矩形的判断

合集下载

矩形的判定

矩形的判定
X
X X X
(10)一组邻边垂直,一组对边平行且相等的四边形是 )一组邻边垂直, 矩形; 矩形;
练习1 已知M ABCD的AD边的中点 边的中点, 练习1:已知M为 ABCD的AD边的中点,且 MB=MC.求证: ABCD是矩形 是矩形. MB=MC.求证: ABCD是矩形. 证明: 证明: ∵ABCD是平行四边形 是平行四边形 ∴ ∠A+ ∠D=1800 + = AB=DC = B ∵M是AD的中点 是 的中点 ∴AM=DM = ∵ MB=MC MB= ∴△BAM≌ △CDM △ ≌ ∴∠A= ∠D ∠ = A M D
A D
B 已知: 已知:在
C ABCD中,AC= BD. 中 = .
求证:四边形 是矩形. 求证:四边形ABCD是矩形. 是矩形
矩形的判定定理2: 矩形的判定定理 :
有三个角是直角的四边形是矩形. 有三个角是直角的四边形是矩形.
A D
B C 已知:在四边形ABCD中,∠A= ∠B= 已知:在四边形 中 = = ∠C=900. = 求证:四边形 是矩形. 求证:四边形ABCD是矩形. 是矩形
已知:如图.矩形ABCD的对角线 ,BD 的对角线AC, 例4 已知:如图.矩形 的对角线 相交于点O, 分别是AO, , 相交于点 ,且E,F,G,H分别是 ,BO, , , , 分别是 CO,DO的中点,求证四边形 的中点, 是矩形. , 的中点 求证四边形EFGH是矩形. 是矩形
布置作业
∴∠BGC=90° ° ∴∠ 同理可是矩形.(有三个角是直角的四边形是矩形 四边形 是矩形. 有三个角是直角的四边形是矩形) 是矩形 有三个角是直角的四边形是矩形

矩形的判定: 定义
有一个角是直角的平行四边形是矩形. 有一个角是直角的平行四边形是矩形.

矩形的判定规则

矩形的判定规则

矩形的判定规则
1. 有一个角是直角的平行四边形是矩形呀!就像有个房子,它的四个边里有两组平行的,然后其中一个角还是直角,那它肯定就是矩形呀!比如教室里的黑板框框不就是这样嘛!
2. 对角线相等的平行四边形是矩形呢!你想呀,那个图形的两对边平行,再加上对角线还一样长,这不就是矩形嘛,就好像两个一样高的人背靠背站着的那种感觉!比如咱们家里的某些窗框不就是这样嘛!
3. 有三个角是直角的四边形是矩形哟!三个角都是直角呀,那第四个角肯定也是直角啦,这不是矩形是什么呢!就好比一个桌子有四个直角的桌角一样!你说是不是呀,像一些电器的外框很多不就是这样嘛!
4. 对角线互相平分且相等的四边形那就是矩形啦!这就好像两条线是好朋友,又能平分彼此还相等,那这个四边形自然就是矩形喽!就像那种方方正正的礼品盒不就是么!
5. 四个角都相等的四边形很有可能就是矩形呀!嘿嘿,角都一样大了,还能不是矩形吗?就像几个全等的小三角形组合起来的图形!像一些盒子的盖子不就是么!
6. 相对的两个角是直角的四边形也许就是矩形哦!哇塞,都有两对直角啦,那不是矩形是什么呀!不就跟那种两边对称的图案一样嘛!像某些棋盘的格子不就是吗!
7. 对角线相等且互相平分的四边形可能就是矩形呢!哈哈,这条件多明显呀,这不是矩形才怪呢!就像那种平衡的跷跷板!比如一些大型的收纳箱的形状不就是嘛!
8. 一组对边平行且相等,同时有一个角是直角的四边形妥妥的是矩形呀!哇,既有平行又相等,还有直角,不就是矩形嘛!就像一把直直的尺子靠在一块木板边上一样!像有些门窗的边框不就是嘛!
我的观点结论就是:这些规则都很好用呀,都能帮助我们准确地判断是不是矩形呢!。

矩形的判定方法

矩形的判定方法

矩形的判定方法矩形是平面几何中最基本的图形之一,具有四条边和四个直角。

在日常生活和数学领域中,我们经常需要判定一个图形是否为矩形。

下面将介绍几种常见的矩形判定方法。

1. 边长判定法。

矩形的特点是四条边两两相等且相邻的两条边平行。

因此,我们可以通过测量图形的四条边长来判定其是否为矩形。

如果四条边两两相等且相邻的两条边平行,则可以确定这个图形是矩形。

2. 对角线判定法。

矩形的对角线相等且互相平分。

因此,我们可以通过测量图形的对角线来判定其是否为矩形。

如果两条对角线相等且互相平分,则可以确定这个图形是矩形。

3. 角度判定法。

矩形的内角都是直角,即90度。

因此,我们可以通过测量图形的内角来判定其是否为矩形。

如果图形的四个内角都是90度,则可以确定这个图形是矩形。

4. 边长和角度结合判定法。

除了单独测量边长、对角线和角度外,我们还可以将这些方法结合起来进行判定。

例如,可以先测量边长,如果边长符合矩形的特点,再测量角度,如果角度也符合矩形的特点,就可以确定这个图形是矩形。

5. 利用数学定理判定法。

在数学领域中,有一些定理可以用来判定一个图形是否为矩形。

例如,如果一个四边形的对角线互相垂直且相等,那么这个四边形就是矩形。

利用这些数学定理,可以更快速地判定一个图形是否为矩形。

总结。

通过上述几种方法,我们可以准确地判定一个图形是否为矩形。

在实际应用中,可以根据具体情况选择合适的方法进行判定,以提高工作效率。

希望本文介绍的方法能够帮助大家更好地理解矩形的判定方法,提高几何图形的识别能力。

矩形的性质和判定

矩形的性质和判定

矩形的性质和判定基础知识点1、矩形的性质和判定:定 义矩 形有一个内角是直角的平行四边形。

性质边对边平行,对边相等。

角 四个角相等,都是直角。

对角线互相平分,相等。

判定有一个角是直角的平行四边形是矩形。

有三个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

2、在直角三角形中,斜边的中线等于斜边的一半。

3、矩形是轴对称图形,对称轴是对边中点的连线所在的直线。

例题剖析例1、 已知矩形ABCD 中,AB=2BC ,点E 在边DC 上,且AE=AB ,求∠EBC 的度数.【变式练习】矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,•求证:BE=CF .【变式练习】在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD•的平行线与AB 的延长线相交于点E ,求证:△ACE 是等腰三角形.例2、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A ′位置上,折痕为DG ,AB=2,BC=1。

求AG 的长。

GA`DCBA【变式练习】如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。

EDC BAF例3、在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,•使DE=BD,连结AE,CE,求证:四边形ABCE是矩形.【变式练习】在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形。

求证:四边形ADCE是矩形。

例4、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.【变式练习】(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,当CA=CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论【变式练习】E 为□ABCD 外一点,AE ⊥CE,BE ⊥DE ,求证:□ABCD 为矩形例5、□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点, 求证:四边形EFGH 的矩形。

矩形的判定(5种题型)(解析版)

矩形的判定(5种题型)(解析版)

