附:柱基下CFG桩计算及设计结果
CFG桩设计计算(置换率及桩中心距公式.pdf
CFG 桩设计计算一、单桩承载力计算1、Up —桩的周长;—第i 层土极限侧阻力,按建筑桩基技术规范规定取值; h i —第i 层土厚度;q p —第i 层土极限端阻力,按建筑桩基技术规范规定取值;K —调整系数,K =2.0;2、 η—系数,取0.3~0.33;R 28—桩体28天立方体块强度;A p —桩的截面面积;单桩承载力两种计算方式中方法一主要适用于长桩,方法二适用于短桩,同时计算时取计算值较小者。
3、当用单桩静载荷试验确定单桩极限承载力标准值Ruk 后,Rk 可按下式计算: sp ukk R R γ=γsp —调整系数,宜取1.50-1.60,一般工程或桩间土承载力高、基础埋深大以及基础下桩数较多时应取低值,重要工程、基础下桩数kA q h q U R p p i i s p k ∑•+=,i s q ,pk A R R 28η=较少或桩间土为承载力较低的粘性土时应取高值。
二、复合地基承载力计算()k s p k k sp f m A mR f ,,1•−••+=βα—复合地基承载力标准值(kPa );A p —单桩截面积(m 2); α—桩间土强度提高系数,通常α=1;β—桩间土强度发挥系数;—桩间土承载力标准值(天然地基承载力标准值);三、置换率1、d —CFG 桩直径;S —桩间距;2、根据复合地基承载力公式计算。
四、桩间距桩距:一般为3-6倍桩径。
当在饱和粘性土中挤土成桩,桩距不宜小于4倍桩径。
根据桩土面积置换率计算桩中心距(s ),计算公式如下:(1)等边三角形布桩:m d s 105.1=(2)正方形布桩:k sp f ,k s f ,224/S d m π×=m d s 113.1=(3)长方形布桩:m d SS 113.11=S1—桩排距;如果桩间距已知,也可以利用此式确定面积置换率。
五、桩数确定p A mA n = 六、桩体强度计算pA R k 28R 3•≥。
CFG桩计算
水泥粉煤灰碎石桩法《建筑地基处理技术规范》(JGJ79—2002)
fspk——复合地基承载力特征值(kPa)Ra——单桩竖向承载力特征值(kN)
Ap——桩的截面积(m2)【桩径宜取350~600mm】
β——桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,
天然承载力较高取大值
fsk——处理后的桩间承载力特征值,宜按当地经验取值,如无经验时,可取
天然承载力特征值。
m——面积置换率
d——桩身平均直径(m)
de——一根桩分担的处理面积的等效圆直径(m);s——桩间距(m)
up——桩的周长(m)
n——桩长范围内所划分的土层数;
qsi、qp——桩周第i层土的侧阻力、桩端端阻力特征值(kPa),可按现行国家标准
《建筑地基基础设计规范》(GB5007)有关规定确定
li——第i层土的厚度。
CFG桩设计计算(excel自动程序)
0.049422404
布桩数n
n=m*A/Ap
一根桩置换 面积
A1=1.6mX1.6m
桩身混凝土强度 标准值fcu=Fra bibliotekC15
说明:1。本表按GB-JGJ79-2002编制。水泥搅拌桩分为干法和湿法。桩身强度折减系数μ,干法取0.2~0.3;湿法取0.25~0.33。 JGJ 79-2002 编制) 2。红色部分人工输入
CFG桩计算软件
机具条件: 直径D(mm) 0.4 有效桩长(m) 设计计算: 桩截面面积(m2) 桩周长μp L= Ap=D2*3.14/4 μp=D*3.14 13.5 0.1256 1.256 桩长范围土层名称 1 2 3 4 5 6 1.单桩承载力: 参数取值:: 桩身强度折减系数:η (0.33) 0.33 2.单桩承载力特 征值(取小值) 取值Ra= 3.复合地基承载 力特征值fspk 4.面积置换率、 布桩数 面积置换率 5.结论: 有效桩长L= 单桩承载力特征 值Ra= 复合地基承载力 特征值fspk= 13.5 430 250 Ra=μp*∑qsia*li+α*A*qp Ra=η*fcu*Ap 430 fspk=m*Ra/Ap+β*(1m)*fsk m=(fspk-β*fsk)/(Ra/Apβ*fsk) 250 桩端天然土承 桩间土承载力 桩间天然土承载力 载力折减系数: 折减系数:β 特征值fsk(Kpa) 1 429.1752 455.928 0.85 100 面积置换率 桩身混凝土无侧限抗压 m(0.01~0.1 强度标准值fcu(MPa) 0.0494224 11 桩端阻阻力qp 450 土厚li(m) 2 1.5 1.7 3 3 2.3 桩侧土磨擦阻力特征值 桩端土阻力(qp:未 (qsia) 修正承载力特征值) 17 19 16 22 24 30 450
