小学数学等量关系

合集下载

数学中的等量关系式

数学中的等量关系式

数学中的等量关系式 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】数学中的等量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 、长方形 C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5 、三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2高=面积×2÷底底=面积×2÷高6、平行四边形 s面积 a底 h高面积=底×高 s=ah7、梯形 s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形 S面积 C周长 d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数其它问题和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)植树问题非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1全长=株距×(株数+1) 株距=全长÷(株数+1)盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算问题长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤。

小学常用等量关系式

小学常用等量关系式

人教版小学数学知识点概括常用等量关系式:1、①加数 +加数 = 和②一个加数 =和-另一个加数2、①被减数-减数=差②差+减数=被减数③被减数-差=减数3、①因数×因数=积②一个因数=积÷另一个因数4、①被除数÷除数=商②商×除数 = 被除数③被除数÷商 =除数5、①被除数÷除数=商余数②商×除数 +余数 = 被除数③ (被除数-余数 ) ÷商 = 除数④ (被除数-余数 )÷除数 =商6、①大数-小数=相差数②大数 = 小数 +相差数③大数-相差数 =小数7、①一倍数×倍数=几倍数②几倍数÷一倍数 =倍数③几倍数÷倍数 = 一倍数8、①速度×时间=行程②行程÷速度 =时间③行程÷时间 =速度9、①速度和×相遇时间=行程②行程÷速度和 =相遇时间③行程÷相遇时间=速度和④总行程÷总时间= 均匀速度10 、①船速-水速 = 逆水速度②船速 + 水速 =顺流速度③(顺流速度+逆水速度)÷2=船速④(顺流速度-逆水速度)÷2=水速11 、① 速度差×追实时间=追及行程②追及行程÷追实时间 = 速度差③追及行程÷速度差=追实时间12 、①工作效率×工作时间=工作总量②工作总量÷工作时间 = 工作效率③工作总量÷工作效率=工作时间13 、①单价×数目 = 总价②总价÷数目 = 单价③总价÷单价 =数目14 、①总数÷份数 = 每份数(单调量)②总数÷每份数(单调量)=份数(反归一)③每份数(单调量)×份数=总数(总量)(正归一)15、植树问题(1)直线植树①距离÷树间距+1= 植树棵树②总距离÷(植树棵树-1)=树间距③树间距×(植树棵树-1)= 总距离(2)非关闭线路上的植树问题主要可分为以下三种情况:①假如在非关闭线路的两头都要植树,那么:株数 =段数 +1= 全长÷株距-1全长=株距× (株数-1)株距 =全长÷ (株数 -1)②假如在非关闭线路的一端要植树,另一端不要植树,那么:株数 =段数 = 全长÷株距全长=株距×株数株距=全长÷株数③假如在非关闭线路的两头都不要植树,那么:株数 =段数 -1=全长÷株距 -1全长=株距× (株数+1)株距 =全长÷ (株数 +1)(3)关闭线路上的植树问题的数目关系以下株数 =段数 = 全长÷株距全长=株距×株数株距=全长÷株数16 、①总数目÷总份数=均匀数②总数目÷均匀数=总份数③均匀数×总份数=总数目17 、比和比率①图上距离÷实质距离=比率尺②图上距离÷比率尺=实质距离③实质距离×比率尺=图上距离18 、几何图形的周长(C)和面积( S)公式。

