………………………………10分B .选修4—2:矩阵与变换解:设特征向量为α=⎣⎡⎦⎤ k -1对应的特征值为λ, 则⎣⎢⎡⎦⎥⎤a k 0 1 ⎣⎡⎦⎤ k -1=λ⎣⎡⎦⎤ k -1,即⎩⎨⎧ak -k =λk , λ=1. 因为k ≠0,所以a =2. ………………………………………5分因为A -1⎣⎡⎦⎤31=⎣⎡⎦⎤11,所以A ⎣⎡⎦⎤11=⎣⎡⎦⎤31,即⎣⎢⎡⎦⎥⎤2 k 0 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤31,所以2+k =3,解得 k =1.综上,a =2,k =1. ………………………………………10分C .选修4—4:坐标系与参数方程解:设M (2cos θ,23sin θ),θ∈(0,π2). 由题知OA =2,OB =23, ………………………………………2分所以四边形OAMB 的面积S =12×OA ×23sin θ+12×OB ×2cos θ =23sin θ+23cos θ=26sin(θ+π4). ………………………………………8分所以当θ=π4时,四边形OAMB 的面积的最大值为26. ………………………………………10分D .选修4—5:不等式选讲解:由柯西不等式,得[a 2+(2b )2+(3c )2][12+(12)2+(13)2]≥(a +b +c )2.……………………………8分因为a 2+2b 2+3c 2=6,所以(a +b +c )2≤11, 所以-11≤a +b +c ≤11.所以a +b +c 的最大值为11,当且仅当a =2b =3c =61111. ………………………………10分 22.(本小题满分10分)证明:连接AC ,BD 交于点O ,以OA 为x 轴正方向,以OB 为y 轴正方向,OP 为z 轴建立空间直角坐标系.因为PA =AB =2,则A (1,0,0),B (0,1,0),D (0,-1,0),P (0,0,1).(1)由BN →=13BD →,得N (0,13,0),由PM →=13PA →,得M (13,0,23), 所以MN →=(-13,13,-23),AD →=(-1,-1,0). 因为MN →·AD →=0.所以MN ⊥AD . ………………………………………4分(2)因为M 在PA 上,可设PM →=λPA →,得M (λ,0,1-λ).所以BM →=(λ,-1,1-λ),BD →=(0,-2,0).设平面MBD 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BD →=0,n ·BM →=0,得⎩⎨⎧-2y =0,λx -y +(1-λ)z =0, 其中一组解为x =λ-1,y =0,z =λ,所以可取n =(λ-1,0,λ).………………………………8分因为平面ABD 的法向量为OP →=(0,0,1),所以cos π4=|n ·OP →|n ||OP →||,即22=λ(λ-1)2+λ2,解得λ=12, 从而M (12,0,12),N (0,13,0), 所以MN =(12-0)2+(0-13)2+(12-0)2=226. ………………………………………10分 23.(本小题满分10分)解:(1)S ={1,2}的所有非空子集为:{1},{2},{1,2},所以数组T 为:1,2,32. 因此m (T )=1+2+323=32. ………………………………………3分 (2)因为S ={a 1,a 2,…, a n },n ∈N *,n ≥2,所以m (T )=∑i =1na i +(12C 1n -1)∑i =1n a i +(13C 2n -1)∑i =1n a i +…+(1n C n -1n -1)∑i =1n a i C 1n +C 2n +C 3n +…+C n n=1+12C 1n -1+13C 2n -1+…+1n C n -1n -1 C 1n +C 2n +C 3n +…+C n n∑i =1n a i . ………………………………………6分 又因为1k C k -1n -1=1k ·(n -1)!(k -1) ! (n -k ) !=(n -1)!k ! (n -k ) !=1n ·n !(n -k ) ! k !=1n C k n ,……………………………8分 所以m (T )=1n C 1n +1n C 2n +1n C 3n +…+1n C n n C 1n +C 2n +C 3n +…+C n n∑i =1n a i =1n ∑i =1n a i .………………………………………10分。

