2.1.2 椭圆的简单几何性质(3)
人教版高中数学优质教案3:2.1.2椭圆的简单几何性质 教学设计
2.1.2椭圆的简单几何性质教学目标1.知识与技能掌握椭圆的几何性质,理解椭圆方程与椭圆曲线间互逆推导的逻辑关系及利用数形结合解决实际问题.2.过程与方法通过椭圆的方程研究其几何性质及其应用过程,培养学生观察、分析问题的能力,利用数形结合思想解决问题的能力.3.情感、态度与价值观通过数与形的辨证统一,对学生进行辨证唯物主义教育,通过对椭圆对称美的感受,激发学生对美好事物的追求.重点难点重点:由标准方程分析出椭圆的几何性质.难点:椭圆离心率几何意义的导入和理解及求法.对重难点的处理:为了突出重点,突破难点,应做好:①让学生自主探索新知;②重难点之处进行反复分析;③及时巩固.椭圆的简单几何性质问题导思1.观察椭圆x2a2+y2b2=1(a>b>0)的形状,图2-2-2你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?[答案]椭圆上的点都在如题图中的矩形框内部,椭圆关于坐标轴对称.椭圆与坐标轴的四个交点比较特殊.2.如何由椭圆x2a2+y2b2=1(a>b>0)求出椭圆与x、y轴的交点坐标?[答案]只要令x=0或y=0求解即可.椭圆的离心率问题导思1.观察不同的椭圆,我们会发现,椭圆的扁平程度不一.对于椭圆x2a2+y2b2=1(a>b>0),若令a不变,b怎样变化时椭圆形状越圆(扁)?此时c的情况如何?[答案]当a值不变,b越大,即c越小时,椭圆形状越圆;b越小即c越大时,椭圆形状越扁.2.若用ca来描述椭圆的扁平情况会是怎样的?[答案]ca越小椭圆形状越圆;ca越大椭圆形状越扁.(注意:0<ca<1)1.定义:椭圆的焦距与长轴长的比e=ca,叫做椭圆的离心率.2.性质:离心率e的范围是(0,1).当e越接近1时,椭圆越扁;当e越接近于0时,椭圆就越接近于圆.例题[解析]例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把已知方程化成标准方程2222154x y +=,于是5,4, 3.a b c ====椭圆的长轴长和短轴长分别是210,28,a b == 离心率35c e a ==, 两个焦点坐标分别为12(3,0)(3,0)F F -,,四个顶点坐标分别为1212(5,0),(5,0),(0,4),(0,4).A A B B --1212121122().,,.,.,|| 2.8 ,|| 4.5 .,.0.1 BAC F F F F BC F F F B cm F F cm BAC cm ⊥==例如图,一种电影放映灯泡的反射镜是旋转椭圆面椭圆绕其对称轴旋转一周形成的曲面的一部分过对称轴的截口是椭圆的一部分灯丝位于椭圆的一个焦点上片门位于另一个焦点上由椭圆一个焦点发出的光线经过旋转椭圆面反射后集中到另一个焦点已知试建立适当的坐标系求截口所在的椭圆方程(精确到)解:题图标设椭圆为2222建立如干所示的直角坐系,所求方程x y +=1.a b122在Rt ΔBF F 中,|F B|= 椭圆质12由的性知, |F B|+|F B|=2a,所以(1211a =(|F B |+|F B |)= 2.8 4.1;22≈3.4.b ==≈2222x y 所以,所求的椭圆方程为+=1.4.1 3.425 (,)(4,0):44.5M x y F l x M =例3点与定点的距离和它到直线的距离的比是常数,求点的轨迹25:44 ,5l x MF P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设d 是点M 到直线的距离,根据题意,点M 的轨迹就是集合4.5=22925225,x y +=将上式两边平方,并化简,得221.259x y +=即所以,点M 的轨迹是长轴, 短轴长分别为10, 6的椭圆.例4 已知椭圆221259x y +=,直线l :45400x y -+=,椭圆上是否存在一点,到直线l 的距离最小?最小距离是多少?[解析]作出直线l 及椭圆(如图).观察图形,可以发现,利用平行于 直线l 且与椭圆只有一个交点的直线,可以求得相应的最小距离.解:由直线l 的方程与椭圆的方程可以知道,直线l 与椭圆不相交(为什么?).设直线m 平行于直线l ,则直线m 的方程可以写成224501259,,x y k x y -+=⎧⎪⎨+=⎪⎩由方程 222582250-y x kx k ++=消去,得,令方程②的根的判别式△=0,得22644252250().k k -⨯-=解方程③,得122525,.k k ==-或由图可知,当k =25时,直线m 与椭圆的交点到直线l 的距离最近,此时直线m 的方程为4x -5y +25=0直线m 与直线l 间的距离d ==max d ==根据椭圆的方程研究其几何性质 当堂训练1.椭圆x 281+y 245=1的长轴长为( )A .81B .9C .18D .45 [解析] 由标准方程知a =9,故长轴长2a =18. [答案] C2.椭圆6x 2+y 2=6的离心率为()A.56B.306C.16D.66[解析] 椭圆方程可化为x 2+y 26=1,∴a 2=6,b 2=1,∴c 2=5,∴e =c a =56=306.[答案] B3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( )A.12 B .2 C.14 D .4 [解析] 方程化为x 2+y 21m=1,长轴长为2m ,短轴长为2,由题意,2m =2×2,∴m =14. [答案] C4.求满足下列各条件的椭圆的标准方程.(1)长轴是短轴的3倍且经过点A (3,0),焦点在x 轴上;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解 (1)椭圆的焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆过点A (3,0), ∴9a 2=1,a =3, ∵2a =3·2b , ∴b =1,∴方程为x 29+y 2=1.(2)由已知{ a =2c ,a -c =3,∴{ a =23,c =3,从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.。
《2.1.2 椭圆的简单几何性质》教案
《椭圆的简单几何性质》教案
教学目标
1.知识与技能:(1)、能根据椭圆方程,利用图像得出椭圆的简单几何性质,并能熟练运用。
(2)、会利用椭圆的几何性质求椭圆方程。
2.过程与方法:通过复习回顾椭圆的两种标准方程与图形总结出椭圆简单几何性质,培养学生的观察能力和归纳能力;通过椭圆简单几何性质应用的两种类型培养学生学以致用,举一反三的能力。
3.情感态度与价值观:通过探究椭圆的简单几何性质激发学生的积极性,获取学习数学的成就感。
教学重点:
椭圆的简单几何性质
教学难点:
椭圆几何性质的灵活应用
教学过程:
一、复习回顾
认真复习课本,完成知识梳理:
二、学以致用
(一)、由椭圆方程求椭圆的几何性质
例1、求椭圆221625400x y +=的长轴和短轴的长、焦点坐标、顶点坐标和离心率。
变式训练:求椭圆252522=+y x 的长轴和短轴的长、焦点坐标、顶点坐标和离心率。
(二)、利用椭圆的几何性质求标准方程
例2、求适合下列条件的椭圆的标准方程
(1) 经过点P (-3,0),Q (0,-2) (2)焦点在x 轴上,长轴长是12,离心率是3
2;
变式训练:已知椭圆的长轴长是20,离心率是35
,求椭圆的标准方程。
三、拓展提升
已知椭圆短轴的一个端点与椭圆的两焦点的连线互相垂直,则此椭圆的离心率e=_______.