CFG桩计算过程
9#CFG 桩计算书本工程采用CFG 桩复核地基处理方式进行地基处理,桩径400mm ,桩间距1.30m 有效桩长拟采用15m ,桩端进入第8层粉质粘土,桩顶桩间土为第5层粉土。
现根据《建筑地基处理技术规范》JGJ 79-2002式9.2.5计算CFG 桩复核地基承载力。
sp sp (1).2.5akk pR f m m f A β=+- (9)计算步骤如下: 1、计算置换率m ;2、计算单桩竖向承载力特征值;3、计算复核地基承载力。
1、计算置换率m222221/41/40.40.074351.3pA d m s s ππ⨯==== 2、计算单桩承载力特征值根据《建筑地基处理技术规范》JGJ 79-2002式9.2.61R .2.6na p si i p p i q l q A μ==+∑ (9)/4.4kN p p q A π⨯⨯2=20010=25山东省鲁北地质工程勘察院提供的CFG 桩桩基参数值如表1所示。
本工程基底绝对标高为14.97m ,根据地质报告剖面图计算桩周侧阻力见表2 根据表2,单桩承载力特征值为:1R k na p si i p p i q l q A μ==+∑=430+25 =455 N表1 CFG 桩桩基参数值表(长螺旋成孔)3、计算复核地基承载力0.75取规范最低值,sk f取第5层天然地基承载力120kPa。
sp sp (1).00.75.0.1.6akk pR f m m f A β=+-+⨯⨯455= 07435(1-07435)12002566=352kpa故处理后的复核地基承载力特征值为352.6kPa 。
cfg桩工程量计算规则
cfg桩工程量计算规则
CFG桩工程量计算规则是指根据工程现场实际情况,计算CFG桩工程工程量的规则和方法。
1. CFG桩工程量计算的基本单位是米或立方米,根据项目实际需要可以进行适当调整。
2. 计算CFG桩的工程量时,需要考虑桩的直径和长度。
直径可以根据设计要求确定,长度通常为设计要求的值。
3. 计算CFG桩的工程量时,需要考虑桩的布设密度。
布设密度是指单位面积或单位长度上安装的桩的数量。
根据设计要求和实际施工情况确定布设密度。
4. 计算CFG桩的工程量时,需要考虑桩身和桩头的体积。
桩身体积可根据规定的直径和长度计算得出,桩头体积则根据设计要求和实际施工情况确定。
5. 计算CFG桩的工程量时,需要考虑桩的变形要求和施工工艺要求。
根据设计要求和实际施工情况确定所需施工工艺和材料,然后根据施工工艺确定桩的体积。
6. 计算CFG桩的工程量时,需要考虑桩的成本和施工周期。
根据项目成本和工期要求,确定桩的数量和施工时间,从而计算出CFG桩的总工程量。
7. 需要注意的是,以上的计算规则和方法只是一种常见的计算
方式,实际工程中可能会存在其他因素和特殊要求,需要根据具体情况进行调整和补充。
CFG桩设计计算
CFG 桩设计计算1、 桩身材料和配比设计 1.1 桩身材料水泥------42.5级普通硅酸盐水泥粉煤灰-------细骨料、低强度等级水泥石子--------20~50mm 、石屑---------2.5~10mm 、水 1.2 桩体配比石屑率 112/()G G G = 合理石屑率 (0.25~0.33)G 1—单方混合料中石屑用量(kg/m 3)G 2—碎石用量 混合料28天强度R 28与水泥强度和水灰比: 混合料塌落度按3cm 控制,水灰比和粉灰比:混合料密度:2.1~2.2t/m 31.3 桩体强度和承载力关系 1.3.1复合地基承载力设计初步设计:(1)a spksk pR f mm f A式中spk f ——复合地基承载力特征值(kPa );m ——面积置换率;a R ——单桩竖向承载力特征值(kN ); p A ——桩的截面积(m 2);β——桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值;sk f ——处理后桩间土承载力特征值(kPa ),宜按当地经验取值,如无经验时,可取天然地基承载力特征值。