(完整word版)2014年江苏省高考数学试卷答案与解析

(完整word版)2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=故答案为:.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+=.故答案为:.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm..7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,它们的侧面积相等,==故答案为:.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.==2故答案为:10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,,解得﹣<,11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.(,解方程可得答案.,(,,,,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.=3,可得=+,﹣,=3•=3,=+,=﹣,•(+)(﹣)=||•﹣|﹣•﹣•=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.(bcosC==≥=当且仅当≤.故答案为:.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(((.∴﹣=+=sin cos﹣+.,=,﹣=cos sin2﹣)的值为:﹣16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.DE=EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,,)+y+(=0)()==(得.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?CE=OP=m m PC=PQ=m=﹣﹣19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.﹣,当且仅当m﹣﹣()﹣﹣()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.=,解得,,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.A=B,可得方程组,即可求A=B==A=B,﹣【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为,化为普通方程为=8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.3,两式相乘可得结论.,(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).个球共有个球颜色相同共有P==,P=26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.=代入上式得,(+))x+)对任意时,=)对任意代入上式得,(+)+cos=±)(|=。

2014年江苏高考数学试题及答案

2014年江苏高考数学试题及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={},,则 ▲ .2. 已知复数(i 为虚数单位),则的实部为 ▲ .3. 右图是一个算法流程图,则输出的的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲ .5. 已知函数与(0≤),zxxk 它们的图象有一个横坐标为的交点,则的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列中,,则的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为,,体积分别为,,若它们的侧面积相等,且,则的值是 ▲ .9. 在平面直角坐标系中,直线被圆截得的弦长为 ▲ .10. 已知函数若对于任意,都有成立,则实数的取值范围是 ▲ .11. 在平面直角坐标系中,若曲线(a ,b 为常数) zxxk 过点,且该曲线在点P 处的切线与直线平行,则的值是 ▲ .12. 如图,在平行四边形中,已知,,4,3,1,2--}3,2,1{-=B =B A 2)i 25(+=z z n x y cos =)2sin(ϕ+=x y πϕ<3πϕ}{n a ,12=a 4682a a a +=6a 1S 2S 1V 2V 4921=S S 21V V xOy 032=-+y x 4)1()2(22=++-y x ,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m xOy xbax y +=2)5,2(-P 0327=++y x b a +ABCD 8=AB 5=AD(第3题)100 80 90 110 120 底部周长/cm(第6题)(第12题),,则的值是 ▲ .13. 已知是定义在R 上且周期为3的函数,当时,.若函数在区间上有10个零点(互不相同),则实数的取值范围是 ▲ .14. 若△的内角满足,则的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知,.(1)求的值;(2)求的值.16.(本小题满分14分)如图,在三棱锥中,,E ,F 分zxxk 别为棱的中点.已知,求证: (1)直线平面;(2)平面平面.PD CP 3=2=⋅BP AP AD AB ⋅)(x f )3,0[∈x |212|)(2+-=x x x f a x f y -=)(]4,3[-a ABC C B A sin 2sin 2sin =+C cos ),2(ππα∈55sin =α)4sin(απ+)265cos(απ-ABC P -D AB AC PC ,,AC PA ⊥,6=PA .5,8==DF BC //PA DEF ⊥BDE ABC (第16题)PD CE F B A17.(本小题满分14分)如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A ,过点A 作轴的垂线交椭圆于另一点C ,连结.(1)若点C 的坐标为,且,求椭圆的方程;(2)若求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),.(1)求新桥BC 的长;(2)当OM 多长时,19.(本小题满分16分)xOy 21,F F )0(12322>>=+b a by a x B ),0(b 2BF x C F 1)31,34(22=BF ,1AB C F ⊥OA 34tan =∠BCO已知函数,其中e 是自然对数的底数. (1)证明:是R 上的偶函数;(2)若关于的不等式≤在上恒成立,学科网求实数的取值范围;(3)已知正数满足:存在,使得成立.试比较与的大小,并证明你的结论.20.(本小题满分16分)设数列的前项和为.若对任意正整数,学科网总存在正整数,使得,则称是“H 数列”. (1)若数列的前n 项和(N ),证明: 是“H 数列”;(2)设 是等差数列,其首项,公差.若 是“H 数列”,求的值;(3)证明:对任意的等差数列,总存在两个“H 数列”和,使得 (N )成立.x x x f -+=e e )()(x f x )(x mf 1e -+-m x ),0(+∞m a ),1[0+∞∈x )3()(0300x x a x f +-<1e -a 1e -a }{n a n n S n m m n a S =}{n a }{n a n n S 2=∈n *}{n a }{n a 11=a 0<d }{n a d }{n a }{n b }{n c n n n c b a +=∈n *2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm.故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2 =2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.。