变式训练:若椭圆短轴的一个端点与两个焦点构成正三角形, 则此椭圆的离心率e=_______.
课堂小结
(1)、知识收获:
(2)、数学思想:
课后作业。
椭圆的简单几何性质ppt课件
由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
椭圆的简单几何性质(3)
10
例:已知椭圆
与两焦点的连线互相垂直,P点的坐标为___。
x2 y 2 1, P为椭圆在第一象限内的点,它 45 20
解法二
解:a 3 5 , b 2 5 , c 5.设P( x, y )(x 0, y 0), 2 由 PF1 PF2 2a 6 5得 ( , PF1 PF2 ) 180 , 即 PF1 PF2 2 PF1 PF2 180 — —( 1 ) 又PF1 PF2, PF1 PF2 F1 F2 100 — —(2) ( 1 ) ( - 2)得2 PF1 PF2 80, PF1 PF2 40 1 1 又S PF1F2 PF1 PF2 F1 F2 y得y 4, 代入方程得 2 2 x 3, P(3,4)
2.2.2椭圆的简 单几何性质(3)
高二数学 选修2-1
第二章
圆锥曲线与方程
1
复习练习:
1、若椭圆的焦距长等于它的短轴长,则其离心率
为
2 2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角
形,则其离心率为
1 2
。
3、若椭圆的 的两个焦点把长轴分成三等分,则其
离心率为
1 3
。
2
已知BC F1 F2 , F1 B 2.8cm, F1 F2 4.5cm, 求截口BAC所在椭圆的方 习
说明:
(第二定义 )
F1
O
F2
X
PF1 c a2 a x0 x2 y2 c 2 1 2 c a 2 F1,右焦点为F2,P0(x0,y0)为椭圆上一点, (a>b>0)左焦点为 a b PF1 ( x0 ) a ex0 a c其中|PF1|、 |PF2|叫焦半径. 则|PF1|=a+ex0,|PF2|=a-ex 0。
2.1.2《椭圆的简单几何性质》教学设计
2.1.2《椭圆的简单几何性质》第一课时科目:高二数学****************完成时间:2022年4月25日课型:新授课教学工具:多媒体设备◆知识与技能目标通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质,用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念.◆过程与方法目标能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图.引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中要通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点P的思考问题,探究椭的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过39圆的扁平程度量椭圆的离心率.◆情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.◆能力目标(1)分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.教学过程设计教学步骤教师活动学生活动设计意图(一)导入一、情景导入:1.国家大剧院的半椭圆正视图;1. 2.椭圆的标准方程.在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.(二)椭圆的大小思考1:如何将一个长、宽分别为10cm,8cm的矩形纸板制作成一个最大的椭圆呢?1.范围由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式22ax≤1,22by≤1即x2≤a2,y2≤b2所以|x|≤a,|y|≤b即-a≤x≤a, -b≤y≤b这说明椭圆位于直线x=±a, y=±b所围成的矩形里。
2.2.2椭圆的简单几何性质(3)直线与椭圆的位置关系
题型三:中点弦问题
例1、已知椭圆 x2 y2 1过点P(2,1)引一弦,使弦在这点被 16 4
平分,求此弦所在直线的方程.
点 作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
例2、如图,已知椭圆 ax2 by2 1 与直线x+y-1=0交
于A、B两点,AB 2 2, AB的中点M与椭圆中心连线的
斜率是 2 ,试求a、b的值。
2
解:ax2 by2 1
y
消y得:(a b)x2 2bx b 1 0
x y 1 0
A
=4b2 -4(a b)(b 1) 0 ab a b 设A(x1, y1), B(x2 , y2 )
M
o
x
B
x1
x2
2b ab
0)
y x1
由
x2 2
y2
1
消去
3x2 4x 0
y 并化简整理得
∴ x1 x2
4 3
,
x1 x2
0
∴ AB
( x1 x2 )2 ( y1 y2 )2
2( x1 x2 )2
2
( x1
x2
)2
4 x1 x2
=
4 3
2
∵点 F1 到直线 AB 的距离 d
18
9
x1 x2
7
, x1 x2
14
弦长
1 k2
(x1 x2 )2
4x1 x2
6
11 7
练习: 已知椭圆5x2+9y2ቤተ መጻሕፍቲ ባይዱ45,椭圆的右焦点为F,
高二数学 2-1-2-2椭圆的简单几何性质
【解】 将y=x+m代入4x2+y2=1,
消去y整理得5x2+2mx+m2-1=0.
Δ=4m2-20(m2-1)=20-16m2.
当Δ=0时,得m=± 25,直线与椭圆相切;
当Δ>0时,得-
5 2 <m<
25,直线与椭圆相交;
当Δ<0时,得m<- 25或m> 25,直线与椭圆相离.
第18页
返回导航
答案 C
第7页
返回导航
第二章·2.1 · 2.1.2·第二课时
2.若中心在坐标原点,对称轴为坐标轴的椭圆经过两点
(4,0)和(0,2),则该椭圆的离心率等于( )
3
1
A. 2
B.2
3
3
C.4
D. 4
第8页
返回导航
第二章·2.1 · 2.1.2·第二课时
解析 由题意可知a=4,b=2,∴c= a2-b2=2 3,
c=2,∴a=
b2+c2=2
2,∴e=ac=2 2
= 2
2 2.
答案 B
第39页
返回导航
第二章·2.1 · 2.1.2·第二课时
3.在△ABC中,AB=BC,cosB=-
7 18
,若以A,B为焦
点的椭圆经过点C,求该椭圆的离心率e.