sk f 取值:非挤土成桩:可取天然地基承载力特征值。
挤土成桩------一般粘性土sk f 取1.1-1.2倍的天然地基承载力特征值,塑性指数小、孔隙比大时取高值。
不可挤密土,施工速度慢,sk f =ak f ;施工速度快,现场试验sk f 。
挤土效果好的土,现场试验。
其二:1(1)spk sk f m n f式中:-----桩间土承载力折减系数,一般取0.8;n------桩土应力比,10-14。
《建筑地基处理技术规范》:单桩载荷试验:单桩竖向极限承载力/安全系数21na psi i p P i R u q l q A si q 、p q -------桩周第i 层土的侧摩阻力、桩端端阻力特征值1.3.2 沉降计算一、分层总和法当荷载不超过复合地基承载力时,复合地基的沉降:式中: 1s ------加固区压缩变形;2s ------下卧层压缩量;n 1 ------加固区土的层数; n 2------下卧层土的层数;soi-----桩间土应力so在加固区第i 层土产生的平均附加应力;oj p -----荷载P 0在下卧层第j 层土产生的平均附加应力;si E -----加固区第i 层土的压缩模量,该层天然地基压缩模量的ζ倍,/spk ak f fsj E -----下卧层第j 层土的压缩模量;i h ,j h -----土的分层厚度;s-----沉降计算经验系数,《建筑地基基础设计规范》表5.3.5注:s E 为变形计算深度范围内压缩模量的当量值,应该下式计算: 式中 i A ——第层土附加应力系数沿土层度的积分值;si E ——基础底面下第i 层土的压缩模量值(MPa ),桩长范围内的复合土层按复合土层的压缩模量取值。
cfg桩计算
CFG桩计算 一、计算依据 1。 2。 3。 4。 公式7.1.5-2: 公式7.1.5-3: 公式7.1.6-1: 公式7.1.6-2: 《建筑地基处理规范》(JGJ 79-2012) ������_spk=λm������_������/������_������ +������(1−������) ������_������=������_������ ∑24_(������=1)^������▒〖������_si ������_pi 〗+������_������ ������_cu≥4 (������������_������)/������_������ ������_cu≥4 (������������_������)/������_������ [1+(������_������ (������ −0.5))/������_spa ]
CFG桩计算
设计计算: 条件:
直径D(mm)
0.5
有效桩长(m)
L=
桩截面面积 Ap=D2*3.14/
(m2)
4
桩周长μp μp=D*3.14
11
0.19625 1.57
16-16(24
计算孔号
孔)
孔口标高 ±0.00相对绝对标高
36.850 38.980
1.单桩承载 力:
参数取 值::
桩顶标高
桩身强度折 减系数:η
332 0.061 380.0
桩间距(正方 形布置)
Ym=
1.90 12
一根桩置换 面积A1=Ap/m
3.20
d 取室外标 高至筏板底
4
6.结论:
有效桩长L=
11
单桩承载力 特征值Ra=
703
复合地基承
载力特征值
332
fa=
桩身混凝土
强度标准值
C25
fcu=
本表按GB-JGJ79-2002编制。 红色部分人工输入
面积置换率 m(0.01~0.10)
0.055
土层侧阻力 特征值(qsik)
38 34 34 0 42
桩身混凝土 无侧限抗压 强度标准值
fcu(MPa) 25
土层端阻力 特征值(qpk)
500
桩端阻阻力 qp 500
2.单桩承载 力特征值(取
小值)
Ra=μp*∑qsik*li+α *A*qpk
Ra=η*fcu*Ap
36.820 38.980 31.980
参数取 值::
桩身强度折减系数:η
桩端天然土 承载力折减
(0.33)
系数:α
0.33
CFG复合地基计算书.