2014江苏高考数学试题及答案

2014江苏高考数学试题及答案

2014江苏高考数学试题及答案2014年普通高等学校招生全国统一考试(江苏卷)数学(理科)一、选择题:本题共14小题,每小题5分,共70分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则A∩B=A. {x|x=2k,k∈Z}B. {x|x=2k+1,k∈Z}C. ∅D. {x|x=k,k∈Z}2. 函数f(x)=x^2+1的最小值是A. 0B. 1C. 23. 已知向量a=(1, 2),b=(2, 1),则a·b=A. 0B. 1C. 2D. 34. 若f(x)=x^2-4x+m,且f(1)=-3,则m=A. 0B. 1C. 2D. 35. 已知数列{an}满足a1=1,an+1=2an+1,n∈N*,则a5=A. 15B. 31C. 636. 已知函数f(x)=x^3-3x+1,若f′(x)=0,则x=A. 1B. -1C. 0D. 27. 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一条渐近线方程为y=√2x,则b/a=A. √2B. 1C. 2D. √3/28. 已知直线l:y=kx+1与椭圆E:x^2/4+y^2=1相交于A、B两点,若|AB|=2√2,则k=A. 0B. 1D. -19. 已知函数f(x)=x^3-3x,若f′(x)=0,则x=A. 1B. -1C. 0D. 210. 已知等差数列{an}的前n项和为Sn,若a1=1,S3=6,则d=A. 1B. 2C. 3D. 411. 已知函数f(x)=x^2-2x+3,若f(a)=f(2a),则a=A. 0B. 1D. 312. 已知向量a=(1, 1),b=(2, -1),则|a+b|=A. √2B. √3C. √5D. √613. 已知函数f(x)=x^2-4x+3,若f(a)<f(1),则a的取值范围是A. (-∞, 1)∪(3, +∞)B. (-∞, 2)∪(2, +∞)C. (-∞, 3)∪(5, +∞)D. (-∞, 4)∪(6, +∞)14. 已知等比数列{bn}的前n项和为Tn,若b1=1,b2=2,则T3=A. 7B. 8D. 10二、填空题:本题共6小题,每小题5分,共30分。

江苏省2014届高三高考模拟专家卷 数学(2) Word版含答案

江苏省2014届高三高考模拟专家卷 数学(2) Word版含答案
(2)假设某同学连续3次投篮未中或累计7次投篮未中,则停止投篮测试,问:甲同学恰好投篮10次后,被停止投篮测试的概率是多少?
23.已知Sn=1+++…+.
(1)求S2,S4的值;
(2)若Tn=,试比较 与Tn的大小,并给出证明.
参考答案及评分标准
一、填空题:本大题共14小题,每小题5分,共70分.
1.(0,1]2.33.84.72%5.
20.(本题满分16分)
已知数列 满足 (n∈N*),且a2=6.
(1)求数列{an}的通项公式;
(2)设 (n∈N*,c为非零常数),若数列{bn}是等差数列,记cn=,Sn=c1+c2+…+cn,求Sn.
数学附加题
21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4—1:几何证明选讲
如图,AB是⊙O的直径,点P在AB的延长线上,PC与⊙O相切于点C,PC=AC=1.求⊙O的半径.
B.选修4—2:矩阵与变换
已知△ABC三个顶点的坐标分别是A(0, 2),B(1,1),C(1,3).若△ABC在一个切变变换T作用下变为△A1B1C1,其中B(1,1)在变换T作用下变为点B1(1,-1).
化简,得a2+c2-b2=ac.
18.(本题满分16分)
已知椭圆C:+=1(a>b>0)的左焦点为F1(-3,0),过点F1作一条直线l交椭圆于A,B两点,点A关于坐标原点O的对称点为A1,两直线AB,A1B的斜率之积为-.
(1)求椭圆C的方程;高考资源网
(2)已知D(m,0)为F1右侧的一点,连AD,BD分别交椭圆左准线于M,N两点,若以MN为直径的圆恰好过点F1,求m的值.