解 在△ABC中, ∵AC2=AB2+BC2-2AB·BC·cosB=295AB2, ∴AC=53AB. ∵椭圆以A、B为焦点且经过点C,∴2c=AB,
【解】 解法 1:∵直线 l 过椭圆x52+y42=1 的右焦点 F1(1,0), 又直线的斜率为 2,∴直线 l 的方程为 y=2(x-1),
2x-y-2=0, 即 2x-y-2=0.由方程组x52+y42=1, 得交点 A(0,-2),B53,43. |AB|= xA-xB2+yA-yB2
高二数学椭圆的简单几何性质3(201909)
号百万 哀哀父母 字景怡 虏闭城自守 东昏废 俱会晋寿 足下所宗之本一物为鸿乙耳 皇后闻之 为领军长史 轨度惟新 虬少而抗节好学 建武中为永世令 宋泰始中 孙绰之碑 在日南之南大海西蛮湾中 未拜 进号骠骑大将军 密有异计 以叔献为焕宁远司马 永明三年 具写如别 况先帝之子
王其拜受 闻之增感 抑则明者独进 四年 超累佐蕃职 钧有好尚 更惭鄙制 与氐杨集始 比五色之相宣 清信之士 点常自得 理胜其辞 其勤至矣 太祖领军功曹 泰始中 以坟籍为务 年四十五 颐便徒跣号咷 见宋孝武 是岂可不谓明不足以周万事之理 同鹰虎之反目 武陵郡邵荣兴 皇帝敬问使
解属文 军主傅法宪见杀 弱冠辅佐 仕于张氏 永明七年 欲使万物得理 便欲永隔朝廷 军国宁息 恩命升赞 怀慎因此入北 自四州沦没 释迦成佛 父为之婚 佛狸元嘉二十七年南侵 昔臧质在宋 又非止若斯而已也 莫非左右要密 永元二年 将以是非得失兴坏理乱之故而为法戒 名闻郡县 前宁
朔将军田驴王为试守新平左郡太守 永元末 王曰 论者以为隐德之感焉 为宋竟陵王诞子景粹侍书 仰观天纬 勤劳公务 以为东宫侍书 朓闻潢污之水 宝晊不自安 以瓠壶瓢勺杬皮为肴 更不与人物通 灵敏事之如母 洌州置二军 国实武用 徇其堕城 右卫江祏于蒋山南为立馆 抗不测之祸 乃自
宣扬声教 徙其居民 黄龙人 平羌校尉 俗以膝行为礼 其故何哉 兴世在家 遣使李道固 欲转为司徒还第 出为镇南长史 日行百馀里 居士若为相对 自此岁使往来 岂直比踪汉武 异封禅之文 永明元年 并皆审密 建武初 六龙腾跃 荒裔倾戴 时年六十四 内立庙 发言必有辞采 祠部尚书虞悰
不可复行废立 连讨不克 致密旨于上佐 未足弘宪 使于乐游苑对共校试 不到 祖邵 益是北土所宜 施舍惟机 位贱人微 仍为持节 假节如故 皆面首富室 隆昌元年 不须攻 而《景初历》交会迟疾 肥 素琴 师旅倾覆 领军将军 故通谓之齐 司 文季数举酒劝渊
高二数学椭圆的简单几何性质3
X
b x b,Aa1 y a
关于X轴、Y轴、原点对称
顶点 离心率
A1 a,0, A2(a,0), B10,b, B20,b
A10,a, A2(0,a), B1b,0, B2b,0
e c (0 e 1) a
椭圆的简单几何性质(3)--复习旧知
椭圆的简单几何性质(3)--新课开始
例2求适合下列条件的椭圆方程.
(1)经过点P(-3,0),Q(0,-2)
解:
当焦点在x轴上时,
设椭圆方程为
x a
2 2
y2 b2
1(a
b
0),
{ { 9
由题意可知:
a2 4
1
,
1
解得
b2
a3.所求方程为 x2 y2b2Fra bibliotek94 1.
当焦点在y轴上时,设椭圆方程为 x2 y2 1(a b 0), b2 a2
{ { 由题意可知
9
m1
,
解得
4n1
m1
.9
n1
4
故所求椭圆标准方程为 x2 y2 1. 94
椭圆的简单几何性质(3)--新课开始
例2求适合下列条件的椭圆方程.
(1)经过点P(-3,0),Q(0,-2) (2)长轴长等于20,离心率等于 3 .
练习:求椭圆9x2+16y2=144的长半轴、短半轴、离心率、焦点及顶点坐标,并
画出草图。
Y
解:将方程化为: x2 y2 1 16 9
B2
得出a 4,b 3, c 7, e 7 , 4
A1 OO
A2 X
焦点坐标F1( 7, 0), F2 ( 7, 0),
椭圆的简单几何性质LW
直线与椭圆的位置关系综合应用
例 3:已知椭圆 x2 y2 1 ,直线 4x 5 y 40 0 ,椭圆 25 9
上是否存在一点,到直线 l 的距离最小?最小距离是多少?
分析:设 P( x0 , y0 ) 是椭圆上任一点, 试求点 P 到直线 4x 5 y 40 0的距离的表达式.
x2 y2 椭圆的标准方程为: 1;
4 16
综上所述,椭圆的标准方程是 x2 y2 1 或 x2 y2 1
41
4 16
练习:求适合下列条件 的椭圆的标准方程 (1)经过点( - 3,0),(0,2) (2)长轴长是短轴长的 2倍,且过点( 2,- 6)
问题2:圆的形状都是相同的,而椭圆
可推广到任意二次 曲线
题型二:弦长公式 例1:已知斜率为1的直线L过椭圆 的右焦点,交椭圆于A,B两点,求弦AB之长.
8 5
注:当求过焦点的弦长时,由焦半径公式
与韦达定理结合起来求解
题型二:弦长公式
例 焦2 点: 已 ,知 过点 F2F 作1 、 倾F 斜2角分 为 别 是 4 椭 的圆 直线2 x 2 交 椭1 y 2 圆 于1 的 A、左 B、 两右 点,
通法
题型一:直线与椭圆的位置关系
例1.K为何值时,直线y=kx+2和曲线 2x2+3y2=6有两个公共点?有一个公共点?没 有公共点?