小学等量关系式

小学等量关系式

小学等量关系式小学等量关系式______________________________小学等量关系式是数学学习中的基本概念,它是由相等的量之间的关系组成的。

它不仅是在数学教学中最基本的概念,而且也是在其他学科中使用的基本概念。

它不仅可以用来帮助孩子们理解数学原理,而且也可以帮助孩子们理解其他学科的原理。

小学等量关系式的定义是:两个或多个量之间的关系,当其中一个量发生变化时,另一个量也会发生变化,但变化的幅度是相同的。

例如,当一个量增加1时,另一个量也会增加1;当一个量减少1时,另一个量也会减少1。

这是一个基本的等量关系式。

小学等量关系式的理解不仅有助于孩子们理解数学原理,而且还可以帮助孩子们理解许多其他方面的知识。

例如,孩子们可以通过小学等量关系式来理解文字、颜色和图形之间的关系。

它还可以帮助孩子们理解语言、思想和行为之间的关系。

在教学中,老师可以使用小学等量关系式来帮助孩子们更好地理解抽象概念。

例如,老师可以使用“A+B=C”这样的关系式来让孩子们理解抽象概念“加法”的概念。

老师还可以使用“A-B=C”这样的关系式来让孩子们理解抽象概念“减法”的概念。

此外,老师还可以使用小学等量关系式来帮助孩子们理解日常生活中的实际概念。

例如,老师可以使用“A+B=C”这样的关系式来让孩子们理解时间和日期之间的关系,或者使用“A-B=C”这样的关系式来让孩子们理解差异之间的关系。

总而言之,小学等量关系式是数学教学中最基本的概念,它不仅有助于孩子们理解数学原理,而且也可以帮助孩子们理解许多其他方面的知识。

老师在教学中应该多利用小学等量关系式来帮助孩子们更好地理解和应用数学原理。

小学数学常用等量关系式

小学数学常用等量关系式

小学数学常用等量关系式
1.每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2.1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3.速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4.单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5.工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6.加数+加数=和
和-其中一个加数=另一个加数
7.被减数-减数=差
被减数-差=减数
差+减数=被减数
8.因数×因数=积
积÷一个因数=另一个因数
9.被除数÷除数=商(无余数)
被除数÷商=除数
商×除数=被除数
10.被除数÷除数=商……余数
(被除数-余数)÷商=除数
商×除数+余数=被除数。

小学数学的等量关系练习题

小学数学的等量关系练习题

小学数学的等量关系练习题数学是一门重要的学科,也是孩子们必须学习的内容之一。

在小学阶段,数学的教学旨在培养孩子们的数理思维能力,帮助他们建立数学概念,并学会应用数学知识解决实际问题。

等量关系是数学中的重要概念之一,通过练习题的形式,可以帮助学生更好地理解和应用等量关系。

一、相等关系等量关系是指两个或多个量之间的相等关系。

在数学中,我们使用“=”符号表示相等关系。

在小学数学的学习过程中,老师通常会使用练习题来让学生巩固和应用等量关系。

下面是一些小学数学的等量关系练习题:1. 填空题(1)2 + ___ = 7(2)8 - ___ = 3(3)6 × ___ = 24(4)20 ÷ ___ = 52. 选择题(1)2 × 3 = ___A. 6B. 5C. 4D. 3(2)10 ÷ 2 = ___A. 5B. 4C. 3D. 2(3)7 + 3 = ___A. 10B. 9C. 8D. 7(4)12 - 7 = ___A. 5B. 6C. 7D. 8二、实际问题除了简单的填空题和选择题,小学数学的等量关系还可以通过实际问题来练习和应用。

下面是一些涉及等量关系的实际问题:1. 问题一小明有5个苹果,小红比小明多2个苹果,请问小红一共有几个苹果?解答:小红比小明多2个苹果,意味着小明的苹果数加上2等于小红的苹果数,即5 + 2 = 7。