CFG桩复合地基设计计算书工程名称:视听技术产业基地CFG桩一、设计基本参数说明:基础面积是在CAD上实测数据,半长、半宽为计算变形数据二、设计结果三、计算过程1、单桩承载力Ra设计R a=u p∑q si l i+q p A p式中:u p桩身周长(mn桩长范围内所划分的土层数q si 、q p 桩身第i层土的侧阻力、桩端端阻力特征值(Kpal i 第i层土的厚度(mAp桩的截面积(㎡2、桩体材料强度的设计式中fcu桩体混合料试块(边长150mm立方体标准养护28d抗压强度平均值(Kpa11464.97根据工程实际经验,桩体材料强度取值C203、复合地基置换率m设计式中:fspk 符合地基承载力特征值(Kpaβ桩间土承载力折减系数fsk 桩间土的承载力特征值(Kpafpk桩体承载力特征值(Kpa fpk=Ra/Ap=3821.660.0637根据工程实际经验,复合地基置换率设计取值0.0637根据以上理论公式计算,复合地基置换率m=根据以上理论公式计算,桩体材料强度fcu≥m=(f spk -β*f sk /(f pk -β*f skfcu≥(3*Ra/Ap4、复合地基置承载力fspk设计计算式中:式中符号意义见上350.05、理论桩间距S计算式中Aj基础面积1.40实际桩间距综合考虑取 1.436、理论设计布桩数n设计式中Aj基础面积-7、复合地基变形计算式中S 地基最终变形量(mmΨs 沉降计算经验系数n 地基变形计算深度范围内所划分的土层数P 0对应于载荷效应准永久组合时的基础底面处的附加压力(KpaE si基础底面下第i土层的压缩模量(Mpaz i 、z i-1基础底面至第i层土、第i-1层土底面的距离(mαi 、αi-1基础底面计算点至第i层土、第i-1层土底面范围内平均附加应力系数7.1 基础底面出附加压力P 0计算f spk=m*Ra /Ap +β*(1-m*fa ks=sqrt(Ap/m根据以上理论公式计算,正方形布桩桩间距S=根据以上理论公式计算,基础面积下布桩桩数不应小于S=Ψs ∑ni-1P 0/E si (Z i αi -Z i-1αi-1n=(m*Aj/Ap根据以上理论公式计算,复合地基承载力fspk=式中p yj 对应于载荷效应准永久组合时的基础底面处的压力(Kpan 基础底面以上所划分的土层数γi第i层土天然重度,KN/m3,地下水位以下采用浮重度h i第i层土的厚度(m7.2沉降计算经验系数的取值说明:上表来自《建筑地基基础设计规范》(GB5007-2002p28表5.3.5 式中Ai 第i层土附加应力系数沿土层厚度的积分值(m2E为变形计算深度范围内压缩模量的当量值 MpaE=∑Ai/∑(Ai/EsiP O =P yj -∑γi h i根据以上理论公式计算,变形计算深度范围内压缩模量当量值E=33.85根据上述沉降计算经验系数Ψs取值表,插值计算沉降系数Ψs=0.200根据北京当地工程经验,沉降计算经验系数Ψs取值=0.2007.3、复合地基变形深度应满足如下条件sn≤0.025∑si式中b基础宽度,(m,不得超过30m,且无相邻荷载的影响。
CFG桩复合地基计算书
CFG桩复合地基计算书
2桩截面积、桩周长的计算:
桩径400mm时,桩截面积Ap=0.1256m2,桩周长Up=1.256m。
3、±0.00对应绝对高程510.150m;垫层底标高-6.10m,对应高程504.05m。
褥垫层厚度0.20m,
褥垫层底绝对标高503.850m。
4、CFG桩,设计桩长7m,有效桩长6.5 m,以密实卵石作桩端持力层。
5、单桩承载力特征值计算
①极限值:计算单桩承载力时极限桩端阻力标准值按ZK7考虑
Quk = αq p·A p+ u p·Σq si·l i
=1.0×2000×0.1256+1.256×(120×2.2+150×4.3)=1392KN
特征值:Ra= Quk/rsp=1392/2=696KN,单桩承载力特征值Rk取680kN
②桩体强度的确定:
fcu≥3 Rk/ AP=3×680÷0.1256=16242kPa,混凝土强度取C20。
6、面积置换率计算:
根据公式:f spk =λm·R a /A p + β·(1-m)·f sk