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则B A I2. 已知复数2)i 25(+=z (i 为虚数单位),则z 3. 右图是一个算法流程图,则输出的n 4. 从1,2,3,6这4个数中一次随机地取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{na 中,,12=a4682a a a +=,则6a 的值是 ▲ .8. 为1V ,2V 的值是 ▲ .(第39. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx xx f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xb axy +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅,则⋅的值是 ▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x xx f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲ .14. 若△ABC 的内角满足CB A sin 2sin 2sin =+,则C cos 的最小值是▲ .二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α. B(第12(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且(第16题)PDCEF BA22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA上 并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位 于点O 正北方向60m 处, 点C 位于点O 正东方向 170m 处(OC 为河岸),34tan =∠BCO . (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?(第18题)19.(本小题满分16分)已知函数xxx f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{na 的前n 项和为nS .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{na 是“H 数列”. (1)若数列}{n a 的前n 项和n nS 2=(∈n N *),证明: }{na 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{na 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{na ,总存在两个“H 数列”}{nb 和}{nc ,使得nn n c b a +=(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+= (2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点 ∴DE ∥PA又∵DE ⊂平面PAC ,PA ⊄平面PAC ∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且 BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF ²=EF ²+DE ²=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 = ,将点C (,)代入椭圆22221(0)x y a b a b+=>>, ∴221611(0)99a b a b+=>>,且c ²+b ²=a ²∴a= ,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b ab+=>>联立得x ²x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·= ∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。

2014江苏高考数学试题及答案

2014江苏高考数学试题及答案

2014江苏高考数学试题及答案2014年江苏高考数学试题及答案已经正式发布。

本文将为大家提供详细的试题及答案解析,希望对广大考生有所帮助。

第一部分选择题1. 设集合A={1,2,3,4}, B={1,2,3,4,5},则 A∪B的幂集个数为()A. 16B. 25C. 32D. 64答案:C解析:集合A有4个元素,所以幂集中的子集个数为2^4=16。

集合B有5个元素,所以幂集中的子集个数为2^5=32。

故A∪B的幂集个数为32。

2. 抛一枚硬币,两次抛掷的结果都是“正面向上”的概率是()A. 0.25B. 0.5C. 0.75D. 1答案:B解析:每次抛掷硬币都有两种可能的结果:正面向上或反面向上。

由于每次抛掷是相互独立的,所以两次抛掷结果都是“正面向上”的概率为0.5*0.5=0.25。

3. 若正方形的对角线长为2√2,则其面积为()A. 4B. 2C. 8D. 16答案:B解析:设正方形的边长为a,则根据勾股定理可知,a^2 + a^2 =(2√2)^2。

解得a=2,即正方形的边长为2,所以面积为2*2=4。

第二部分填空题1. 若函数f(x) = ax^2 + bx + c 的图象与x轴有两个交点,且a、b、c都是整数,则函数f(x)的韦达定理可以表示为__________。

答案:b^2 = 4ac解析:根据韦达定理可知,二次函数f(x)与x轴有两个交点的充分必要条件是判别式D(也就是b^2 - 4ac)大于零。

2. 已知等差数列{an}的前n项和为Sn = 3n^2 + 2n,则其公差为__________。

答案:3解析:等差数列的前n项和的通项公式为Sn = (a1 + an) * n / 2,带入已知条件可得(2a1 + (n-1)d/2)*n = 3n^2 + 2n。