所以小红一共有7个苹果。

2. 问题二老师给小华发了一些红球和蓝球,红球比蓝球多4个,小华一共收到16个球,请问红球和蓝球各有几个?解答:红球比蓝球多4个,即红球数等于蓝球数加上4。

设蓝球数为x,则红球数为x + 4。

根据题意可得出方程式:x + (x + 4) = 16。

解方程可得x = 6,即蓝球有6个,红球有6 + 4 = 10个。

通过以上的练习题和实际问题,可以帮助孩子们巩固和应用等量关系的概念。

在解答这些题目时,学生需要观察题目中的关系,然后用数学知识进行计算,并给出准确的答案。

数学常用的等量公式

数学常用的等量公式
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100﹪(折扣<1)
利息=本金×利率×时间
常用的单位及进率
时间单位
1世纪=100年1年=12月
大月(31天)有:1月、3月、5月、7月、8月、10月、12月
小月(30天)的有:4月、6月、9月、11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
小学数学的基本公式和常用的等量关系
数学中常用的字母代表的含义:
C:周长S:面积a:边长V:体积a:棱长h:高
小学数学图形的基本公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a×a
5、三角形的面积=底×高÷2 S=ah÷2
基本的等量关系
1、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间

数学所有的等量关系式

数学所有的等量关系式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、2、因数×因数=积积÷一个因数=另一个因数 9、3、被除数÷除数=商被除数÷商=除数商×除数=被除数4、小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4C=4a 面积=边长×边长S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形 C 周长 S面积 a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h 高面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高面积=底×高 s=ah 7 梯形 s面积a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S 面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 95、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式 (和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤。

小学数学运算等量关系总结

小学数学运算等量关系总结

四则运算各部分之间的关系加法:把两个数合拼成一个数的运算。

叫做加法。

减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。

叫做减法。

乘法:求几个相同加数的和的简便运算。

叫做乘法。

除法:已知两个因数的积与其中的一个因数求另一个因数的运算。

叫做除法。

四则运算各部分之间的关系加法:一个加数等于和减去另一个加数。

减法:被减数等于差加减数。

减数等于被减数减差。

乘法:一个因数等于积除以另一个因数。

除法:被除数等于商乘除数。

除数等于被除数除以商。

运算定律加法交换律:交换两个加数的位置,它们的和不变。

a+b=b+a加法结合律:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再同第一个数相加,它们的和不变。

a+b+c=a+(b+c) 乘法交换律:交换两个因数的位置,它们的积不变。

ab=ba乘法结合律:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

abc=a(bc)乘法分配律:两个加数的和同一个数相乘,也可以两个加数分别与这个数相乘,再把两个积相加,它们的结果不变。

(a+b)×c=ac+bc s=vt v=s÷t t=s÷v总价=单价×数量单价=总价÷数量数量=总价÷单价c=an a=c÷n n=c÷a 工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率总产量=单产量×公顷数单产量=总产量÷公顷数公顷数=总产量÷单产量平均数=总数÷总份数比较量=标准量×相对应的分率(±)(找出单位“1”)标准量=比较量÷相对应的分率(±)(找出单位“1”)相对应的分率=比较量÷标准量(找出单位“1”)除法的性质:被除数和除数同时乘或除以一个数(零除外),它们的商不变。