其中:β取0.95;f sk取120kPa;
λ取0.9;1.4mx1.4m矩形布桩,m达到6.4%
7、复合地基计算
f spk =λm·R a /A p + β·(1-m)·f sk=412kPa ≥400kPa
满足设计要求≥400kPa,复合地基承载力满足设计要求。
CFG桩设计计算
C F G桩设计计算Prepared on 21 November 2021CFG 桩设计计算1、桩身材料和配比设计 1.1 桩身材料水泥级普通硅酸盐水泥粉煤灰-------细骨料、低强度等级水泥 石子--------20~50mm 、石屑~10mm 、水 1.2 桩体配比石屑率 112/()G G G = 合理石屑率 ~G 1—单方混合料中石屑用量(kg/m 3)G 2—碎石用量 混合料28天强度R 28与水泥强度和水灰比: 混合料塌落度按3cm 控制,水灰比和粉灰比: 混合料密度:~m 31.3 桩体强度和承载力关系 1.3.1复合地基承载力设计初步设计:(1)a spksk pR f m m f A式中spk f ——复合地基承载力特征值(kPa );m ——面积置换率;a R ——单桩竖向承载力特征值(kN );p A ——桩的截面积(m 2);β——桩间土承载力折减系数,宜按地区经验取值,如无经验时可取~,天然地基承载力较高时取大值;sk f ——处理后桩间土承载力特征值(kPa ),宜按当地经验取值,如无经验时,可取天然地基承载力特征值。
sk f 取值:非挤土成桩:可取天然地基承载力特征值。
挤土成桩------一般粘性土sk f 取倍的天然地基承载力特征值,塑性指数小、孔隙比大时取高值。
不可挤密土,施工速度慢,sk f =ak f ;施工速度快,现场试验sk f 。
挤土效果好的土,现场试验。
其二:1(1)spksk f m n f式中:-----桩间土承载力折减系数,一般取;n------桩土应力比,10-14。
《建筑地基处理技术规范》:单桩载荷试验:单桩竖向极限承载力/安全系数21na psi i p P i R u q l q A si q 、p q -------桩周第i 层土的侧摩阻力、桩端端阻力特征值1.3.2 沉降计算一、分层总和法当荷载不超过复合地基承载力时,复合地基的沉降:式中: 1s ------加固区压缩变形;2s ------下卧层压缩量;n 1 ------加固区土的层数; n 2------下卧层土的层数;soi-----桩间土应力so在加固区第i 层土产生的平均附加应力;oj p -----荷载P 0在下卧层第j 层土产生的平均附加应力;si E -----加固区第i 层土的压缩模量,该层天然地基压缩模量的ζ倍,/spk ak f fsj E -----下卧层第j 层土的压缩模量;i h ,j h -----土的分层厚度;s-----沉降计算经验系数,《建筑地基基础设计规范》表5.3.5注:s E 为变形计算深度范围内压缩模量的当量值,应该下式计算: 式中 i A ——第层土附加应力系数沿土层度的积分值;si E ——基础底面下第i 层土的压缩模量值(MPa ),桩长范围内的复合土层按复合土层的压缩模量取值。
CFG桩设计计算
C F G桩设计计算Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998CFG 桩设计计算1、桩身材料和配比设计 1.1 桩身材料水泥级普通硅酸盐水泥粉煤灰-------细骨料、低强度等级水泥 石子--------20~50mm 、石屑~10mm 、水 1.2 桩体配比石屑率 112/()G G G = 合理石屑率 ~G 1—单方混合料中石屑用量(kg/m 3)G 2—碎石用量 混合料28天强度R 28与水泥强度和水灰比: 混合料塌落度按3cm 控制,水灰比和粉灰比: 混合料密度:~m 3 1.3 桩体强度和承载力关系 1.3.1复合地基承载力设计初步设计:(1)a spksk pR f m m f A式中spk f ——复合地基承载力特征值(kPa );m ——面积置换率;a R ——单桩竖向承载力特征值(kN ); p A ——桩的截面积(m 2);β——桩间土承载力折减系数,宜按地区经验取值,如无经验时可取~,天然地基承载力较高时取大值;sk f ——处理后桩间土承载力特征值(kPa ),宜按当地经验取值,如无经验时,可取天然地基承载力特征值。