矩形的判定(5种题型)【知识梳理】一、矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)要点诠释:②证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.二.矩形的判定与性质(1)关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.(2)下面的结论对于证题也是有用的:①△OAB、△OBC都是等腰三角形;②∠OAB=∠OBA,∠OCB=∠OBC;③点O到三个顶点的距离都相等.【考点剖析】题型一:矩形的判定定理的理解例1.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.【变式】已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC BD⊥时,四边形ABCD是矩形C.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【答案】C【解析】C答案中,当OA=OB时,可知四边形ABCD的对角线相等,则可得平行四边形ABCD是矩形.【总结】考察矩形的证明方法.题型二:添加一个条件使四边形是矩形例2.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.【变式】(2022•前进区一模)如图,已知四边形ABCD为平行四边形,对角线AC与BD交于点O,试添加一个条件,使▱ABCD为矩形.【分析】根据对角线相等的平行四边形是矩形可添加的条件是AC=BD.【解答】解:∵AC=BD,四边形ABCD为平行四边形,∴四边形ABCD为矩形.故答案为:AC=BD.【点评】本题考查矩形的判定,熟练掌握矩形的判定方法是解决本题的关键.题型三:证明四边形是矩形例3.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC 至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.【变式1】(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC AECF是矩形?请写出证明过程.【分析】(1)由ASA证△ABE≌△CDF即可;(2)由(1)可知,∠CAE=∠ACF,则AE∥CF,再由全等三角形的性质得AE=CF,则四边形AECF是平行四边形,然后由等腰三角形的在得∠AEC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE=∠BAC,∠DCF=∠ACF=∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形的判定、全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.【变式2】(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.【分析】(1)利用平行四边形的性质,即可得到BO=OD,EO=FO,进而得出四边形BFDE是平行四边形,进而得到BE=DF;(2)先确定当OE=OD时,四边形DEBF是矩形,从而得k的值.【解答】(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =OA ,OF =OC ,∴EO =FO ,∵BO =OD ,EO =FO ,∴四边形BFDE 是平行四边形,∴BE =DF ;(2)解:当k =2时,四边形DEBF 是矩形;理由如下:当BD =EF 时,四边形DEBF 是矩形,∴当OD =OE 时,四边形DEBF 是矩形,∵AE =OE ,∴AC =2BD ,∴当k =2时,四边形DEBF 是矩形.【点评】本题主要考查了平行四边形的判定与性质,矩形的判定,注意对角线互相平分的四边形是平行四边形.题型四:矩形的性质与判定求线段长 例4.(2022秋·广东佛山·九年级校考阶段练习)如图,在ABCD Y 中,AE BC ⊥于点E ,延长BC 至点F ,使CF E =,连接DF ,AF 与DE 交于点O .(1)求证:四边形AEFD 为矩形;(2)若3AB =,2OE =,5BF =,求DF 的长.【答案】(1)见解析 (2)125【分析】(1)根据线段的和差关系可得BC EF =,根据平行四边形的性质可得AD ∥BC ,AD BC =,即可得出AD EF =,可证明四边形AEFD 为平行四边形,根据AE BC ⊥即可得结论;(2)根据矩形的性质可得AF DE =,可得BAF 为直角三角形,利用“面积法”可求出AE 的长,即可得答案.【详解】(1)BE CF =,BE CE CF CE ∴+=+,即BC EF =, ABCD 是平行四边形,AD ∴∥BC ,AD BC =,AD EF ∴=, AD ∥EF ,∴四边形AEFD 为平行四边形,AE BC ⊥,90AEF ∴∠=︒,∴四边形AEFD 为矩形.(2)四边形AEFD 为矩形,AF DE ∴=,DF AE =,2OE =,∴4DE =,∵3AB =,5BF =,∴222AB AF BF +=,BAF ∴为直角三角形,90BAF ∠=︒,∴1122ABFS AB AF BF AE=⨯=⨯,∴125 AE=,∴125 DF AE==.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.【变式】如图,平行四边形ABCD中P是AD上一点,E为BP上一点,且AE=BE=EP.(1)求证:四边形ABCD是矩形;(2)过E作EF⊥BP于E,交BC于F,若BP=BC,S△BEF=5,CD=4,求CF.【答案】(1)证明:AE=BE=EP,∴∠EAB=∠EBA,∠EAD=∠EPA,∵∠ABE+∠EAB+∠EAP+∠APE=180°,2∠EAB+2∠EAP=180°,∴∠EAB+∠EAP=90°,∴∠BAD=90°,∵平行四边形ABCD∴四边形ABCD为矩形;(2)解:如图连接PF,作PM⊥BC于M,EN⊥BC于N,∵四边形ABCD为矩形,∴∠C=∠D=∠PMC=90°,∴四边形PMCD为矩形,同理四边形ABMP为矩形,∴PM=CD=4,∠PMC=∠PMF=90°,∵BE=EP,EN∥PM,∴BN=NM ,∴EN=12PM=2, ∵12·BF ·EN=5,∴BF=5,∵EF ⊥BP ,BE=EP∴PF=BF=5,∴FM=3,∴AP=BM=8,∴BC=BP=∴CF=BC-BF=.题型五:矩形的性质与判定求面积例5.(2022•云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°.(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .【分析】(1)由四边形ABCD 是平行四边形,得∠BAE =∠FDE ,而点E 是AD 的中点,可得△BEA ≌△FED (ASA ),即知EF =EB ,从而四边形ABDF 是平行四边形,又∠BDF =90°,即得四边形ABDF 是矩形;(2)由∠AFD =90°,AB =DF =3,AF =BD ,得AF ===4,S 矩形ABDF =DF •AF =12,四边形ABCD 是平行四边形,得CD =AB =3,从而S △BCD =BD •CD =6,即可得四边形ABCF 的面积S 为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.【变式1】已知ABCD 的对角线AC ,BD 相交于O ,△ABO 是等边三角形,AB =4,求这个平行四边形的面积.【答案】 解: ∵四边形ABCD 是平行四边形.∴△ABO ≌△DCO又∵△ABO 是等边三角形∴△DCO 也是等边三角形,即AO =BO =CO =DO∴AC =BD∴ ABCD 为矩形.∵AB =4,AC =AO +CO∴AC =8在Rt △ABC 中,由勾股定理得:BC =∴矩形ABCD 的面积为:AB BC =16 【变式2】(2023春·江苏南京·九年级统考期中)如图,O 为矩形ABCD 的对角线AC 的中点,过O 作EF AC ⊥分别交AD ,BC 于点E ,F .(1)求证:四边形AFCE 是菱形.(2)若6AB =,12BC =,求菱形AFCE 的面积.【答案】(1)见解析(2)45【分析】(1)先根据矩形的性质可得OA OC =,AD BC ∥,再根据ASA 定理证出AOE COF ≌,根据全等cm cm cm cm 2cm三角形的性质可得OE OF =,然后根据菱形的判定即可得证;(2)设菱形AFCE 的边长为x ,则12BF x =−,在Rt ABF 中,利用勾股定理求出x 的值,然后根据菱形的面积公式即可得.【详解】(1)证明:四边形ABCD 是矩形,∴OA OC =,AD BC ∥,OAE OCF ∴∠=∠,∵O 为矩形ABCD 的对角线AC 的中点,∴OA OC =,在AOE △和COF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AOE COF ∴≌, OE OF ∴=,∴四边形AECF 是平行四边形,又EF AC ⊥,∴四边形AECF 是菱形.(2)解:四边形ABCD 是矩形,90ABC ∴∠=︒,设菱形AFCE 的边长为x ,则AF CF x ==,12BC =,12BF BC CF x ∴=−=−,在Rt ABF 中,222AB BF AF +=,即()222612x x +−=,解得7.5x =, 7.5CF ∴=,则四边形AFCE 的面积为7.5645CF AB ⋅=⨯=.【点睛】本题考查了矩形的性质、菱形的判定与性质、勾股定理等知识点,熟练掌握菱形的判定与性质是解题关键.【过关检测】一、单选题 1.(2023·河北邯郸·统考模拟预测)如图,在四边形ABCD 中,给出部分数据,若添加一个数据后,四边形ABCD 是矩形,则添加的数据是( )A .4CD =B .2CD =C .2OD = D .4OD =【答案】D 【分析】根据对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形即可得到答案.【详解】解:当4OD =时,由题意可知,4AO CO ==,4BO DO ==,∴四边形ABCD 是平行四边形,∵8AC BD ==,∴四边形ABCD 是矩形,故选:D【点睛】此题考查了矩形的判定,熟练掌握矩形的判定方法是解题的关键.2.(2023·浙江湖州·统考模拟预测)如图,在Rt △ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,则四边形CEDF 的面积是( )A .6B .12C .24D .48【答案】B【分析】利用三角形的中位线定理,先证明四边形DECF 是矩形,再利用矩形的面积公式进行计算即可. 