数学中的等量关系式

数学中的等量关系式

1、每份数×份数=总数2、1倍数×咅数=几倍数3、速度×寸间=路程4、单价×数量=总价 数学中的等量关系式5、工作效率×X 作时间=工作总量6、加数+加数=和7、被减数—减数=差8、因数×a 数=积9、被除数÷除数=商总数÷s 份数=份数几倍数÷倍数=倍数 路程÷s 度=时间 总价÷单介=数量 工作总量÷工作效率=工作时间 和—一个加数=另一个加数被减数-差=减数积÷一个因数=另一个因数被除数÷商=除数总数÷⅛数=每份数几倍数÷咅数=1倍数路程÷寸间=速度总价÷数量=单价工作总量 T 作时间=工作效率差+减数=被减数商×除数=被除数小学数学图形计算公式1、正方形 C 周长S 面积a 边长周长=边长X 4 C=4a面积=边长X 边长S=a X a2、正方体 V:体积 a: 棱长表面积=棱长X 棱长X 5 S 表=a X a X D体积=棱长X 棱长X⅛长V=a X a X a3、长方形 C 周长 S 面积 a 边长 周长=(长+宽 :)X 2 C=2(a+b)面积=长 X 宽 S=abV:体积 4、 长方体 (1) 表面积(长×g +长 >咼+宽×咼)& (2) 体积=长>宽>咼 5、 三角形 S 面积 a 底 h 高 6、 平行四边形 S 面积 a 底 h 高 7、 梯形 S 面积 a 上底 b 下底 面积=(上底+下底)×高吃 8、 圆形 S 面积 C 周长 (1)周长=直径×I =2Xn 半径 9、 圆柱体 v:体积 h:高(1)侧面积=底面周长X 高 (3) 体积=底面积X 高 s:面积 a:长 b:宽 h:咼S=2(ab+ah+bh) V=abh面积=底X 高吃 高=面积×2 ÷底 面积=底X 高h 高 s=(a+b) X h ÷d=直径 r=半径 s=ah ÷2底=面积X 2÷咼s=ahC= ∏d=2 ∏r⑵面积=半径X 半径Xs;底面积 r:底面半径 c:底面周长(2)表面积=侧面积+底面积X 2 (4)体积=侧面积÷ X 半径10、圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积X 高÷3总数÷、份数=平均数其它问题和差问题的公式(和+差)÷2 =大数(和—差)吃=小数和倍问题和÷倍数一1)=小数小数×t数=大数(或者和-小数=大数)差倍问题差÷倍数一1)=小数小数×倍数=大数(或小数+差=大数)植树问题非封闭线路上的植树问题主要可分为以下三种情形:(1如果在非圭寸闭线路的两端都要植树,那么:株数=段数+ 1=全长÷株距- 1全长=株距×株数一1)株距=全长÷株数一1)(2如口果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷⅛距全长=株距×⅛数株距=全长÷⅛数(3如果在非圭寸闭线路的两端都不要植树,那么:株数=段数- 1 =全长÷⅛距- 1全长=株距×株数+ 1)株距=全长÷株数+ 1)盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷S度和速度和=相遇路程÷目遇时间追及问题追及距离=速度差×1及时间追及时间=追及距离÷s度差速度差=追及距离÷a及时间利润与折扣问题利润=售出价一成本利润率=利润÷成本×00% =(售出价÷成本一1)×100%涨跌金额=本金×张跌百分比折扣=实际售价÷原售价×100%(折扣V 1)利息=本金×利率×寸间税后利息=本金×利率×时间×1 —20%)长度单位换算单位换算问题1千米=1000米1米=10分米1分米=10厘米面积单位换算体(容)积单位换算重量单位换算1米=100厘米1厘米=10毫米1平方千米=100公顷1平方分米=100平方厘米1立方米=1000立方分米1立方厘米=1毫升1吨=1000千克1公顷=10000平方米1平方米=100平方分米1平方厘米=100平方毫米1立方分米=1000立方厘米1立方分米=1升1立方米=1000升1千克=1000克1千克=1公斤。

数学中的等量关系式

数学中的等量关系式

数学中的等量关系式文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-数学中的等量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 、长方形 C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5 、三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2高=面积×2÷底底=面积×2÷高6、平行四边形 s面积 a底 h高面积=底×高 s=ah7、梯形 s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形 S面积 C周长 d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数其它问题和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)植树问题非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1全长=株距×(株数+1) 株距=全长÷(株数+1)盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算问题长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤。