sk f 取值:非挤土成桩:可取天然地基承载力特征值。
挤土成桩------一般粘性土sk f 取倍的天然地基承载力特征值,塑性指数小、孔隙比大时取高值。
不可挤密土,施工速度慢,sk f =ak f ;施工速度快,现场试验sk f 。
挤土效果好的土,现场试验。
其二:1(1)spksk f m n f式中:-----桩间土承载力折减系数,一般取;n------桩土应力比,10-14。
《建筑地基处理技术规范》:单桩载荷试验:单桩竖向极限承载力/安全系数21na psi i p P i R u q l q A si q 、p q -------桩周第i 层土的侧摩阻力、桩端端阻力特征值1.3.2 沉降计算一、分层总和法当荷载不超过复合地基承载力时,复合地基的沉降: 式中: 1s ------加固区压缩变形;2s ------下卧层压缩量;n 1 ------加固区土的层数; n 2------下卧层土的层数;soi-----桩间土应力so 在加固区第i 层土产生的平均附加应力;oj p -----荷载P 0在下卧层第j 层土产生的平均附加应力;si E -----加固区第i 层土的压缩模量,该层天然地基压缩模量的ζ倍,/spk ak f fsj E -----下卧层第j 层土的压缩模量;i h ,j h -----土的分层厚度;s-----沉降计算经验系数,《建筑地基基础设计规范》表5.3.5变形计算经验系数E(MPa)sE为变形计算深度范围内压缩模量的当量值,应该下式计算:注:sA——第层土附加应力系数沿土层度的积分值;式中iE——基础底面下第i层土的压缩模量值(MPa),桩长范围内的复合土层si按复合土层的压缩模量取值。
CFG桩计算书-自己修改完美版
一、CFG桩(正方形布置)A. 截面参数计算面积置换率m=d 2/(1.13s)2=桩径d=mm桩的间距s =d=mm面积置换率m=πd 2/(4s 2)=桩间土承载力折减系数β=处理后桩间土承载力特征值fsk=Kpa 桩的端阻力特征值qp=第1层土的深度l 1=m 桩周第1层土的侧阻力特征值q s 1=Kpa 第2层土的深度l 2=m 桩周第2层土的侧阻力特征值q s 2=Kpa 第3层土的深度l 3=m 桩周第3层土的侧阻力特征值q s 3=Kpa 第4层土的深度l 4=m 桩周第4层土的侧阻力特征值q s 4=Kpa 第5层土的深度l 5=m 桩周第5层土的侧阻力特征值q s 5=Kpa 第6层土的深度l 6=m 桩周第6层土的侧阻力特征值q s 6=Kpa 第7层土的深度l 7=m 桩周第7层土的侧阻力特征值q s 7=Kpa 第8层土的深度l 8=m桩周第8层土的侧阻力特征值q s 8=Kpa桩的截面积Ap=πd 2/4=m 2桩的周长u p=πd=m单桩竖向承载力特征值R a =u p∑q si ·l i +q p·Ap=Kpa复合地基承载力特征值fspk=m·Ra/Ap+β(1-m)·fsk=Kpa总桩长l =m1. 桩混凝土:混凝土强度等级采用 C fc u,砼 =MPafcu=f cu,砼=MPafc =MPa单桩竖向承载力特征值R a =Ap·fcu/3=Kpa ≥Kpa∴可以复合地基承载力特征值fspk=m·Ra/Ap+β(1-m)·fsk=Kpa求CFG桩桩数:需处理的基础底面积A=m 2C FG桩桩数n=m·A/Ap=根C FG桩的总体积V=n·Ap·∑l i=m 315.07.935001.2566368FALSE382.771571628.318150.125663688.617561412.58.680564000.95002.82003.1700382.77215.030540.38385单桩承载力发挥系数:30.87.212001200026桩身强度验算工作条件系数φc=Q =Ap·fc·φc=KN542.8670.6d 2/(1.13s)2==%πd 2/(4s 2)==%Kpa8.7028.7277000.087020.08727。
CFG桩基计算