【详解】解: 点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,11//,3,//,4,22DE BC DE BC DF AC DF AC ∴====∴ 四边形DECF 是平行四边形,90,C ∠=︒∴ 四边形DECF 是矩形,3412.DECF S ∴=⨯=矩形故选:.B【点睛】本题考查的是三角形的中位线的性质,矩形的判定与性质,掌握利用三角形的中位线证明四边形是平行四边形是解题的关键. A .3B .【答案】A 【分析】连接AC ,由菱形的性质可证ABC 和ACD 是等边三角形,从而求得2AC =,根据点E 、F 是AB 、CD 的中点可得CE AB ⊥,AF CD ⊥,进而证明四边形AECF 是矩形,再利用勾股定理求出=EC 即可求出结果.【详解】解:连接AC ,∵四边形ABCD 是菱形,ABC ∠︒=60,2AB =,==60B D ∴∠∠︒ ,====2AB BC CD AD ,==120BAD BCD ∠∠︒,==60BAC BCA ∴∠∠︒,==60DAC DCA ∠∠︒,∴ABC 和ACD 是等边三角形,2AC AB ==,∵点E 、F 是AB 、CD 的中点,CE AB ∴⊥,AF CD ⊥,==30CAF ACE ∠∠︒,==90BAF DCE ∴∠∠︒,∴四边形AECF 是矩形, 1==12AE AB ,∴在Rt AEC 中,EC∴矩形AECF 的面积为:=1AE EC ⨯故选:A .【点睛】本题考查了菱形的性质、矩形的判定和性质及等边三角形的判定和性质和勾股定理,熟练运用相关知识,正确作出辅助线是解题的关键. A .232−B .2【答案】C 【分析】根据矩形的性质得出AD BC ∥,得出DEC BCE ∠=∠,证明45ABE AEB ∠==︒,得出2AB AE ==,根据勾股定理求出BE =【详解】解:∵四边形ABCD 是矩形,∴AD BC ∥,∴DEC BCE ∠=∠,∵EC 平分DEB ∠,∴DEC BEC ∠=∠,∴BEC ECB ∠=∠,∴BE BC =,∵四边形ABCD 是矩形,∴90A ∠=︒,∵=45ABE ∠︒,∴45ABE AEB ∠=∠=︒,∴2AB AE ==.∵由勾股定理得:BE ===,∴BC BE ==∴2DE AD AE BC AB =−=−=,故选:C .【点睛】本题主要考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键. 5.(2023·江苏无锡·校考一模)如图,ABCD Y 的对角线AC 与BD 相交于点O ,添加下列条件不能证明ABCD Y 是菱形的是( )A .ABD ADB ∠=∠ B .AC BD ⊥C .AB BC =D .AC BD =【答案】D 【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【详解】解:A 、∵ABD ADB ∠=∠,∴AB AD =,∴ABCD Y 是菱形,故选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴ABCD Y 是菱形,故选项不符合题意;C 、∵四边形ABCD 是平行四边形,AB BC =,∴ABCD Y 是菱形,故选项不符合题意,D 、∵四边形ABCD 是平行四边形,AC BD =,∴ABCD Y 是矩形,故选项符合题意;故选:D .【点睛】本题考查了菱形的判定、矩形的判定,熟练掌握菱形的判定方法是解题的关键.【答案】C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A 、一组对角相等的平行四边形不一定是矩形,是假命题,不符合题意;B 、对角线相等且平分的四边形是矩形,是假命题,不符合题意;C 、顺次连接菱形四边中点得到的四边形是矩形,是真命题,符合题意;如图所示,在菱形ABCD 中,E F G H 、、、分别是AB BC CD AD 、、、的中点,∴EH 是ABD △的中位线,∴12EH BD EH BD =,∥,同理得111222EF AC EF AC FG BD GH AC ===,∥,,, ∴EH FG EF GH ==,,∴四边形EFGH 是平行四边形,∵四边形ABCD 是菱形,∴AC BD ⊥,∴EH EF ⊥,∴四边形EFGH 是矩形;D 、对角线相等的四边形不一定是矩形,也有可能是等腰梯形,是假命题,不符合题意;故选C .【点睛】本题主要考查了判断命题真假,矩形的判定,熟知矩形的判定定理是解题的关键.【答案】C【分析】连接CM ,先证四边形PCQM 是矩形,得PQ CM =,再由勾股定理得3BD =,当CM BD ⊥时,CM 最小,则PQ 最小,然后由面积法求出CM 的长,即可得出结论.【详解】解:如图,连接CM ,MP CD ⊥于点P ,MQ BC ⊥于点Q ,90CPM CQM ∴∠=∠=︒,四边形ABCD 是矩形,6BC AD ∴==,8CD AB ==,90BCD ∠=︒,∴四边形PCQM 是矩形,PQ CM ∴=,由勾股定理得:10BD ==,当CM BD ⊥时,CM 最小,则PQ 最小, 此时,1122BCD S BD CM BC CD =⋅=⋅△, 即11106822CM ⨯⨯=⨯⨯,245CM ∴=, PQ ∴的最小值为245,故选:C .【点睛】勾股定理、垂线段最短以及三角形面积等知识,熟练掌握矩形的判定与性质是解题的关键. 8.(2023·山东德州·统考二模)如图,矩形ABCD 中,6AB =,4=AD ,点E ,F 分别是AB ,DC 上的动点,EF BC ∥,则BF DE +最小值是( )A .13B .10C .12D .5【答案】B 【分析】延长AD ,取点M ,使得AD DM =,连接MP ,根据全等三角形的判定得到ADE DMF ≌,得到DE MF =,故当B ,F ,M 三点共线时,BF DE +的值最小,即为BM 的值.【详解】延长AD ,取点M ,使得AD DM =,连接MP ,如图∵EF BC ∥,四边形ABCD 是矩形∴四边形AEFD 和四边形EBCF 是矩形∵AD DM =,AE DF =,90EAD FDM ==︒∠∠∴ADE DMF ≌∴DE MF =∴=BF DE BF FM ++∵点E ,F 分别是AB ,DC 上的动点故当B ,F ,M 三点共线时,BF DE +的值最小,且BF DE +的值等于BM 的值在Rt BAM △中,10BM ===故选:B . 【点睛】本题考查了矩形的判定和性质,全等三角形的判定和性质,勾股定理等,做出辅助线,构建DMF 使得ADE DMF ≌是解决本题的关键.二、填空题 9.(2023·甘肃武威·统考三模)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____.【答案】6.【分析】首先结合矩形的性质证明△AOE ≌△COF ,得△AOE 、△COF 的面积相等,从而将阴影部分的面积转化为△BCD 的面积.【详解】∵四边形ABCD 是矩形,∴OA =OC ,∠AEO =∠CFO ;又∵∠AOE =∠COF ,在△AOE 和△COF 中,∵AEO CFO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,∴S 阴影=S △AOE+S △BOF+S △COD =S △AOE+S △BOF+S △COD =S △BCD ;∵S △BCD =12BC•CD =6,∴S 阴影=6.故答案为6.【点睛】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.【答案】AE BC ⊥(答案不唯一)【分析】根据矩形的判定方法即可求解.【详解】解:菱形ABCD ,BE DF =,∴AD DF BC BE −=−,即CE AF =,且AF CE =,∴四边形AECF 是平行四边形,根据矩形的判定,①四边形AECF 是平行四边形,AE BC ⊥,∴90AEC ∠=︒,平行四边形AECF 是矩形;②四边形AECF 是平行四边形,若CF AD ⊥,∴90AFC ∠=︒,平行四边形AECF 是矩形;故答案为:AE BC ⊥(答案不唯一).【点睛】本题主要考查矩形,掌握矩形的判定方法是解题的关键. 11.(2023春·吉林·八年级期中)如图,在ABCD Y 中AC BD 、相交于点O ,8AC =,当OD =______时,ABCD Y 是矩形.【答案】4【分析】根据矩形的判定与性质即可解答.【详解】解:四边形ABCD 为平行四边形,∴要使四边形ABCD 为矩形,则8BD AC ==,142OD BD ∴==,故答案为:4.【点睛】本题主要考查了矩形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解题的关键.12.(2023·江苏徐州·统考一模)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A′B′C′=S △ABC ,BC=B′C′,BC ∥B′C′,∴四边形B′C′CB 为平行四边形,∵BB′⊥BC ,∴四边形B′C′CB 为矩形,∵阴影部分的面积=S △A′B′C′+S 矩形B′C′CB-S △ABC=S 矩形B′C′CB=4×2=8(cm2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【答案】14【分析】有矩形的性质和勾股定理分别求出EJ FJ =AK BK ==【详解】解:在矩形ABCD 中,∵4590BAF ABF ∠=︒∠=︒,,∴45454ABG AFB AB BF ∠=︒∠=︒==,,,∵6BC =,∴2BE CF AH DG ====,∴2HG EF ==,∴EJ FJ =∵4AB =,∴AK BK ===∴(24614S ⎡⎤=⨯−=⎢⎥⎣⎦阴影.故答案为:14.【点睛】本题主要考查矩形的性质、勾股定理,掌握相关知识并理解题意是解题的关键. 统考一模)如图,ABC 的边,将ABC 平移得到A B C ''',且 【答案】62【分析】利用平行的性质可得2BB CC ''==,BC B C ''==A ABC B C '''≌△△,利用两组对边分别相等的四边形是平行四边形,可证四边形BCC B ''是平行四边形,同时可证得ABC A B C S S '''=△△,再证明四边形BCC B ''是矩形,由此可得阴影部分的面积等于矩形BCC B ''的面积,然后利用矩形的面积公式进行计算.【详解】解:∵将ABC 平移2cm 得到A B C ''',∴2BB CC ''==,BC B C ''==A ABC B C '''≌△△, ∴四边形BCC B ''是平行四边形,∵BB BC '⊥,90B BC ∴='∠︒,∴四边形BCC B ''是矩形,∴22BCC B S S ''==⨯=阴影,故答案为:【点睛】本题考查了平移的性质、平行四边形的判定与性质、矩形的判定与性质,熟练掌握平移的性质,证明四边形BCC B ''是矩形是解题的关键.