找等量关系式的四种方法

找等量关系式的四种方法

找等量关系式的四种方法1、根据题目中的关键句找等量关系;应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句;在列方程解应用题时,同学们可以根据关键句来找等量关系;2、用常见数量关系式作等量关系;我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程;3、把公式作为等量关系;在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系;4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系;例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系;1.牢记计算公式,根据公式来找等量关系;这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题;2.熟记数量关系,根据数量关系找等量关系;这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式;如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225;3.抓住关键字词,根据字词的提示找等量关系;这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多少”、“是……的几倍”、“比……的几倍多少”等;在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程;如“四年级有学生250人,比三年级的2倍少70人,三年级有学生多少人”,根据题中“比……少”可知:三年级的2倍减去70人等于四年级的人数,从而列出方程2X-70=250;4.找准单位“1”,根据“量率对应”找等量关系;这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题;对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率;在倍比关系的应用题中,也应找准标准量;因此,正确地确定“量率对应”是解题的关键;5.补充缺省条件,根据句子意思找等量关系;这类应用题的特征是含有“比……多少”、“比……增加减少”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难;因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整;如“小明第一天看书60页,比第二天少看 ,第二天看了多少页”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的 是指第二天的 ”,于是可列方程X - X=60;6.利用好线段图,根据线段图找等量关系;有些应用题光从字面上来看,不容易理解,有时教师可辅以线段图帮助学生理解;当然,如果学生会画线段图,题目往往很容易解开;画线段图的关键仍是找准谁是单位“1”,其它量都是与单位“1”相比较而言的;而理解单位“1”,又往往可以从“比”、“是”等词语后面找到,也即“比”、“是”后面的量通常是标准量,是单位“1”;以上所举只是一些比较简单的应用题,如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等,这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答;当然,这里更离不开教师平时的引导与启迪;方程组是解决实际问题的一个有效数学模型.列方程组的关键是挖掘出隐含在题目中的等量关系.寻找等量关系有三种常用方法:译式法、列表法和图示法.解题时有意识的学习使用这些方法,可以有效的帮助我们分解难点,寻找出等量关系,进而列出方程组求解.一、译式法例1 4辆小卡车和5辆大卡车共27吨;6辆小卡车和10辆大卡车共运货51吨.问小卡车和大卡车每辆每次各运多少吨分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运x 、y 吨.则“4辆小卡车和5辆大卡车共27吨”可翻译成数学式子:2754=+y x ;“6辆小卡车和10辆大卡车共运货51吨” 可翻译成数学式子:51106=+y x .由这两个式子组合列出二元一次方程组即可求解.评注: 对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程组也就列出来了.这种将关键词语译成代数式列方程组解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.二、列表法例3 某日小伟和爸爸在超市买12袋牛奶24个面包花了64元.