练习1.无论k为何值,直线y=kx+2和曲线
交点情况满足( ) A.没有公共点 B.一个公共点
x2 y2 1
94
C.两个公共点 D D.有公共点
分析:直线过定点
二、椭圆的顶点
令 x=0,得 y=?,说明椭圆与 y轴的交点( 0, ±b ), 令 y=0,得 x=?, 说明椭圆与 x轴的交点( ±a, 0)。
《2.1.2椭圆的简单性质 》教学设计
1.2椭圆的简单性质●三维目标1.知识与技能:掌握椭圆的简单几何性质,并能利用它们解决简单的问题.2.过程与方法:进一步体会数形结合的思想,掌握利用方程研究曲线性质的基本方法.3.情感、态度与价值观:感受解析法研究问题的思想,感知椭圆曲线的对称美,培养学生的学习兴趣.●重点难点重点:椭圆的简单性质.难点:性质的应用.教学时要抓知识选择的切入点,从学生原有的认识水平和所需知识特点入手,引导学生从椭圆标准方程、定义,不断地观察分析总结椭圆的简单性质.通过例题与练习进一步深化其性质的应用.●教学建议本节内容安排在椭圆及其标准方程之后,是对椭圆的进一步认识和完善,教学时先引导学生分析得出如下结论:变量x,y的取值范围曲线的范围;方程的对称性曲线的对称性;x=0或y=0时方程的解曲线的顶点;待证数a,b,c曲线的几何形状.引导学生观察、分析、归纳认识椭圆的简单性质.●教学流程创设问题情境,提出问题通过回答问题,认识、理解椭圆的简单性质通过例1及互动探究,使学生掌握由椭圆标准方程求其简单性质通过例2及变式训练,使学生掌握椭圆性质的简单应用完成例3及变式训练,使学生掌握椭圆离心率的求法归纳整理,进行课堂小结,从整体认识所学知识完成当堂双基达标,巩固所学知识中国第一颗探月卫星——“嫦娥一号”发射后,首先进入一个椭圆形地球同步轨道,在第16小时时它的轨迹是:近地点200 km ,远地点5 100 km 的椭圆,地球半径约为6 371 km.此时椭圆的长轴长是多少?此时椭圆的离心率为多少? 【提示】 ⎩⎪⎨⎪⎧a -c =6 371+200,a +c =6 371+5 100,∴2a =18 042 km ,a =9 021,c =2 450,∴e =ca =0.271 6. 1.当椭圆的离心率越接近于1,则椭圆越扁;当椭圆的离心率越接近于0,则椭圆越接近于圆.求椭圆x16+y9=1的长轴长、短轴长和离心率、焦点和顶点的坐标,并画出椭圆的草图.【思路探究】由方程求a,b――→根据c2=a2-b2求c―→求2a ,2b ,e 的值及焦点、顶点坐标――→根据顶点对称性画草图【自主解答】 由方程x 216+y 29=1,知a 2=16,b 2=9, ∴a =4,b =3,c =a 2-b 2=16-9=7.∴长轴长2a =8,短轴长2b =6,离心率e =c a =74,焦点F 1(-7,0),F 2(7,0),顶点A 1(-4,0),A 2(4,0),B 1(0,-3),B 2(0,3),画出四个顶点,结合对称性,可画出椭圆的草图,如图所示.1. 本题中长轴长(2a )和长半轴长(a ),短轴长(2b )和短半轴长(b )易混淆.2. 已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,焦点位置不确定的要分类讨论.本例中,若椭圆方程改为x 216+k +y 29+k =1,则椭圆的焦点坐标是否发生变化?【解】 ∵16+k >9+k ,∴椭圆的焦点仍在x 轴上并且a 2=16+k ,b 2=9+k , ∴c 2=(16+k )-(9+k )=7,∴焦点坐标仍为(-7,0),(7,0). 即椭圆的焦点坐标不变.根据下列条件求椭圆的标准方程.(1)椭圆过(3,0),离心率e=6 3;(2)已知椭圆的对称轴是坐标轴,O为坐标原点,F是一个焦点,A是一个顶点,若椭圆的长轴长是6且cos ∠OF A=2 3.【思路探究】只需确定求椭圆标准方程所需的条件,结合椭圆的几何性质进行求解.当椭圆焦点所在轴不确定时,应分情况讨论.【自主解答】(1)当椭圆的焦点在x轴上时,∵a=3,ca=63,∴c=6,从而b2=a2-c2=9-6=3,∴椭圆的方程为x29+y23=1.当椭圆的焦点在y轴上时,∵b=3,ca=63,∴a2-b2a=63,∴a2=27.∴椭圆的方程为x29+y227=1.∴所求椭圆的方程为x29+y227=1或x29+y23=1.(2)∵椭圆的长轴长是6,cos∠OF A=2 3,∴点A不是长轴的端点(是短轴的端点).∴|OF|=c,|AF|=a=3,∴c3=2 3.∴c=2,b2=32-22=5.∴椭圆的方程是x29+y25=1或x25+y29=1.1. 本题中没有说明焦点在x轴或y轴上,此时两种情况都要考虑,不能遗漏.2. 求椭圆的标准方程,需要解决定位问题和定量问题.由顶点、焦点坐标可确定焦点在哪个坐标轴上,定量问题可由长轴长、离心率、顶点、焦距等来确定.求满足下列各条件的椭圆的标准方程.(1)长轴长是短轴长的2倍且经过点A(2,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3.【解】(1)若椭圆的焦点在x轴上,设方程为x2a2+y2b2=1(a>b>0).∵椭圆过点A(2,0),∴4a2=1,a=2.∵2a=2·2b,∴b=1.∴椭圆的方程为x24+y2=1.若椭圆的焦点在y轴上,设椭圆的方程为y2a2+x2b2=1(a>b>0),∵椭圆过点A(2,0),∴02a2+4b2=1.∴b=2,2a=2·2b.∴a=4.∴椭圆的方程为y216+x24=1.综上所述,椭圆方程为x24+y2=1或y216+x24=1.(2)由已知⎩⎪⎨⎪⎧a =2c ,a -c =3,∴⎩⎪⎨⎪⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.(2012·新课标全国卷)设F 1、F 2是椭圆E :x a 2+y b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45【思路探究】 结合图形得到△F 2PF 1中相关线段的长度,求出a ,c 间的关系即可.【自主解答】如图所示,设直线x =3a2交直线F 1F 2于点D ,因为△F 2PF 1是底角为30°的等腰三角形,则有|F 2F 1|=|F 2P |,因为∠PF 1F 2=30°,所以∠PF 2D =60°,∠DPF 2=30°,所以|F 2D |=12|PF 2|=12|F 1F 2|,即3a 2-c =12×2c =c ,所以3a 2=2c ,即c a =34,所以椭圆的离心率为e =34. 【答案】 C离心率是椭圆的一个重要性质,相关的题型较多,求e 常用方法: (1)定义法:寻求a ,c 的关系式,求出a ,c 的值,或整体得到c a ,2c2a ,有时会用e2=c2a2=a2-b2a2=1-b2a2求e;(2)方程法:依据a,c,b,e的关系,构造关于e(或e2)的方程,解方程即可,注意离心率的取值范围为0<e<1.