三、解答题 分别是ABC 各边的中点. 请你为ABC 添加一个条件,使得四边形【答案】(1)四边形ADEF 为平行四边形,证明见解析(2)90DAF ∠=︒,四边形ADEF 为矩形,证明见解析【分析】(1)根据三角形中位线定理得到DE AC EF AB ∥,∥,根据平行四边形的判定定理证明结论;(2)根据矩形的判定定理证明.【详解】(1)解:四边形ADEF 为平行四边形,理由如下:∵D ,E ,F 分别是ABC 各边的中点,∴DE AC EF AB ∥,∥,∴四边形ADEF 是平行四边形;(2)90DAF ∠=︒,四边形ADEF 为矩形,理由如下:由(1)得:四边形ADEF 为平行四边形,又∵90DAF ∠=°,∴平行四边形ADEF 是矩形.【点睛】本题考查的是三角形中位线定理、平行四边形和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. (1)求证:四边形ABCF (2)若ED EC =,求证:【答案】(1)见解析(2)见解析【分析】(1)根据,AB DC FC AB =∥,可得四边形ABCF 是平行四边形,再由90BCD ∠=︒,即可求证;(2)根据四边形ABCF 是矩形,90AFD AFC ∠=∠=︒,从而得到90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠,再由ED EC =,可得D ECD ∠=∠,从而得到DAF CGF ∠=∠,进而得到EAG EGA ∠=∠,即可求证.【详解】(1)证明:∵,AB DC FC AB =∥,∴四边形ABCF 是平行四边形.∵90BCD ∠=︒,∴四边形ABCF 是矩形.(2)证明:∵四边形ABCF 是矩形,∴90AFD AFC ∠=∠=︒,∴90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠.∵ED EC =,∴D ECD ∠=∠.∴DAF CGF ∠=∠.∵EGA CGF ∠=∠,∴EAG EGA ∠=∠.∴EA EG =.【点睛】本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的判定和性质,等腰三角形的判定和性质是解题的关键.【答案】见解析【分析】首先证明四边形ABCD 是平行四边形,得出OA OC =,OB OD =,根据OA OD =,得出AC BD =,即可证明.【详解】解:证明:∵AB CD =,AB CD ∥,∴四边形ABCD 为平行四边形,∴OA OC =,OB OD =.又∵OA OD =,∴AC BD =,∴平行四边形ABCD 为矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质;熟练掌握矩形的判定是解题的关键. 18.(2023·湖北恩施·统考二模)如图,在平行四边形ABCD 中,对角线,BD AC 相交于点,,O AE BD BF AC ⊥⊥,垂足分别为,E F .若CF DE =,求证:四边形ABCD 为矩形.【答案】见解析【分析】利用HL 证明ADE BCF ≌,得出AE BF =,利用AAS 证明AOE BOF △≌△,得出AO BO =,结合平行四边形的性质可得出AC BD =,然后利用矩形的判定即可证明.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,2AC AO =,2BD BO =,∵,AE BD BF AC ⊥⊥,∴90AED AEO BFC BFO ∠=∠=∠=∠=︒,又CF DE =∴()Rt Rt HL ADE BCF ≌,∴AE BF =,又AOE BOF ∠=∠,∴()AAS AOE BOF ≌,∴AO BO =,又2AC AO =,2BD BO =,∴平行四边形ABCD 是矩形.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,矩形的判定等知识,证明AO BO =是解题的关键. 19.(2023·湖南岳阳·模拟预测)如图所示,ABC 中,D 是BC 中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .请从以下三个条件:①AB AC =;②FB AD =;③E 是AD 的中点,选择一个合适作为已知条件,使四边形AFBD 为矩形.(1)你添加的条件是 ;(填序号)(2)添加条件后,请证明四边形AFBD 为矩形.【答案】(1)①(2)见解析【分析】(1)根据已知可得四边形AFBD 是平行四边形,添加条件能证明四边形是矩形即可求解;(2)先证明四边形AFBD 是平行四边形,①根据三线合一得出AD BD ⊥,能证明四边形是矩形;②只能证明四边形为平行四边形;③证明AFE DCE △≌△,可得AF DC =,进而根据已知得出BD AF =,不能证明四边形是矩形.【详解】(1)解:添加的条件是①故答案为:①.(2)证明:∵AF BC ∥,AF BD =,∴四边形AFBD 是平行四边形,①AB AC =;∵ABC 中,D 是BC 中点,∴四边形AFBD 是矩形;②添加FB AD =;四边形AFBD 是平行四边形,不能证明四边形AFBD 是矩形;③E 是AD 的中点∴AE DE =,∵AF BC ∥,∴FAE DCE ∠=∠,又AEF DEC ∠=∠,∴()AAS AFE DCE ≌,∴DC AF =,又BD CD =,∴BD AF =,∴③不能证明四边形AFBD 是矩形.【点睛】本题考查了矩形的判定,熟练掌握矩形的判定定理是解题的关键. (1)求证:四边形OCED 是矩形;(2)设AC =12,BD =16,求OE 的长.【答案】(1)见解析(2)10【分析】(1)先证明平行四边形ABCD 为菱形,可得AC BD ⊥,通过CE BD ∥,DE AC ∥证明四边形OCED 为平行四边形,结合AC BD ⊥即可证明;(2)由(1)可得平行四边形ABCD 为菱形,故12OC AO AC ==,12OB DO BD ==,结合四边形OCED 是矩形,运用勾股定理即可求得OE 的长. 【详解】(1)∵四边形ABCD 为平行四边形,AB BC =,∴平行四边形ABCD 为菱形,∴AC BD ⊥,∵CE BD ∥,DE AC ∥,∴四边形OCED 为平行四边形,又∵AC BD ⊥,∴四边形OCED 为矩形.(2)∵=12AC ,16BD =, ∴162OC AC ==,182DO BD ==,在Rt COD 中,10CD =,由(1)知四边形OCED 为矩形,∴10OE CD ==.【点睛】本题考查了菱形的判定和性质,矩形的判定和性质,勾股定理等,熟练掌握四边形的判定和性质是解题的关键. 21.(2023·湖南长沙·校考二模)如图,平行四边形ABCD 中,AC BC ⊥,过点D 作∥DE A C 交BC 的延长线于点E ,点M 为AB 的中点,连接CM .(1)求证:四边形ADEC 是矩形;(2)若5CM =,且8AC =,求四边形ADEB 的周长.【答案】(1)证明见解析(2)36【分析】(1)根据平行四边形的性质得到AD BC ∥,由∥DE A C 即可证明四边形ADEC 是平行四边形,再由AC BC ⊥即可证明平行四边形四边形ADEC 是矩形;(2)先根据直角三角形斜边上的中线等于斜边的一半求出10AB =,进而利用勾股定理求出6BC =,再利用平行四边形的性质得到6AD =,由此即可利用矩形周长公式求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∵∥DE A C , ∴四边形ADEC 是平行四边形,∵AC BC ⊥,即A C C E ⊥,∴平行四边形四边形ADEC 是矩形;(2)解:∵AC BC ⊥,点M 为AB 的中点,5CM =,∴210AB CM ==,在Rt ABC △中,由勾股定理得6BC ==, ∵四边形ABCD 是平行四边形,四边形ADEC 是矩形∴6AD BC CE ===,8DE AC ==∴四边形ADEB 的周长68661036AD DE CE CB AB =++++=++++=.【点睛】本题主要考查了矩形的性质与判定,平行四边形的性质与判定,勾股定理,直角三角形斜边上的中线的性质,熟知矩形的性质与判定定理是解题的关键. 22.(2023·山东济南·统考三模)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,DF ⊥AC 于点F . 求证:AE =DF .【答案】见解析【分析】根据矩形的性质得到OA =OC =OB =OD ,再根据AE ⊥BD ,DF ⊥AC 得出∠AEO =∠DFO ,从而证明出△AOE ≌△DOF 即可.【详解】证明:∵四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,∴OA =OC =OB =OD ,∵AE ⊥BD ,DF ⊥AC ,∴∠AEO =∠DFO =90°,在△AOE 和△DOF 中,AEO DFO AOE DOFAO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△DOF (AAS ),∴AE =DF .【点睛】本题主要考查矩形的性质和三角形全等的判定与性质,解题关键是找到全等三角形,熟练运用全等三角形的判定进行证明. 八年级北京交通大学附属中学校考期中)如图,在ABC 中,点(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形【答案】(1)证明见解析(2)2【分析】(1)连接DE ,先根据三角形的中位线的性质证明四边形ADFE 是平行四边形,再根据对角线相等的平行四边形是矩形证明即可;(2)根据矩形的性质得出90BAC FEC ∠=∠=︒,再根据直角三角形斜边上的中线等于斜边的一半得出4BC =,2CF =,然后解直角三角形求出矩形的边长即可得出矩形的周长.【详解】(1)连接DE ,如图,∵点E ,F 分别是边AC ,BC 的中点,∴EF AB ∥,12EF AB =.∵点D 是边AB 的中点, ∴12AD AB =.∴AD EF =.∴四边形ADFE 是平行四边形.∵点D ,E 分别是边AB ,AC 的中点, ∴12DE BC =. ∵2BC AF =,∴AF DE =.∴平行四边形ADFE 是矩形.(2)∵四边形ADFE 为矩形,∴90BAC FEC ∠=∠=︒.∵2AF =,点F 是边BC 的中点,∴24BC AF ==,2CF AF ==.∵30C ∠=︒,∴1EF =,CE∴AE CE ==∴矩形ADFE 的周长为:())2212AE EF +==.【点睛】本题主要考查了矩形的判定和性质,三角形的中位线的性质,直角三角形的性质以及解直角三角形,熟练掌握矩形的判定和性质是解题的关键.。