第二天他们又去超市时,发现牛奶和面包均打八折,这次他们花了60元却比上次多买了4袋奶3个面包.求打折前牛奶和面包的单价并根据上表可得方程组⎩⎨⎧=⨯+⨯=+608.0278.016642412y x y x解:略.评注:列表法是指将题目中数量及其关系填在表格内,再据此逐层分析,找到各量之间的内在相等关系,列出方程组的方法.列表时分类整理排列,条理清晰,优点明显.尤其对于题目较为复杂,等量关系较为隐蔽的题目效果较好.三、图示法例4 甲、乙两人都以不变的速度在环形路上跑步.相向而行,每隔2分二人相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑得快,求甲乙每分各跑多少圈分析:根据题意可以分别画出甲、乙相向而行、同向而行时的示意图如图1和图2 如果设甲每分钟跑x 圈,乙每分钟跑y 圈,根据图1可得12x 2=+y ;根据图2可得166=-y x .评注:图示法是指将条件及它们之间的内在联系用简单明了的示意图表示出来,然后据图找等量关系列方程组的方法.图示法直观、明了,是解决行程等问题的常用方法.评注: 对于较为复杂的题目,可把三种方法结合使用.这三种方法在突破等量关系这一难点问题上,体现的是分步、分层、分散的转化思想,不论容易题、难题,都非常适用.同学们开始接触这些方法时可能觉得有些繁琐,如果有意识加强这方面的训练,形成习惯,自然会省时省力,这类问题也就会迎刃而解了.1.把日常的语言翻译成代数的语言,而代数的语言就是方程,即可得等量关系式;例如,商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克;这个商店原来有多少千克饺子粉日常语言:原有的重量减去每袋的重量乘以卖出的袋数等于剩下的重量;代数的语言:χ-5×7=40这里的χ表示原有的重量;又如,望岳小学买来2个足球和25根跳绳,共用元;每个足球的售价元,每根跳绳的售价是多少元日常语言:买2个足球的钱加上买25根跳绳的钱等于共用去的钱代数语言:×2+25χ=这里χ表示每根跳绳的售价;2.掌握常见的基本数量关系,建立等量关系式;根据“行程问题”基本数量关系式:速度×时间=路程根据“工作问题”基本数量关系式:工作效率×工作时间=工作总量3.根据题中关键性词语来理解数量关系从中得到等量关系式;例如,一个花坛里有3行芍药花,每行5棵;另一个花坛里有3行牡丹花,芍药花比牡丹花少9棵,牡丹花每行多少棵根据题中“芍药花比牡丹花少9棵”的关键性词语“比”、“少”,就可以列出:3χ-5×3=9χ表示每行牡丹花的棵数4.利用线段图的直观性,从图中发现等量关系;例如,某农具厂计划生产新式农具144件,现在已经生产了19件,其余的要在4天内完成,平均每天应当生产多少件19件 χ χ χ χ┕━━━┻━━━━┻━━━━┻━━━━┻━━━━┛144件从图中很容易看出:19+4χ=144;5.根据一些定义、公式,列出等量关系式;例如,李家营建造一个养鸡场,用110米长的篱笆围成一个长方形场地;如果长是37米,宽应该是多少米根据长方形的周长公式,得:37+χ×2=110这里的χ表示长方形的宽★方程指的是“含有未知数的等式”;图1 图2 6x 6y相向 同向☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来;则列方程解应用题的关键是——找出...,找出了相等的关系,方程也就可以列出来了.找等..相.等关系量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程; 习题:1.某数的三分之一比这个数小1,求这个数;二、根据常见的数量关系找等量关系最常见的数量关系:1.速度×时间=路程路程÷速度=时间路程÷时间=速度2.单价×数量=总价总价÷单价=数量总价÷数量=单价★关于打折的问题:打几折=原价×百分之几十3.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4.增长后的量=原量1+增长率降低后的量=原量1-降低率习题:1.已知皮划艇500米最好成绩是分钟,求平均速度三、根据常用的计算公式找等量关系最常用的计算公式有:1.正方形周长=边长×4 正方形面积=边长×边长=边长22.长方形周长=长+宽×2 长方形面积=长×宽3.三角形面积=底×高÷2 梯形面积=上底+下底×高÷24. 圆形周长=π×直径=2π×半径圆形面积=π×半径2习题:1.长方形的周长为60米,已知长是宽的倍,求它的面积;四、理解文字找等量关系;习题:1.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元;问男生有多少人五、画图分析找等量关系根据题意画出图形分析图或者是表格分析图,从中找出相关等量列方程;习题:1.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷。