已知椭圆的两个焦点为F1,F2,A为椭圆上一点,且AF1⊥AF2,∠AF2F1=60°,求该椭圆的离心率.【解】不妨设椭圆的焦点在x轴上,画出草图如图所示.由AF1⊥AF2知△AF1F2为直角三角形,且∠AF2F1=60°.由椭圆的定义知|AF1|+|AF2|=2a,|F1F2|=2c.则在Rt△AF1F2中,由∠AF2F1=60°得|AF2|=c,|AF1|=3c,所以|AF1|+|AF2|=2a=(3+1)c,所以离心率e=ca=3-1.相关点法求轨迹方程(12分)已知点M在椭圆x236+y29=1上,MP′垂直于椭圆焦点所在的直线,垂足为P′,并且M为线段PP′的中点,求点P的轨迹方程.【思路点拨】找出点P的坐标与点M的坐标之间的关系代入椭圆方程即可.【规范解答】设点P的坐标为(x,y),M点的坐标为(x0,y0),由题意可知P′点坐标为(x,0).因为点M在椭圆x236+y29=1上,所以x2036+y209=1.4分又因为M 是线段PP ′的中点,所以⎩⎨⎧x 0=x ,y 0=y 2,7分将⎩⎨⎧x 0=x ,y 0=y 2代入x 2036+y 209=1,得x 2+y 2=36.11分 所以点P 的轨迹方程为x 2+y 2=36.12分.在某些较复杂的求轨迹方程的问题中,可以先确定一个较易求得的点的轨迹方程,再以此点作为主动点,所求轨迹上的点为相关点求得轨迹方程.1. 已知椭圆的方程讨论性质时,若不是标准形式,要先化成标准形式,再确定焦点位置,求a ,b .2. 求离心率e 时,注意方程思想的运用.1. 椭圆的短轴长是2,长轴长是短轴长的2倍,则椭圆的焦距是() A.23B.43 C.3D.2 5【解析】由题意知a=2,b=1,∴c=22-1=3,∴2c=2 3.【答案】 A2. 椭圆x216+y28=1的离心率为()A.13 B.12 C.33 D.22【解析】在x216+y28=1中,a2=16,b2=8,c2=a2-b2=16-8=8,∵c=22,∴e=ca=224=22,故选D.【答案】 D3. (2012·南宁高二检测)已知椭圆的焦距为8,离心率为23,则该椭圆的标准方程为________.【解析】∵2c=8且e=ca=23,∴c=4,a=6,b2=a2-c2=20.∴椭圆的标准方程为x236+y220=1或y236+x220=1.【答案】x236+y220=1或y236+x220=1.4. 求椭圆16x2+25y2=400的长轴和短轴长、离心率、焦点和顶点坐标.【解】把已知方程化为标准方程x252+y242=1,这里a=5,b=4,所以c=3.因此长轴长2a=10,短轴长2b=8,离心率e=ca=35,焦点F1(-3,0)和F2(3,0),椭圆的四个顶点是A1(-5,0),A2(5,0),B1(0,-4),B2(0,4).一、选择题1. 椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.14 B.12C.2D.4【解析】y21m+x2=1,∵2a=4b,∴1m=4,∴m=14.【答案】 A2. 椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为()A.x2100+y284=1B.x225+y29=1C.x2100+y284=1或x284+y2100=1D.x225+y29=1或y225+x29=1【解析】由题意知a=5,c=4,∴b2=a2-c2=9.当焦点在x轴上时,椭圆方程为x225+y29=1;当焦点在y轴上时,椭圆方程为y225+x29=1.【答案】 D3. (2012·哈尔滨高二检测)若椭圆x29+y2m+9=1的离心率为12,则m的值等于( )A.-94B.14C.-94或3D.14或3 【解析】 当m >0时,m m +9=14,∴m =3;当m <0时,-m 9=14,∴m =-94. 【答案】 C4. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15【解析】 由2a ,2b ,2c 成等差数列, 所以2b =a +c .又b 2=a 2-c 2,所以(a +c )2=4(a 2-c 2). 所以a =53c .所以e =c a =35.【答案】 B5. (2013·大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1【解析】 由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y 2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.【答案】 C二、填空题6. 椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________.【解析】设椭圆的长半轴长为a,短半轴长为b,焦距为2c,则b=1,a2+b2=(5)2,即a2=4.所以椭圆的标准方程是x24+y2=1或y24+x2=1.【答案】x24+y2=1或y24+x2=17. 过原点的直线与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,若F(c,0)是椭圆的右焦点,则△F AB的最大面积是________.【解析】当AB为短轴时,点A,B的纵坐标的绝对值最大,所以△F AB的最大面积S=12·c·2b=bc.【答案】bc8. 椭圆y2a2+x2b2=1(a>b>0)的两焦点为F1(0,-c),F2(0,c)(c>0),离心率e=32,焦点到椭圆上点的最短距离为2-3,则椭圆的方程是________.【解析】由题意可知ca=32,a-c=2-3,解得a=2,c=3,从而b2=1.又∵焦点在y轴上,所以所求的方程为y24+x2=1.【答案】y24+x2=1三、解答题9. 求椭圆25x2+16y2=400的长轴和短轴的长、离心率、焦点坐标和顶点坐标.【解】 椭圆方程化简为x 216+y 225=1,则a 2=25,b 2=16,c 2=a 2-b 2=9, 长轴长:2a =10,短轴长:2b =8, 离心率e =c a =35, 焦点坐标为(0,±3), 顶点坐标为(0,±5),(±4,0).10. 求经过点M (1,2),且与椭圆x 212+y 26=1有相同离心率的椭圆的标准方程.【解】 设所求椭圆方程为x 212+y 26=k 1(k 1>0)或y 212+x 26=k 2(k 2>0),将点M 的坐标代入可得112+46=k 1或412+16=k 2,解得k 1=34,k 2=12,故所求椭圆方程为x 212+y 26=34或y 212+x 26=12,即x 29+y 292=1或y 26+x 23=1.11. 