矩形的判定

矩形的判定
A O B C D
求证: 四边形ABCD是矩形 证明: 在 ABCD中, AB=DC,BD=CA,AD=DA。 所以△BAD≌△CDA(SSS)。
所以∠BAD=∠CDA。 因为AB∥CD, 所以∠BAD=90°。 所以∠BAD +∠CDA=180°。 所以四边形ABCD是矩形(有一个内角是直角的平行四边 形是矩形)
∴四边形EFGH是矩形(对角线相等的 平行四边形是矩形)。
变式一: 已知:如图,矩形ABCD的对角线AC、BD相 交于点O,E、F、G 、 H分别是AO 、BO 、 CO 、 DO上的一点 ,且AE=BF=CG=DH. 求证:四边形EFGH是矩形
A E H D
O F B G C
找一找 如图,四边形ABCD的对角线相交于点O, 给出下列条件:①AB∥CD ②AB=CD ③ AC=BD ④∠ABC=90°⑤OA=OC ⑥OB=OD 请从这6个条件中选取3个,使四边形ABCD是矩 形,并说明理由. 可以说明平行四边形的有: ①② ⑤⑥ ①⑤ ①⑥ ①②③ ①②④ ⑤⑥③ ①⑤③ ①⑥③ ⑤⑥④ ①⑤④ ①⑥④
练习1: 如果平行四边形四个内角的平分线能够围 成一个四边形,那么这个四边形是矩形. 已知:如图, ABCD的四个内角的 平分线分别相交于E、F、G、H, 求证:四边形 EFGH为矩形. 证明:因为AB∥CD, 所以∠ABC+∠BCD=180°。 因为BG平分∠ABC,CG平分∠BCD, 1 1 所以∠GBC= 2 ∠ABC,∠GCB= 2 ∠DCB。 1 所以∠GBC + ∠GCB = 2 ×180°=90 ° .
所以∠BGC=90°。 同理可证∠AFB=∠AED=90°. 所以四边形EFGH是矩形 (有三个角是直角的四边形是矩形)
例 2 已知:如图.矩形ABCD的对角线AC、BD 相交于点O,且E、F、G、H分别是AO、BO、 CO、DO的中点,求证四边形EFGH是矩形.

矩形的性质及判定

矩形的性质及判定

E D C B A A BC D F ED C BA 矩形性质和判定一、知识要点1.定义:有一个角是直角的 叫做矩形(通常也叫长方形)。

2.性质:矩形的特有性质:(1)矩形的四个角都是 ;(2)矩形的对角线 。

规律总结:矩形的性质:(从边、角、对角线三个方面总结出矩形的性质)(1)对边平行且相等;(2)四个角都是直角;(3)对角线相等且互相平分。

矩形是轴对称图形,它有 对称轴。

3.判定:(1)定义:有一个角是直角的平行四边形是矩形。

(2)有三个角都是直角的四边形是矩形。

(3)对角线相等的平行四边形是矩形。

(也可以表述成“对角线互相平分且 的四边形是矩形”)。

4、直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.二、例题讲解1.矩形的性质例1.如图所示,矩形ABCD 的两条对角线相交于点O ,图中有_______个直角三角形,•有 个等腰三角形.例2.矩形的两条邻边分别是5、2,则它的一条对角线的长是______.例3.如图所示,矩形ABCD 的两条对角线相交于点O ,若∠AOD=60°,OB=•4,•则DC=________.例4.矩形ABCD 的周长为56,对角线AC ,BD 交于点O ,△ABO 与△BCO 的周长差为4,•则AB 的长是( )A .12B .22C .16D .26例5.如图,有一矩形纸片ABCD ,106AB AD ==,,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,在将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为例6.如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EF C A BC D B A 例7.如图所示,在矩形ABCD 中,AB=8,AD=10,将矩形沿直线AE 折叠,顶点D 恰好落在BC 边上的点F 处,求CE 的长.例8.如图所示,在矩形ABCD 中,对角线AC ,BD 交于点O ,过顶点C 作CE ∥BD ,交A•孤延长线于点E ,求证:AC=CE .例9.已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥2.矩形的判定例1.在坐标系中,A (-2,0),B (-2,3),C (3,0),若使以点A ,B ,C ,D 为顶点的四边形是矩形,则符合条件的点D 的坐标是________.例2.若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( )A .一般平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .矩形例3.如图所示,在四边形ABCD 中,∠A=∠ABC=90°,BD=CD ,E 是BC 的中点,求证:•四边形ABED 是矩形.例4.如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.A B C E FDM C D B A NM F ED C B A 例5.如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.例6.如图,在ABC ∆中,AB AC =,AD 是BC 边上的高,AF 是BAC ∠的外角平分线,DE ∥AB 交AF 于E ,试说明四边形ADCE 是矩形.例7.如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!321F E D C B A。