找等量关系式的四种方法

找等量关系式的四种方法

找等量关系式的四种方法集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#找等量关系式的四种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。

小学数学的基本公式和常用的等量关系式

小学数学的基本公式和常用的等量关系式
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
小学数学的基本公式和常用的等量关系
数学中常用的字母代表的含义
C周长 S面积 a边长 V体积 a棱长 h 高
小学数学图形的基本公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 半径=直径÷2 d=2r r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
9、 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
10、总数÷总份数=平均数
11、和差问题
(和+差)÷2=大数
(和-差)÷2=小数
12、和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
13、差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
数学应用题中常见数量关系式子
植树问题
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
有倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
有互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。

数量关系和等量关系在小学数学中的运用

数量关系和等量关系在小学数学中的运用

数量关系和等量关系在小学数学中的运用小学数学是学习考试科目中非常重要的一部分,“数量关系和等量关系”正是其中一个重要内容,它贯穿于小学数学的各个部分,在学习中给学生们起着至关重要的作用。

因此,弄清楚它到底是怎样运作以及如何在小学数学中运用它是非常重要的。

首先,我们来看看“数量关系”是什么?数量关系是指数学元素之间的对应关系,对应关系反映的是分类的关系。

比如,一个数的倍数、因子、值、除数等都属于数量关系。

这种关系可以在小学数学中用来归纳分类数量,理解数字及其特征、解决平行、等面积、等边等问题等。

再来看看“等量关系”是什么?等量关系是指两个或多个不同数量之间的对应关系。

它可以表示两个数量的等价性,如用等号表示等价性,或者用比例表示。

它可以用来比较大小、解决运算问题、等价替换问题等。

在小学数学中,数量关系和等量关系的应用是非常重要的。

以分数为例,学生可以用数量关系来确定两个分数是否是同类数。

比如,当两个分数的分子之和等于它们分母之和时,就可以确定它们是同类数;当两个分数的分子和分母之比等于给定的比值时,也可以确定它们是等量关系中的相等数。

此外,学生还可以用数量关系和等量关系来解决一些实际问题,如平行、等边等问题。

比如,学生可以用数量关系来判断两条直线是否平行,即当它们的斜率相等时,就可以判定它们是平行的;也可以用等量关系来求边长,即当两个三角形的两边和一角相等时,就可以判定它们的边长相等。

所以,数量关系和等量关系是小学数学中一个重要内容,它们不仅可以用来分类数量,还可以用来解决一些实际问题。

教师应当重视数量关系和等量关系在教学中的应用,把它作为一种重要的思维工具,发挥它的辅助作用,使学生更好地理解数学课程的具体内容,掌握抽象的数学概念及其应用。

小学常用等量关系式

小学常用等量关系式

人教版小学数学知识点归纳常用等量关系式:1、①加数+加数=和②一个加数=和-另一个加数2、①被减数-减数=差②差+减数=被减数③被减数-差=减数3、①因数×因数=积②一个因数=积÷另一个因数4、①被除数÷除数=商②商×除数=被除数③被除数÷商=除数5、①被除数÷除数=商……余数②商×除数+余数=被除数③(被除数-余数)÷商=除数④(被除数-余数)÷除数=商6、①大数-小数=相差数②大数=小数+相差数③大数-相差数=小数7、①一倍数×倍数=几倍数②几倍数÷一倍数=倍数③几倍数÷倍数=一倍数8、①速度×时间=路程②路程÷速度=时间③路程÷时间=速度9、①速度和×相遇时间=路程②路程÷速度和=相遇时间③路程÷相遇时间=速度和④总路程÷总时间=平均速度10、①船速-水速=逆水速度②船速+水速=顺水速度③(顺水速度+逆水速度)÷2=船速④(顺水速度-逆水速度)÷2=水速11、①速度差×追及时间=追及路程②追及路程÷追及时间=速度差③追及路程÷速度差=追及时间12、①工作效率×工作时间=工作总量②工作总量÷工作时间=工作效率③工作总量÷工作效率=工作时间13、①单价×数量=总价②总价÷数量=单价③总价÷单价=数量14、①总数÷份数=每份数(单一量)②总数÷每份数(单一量)=份数(反归一)③每份数(单一量)×份数=总数(总量)(正归一)15、植树问题(1)直线植树①距离÷树间距+1=植树棵树②总距离÷(植树棵树-1)=树间距③树间距×(植树棵树-1)=总距离(2)非封闭线路上的植树问题主要可分为以下三种情形:①如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)②如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数③如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)(3)封闭线路上的植树问题的数量关系如下16、①总数量÷总份数=平均数②总数量÷平均数=总份数③平均数×总份数=总数量17、比和比例①图上距离÷实际距离=比例尺②图上距离÷比例尺=实际距离③实际距离×比例尺=图上距离18、几何图形的周长(C)和面积(S)公式。

