2020年高中数学解答题专题复习0630 (9)(含答案解析)

合集下载

2020年普通高等学校招生全国统一考试数学带答案解析

2020年普通高等学校招生全国统一考试数学带答案解析

F
为双曲线 C :
x2 a2
y2 b2
1(a
0, b
0) 的右焦点,A

C
的右顶点,B

C
上的点,且
BF
垂直于
x
轴.若 AB 的斜率为 3,则 C 的离心率为
.
16.如图,在三棱锥 P–ABC 的平面展开图中,AC=1, AB AD 3 ,AB⊥AC,AB⊥AD,∠CAE=30°,
则 cos∠FCB=
已知函数 f (x) | 3x 1| 2 | x 1| . (1)画出 y f (x) 的图像;
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
(2)求不等式 f (x) f (x 1) 的解集.
选择题答案 一、选择题 1.D 5.D
参考答案
所以E的方程为 x(x2,y2),P(6,t). 若t≠0,设直线CD的方程为x=my+n,由题意可知–3<n<3.
t
t
由于直线PA的方程为y= 9 (x+3),所以y1= 9 (x1+3).
t
t
直线PB的方程为y= 3 (x–3),所以y2= 3 (x2–3).
C. a b2
D. a b2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x y 2 0,
13.若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
.
y 1 0,
14.设 a,b 为单位向量,且 | a b | 1,则 | a b |
.
15.已知
2.B 6.B
3.C 7.C

【精品】2020高考数学解答题常考公式及答题样题

【精品】2020高考数学解答题常考公式及答题样题

2020高考数学解答题常考公式及答题样题题型一:解三角形1、正弦定理:R Cc B b A a 2sin sin sin ===(R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R b B R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::= 2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 22222222234、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b B c C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于ο180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin(和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A C B A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ②8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-=⇒③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos()) ③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2b a ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤),(R b a ∈ 注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