整理化简可得an = a1 + (n-1)d = 3n + 2。

对比等差数列的通项公式可知公差为3。

第三部分解答题1. 已知直线L与曲线y = x^2 - 4x + 3相切,求直线L的方程。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象 有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别 为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.(第3题)100 80 90 110 120 130 底部周长/cm(第6题)(第12题)16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC , 同时设立一个圆形保护区.规划要求:新桥BC 与河 岸AB 垂直;保护区的边界为圆心M 在线段OA 上 并与BC 相切的圆.且古桥两端O 和A 到该圆上 任意一点的距离均不少于80m. 经测量,点A 位 于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(第16题)PDCEFBA(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点 ∴DE ∥PA 又∵DE⊂平面PAC ,PA ⊄平面PAC∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且 BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF ²=EF ²+DE ²=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 =,将点C (,)代入椭圆22221(0)x y a b a b+=>>,∴221611(0)99a b a b+=>>,且c ²+b ²=a ²∴a= ,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b a b+=>>联立得x ²x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·=∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泗阳中学高三模拟试卷(二)(数学)理科专用(考试时间:120分钟 总分160分) 命题人:朱克胜 审题人:石志富全卷分两部分:第一部分为所有考生必做部分(满分160分,考试时间120分钟),第二部分为选修物理考生的加试部分(满分40分,考试时间30分钟). 注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.第一部分试题答案均写在答题卷相应位置,答在其它地方无效. 参考公式: 样本数据1x ,2x ,,n x 的方差()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为样本平均数; 数据()(),1,2,,i i x y i n =的线性回归方程为ˆˆˆybx a =+, 其中:⎧⎪⎨⎪⎩()()()121ˆˆˆniii ni i x x y y b x x ay bx ==--=-=-∑∑第 一 部 分一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“2,0x R x x ∃∈+≤”的否定是 ★ . 2.(1)(12)i i -+= ★ .3.函数()sin2f x x x =的最小正周期是 ★ . 4.长方体1111ABCD A BC D -中,11AB BC AA ===,则1BD 与平面1111A B C D 所成的角的大小为 ★ .5.已知实数x y ,满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,则2z x y =+的最小值是 ★ .6.已知抛物线22y px =的准线与双曲线222x y -=的左准线重合,则抛物线的焦点坐标为 . A BC DA 1B 1C 1D 17. 下列用伪代码描述的算法执行后的结果是_____★___________。

S ✐0 I ✐1While S<10 S ✐S+II ✐ I+2End WhilePrint I8.将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是 .9.若直线1ax by +=过点(),A b a ,则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是 .10.已知集合{}21503x A x |x ,B x |x -⎧⎫=-<<=>⎨⎬-⎩⎭,在集合A 任取一个元素x ,则事件“x A B ∈⋂”的概率是 ★ .11.已知1F 、2F 是椭圆22x k ++21y k +=1的左右焦点,弦AB 过F 1,若2ABF ∆的周长为8,则椭圆的离心率为 ★ .12.等边三角形ABC 中,P 在线段AB 上,且AP AB λ=,若CP AB PA PB ⋅=⋅,则实数λ的值是 ★ .13.数列{}n a 的前n 项和是n S ,若数列{}n a 的各项按如下规则排列:11212312341, , , , , , , , , , , 23344455556,若存在整数k ,使10k S <,110k S +≥,则k a = ★ . 14.若函数()3213f x x a x =-满足:对于任意的[]12,0,1x x ∈都有()()12||1f x f x -≤恒成立,则a 的取值范围是 ★ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)在△ABC 中,,,a b c 分别是角A ,B ,C的对边,cos 5A =,tan 3B =. (Ⅰ)求角C 的值;(Ⅱ)若4a =,求△ABC 面积.16.(本题满分14分)在正方体1111ABCD A BC D -中,,M N 分别是,AB BC 中点. (Ⅰ)求证:平面1B MN ⊥平面11BB D D ;(Ⅱ)若在棱1DD 上有一点P ,使1//BD 平面PMN ,求DP 与1PD 的比.17、(本题满分15分)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议。

现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩.(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(Ⅱ)已知该生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.1111ABCD MND C B A18、(本题满分15分)已知圆22:8O x y +=交x 轴于,A B 两点,曲线C 是以AB 为长轴,直线:l 4x =-为准线的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)若M 是直线l 上的任意一点,以OM 为直径的圆K 与圆O 相交于,P Q 两点,求证:直线PQ 必过定点E ,并求出点E 的坐标;(Ⅲ)如图所示,若直线PQ 与椭圆C 交于,G H 两点,且3EG HE =,试求此时弦PQ 的长.19.(本小题满分16分)已知函数()()2ln 2,()f x x x g x a x x =+=+.(Ⅰ)若12a =,求()()()F x f x g x =-的单调区间; (Ⅱ)若()()f x g x ≤恒成立,求a 的取值范围. 20.(本题满分16分)已知等差数列{}n a 的首项为a ,公差为b ,等比数列{}n b 的首项为b ,公比为a (其中,a b 均为正整数).(Ⅰ) 若1122,a b a b ==,求数列{}n a 、{}n b 的通项公式; (Ⅱ)在(Ⅰ)的条件下,若1213,,,k n n n a a a a a ,,,12(3)k n n n <<<<<成等比数列,求数列{}k n 的通项公式;(Ⅲ) 若11223a b a b a <<<<,且至少存在三个不同的b 值使得等式()m n a t b t N +=∈成立,试求a 、b 的值.高 三 数 学 参 考 答 案2009.01.1.2,0x R x x ∀∈+>2.3i +3.π4.6π5.1 6.()1,07. 7 89.π10.1611.1212.22- 13.5714.⎡⎢⎣ 15.解:(Ⅰ)由cos A =得sin A =tan 2A ∴=, 3分tan tan tan tan()11tan tan A BC A B A B+=-+=-=-, 5分又0C π<<,∴ 4C π=。