1#楼CFG桩基复合地基承载力桩径0.4m桩间距 1.2m桩端端阻力1800kn/m2原地基承载力180kn/m2置换面积0.100781系数 3.141590.850.75~0.95桩面积0.1256636m2桩周长 1.256636m单桩端阻力226.19kN单桩侧麽阻力660kN单桩极限承载力886.56kN单桩特征值443.2783kN复合地基承载力493.1kN/m2总侧麽阻力桩长660.3610.00桩侧麽阻力桩周长446.117.150 1.257163.36 2.650 1.25750.890.3135 1.2570.000150 1.2570.0000 1.257混凝土强度混凝土强度c209.6N/mm2c2511.9N/mm2强度系数0.8强度系数0.8桩身强度965.096448kN桩身强度1196.317kN fcu10.582510.58252#楼CFG桩基复合地基承载力桩径0.4m桩间距 1.5m桩端端阻力1800kn/m2原地基承载力180kn/m2置换面积0.0645系数 3.141590.850.75~0.95桩面积0.1256636m2桩周长 1.256636m单桩端阻力226.19kN单桩侧麽阻力660kN单桩极限承载力886.56kN单桩特征值443.2783kN复合地基承载力370.7kN/m2总侧麽阻力桩长660.3610.00桩侧麽阻力桩周长446.117.150 1.257163.36 2.650 1.25750.890.3135 1.2570.000150 1.2570.0000 1.257混凝土强度混凝土强度c209.6N/mm2c2511.9N/mm2强度系数0.8强度系数0.8桩身强度965.096448kN桩身强度1196.317kN fcu10.582510.5825。
CFG桩设计计算
CFG桩设计计算CFG(Control Flow Graph)桩设计计算是用于软件测试中的一种辅助工具,主要用于生成代码的路径覆盖信息,以帮助测试人员确定测试用例的设计。
下面将对CFG桩设计计算进行详细的介绍。
在进行CFG桩设计计算时,首先需要对目标代码进行解析,识别出其中的控制语句。
常见的控制语句有if语句、while语句、for语句等。
然后,根据这些控制语句构建控制流图。
下面以一个简单的示例代码为例进行说明:```1. int a = 0;2. int b = 1;3. if (a == 0)4.b=b+1;5. } else6.b=b-1;7.}8. for (int i = 0; i < 10; i++)9.b=b*2;10.}```首先,对代码进行解析,识别出其中的控制语句,可以得到以下控制流图:```1->3->4->5->8->9->10↓↓↓6->7--```其中,数字表示代码行号,箭头表示代码执行的路径。
从起始节点1开始,按照代码的执行顺序,依次连接到后续的节点,直到结束节点10。
注意到根据if语句的条件,还有两条路线可以选择:从节点3到节点6然后到节点7,以及直接从节点3到节点7、这是因为条件为真和条件为假两种情况下,代码执行的路径是不同的。
通过分析控制流图,可以得到代码的路径覆盖信息。
路径覆盖是指对于给定的代码,需要测试用例覆盖所有可能的执行路径。
在这个示例中,我们可以设计以下测试用例来覆盖所有的路径:```测试用例1:a=0,此时条件为真,执行路径为1->3->4->5->8->9->10测试用例2:a=1,此时条件为假,执行路径为1->3->6->7```通过CFG桩设计计算,我们可以确定测试用例的设计,以覆盖所有可能的代码执行路径。
这有助于提高测试效果,发现潜在的代码错误和缺陷。
CFG桩单桩竖向抗压承载力特征值计算
工程名称:长动还建楼住宅小区设计依据:《复合地基技术规范》(GB/T50783-2012)1、计算CFG桩单桩竖向抗压承载力特征值(第5.2.2、14.2.6条)计算公式:Ra=Up*Σqsai*li+α*qp*ApCFG桩桩身直径D=500mm,桩端持力层为强风化泥质粉砂岩,桩端全断面进入持力层深度hr≥1.0m;有效桩长L≥6.0米。