矩形判定方法

矩形判定方法

矩形判定方法矩形是一种常见的几何图形,具有四条边和四个角,其特点是对角线相等且相互平行。

在日常生活和工程设计中,我们经常需要对矩形进行判定和识别。

下面将介绍几种常见的矩形判定方法。

首先,我们可以通过矩形的特征来进行判定。

矩形的特征包括四条边相互平行且长度相等,对角线相等,四个角均为直角。

因此,我们可以通过测量四条边和两条对角线的长度,以及角度的大小来判断一个图形是否为矩形。

如果满足上述条件,则可以确定该图形为矩形。

其次,我们可以通过矩形的性质来进行判定。

矩形具有一些独特的性质,如对角线相等,相邻角互补,对边相等等。

因此,我们可以通过利用这些性质来进行矩形的判定。

例如,如果一个四边形的对角线相等且相互平行,那么可以判定该四边形为矩形。

另外,我们还可以通过矩形的边界特征来进行判定。

矩形具有四条相互平行的边界,因此我们可以通过检测图形的四条边界是否平行来进行判定。

如果四条边界都是平行的,那么可以初步判断该图形可能是矩形。

接着,我们可以再通过测量对角线长度和角度的大小来进一步确定是否为矩形。

除了以上方法,我们还可以利用计算机视觉技术来进行矩形的判定。

通过图像处理和模式识别算法,可以对输入的图像进行特征提取和形状分析,从而判断图像中是否包含矩形。

这种方法在工业自动化和智能识别领域有着广泛的应用。

总的来说,矩形的判定方法多种多样,我们可以根据具体的应用场景和需求来选择合适的方法。

在实际应用中,我们可以结合多种方法来进行判定,以提高判定的准确性和鲁棒性。

希望以上介绍的方法能够对大家有所帮助,谢谢阅读!。

矩形的性质与判定

矩形的性质与判定

矩形的性质与判定矩形作为几何形体中的一种,具有其独特的性质与判定方法。

在本文中,我们将探讨矩形的定义、性质以及如何准确判断一个图形是否为矩形。

一、矩形的定义矩形是一种特殊的四边形,它的四个内角均为直角。

矩形的定义可以简洁地表达为:具有四条边且四个内角均为直角的四边形即为矩形。

二、矩形的性质矩形具有以下性质,对于认识矩形的形态和特点非常重要。

1. 边长性质:矩形的相对边长相等,即相对边对应的长度相等。

2. 对角线性质:矩形的对角线相等,即矩形的两条对角线长度相等。

3. 对称性质:矩形具有对称性,即以矩形的任意一条对角线为对称轴,两侧的部分完全相同。

4. 垂直性质:矩形的边两两相交成直角,即任意两边之间的夹角为90度。

5. 平行性质:矩形的相对边平行,即相对的两条边永远平行。

三、矩形的判定如何准确判断一个图形是否为矩形?下面将介绍两种常见的判定方法。

1. 边长判定法:若一个四边形的四条边两两相等,且任意两相邻边夹角为直角,则该四边形是矩形。

例如,若四边形ABCD的边长满足AB=BC=CD=DA,且∠BAD=∠ABC=∠BCD=∠CDA=90°,那么四边形ABCD就是矩形。

2. 对角线判定法:若一个四边形的对角线互相垂直且长度相等,则该四边形是矩形。

例如,若四边形EFGH的对角线EG和FH互相垂直且长度相等,那么四边形EFGH就是矩形。

四、矩形的应用矩形在现实生活中有着广泛的应用。

以下是矩形应用的几个典型例子:1. 建筑设计:在建筑设计中,矩形是常见的几何形状之一。

例如,房屋的窗户、门洞等往往是矩形的形状。

2. 电子屏幕:计算机显示屏、电视屏幕等常常采用矩形的形状,这是因为矩形易于制造和布局,并且能够满足人眼对图像的需求。

3. 图像处理:在图像处理领域,矩形是图像的基本元素之一。

很多图像处理算法和技术都是基于矩形的性质和特点进行设计和实现的。

五、总结矩形作为一种特殊的四边形,在几何学中具有重要的地位。

矩形的判定方法

矩形的判定方法

矩形的判定方法矩形是几何学中常见的形状,具有四条边和四个角的特点。

在日常生活和数学问题中,我们经常需要判定一个图形是否为矩形。

下面将介绍几种判定矩形的方法。

1. 边长判定法。

矩形的特点是对角线相等且相互平分。

因此,我们可以通过判断四条边的长度是否符合这一特点来判定一个图形是否为矩形。

如果一个图形的对角线长度相等且相互平分,那么这个图形就是矩形。

2. 角度判定法。

矩形的特点是四个角都是直角。

因此,我们可以通过判断一个图形的四个角是否都是直角来判定这个图形是否为矩形。

如果一个图形的四个角都是直角,那么这个图形就是矩形。

3. 对角线判定法。

矩形的特点是对角线相等且相互平分。

因此,我们可以通过判断一个图形的对角线是否相等且相互平分来判定这个图形是否为矩形。

如果一个图形的对角线长度相等且相互平分,那么这个图形就是矩形。

4. 对边平行判定法。

矩形的特点是相对边两两平行且相等。

因此,我们可以通过判断一个图形的相对边是否都是平行且相等来判定这个图形是否为矩形。

如果一个图形的相对边都是平行且相等,那么这个图形就是矩形。

5. 综合判定法。

除了以上几种方法外,我们还可以综合运用边长、角度、对角线和对边平行等多种特征来判定一个图形是否为矩形。

通过综合判定法,我们可以更加准确地判断一个图形是否为矩形。

总结。

矩形是一种常见的几何图形,判定一个图形是否为矩形可以通过边长、角度、对角线和对边平行等多种方法来进行。

在实际问题中,我们可以根据具体情况选择合适的判定方法来判断一个图形是否为矩形,从而更好地解决问题。

通过以上介绍,相信大家对矩形的判定方法有了更深入的了解。

希望这些方法能够帮助大家更好地理解和应用矩形的相关知识。

矩形的判定和性质

矩形的判定和性质

矩形的性质和判定一、基础知识(一)矩形的定义有一个内角为直角的平行四边形叫做矩形。

(二)矩形的性质:1.矩形具有平行四边形的一切性质;2.矩形的对角线相等;3.矩形的四个角都是900; 4.矩形是轴对称图形;边 角 对角线 对称性 矩形对边平行且相等四个角都是直角互相平分且相等轴对称,中心对称(三)矩形的判定:1.有一个角是直角的平行四边形是矩形;2.对角线相等的平行四边形是矩形;3.有三个角是直角的四边形是矩形;4.对角线相等且互相平分的四边形是矩形。