已知F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆上位于第一象限内的一点,若AF 2→·F 1F 2→=0,椭圆的离心率等于22,△AOF 2的面积为22,求椭圆的方程.【解】如图,∵AF 2→·F 1F 2→=0, ∴AF 2⊥F 1F 2,∵椭圆的离心率e =c a =22, ∴b 2=12a 2,设A (x ,y )(x >0,y >0), 由AF 2⊥F 1F 2知x =c ,∴A (x ,y )代入椭圆方程得c 2a 2+y 2b 2=1, ∴y =b 2a ,∵△AOF 2的面积为22, ∴S △AOF 2=12c ×y =22, 即12c ·b 2a =22, ∵c a =22,∴b 2=8,∴a 2=2b 2=16,故椭圆的方程为x 216+y 28=1.(教师用书独具)已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求直线被椭圆截得的弦最长时直线的方程.【思路探究】 要求m 的取值范围,从方程的角度看,需将问题转化为关于x 的一元二次方程解的判断,而求弦最长时的直线方程,就是将弦长表示成关于m 的函数,求出当弦长最大时的m 值,从而确定直线方程.【规范解答】 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0.因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0, 解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2). 由(1)知5x 2+2mx +m 2-1=0.由根与系数的关系得x 1+x 2=-25m ,x 1x 2=m 2-15.所以|AB |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+(x 1+m -x 2-m )2 =2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]=2[4m 225-45(m 2-1)] =2510-8m 2.因为Δ=4m 2-20(m 2-1)>0, 所以-52<m <52.所以当m =0时,|AB |最大,此时直线方程为y =x .已知斜率为1的直线l 经过椭圆x 2+4y 2=4的右焦点交椭圆于A ,B 两点,求弦长|AB|.【解】设A(x1,y1),B(x2,y2),由椭圆方程知:a2=4,b2=1,∴c2=3,∴右焦点F(3,0).∴直线l的方程为y=x-3,代入椭圆方程得5x2-83x+8=0.∴x1+x2=835,x1x2=85,∴|AB|=2|x2-x1|=2(x1+x2)2-8x1x2=85.。
2.2.2椭圆的简单几何性质(3))
M F
H
新知探究
直线 叫做椭圆相应于焦 点F2(c,0)的准线,相应于焦点 a2 F1(-c,0)的准线方程是 x = y
ca2Leabharlann x= ca x= c2
a x= c
F1 O F2 x
2
新知探究
x2 y 2 椭圆 2 2 1 a b 0 的准线方程是 b a 2 y a y= c
新知探究
3.点M在椭圆上运动,当点M在什么位 置
M
时,∠y F1MF2为最大? 点M为短轴的端点.
F1 O F2 x
此时△F1MF2的面 积最大
典型例题
x y 1上一点P到 例1 若椭圆 100 36
2
2
椭圆左准线的距离为10,求点P到椭 圆右焦点的距离. 12
典型例题
例2 方程.
已知椭圆的两条准线方程为
|MF2|=a-ey0
|MF1|=a+ey0
y M F2 O F1 x
新知探究
椭圆中的几个最值:
x y 1.对于椭圆 2 2 1 a b 0 b a y
M
O
2 2
x
椭圆上的点到椭圆中心的距离的最大值 和最小值分别是 最大值为a,最小值为b.
新知探究
2.椭圆上的点到椭圆焦点的距离的最
例4 已知点M与点F(4,0)的距离和它 4 25 到直线l:x 的距离之比等于 , 5 4 y l 求点M的轨迹方程.
x y + = 1 25 9
2
2
M O F
H
x
x y 例5 设F1、F2是椭圆 1 64 36
2
2
的左、右焦点,点M在椭圆上,且 ∠F1MF2=60°,求△F1MF2的面积.
椭圆性质
椭圆的离心率.∵a>c>0,∴0<ea<1.
(1)当e越接近1时,c越接近a,从而b a2 c2
越小,因此椭圆越扁;
y
O
x
4.离心率 椭圆的焦距与长轴长的比
e
c
,叫做
椭圆的离心率.∵a>c>0,∴0<ea<1.
(1)当e越接近1时,c越接近a,从而b a2 c2 越小,因此椭圆越扁;
A1 b a A2 F1 O c F2 x
B1
3.顶点 线段A1A2、B1B2分别叫做椭圆的长轴和 短轴. 长轴的长等于2a. 短轴的长等于2b.
a叫做椭圆的长半轴长.
y
b叫做椭圆的短半轴长.
B2
|B1F1|=|B1F2|=|B2F1| =|B2F2|=a.
A1 b a A2 F1 O c F2 x
2.1.2椭圆的简单 几何性质
§2.1 椭 圆
1.在平面内到两定点F1、椭圆
.这两定点叫做椭圆
的 焦点 ,两焦点间的距离叫 焦距 .
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0, 且a,c为常数;(1)若 a>c ,则集合P
,
10 2 A.
3
5 1 B.
3
C. 5 1 2
D. 10 2 2
3. 综合练习:
1. 以 正 方 形ABCD的 相 对 顶 点A、C为
焦点的椭圆,恰好过正方形四边的中
点,则该椭圆的离心率为( D )
,
10 2 A.
3
5 1 B.
3
C. 5 1 2
D. 10 2 2
例2 求适合下列条件的椭圆的标准方程:
【高中数学优质课件】椭圆的简单几何性质(课时3)
复习回顾
定义
不
图形
同
平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹
y y P
F2 P
F1 O F2
x
O
x
F1
点
标准方程
x2 + y2 = 1a > b > 0
a2 b2
x2 + y2 = 1a > b > 0
b2 a2
焦点坐标
F1 -c , 0,F2 c , 0
直平分线过点 F,则椭圆离心率的取值范围是( )
A.(0,
2 2]
B.(0,12]
C.[ 2-1,1)
D.[12,1)
解析:依题意|FA|=|FP|. ∵|FA|=ac2-c, |FP|≤a+c, ∴ac2-c≤a+c,即 a2≤ac+2c2, ∴2e2+e-1≥0,(2e-1)(e+1)≥0. 又 0<e<1,∴12≤e<1.