小学数学等量关系练习题

小学数学等量关系练习题

小学数学等量关系练习题1. 小明有一些苹果,小华有15个苹果,小明的苹果比小华的苹果数量的三倍多2个。

问小明有多少个苹果?解答:设小明的苹果数量为x个,则根据题目可得以下等量关系:x = 15 × 3 + 2化简得:x = 45 + 2计算得:x = 47所以小明有47个苹果。

2. 某超市水果部有苹果和橙子两种水果,其中苹果的个数是橙子个数的2倍。

如果总共有45个水果,那么苹果和橙子各有多少个?解答:设橙子的个数为x个,则苹果的个数为2x个。

根据题目可得以下等量关系:x + 2x = 45化简得:3x = 45解方程得:x = 15所以橙子的个数为15个,苹果的个数为2 × 15 = 30个。

3. 一根绳子被剪断后,其中一段的长度是另一段长度的2倍,总长度为48厘米,求原始绳子的长度是多少?解答:设较短的那段绳子的长度为x厘米,则较长的那段绳子的长度为2x厘米。

根据题目可得以下等量关系:x + 2x = 48化简得:3x = 48解方程得:x = 16所以原始绳子的长度为16厘米。

4. 有一些香蕉,小明拿走了其中的2/5,小华拿走了剩下的4个,最后还剩下6个香蕉,请问最初有多少个香蕉?解答:设最初的香蕉数量为x个,则根据题目可得以下等量关系:(1 - 2/5)x - 4 = 6化简得:(3/5)x = 10解方程得:x = 10 / (3/5)计算得:x = 16.67所以最初的香蕉数量约为16个。

5. 甲、乙两个数的比值为4:5,如果甲比乙小12,求甲乙两个数的和。

解答:设甲的数为4x,乙的数为5x,根据题目可得以下等量关系:5x - 4x = 12化简得:x = 12甲的数为4x = 4 × 12 = 48乙的数为5x = 5 × 12 = 60所以甲乙两个数的和为48 + 60 = 108。

通过以上练习题的解答,我们可以看到等量关系在解决数学问题中的重要性,并且在实际生活中也经常会涉及到等量关系的运用。

等量关系

等量关系

小学数学等量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形:C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab4、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s面积a底h高面积=底×高s=ah7、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28、圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1)株距=全长÷(株数+1)盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米 1米=10分米 1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤。

数学常用的等量公式

数学常用的等量公式
17、圆柱的体积=底面积×高 V=Sh
18、圆锥的体积=底面积×高÷3 V=Sh÷3
基本的等量关系
1、 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、 单价×数量=总价
总价÷单价=数量
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
数学中基本性质和基本概念
除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
有余数的除法: 被除数=商×除数+余数
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100﹪=(售出价÷成本-1)×100﹪
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100﹪(折扣<1)
利息=本金×利率×时间
常用的单位及进率
时间单位
1世纪=100年 1年=12月
大月(31天)有:1月、3月、5月、7月、8月、10月、12月
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

般运算规则
1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间路程÷时间=速度
4 单价×数量=总价总价÷单价=数量总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1 正方形C周长S面积a边长
周长=边长×4 C=4a
面积=边长×边长S=a×a
2 正方体V:体积a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长V=a×a×a
3 长方形C周长S面积a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽S=ab
4 长方体V:体积s:面积a:长b: 宽h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高V=abh
5 三角形s面积a底h高
面积=底×高÷2 s=ah÷2
三角形高=面积×2÷底三角形底=面积×2÷高
6 平行四边形s面积a底h高
面积=底×高s=ah
7 梯形s面积a上底b下底h高
面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形S面积C周长∏d=直径r=半径
周长=直径×∏=2×∏×半径C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10 圆锥体v:体积h:高s;底面积r:底面半径
体积=底面积×高÷3
小学奥数公式
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)。

相关文档
最新文档