2020年高考数学经典题题精选三角函数解答题.docx

2020年高考数学经典题题精选三角函数解答题.docx

2020 年高考数学经典题题精选三角函数解答题求函数 y=sinx+cosx+1的最 及取得最 相x 的 .解:由 y=sinx +cosx +1得 y=2 sin(x+4 )+1 ⋯⋯⋯⋯⋯⋯⋯⋯2 分 ∴ y max =2 +1⋯⋯⋯⋯⋯⋯ 4 分y min =- 2 +1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分由 x+4=2k π+2得 x=2k π+(k ∈ Z)即 x=2k π+4(k ∈ Z) , y取最大 2 +1⋯⋯⋯⋯⋯ 94分由 x+=2k π-2即 x=2k π- 3y 取最小 1-2 ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分441.已知函数 f ( x)2a cos 2 x b sin x cos x, 且 f (0) 2, f (3 ) 1 3 .22( 1)求 f ( x ) 的最大 与最小 ;( 2)若 f ( ) 0, a (0,2 ), 求 的 .解:(1)由 f (0)=2 a =2,得 a =1 , f ( )1 a3 , 2 ⋯⋯⋯⋯( 3 分)243∴ f ( x )=2cos 2x +2sin x cos x =sin2 x +cos2 x +1=2 sin(2x) 1 ⋯⋯⋯⋯( 5 分)4∴ f ( x ) 的最大 是2 1,最小 是 12 . ⋯⋯⋯⋯⋯⋯( 6 分)( 2)∵ f () 0, 得 2 sin( 2) 1 0sin( 2) 2, . ⋯⋯( 8 分)44224 2k或 2 4 2k5 , k Z44k或k, kZ(10分 )42( 0,2 ),2 或3 或 3 或 7 (12分 ).2 442.已知函数 f ( x)a sin x cos x3acos 2 x3 a b.(a0)2( 1) x R ,写出函数的 减区 ;( 2)x [0, ], f x3,求 数 a, b的 .( ) 的最小 是- 2,是大 是2解:( 1) f ( x)a(sin x cos x3 cos 2 x3 ) b2a (1sin 2x3 1 cos2 x3 ) b = a sin( 2x ) b ⋯⋯⋯⋯4 分22 23a0, x R, f ( x) 的 减区 是 [ k5 , k11]( kZ ) ⋯⋯⋯⋯ 6 分12 12( 2)x [ 0, ] 2x[ 0, ] 2x3[ , 2] ⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分23 3sin( 2x) [ 3 ,1]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分32∴函数 f ( x) 的最小 是3 a b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2最大 a b 3 ⋯⋯⋯ 11 分解得 a 2,b 32 ⋯⋯ 12 分3.求函数 ysin 2 x sin xcos(6 x)的周期和 增区 .解ysin 2 x sin x(coscos x sin sin x)663sin 2x3sin x cos x3(1 cos2x) 3sin 2 x224 43 (3sin 2x 3 3 3) . ⋯⋯ 6 分44 cos2x)sin(2 x2 4423∴函数的周期T.⋯⋯⋯⋯⋯⋯ 8 分25当2k ≤ 2x≤2k,即 k( k ∈ Z) 函数≤ x ≤ k235 21212增加,即函数的增区 是[ k] (k ∈Z) .⋯⋯ 12分, k12124.已知函数 f ( x)5sin x cos x 5 3 cos 2 x 5 32(Ⅰ)求 f(x) 的最小正周期;(Ⅱ)求 f(x) 的 增区 .解:(Ⅰ)f (x) 5sin x cos x5 3 cos 2 x5 325sin 2x 5 31cos2x5 3 2 225 sin 2x 5 3 cos2x25(sin 2x cos3 cos2x sin)35sin(2x3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴最小正周期 T=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分2(Ⅱ)由 意,解不等式22k2x32 2k ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分5得kxk( k Z )12125f ( x) 的 增区 是 [k k ]( kZ ) ⋯⋯⋯⋯⋯⋯ 12 分12 ,125.已知函数f ( x)3 2 cos 2 x 8sin4 x , 求 f ( )的定 域,判断它的奇偶性,并求其cos2xx域 .解: f ( x)32(1 sin 2 x) 8sin 4 x12sin 2 x 8sin 4 xcos 2xcos2x(1 4 sin 2 x)(1 2 sin 2 x)4 sin 2x1.分cos2x( 4 )由 cos2x0,得 2x k, 解得 x k , k z224所以函数的定义域为 { x | x R, 且 xk , k 分24因为 的定义域关于原点对称 , 且 f ( x)f ( x),f ( x)是偶函数分f ( x).(9 )又f ( x) 4sin 2 x 1,且 xk , kz2 4f ( x)的值域为 { y |1y 5,且 y 3}.(12分 )6.已知函数f ( ) 2sin 2x sin 2 x 1,x.xR( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大x 的集合;( 2)在 定的坐 系中画出函数f (x) 在 [0, ] 上的 象 .解:( I ) f ( x)2sin 2 x sin 2x 1sin 2x(1 2sin 2 x)sin 2 x cos2x=2 sin(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4所以 f ( x) 的最小正周期是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分x,所以当 2x2k, 即xk 3 (k Z ) , f ( x) 的最大 2 .R428即 f (x) 取得最大x 的集合 { x | xk3 , k Z} ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分8( II ) 象如下 所示: ( 卷 注意以下3 点)1.最小 f (3)2 ,8最小 f (7)2 . ⋯⋯⋯⋯⋯⋯ 10 分82.增区 [ 0,3 ], [ 7 , ];3 8 78减区 [, ] ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分8 83. 象上的特殊点: ( 0,- 1),(4 ,1),(,1), (3, 1), ( ,1) ⋯⋯⋯ 14 分24[ 注: 象上的特殊点 两个扣1 分,最多扣2 分 ]7.已知函数 ysinx3 cos x, x R.22( 1)求 y 取最大 相 的x 的集合;( 2) 函数的 象 怎 的平移和伸 可以得到y sin x( xR) 的 象 .解: y 2sin(x). ⋯⋯ 4 分23(1)当y 最大2.x { x | x 4k3 , k Z} ⋯⋯ 8 分( 2)把 y2sin(x3) 象向右平移2 ,再把每个点的 坐村 原来的 1,横坐232不 . 然后再把每个点的横坐 原来的1, 坐 不 , 即可得到 y sin x 的2象⋯⋯ 12 分8.已知函数f ( ) 4 sin 2 x 2sin 2 x 2,x .xR( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大x 的集合;( 2)求 :函数f (x) 的 象关于直x8称( 1)解: f (x) 2sin 2x 2sin 2x 22 sin 2x 2(12 sin 2 x) 2 sin 2x 2cos 2x=22 sin(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4所以 f ( x) 的最小正周期是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分xR ,所以当 2x2k ,即x k3Z ) , f ( x) 的最大 2 2 .4(k28即 f (x) 取得最大x 的集合 { x | xk3, k Z} ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分8( 2) 明:欲 函数f ( x) 的 象关于直x称,只要 明 于任意x R ,8有 f (x) f (8x) 成立即可 .8f (x) 2 2 sin[2(x)4] 2 2 sin(2x)2 2 cos 2x;882f (x) 22 sin[ 2(8x)]2 2 sin(2 x) 2 2 cos2 x.842f (x) f (8x).8从而函数 f ( x) 的 象关于直 x称 . ⋯⋯ 14 分8[ 注:如果学生用f () 2 2( f ( x))min ;8或求出所有的 称 方程,然后x是其中一条, ( 2)中扣去 2 分]89. 已知定 在区[,2] 上的函数 yf (x) 的 象关于直x称,36当 x [2 ] ,函数 f (x) A sin( x) ( A 0 ,0 ,) ,其 象如,2632所示 .y(1)2] 的表达式;求函数 y f ( x) 在 [,13(2) 求方程 f ( x)2?的解 .?o 6?2xx6( 1)当x[, 2 ]时,函数 f ( x)Asin(x) ( A 0 ,0 ,22),观察图象易得:63A 1 , 1 ,3,即 x[6,2] 时,函数 f ( x)sin( x3),由函数 y f ( x) 的图象3关于直线x6对称得, x[,6] 时,函数 f ( x)sin x .∴ f ( x)sin(x 3 )x[ 6,23].sin x x[, 6 )( 2 )当x[, 2]时,由 sin( x3)2得, x34或3x12或x5;当632412 x[,6 ] 时,由sin x22得, x34或 x4. ∴方程 f (x)22的解集为 {34, 4 ,12,125}10.已知函数 f ( x)sin( x)cos( x) 的定义域为R,(1)当0 时,求f (x)的单调区间;( 2)若(0, ),且 sin x0,当为何值时, f ( x) 为偶函数.解:(1)0 时, f (x)sin x cos x 2 sin( x)4当 2k x2k,即2k 3x2k( k Z )时f (x)24244单调递增;当 2k2x42k3,即 2k4x2k5( k Z )时f (x) 24单调递减;( 2)若f(x) 偶函数,则 sin( x)c os( x)sin(x)cos(x)即 sin( x)sin( x)cos(x)cos( x) =0 2sin x cos2sin xsin02sin x(cos sin)02 cos()04Q(0,)4,此时, f (x) 是偶函数.。