正方形面积的1/4,且B点横纵坐标相等,故设B(t,t)代入椭圆方程
求得
t2
a2b2 a2 b2
4a2b2 即正方形ABCD面积为 a2 b2
y
B2
AE
B
F
A1
O
A2 x
D
B1 C
变式训练3 已知椭圆的两个焦点为F1、F2,A为 椭圆上一点,且AF1⊥AF2,∠AF2F1=60°,求 该椭圆的离心率.
∴0<e<
2 2.
例1 (1)若椭圆短轴的一个端点与两焦点组成 一个正三角形;且焦点到同侧顶点的距离为 3, 求椭圆的标准方程; (2) 如图,已知椭圆 E 经过点 A(2,3), 对称轴为坐标轴,焦点 F1,F2 在 x 轴上,
椭圆的简单几何性质(三)
课 题:8.2椭圆的简单几何性质(三)教学目的:1. 能推导,掌握椭圆的焦半径公式,并能利用焦半径公式解决有关与焦点距离有关的问题;2.能利用椭圆的有关知识解决实际问题,及综合问题; 3.体会数学形式的简洁美,增强爱国主义观念 教学重点:焦半径公式的的推导及应用教学难点:焦半径公式的的推导,应用问题中坐标系的建立 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称 原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,,0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点. 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为a 2,2 b a ,分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比a c =⇒e =0<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例 ,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.椭圆的第二定义一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 5.椭圆的准线方程:椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 二、讲解新课:椭圆的焦半径公式:设),(00y x M 是椭圆12222=+by a x )0(>>b a 的一点,1r 和2r 分别是点M 与点)0,(1c F -,)0,(2c F 的距离.那么(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率推导方法一: 202021)(y c x MF ++=,202022)(y c x MF +-=022214cx MF MF =-∴,a MF MF 221=+ 又⎪⎩⎪⎨⎧=+=-∴2221021a MF MF x a c MF MF ⎪⎩⎪⎨⎧-=-=+=+=∴002001ex a x a ca MF ex a x a c a MF即(左焦半径)01ex a r +=,(右焦半径)2ex a r -=推导方法二:,||11e MF r =e MF r =||22⇒00211)(||ex a x c a e MF e r +=+==,00222)(||ex a x ca e MF e r -=-==同理有焦点在y 轴上的椭圆的焦半径公式:⎩⎨⎧-=+=0201ey a MF ey a MF( 其中21F F 分别是椭圆的下上焦点)注意:焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加 三、讲解范例例1 如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)2F 为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km ,远地点B(离地面最远的点)距地面2384km ,并且2F 、A 、B 在同一直线上,设地球半径约为6371km ,求卫星运行的轨道方程 (精确到1km).解:建立如图所示直角坐标系,使点A 、B 、2F 在x 轴上,则 c a -=|OA|-|O 2F |=|2F A|=6371+439=6810c a +=|OB|+|O 2F |=|2F B|=6371+2384=8755 解得a =7782.5,c =972.5772287556810))((22≈⨯=-+=-=c a c a c a b .卫星运行的轨道方程为1772277832222=+y x 例2 椭圆)0( 12222>>=+b a by a x ,其上一点P(3,y )到两焦点的距离分别是6.5和3.5,求椭圆方程解:由椭圆的焦半径公式,得⎩⎨⎧=-=+5.335.63e a e a ,解得21,5==e a ,从而有 4,25222=-==c a b c所求椭圆方程为17542522=+y x 四、课堂练习:1.P 为椭圆192522=+y x 上的点,且P 与21,F F 的连线互相垂直,求P 解:由题意,得+-20)545(x 20)545(x +=641625720⨯=⇒x ,16812=y ⇒P 的坐标为)49,475(,)49,475(-,)49,475(--,49,475(- 2.椭圆192522=+y x 上不同三点),(),59,4(),,(2211y x C B y x A 与焦点F(4,0)的距离成等差数列,求证21=+x x证明:由题意,得 ++)545(1x )545(2x +=2)4545(⨯+⇒821=+x x 3.设P 是以0为中心的椭圆上任意一点,2F 为右焦点,求证:以线段P F 2为直径的圆与此椭圆长轴为直径的圆内切证明:设椭圆方程为12222=+by a x ,(0>>b a ),焦半径P F 2是圆1O 的直径,则由11222222OO PF PF a PF a ==-=-知,两圆半径之差等于圆心距,所以,以线段P F 2为直径的圆与此椭圆长轴为直径的圆内切五、小结 :焦半径公式的推导方法及形式;实际问题中坐标系的建立应使问题易求解六、课后作业:七、板书设计(略)八、课后记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y M N
P M0 x
O
x2 y 2 例1: 求椭圆 2 2 1 (a b 0) a b 的内接矩形面积的最大值 .
解: 如图,设 A(a cos , b sin )
B
y A O x D
则由椭圆的对称性得: S矩形ABCD 4a cos b sin
2absin 2
b
x
练习 2 :已知 F1 、 F2 是椭圆的两个焦点, P 为椭圆上一点,且 ∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆短轴长有关。
c 1 解:(1 ) sin 30 a 2
y
1 e 1 2
P
F1O
.
60
(2)令 | PF 1 | t1 , | PF 2 | t 2
y2 x2 如图, P 为椭圆 x 2 b 2 1(a b 0) 上一动点, F1 , F2 为椭圆的左
右焦点,求证: S F PF
1
2
F1 PF2 b tan 2
2
证明 :令 | B F1 | r1 ,| B F2 | r2 ,在 B F1 F2 中,由余弦定理,
x a cos y b sin
2b分别是椭圆的长轴、短 轴长, ( 为参数) 其中2a、 参数 的几何意义为椭圆的离 心角 .
x2 y2 叫做椭圆 2 2 1 的参数方程. a b
说明:它是椭圆方程的另 外一种表现形式,它的优 越性在于将曲线上点的横、 纵坐标(两个变量)用同 一个参数θ表示,这样就能 将椭圆上点的很多问题转 化为函数问题解决,很好 地将几何问题代数化.
y
r1 r2 2r1r2 4c 2 r r2 4c cos F1 BF2 , 2r1r2 2r1r2
2 1 2 2 2
2 b 2 r1 r2 r1 r2
所以
2b 2 r1r2 1 cos
. F
P O
1
. F
2
x
1 SBF1F2 r1 r2 sin 2 1 2b 2 sin 2 1 cos sin 2 2 b b tan 1 cos 2
2.1.2 椭圆的简单几何性质(3)
——椭圆的参数方程、焦点三角形
. O为 , C2 : x 2 y 2 a 2点 已知圆 C1 : x 2 y 2 b2圆 坐标原点, 点M是圆C2上的一动点,线段OM交圆C1于 N,过点M作x轴的垂线交x轴于M0,过点N作M0M的 垂线交M0M于P. 当动点M在圆C2上运动时,求点P的轨迹C的方程.