7分 (Ⅱ)由sin sin a c A C =可得,sin sin Cc a A=⨯= 9分由tan 3B =得,s n B =,12分所以,△ABC 面积是1sin 62ac B = 14分 16.证明:(Ⅰ)连AC ,则AC ⊥BD ,又,M N 分别是,AB BC 中点,∴ //MN AC ,∴ MN ⊥BD , 3分∵ 1111ABCD A BC D -是正方体,∴ 1BB ⊥平面ABCD , ∵ MN ⊂平面ABCD ,∴ 1BB ⊥MN , 5分∵ 1BDBB B =,∴ MN ⊥平面11BB D D ,1111ABCDND C B A∵ MN ⊂平面1MNB ,∴ 平面1B MN ⊥平面11BB D D ; 7分 (Ⅱ)设MN 与BD 的交点是Q ,连PQ ,∵ 1//BD 平面PMN ,1BD ⊆平面11BB D D ,平面11BB DD平面PMN =PQ ,∴ 1//BD PQ , 10分 ∴ DP ︰1PD =DQ ︰QB =3︰1。

14分 17.解:(Ⅰ)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=; 4分2994==1427S ∴数学,2250=7S ∴物理,从而22S S >数学物理,所以物理成绩更稳定。

8分(Ⅱ)由于x 与y 之间具有线性相关关系,497ˆˆ0.5,1000.510050994ba∴===-⨯=, 11分∴线性回归方程为0.550y x =+。

当115y =时,130x =。

13分 建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高。

15分18.解:(Ⅰ)设椭圆的标准方程为()222210x y a b a b+=>>,则:24a ac⎧=⎪⎨=⎪⎩,从而:2a c ⎧=⎪⎨=⎪⎩,故2b =,所以椭圆的标准方程为22184x y +=。

4分(Ⅱ)设(4,)M m -,则圆K 方程为()2222424m m x y ⎛⎫++-=+ ⎪⎝⎭6分与圆22:8O x y +=联立消去22,x y 得PQ 的方程为480x my -+=,过定点()2,0E -。

9分(Ⅲ)解法一:设()()1122,,,G x y H x y ,则221122222828x y x y ⎧+=⎪⎨+=⎪⎩,………① 3EG HE =,()()11222,32,x y x y ∴+=---,即:1212833x x y y =--⎧⎨=-⎩ 代入①解得:228323x y ⎧=-⎪⎪⎨⎪=±⎪⎩(舍去正值), 12分1PQ k ∴=,所以:20PQ x y -+=,从而圆心()0,0O 到直线PQ的距离d == 从而PQ =。

15分解法二:过点,G H 分别作直线l 的垂线,垂足分别为,G H '',设PQ 的倾斜角为α,则:22GE EH e e GG HH ===='',从而,GG HH ''==,11分由3EG HE =得:3EG HE =,cos GG HH GE EH α''-∴==+,故4πα=,由此直线PQ 的方程为20x y -+=,以下同解法一。

15分解法三:将:PQ 480x my -+=与椭圆方程22184x y +=联立成方程组消去x 得:()223216640my my +--=,设()()1122,,,G x y H x y ,则1212221664,3232m y y y y m m +==-++。

11分3FG HF =,()()11222,32,x y x y ∴+=---,所以123y y =-代入韦达定理得:22222864,33232m y y m m =-=++, 消去2y 得:216m =,4m ∴=±,由图得:4m =, 13分 所以:2P Q x y-+=,以下同解法一。

15分19.解:(Ⅰ)211()ln 222F x x x x x =+--,其定义域是(0,)+∞ 11(21)(2)'()222x x F x x x x+-=+--=-令'()0F x =,得2x =,12x =-(舍去)。

相关文档
最新文档