(四)直角三角形的性质直角三角形斜边上的中线等于斜边的一半。

(如图:OB=OC=OA=21AC )二、例题讲解考点一:矩形的基本性质例1:如图,在矩形ABCD 中,AE•⊥BD ,•垂足为E ,•∠DAE=•2•∠BAE ,•那么,•∠BAE=________, ∠EAO=________,若EO=1,则OD=______,AB=________,AD=________.AEDCBO练习 1:矩形ABCD中, ,对角线AC与BD相交于点O,BC的长为6,△OBC的周长是15,求矩形的对角线的长度.练习2:如图,在矩形ABCD中,CE⊥BD,E为垂足,∠DCE∶∠ECB=3∶1,求∠ACD.例2:如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?练习1:矩形ABCD中, ,对角线AC与BD相交于点O,已知矩形ABCD的面积是12cm2,AB=4cm,求矩形的对角线长。

例3:如图,在矩形ABCD 中,相邻两边AB 、BC 分别长15cm 和25cm ,内角∠BAD 的角平分线与边BC 交于点E .试求BE 与CE 的长度.练习1:如图,在矩形ABCD 中,E 是边AD 上的一点.试说明△BCE 的面积与矩形ABCD 的面积之间的关系.例4:(2009年广西钦州)已知:如图1,在矩形ABCD 中,AF =BE .求证:DE =CF ;ADCB 图1F E练习1:如图,矩形ABCD 中,E 为AD 中点,∠BEC 为直角,矩形ABCD 的周长是20,求AD 、AB 的长。

矩形的性质及判定知识点及典型例题

矩形的性质及判定知识点及典型例题

1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角. ③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半. 直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.一、矩形的判定【例1】 矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【例2】 如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA矩形的性质 及判定【例3】 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形【例4】 如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.CDB A【例5】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCB A【例6】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.MCDB A【例7】 设凸四边形ABCD 的4个顶点满足条件:每一点到其他3点的距离之和都要相等.试判断这个四边形是什么四边形?请证明你的结论。

【例8】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【例9】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.FED CB A【例10】 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!NMFEDCBA321FE D CB A【例11】 已知,如图,在ABC ∆中,AB AC =,AD 是BC 边上的高,AF 是BAC ∠的外角平分线,DE ∥AB交AF 于E ,试说明四边形ADCE 是矩形.【例12】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD . ⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF【例13】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BA【例14】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.ABCE FD板块二、矩形的性质及应用【例15】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。

2.1矩形的判定

2.1矩形的判定
证明 ∵ 四边形ABCD是矩形, ∴ AC=BD(矩形的对角相等), AO=BO=CO=DO(矩形的对角线互相平分). ∵ E、F、G、H分别是AO、BO、CO、DO的中点, ∴ OE=OF=OG=OH, ∴ 四边形EFGH是平行四边形(对角线互相平分的四边形是平 行四边形). ∵ EO+OG=FO+OH, 即EG=FH, ∴ 四边形EFGH是矩形(对角线相等的平行四边形是矩形).
20.2.1矩形的判定
复习

四边形 两组对边 分别平行 平行 四边形 一个角 是直角
矩形
定义:有一个角是直角的平行四边形叫做矩形.
四边形集合 平行四边形集合 矩形集合
回顾矩形的性质
A O B
D
C
边 角
矩形对边平行且相等;
矩形的四个角都是直角;
对角线 矩形的对角线相等且平分;
矩形的判定
矩形的定义: 有一个角是直角的平行四边形是矩形.
已知:平行四边形ABCD,AC=BD. 求证:四边形ABCD是矩形.
证明: ∵ AB=CD, BC=BC, AC=BD ∴ △ABC≌ △DCB(SSS) ∴ ∠ABC=∠DCB ∵ AB//CD ∴ ∠ABC+∠DCB=180° ∴ ∠ABC=∠DCB=90° 又∵ 四边形ABCD是平行四边形 ∴四边形ABCD是矩形.
ABCD ∠A=900
四边形ABCD是矩形
你还有其它的判定方法吗?
实例一
工人师傅为了检验两组对边相等的四边 形窗框是否成矩形,一种方法是量一量这个 四边形的两条对角线长度,如果对角线长相 等,则窗框一定是矩形,你知道为什么吗?
猜想:对角线相等的平行四边形是矩形 .
证明 对角线相等的平行四边形是矩形.
M Q C N

19.2.2矩形的判定

19.2.2矩形的判定
B M Q C D N
△ABC中,点O是AC边上一动点,过O点作直线 MN//BC,设MN交∠BCA的平分线于点E,交 ∠BCA的外角平分线于点F,(1)找出图形中相等 的线段,并证明.(2)试说明EO=OF的理由。
(3)当点O运动到何处时,四边形AECF是矩形? 并说明你的结论。
A
M E O F
解:∵四边形ABCD是平行四边形 B ∴AC = 2OA,BD = 2OB ∵ △AOB是等边三角形∴OA = OB ∴AC =BD ∴ ABCD是矩形∴∠ ABC=90° 在Rt△ABC中, ∵AB = 4cm,AC=2OA=8cm ∴BC= 8 2 4 2 4 3 (cm)
∴S BC ABCD =AB· = 4×4 3 =16 3 cm
猜想:有三个角是直角的四边形是矩形 。
你能证明上述结论吗?
按照画“边—直角、边—直角、边—直角、 边”这样四步画出一个四边形。
② ①


判断它是一个矩形吗?你的理由是什么?
矩形的判定方法: 有三个角是直角的四边形是矩形 。
A D
几何语言:
∵ ∠A=∠B=∠C=90° ∴四边形ABCD是矩形
B
C
情境二:工人师傅为了检
∴ △ABC≌ △DCB(SSS) B ∴ ∠ABC=∠DCB ∵ AB//CD ∴ ∠ABC+∠DCB=180° ∴ ∠ABC=∠DCB=90° 又∵ 四边形ABCD是平行四边形
D
C
∴四边形ABCD是矩形
矩形的判定方法:
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。) 几何语言: ∵四边形ABCD是平行四边形 AC=BD (或OA=OC=OB=OD)

矩形的判定

矩形的判定

基础知识关
1、在判定一个四边形是矩形时: ⑴、若判定的对象是平行四边形,则还需有一个角是 直角 或 对角线相等 ; ⑵、若判定的对象是四边形,则需三个角是 直角 或需先判定这个 四边形为 平行四边形 ,再找一直角或对角线相等。 2、选择题 ⑴、具备条件____的四边形是矩形.【 D 】 A.两条对角线相等 B.对角线互相垂直 C.一组对角是直角 D.有三个角是直角 ⑵、能够判断一个四边形是矩形的条件是【 C 】 A.对角线相等 B.对角线垂直 C.对角线互相平分且相等 D.对角线垂直且相等
D
C
牛刀小试
2
判断下列命题是否正确。 • 对角线相等的四边形是矩形。 • 对角线互相平分且相等的四边形是矩形。 • 有一个角是直角的四边形是矩形。 • 四个角都是直角的四边形是矩形。 • 四个角都相等的四边形是矩形。 • 对角线相等且有一个角是直角的四边形是 矩形。 • 对角线相等且互相垂直的四边形是矩形。
学以致用关
工作师傅做铝合金窗框分下面三个步骤进行: (1)先截同两对符合规格的铝合金窗料,使AB=CD,EF=GH 平行四边 (2)摆放成如图所示的四边形,则这时窗框的形状____________ 两组对边分别相等的四边形是平行四边形 形,数学原理是_______________________________________ (3)将直角尺靠紧窗框的一个角(如图所示),调整窗框的边框, 当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗 矩 形,数学原理是_________________________________ 有一个角为直角的平行四边形是矩形 框是_____
运用知识关
1、在⊿ABC中,AD⊥BC于D,DE∥AC交AB于E, DF∥AB交AC于F,当⊿ABC满足条件 ∠BAC=900 时, 四边形AEDF是矩形。 2、如图 ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为 什么?