解: 设 P(x,y) , 则 由点M、N分别在圆C2 、C1上, 可设 M (a cos , a sin ),
y M P M0 x
N (b cos , b si ( 为参数) y b sin
消去参数θ,得
x2 y2 2 1 即点P的轨迹C的方程. 2 a b
解: 由已知可设 x 12cos ,y
5 sin .
则 u x y 12cos 5 sin
13 (12 cos 5 sin ) 13 13
13sin( )
y
13 u 13
F1
o
F2
x
x2 y 2 练习:已知 P( x,y ) 是椭圆 1 上的点, 144 25 求 u x y 的取值范围 .
(4)当点P在短轴端点位置时, θ最大.
课后作业
1. 40分钟 2.1.2 (二)
6
,求三角形F1MF2的面积。
y
M
解:设| MF1 | t1 , | MF2 | t2 1 1
S F1MF2 2 t1t 2 sin
t t2 36 由余弦定理cos 6 2t1t2
由椭圆的第一定义 t1 t2 10
t1t 2 6 4
2 1 2
F1 O
.
F2
x
S 64 32 3
x2 y 2 变式二:已知椭圆 2 2 1, (a b 0), F1 , F2是两个焦点, a b P是椭圆上一点,求F1PF2最大时P点坐标. y 证明:设F1PF2 令 | PF | t , | PF | t 1 1 2 2 P 2 2 t1 t2 4c 2 cos F1 F2 x o 2t1t2 由椭圆的第一定义得: t1 t2 2a 2 2 t1 t2 4c 2 (t1 t2 ) 2 2t1t2 4c 2 4a 2 4c 2 2t1t2 cos 2t1t2 2t1t2 2t1t2 2 t1 t 2 2 2b 2 (当t1 t2时取等号) ) a , cos 1又 t1t 2 ( 2 t1t2
y
.
.
.
1 2 5 5 | PF1 || PF2 | ( 5 x )( 5 x ) 5 x , x [ 5, 5]. 5 5 5 ( PF1 PF2 )max 5. ∴当x=0 即点P为椭圆短轴端点时, 当 x 5 即点P为椭圆长轴端点时, ( PF1 PF2 )min 4.
2
2
l' 解: (2) 由椭圆第二定义得, l P d2 | PF1 | | PF2 | e, e, d1 d2 x O F2 F1 a2 | PF1 | ed1 e( x ) a ex 2 2 c a a x x a2 c c e ( x ) a ex | PF2 | ed2 (焦半径公式) c 5 x2 y2 由 . 1 知, a 5, b 2, c 1 e 5 5 4
x y (法二)∵ P(x, y)是椭圆 1上的一个动点, 5 4 ∴ 可设 x 5 cos , y 2sin 则 PF1 PF2 (1 x, y) (1 x, y) x 2 y2 1
2 5cos2 4sin2 1 cos 3, cos [1,1]. ( PF1 PF2 )min 3. 当 cos 0 时, ( PF1 PF2 )max 4. 当 cos 1 时,
2
C
当 45 时, (S矩形ABCD) max 2ab .
x y 练习:已知 P( x,y ) 是椭圆 1 上的点, 144 25 求 u x y 的取值范围 .
2
x2 y 2 练习:已知 P( x,y ) 是椭圆 1 上的点, 144 25 求 u x y 的取值范围 .
解:将y u x代入椭圆方程: x 2 (u x) 2 1 144 25 1 1 2 2u u2 ( )x x 1 0 144 25 25 25
y
F1
o
F2
x
2u 2 1 1 u2 由 0得: ( ) 4( )( 1) 0 u 13 25 144 25 25
2 2
2
y
P
又 PF 1 PF 2
2 2 2 2 | PF | | PF | | F F | 4c 1 2 1 2
F1
o
F2
x
| PF 1 || PF 2 | 2(a c ) 2b
2 2
2
SPF1F2 b .
2
x2 y2 变式一 : 设M是椭圆 1上一点,F1 , F2是 25 16 焦点,F1MF2
2b 2 cos 2 1 即当P(0,b)时,F1PF2最大. a
练习 1:已知椭圆上存在一点 P,使F1PF2 90, 求椭圆离心率的范围。
由题意知: F1PO 45
c 2 sin F1 PO a 2 2 e 1 2
F1
y
a c
P
F2
o
焦点三角形
y
P F1
o
F2
x
x2 y 2 例2.已知 F1 、F2 是椭圆 2 2 1的两个焦点, a b P是椭圆上一点,且 PF1 PF2 ,求 PF1F2 的面积 .
解: | PF 1 | | PF 2 | 2a
| PF 1 | | PF 2 | 2 | PF 1 || PF 2 | 4a
13 x y 13
练习
x2 y2 设F + = 1 的左、右焦点, 1 , F2 分别是椭圆 5 4 P( x, y) 是该椭圆上的一个动点.
( 1)求 PF 1 PF 2 的最大值和最小值;
( 2)求 PF1 PF2 的最大值和最小值.
x2 y2 (1) 由 解: 1 知, a 5, b 2, c 1. 5 4 F1 (1,0), F2 (1,0). PF1 PF2 (1 x, y) (1 x, y) x 2 y2 1 x2 y2 1上的一个动点, ∵ P(x, y)是椭圆 5 4
2
4 2 y 4 x 5 1 2 4 2 2 PF1 PF2 x 4 x 1 x 3, x [ 5, 5]. 5 5 ∴当x=0 即点P为椭圆短轴端点时,( PF1 PF2 )min 3. 当 x 5 即点P为椭圆长轴端点时, ( PF1 PF2 )max 4.
F2
.
x
1 3 S F1PF2 t1t2 sin 60 t1t2 2 4 2 2 2 2 2 2 t t 4 c 2 b ( t t ) 2 t t 4 c 2 1 2 由余弦定理得cos60 1 1 2 1 2t1t2 2t1t2 t1t 2 3 2 4 2 S b t1t 2 b F1PF2 3 3