Up=3.14*0.5=1.57(m);Ap=3.14*0.5*0.5/4=0.196(m2)取qsa1=30kPa,L1=2.0m;qsa2=50kPa,L2=3.0m;qsa3=80kPa,L2=0.5m桩端土地基承载力折减系数α=1.0,qp=800kPaRa==380+156.8=536.8(kN)取Ra=530kN2、计算CFG桩桩体强度(第5.2.2、14.2.6条)计算公式:Ra=η*fcu*Ap;fcu=Ra/(η* Ap)桩体强度折减系数η=0.33fcu=530/(0.33*0.196)=8194(kPa)=8.20MPa取fcu=20MPa3、CFG桩复合地基承载力计算(第5.2.1、14.2.5条)计算公式:fspk=βp*m*Ra/Ap+βs*(1-m)*fskβp=1.0,βs=0.7Ra=530kN,fsk=fak=220kPaD=0.5m,S=3*0.5=1.5(m),De=1.13*1.5=1.695(m)m=D*D/(De*De)=0.087fspk=1.0*0.087*530/0.196+0.7*(1-0.087)*220=235.2+140.6=375.8(kPa)取fspk=370kPa工程名称:长动还建楼住宅小区设计依据:《建筑地基处理技术规范》(JGJ 79-2012)1、计算CFG桩单桩竖向抗压承载力特征值(第7.1.5、7.7.2条)计算公式:Ra=Up*Σqsai*li+α*qp*ApCFG桩桩身直径D=500mm,桩端持力层为强风化泥岩,桩端全断面进入持力层深度hr 深度hr≥0.5m;有效桩长L≥5.5米。
CFG地基处理计算书
Xxx小区xx号住宅楼CFG桩法地基处理计算书一、设计资料1.1地基处理方法:CFG桩法1.2基础参数:基础类型:矩形基础基础长度L: 58.50m基础宽度B: 16.50m褥垫层厚度:200mm基础覆土容重:20.00kN/m31.3荷载效应组合:标准组合轴力(含基础重) F k: 313300kN准永久组合轴力(含基础重) F: 289200kN1.4桩参数:布桩形式:矩形纵向间距:1.50m,横向间距:1.50m桩长I: 8.00m,桩径d: 400mm桩间土承载力折减系数:0.75桩身混凝土抗压强度:f cu=20.00MPa单桩竖向极限承载力:900.00kN1.5地基处理设计依据《建筑地基处理技术规范》JGJ 79-2002 J220 - 2002)《建筑桩基技术规范》(JGJ 94-94) 《建筑地基基础设计规范》(GB 50007-2002 )1.6 土层参数:天然地面标高:-0.75m水位标高:-80.00m 天然地面标高质匚以--桩顶标高:-6.70m、复合地基承载力计算2.1单桩竖向承载力特征值计算当采用单桩载荷试验时,应将单桩竖向极限承载力除以安全系数 2R a =900.00/2=450.00kN由《建筑地基处理技术规范》 (JGJ 79-2002 J220-2002 )式9.2.7d e -- 一根桩分担的处理地基面积的等效圆直径 d e =1.13 ,&S 2=1.13 x J1.50 1.50=1.69m S 1、S 2--桩纵向间距、横向间距 ,S 1=1.50m 、S 2=1.502.3复合地基承载力计算由《建筑地基处理技术规范》 (JGJ 79-2002 J220-2002)式9.2.5 f spk = m 导+ -(1-m)f sk 式中:f spk --复合地基承载力特征值(kPa )A p m--面积置换率,m=5.57 :R a --单桩竖向承载力特征值 ,R a =450.00kN一桩间土承载力折减系数,:=0.75f sk --处理后桩间土承载力特征值(kPa ),取天然地基承载力特征值,f sk =170.00kPaR a 卩450.00f spk = m 兀+ :(1-m)f sk = 0.0557 0 1257+0.75 (1-0.0557) 170.00 = 319.83kPa经CFG 桩处理后的地基,当考虑基础宽度和深度对地基承载力特征值进行修正时,R a 450.00 3A P = 3 6.1257=10742.96kPa=10.74MPa 桩身混凝土抗压强度 f cu = 20.00Mpa f eu > 3A p桩身砼强度满足规范要求。