矩形的判定(经典实用)

矩形的判定(经典实用)

方法3:
有三个角是直角的四边形是矩形 。
下列各句判定矩形的说法是否正确?
(1)对角线相等的四边形是矩形; X (2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有三个角都相等的四边形是矩形;
X
X X
(5)有三个角是直角的四边形是矩形; (6)四个角都相等的四边形是矩形;
求证:四边形ABCD是矩形。
D
E C
A
B
例3:已知,如图.矩形ABCD的对角线 AC、BD相交于点O,且E、F、G、H分 别是AO、BO、CO、DO的中点, 求证:四边形EFGH是矩形.
例4: 如果平行四边形四个内角的平分线能够围成一个四边形,那 么这个四边形是矩形.
已知:如图, ABCD的四个内角的平 分线分别相交于E、F、G、H,

3 若已知AC=10㎝,BC=6㎝,则矩形的周长= 48 矩形的面积= ㎝2 4 若已知 ∠DOC=120°,AD=6㎝,则AC=
12

试一试
A
已知△ABC是Rt△,∠ABC=Rt∠, BD是斜边AC上的中线
B
D

C
1 若BD=3㎝则AC=
6

2 若∠C=30°,AB=5㎝,则AC= BD= 5 ㎝,∠BDC=
(7)对角线相等,且有一个角是直角的四边形是矩形; (8)一组对角互补的平行四边形是矩形;
(9)对角线相等且互相垂直的四边形是矩形;
(10)一组邻边垂直,一组对边平行且相等的四边形是矩形;
例1:如图,M为平行四边形ABCD 边AD的中点,且MB=MC,
求证:四边形ABCD是矩形。
A
M
D

矩形的判定

矩形的判定

对角线相等
矩形 矩形
三个角是直角
(对角线互相平分且相等的四边形是矩形。)
矩形的判定
任意一个四边形, 三个直角定矩形。 对于平行四边形, 一个直角即可定; 对角线等也矩形。
B
①任意画一个符合条件的四边形,通过观 察、测量猜想其形状;
命题 有三个角是直角的四边形是矩形
命题 有三个角是直角的四边形是矩形
已知:在四边形ABCD中, A ∠A=∠B=∠C=90° 求证:四边形ABCD是矩形
B D
C
有三个角是直角的四边形是矩形:
A D
在四边形ABCD中
∵ ∠A=∠B=∠C=90° ∴四边形ABCD是矩形
C E
B
P
现在你可以帮助木工朋 友检测所制作的窗框是 否是矩形了吧,你可以 测量哪些数据,有哪些 方案,根据又是什么呢?
测量…?
例2:已知,如图.矩形ABCD的对角线AC、 BD相交于点O,且E、F、G、H分别是AO, BO、CO、DO的中点, 求证:四边形EFGH是矩形. A E O H G D
且 AC=BD ∴四边形ABCD是矩形
B C
平行四边形门框 给你一根足够长的细绳子
1、填空: 矩形 ⑴有三个角是直角的四边形是_______ 平行四边形 ⑵有一个是直角的__________是矩形。 相等 ⑶对角线_______的平行四边形是矩形 ⑷对角线互相平分且相等的四边形是 矩形 _______ ⑸有一个角是直角,且对角线 互相平分 _______________的四边形是矩形。
F B
如图,在△ABC中,点D是AC边上的一个动点,过 点D作直线MN∥BC,若MN交∠BCA的平分线于 点E,交∠BCA的外角平分线于点F,
(1)求证:DE=DF A M D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拼法1 拼法2 拼法3
答案
A A
补法1 补法2
C
B
B
C
知识链
一般四边形 平行四边形
条件
矩形
条件
条件
友情提醒: 对数学知识的掌握程度要争取达到以下三个层次: 首先是能听懂老师的讲解;其次是根据自己的理解 能口头表达出来;第三是能综合运用文字、图形和符号 语言进行严谨的书面表达。
谢谢!
拼法
A
补法1 补法2
C
B
请先阅读短文: 如图所示, ABC是直角三角形, C=90 ,现将 ABC 补成矩形,使 ABC的其中两个顶点为矩形一边的两个端点, 第三个顶点落在这一边的对边上,那么符合要求的矩形可以 思考1 思考2 思考3 画几个,请动手试画。 思考 3:如果三角形 ABC为锐角三角形,且 BC>AC>AB, 仍按短文意思,把它补成矩形,则可以画 个矩形。
请先阅读短文: 如图所示, ABC是直角三角形,C=90 ,现将 ABC 补成矩形,使 ABC的其中两个顶点为矩形一边的两个端点, 第三个顶点落在这一边的对边上,那么符合要求的矩形可以 思考1 思考2 思考3 画几个,请动手试画。 思考 1:如果矩形 ACBD的面积记作 S1,矩形 AEFB的面积 记作 S 2,是比较 S1和 S2的大小。
O F B G C
练 习: 如 图, 工 人师 傅 在 做一 个 铝合 金 窗 框时 , 大 致分 以 下 几 个步 骤 : 1 ( 1) 先 截出 若 干 条符 合 规格 的 铝 合金 窗 边( 如 图 ), 使 AB=CD,EF=GH; ( 2) 摆 放成 四 边 形 ( 图2 ) ,此 时窗 框 的 形状 是 根 据的 数 学 道理 是 。 ( 3) 将 直角 尺 靠 紧框 的 一个 角 , 调 整边 框 , 当 直角 尺 的 两条 直 角 边与 窗 框 无缝 隙 时, 说 明窗 框 合 格, 此 时窗 框 的 形状 是 动 ,根 据的 数 学 道理 是 。
矩 形 的 判 定
显示 点 运动点 显示 说明
从角方面探究
问题1-3 问题1 问题2 问题3 问题4
只有一个角是直角的四边形是矩形吗? 只有两个角是直角的四边形是矩形吗? 有三个角是直角的四边形是矩形吗?
C
B
A
D
如何证明:有三个角是直角的四边形是矩形
问题3 问题4
图形- 符号语言 证明
C
直角尺
A C E G
B D F H A B
1
2
判断下列说法是否正确: ( 1)两组对边分别相等,且有一个角是直角的 四边形是矩形( ) ( 2)对角线互相平分且相等的四边形是矩形( ) ( 3)有一组对角是直角且有一组对边相等的四 边形是矩形;( ) ( 4)对角线相等且有一组对边也相等的四边形 是矩形;( ) ( 5)有三个角都相等的四边形是矩形;( ) ( 6)对角线相等,且有一个角是直角的四边形 是矩形;( ) ( 7)对角线相等且相互垂直的四边形是矩形;( )
A
补法1 补法2
C
B
请先阅读短文: 如图所示, ABC是直角三角形,C=90 ,现将 ABC 补成矩形,使 ABC的其中两个顶点为矩形一边的两个端点, 第三个顶点落在这一边的对边上,那么符合要求的矩形可以 思考1 思考2 思考3 画几个,请动手试画。 思考 2:如果三角形 ABC为钝角三角形,请你按短文中 的要求,把它补成矩形,则可以画 个矩形。
A C E G B D F H A B
1
2
思考 1:由于所做矩形铝合金窗框的长和宽的长度 相差无几,所以某一边的长和宽搭配错误后,肉 眼难以区分。 同学们,如果给你一把直角尺,你能鉴定它 动 是矩形吗?
直角尺
A C E G
B D F H A B
1
2
思考 2:有一天,张师傅忘记直角尺放哪儿了,正在 犯愁时,他的徒弟在工具箱里看到一把卷尺,于是 很兴奋地说 : 师傅,我只用卷尺就能保证窗框是矩形, 并解释了理由。师傅听完后,欣慰地笑了! 动 请问同学们,你知道是什么办法吗?
B
A
D
问题1 问题2
结论
对角线相等的四边形是矩形吗?图图2Fra bibliotek已知求证
添加什么条件,才能保证对角线相等 的四边形是矩形?如何叙述呢?能证明吗? A 对角线相等的平行四边形是矩形 D
已知:在平行四边形 ABCD中, AC=BD。 求证:四边形 ABCD是矩形 B
旋转
C
例题
例题:如图,矩形 ABCD的对角线 AC与 BD相交于 点 O ,E、 F、 G、 H分别是 AO、 BO、 CO、 DO上的 一点,且 AE=BF=CG=DH。 A D E H 求证:四边形 EFGH是矩形
相关文档
最新文档