2020年高考数学(理数)解答题强化专练——数列含答案

2020年高考数学(理数)解答题强化专练——数列含答案

(理数)解答题强化专练——数列一、解答题(本大题共10小题,共120.0分)1.已知等差数列{a n}满足a n+1+n=2a n+1.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,求数列的前n项和T n.2.已知{a n}是递增的等差数列,且满足a2+a4=20,a1•a5=36.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n的最小值.3.已知数列{a n}满足:a1=1,a n+1=2a n+n-1.(1)设b n=a n+n,证明:数列{b n}是等比数列;(2)设数列{a n}的前n项和为S n,求S n.4.记S n为等差数列{a n}的前n项和,数列{b n}为正项等比数列,已知a3=5,S3=9,b1=a1,b5=S4.(1)求数列{a n}和数列{b n}的通项公式;(2)记T n为数列{a n•b n}的前n项和,求T n.5.已知正项数列{a n}的前n项和为S n,若数列{a n}是公差为-1的等差数列,且a2+2是a1,a3的等差中项.(1)证明数列{a n}是等比数列,并求数列{a n}的通项公式;(2)若T n是数列{}的前n项和,若T n<M恒成立,求实数M的取值范围.6.已知数列{a n}的前n项和为S n,a1=1,a2=且n≥2).(Ⅰ)证明:为等差数列:(Ⅱ)求数列的前n项和T n.7.已知S n为等差数列{a n}的前n项和,且S2=2a2-2,S5=3a5.(1)求数列{a n}的通项公式;(2)令b n=a n•2n-1,记数列{b n}的前n项和为T n,若T n>300.求正整数n的取值范围.8.设等差数列{a n}公差为d,等比数列{b n}公比为q,已知a1=b1,a3=b1+b2=5,q=2d.(1)求数列{a n},{b n}的通项公式;(2)记c n=a n·b n,求数列{c n}的前n项和S n.9.已知等比数列{a n}的公比q>1,且a1+a3+a5=42,a3+9是a1,a5的等差中项.数列{b n}的通项公式b n=,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明:b1+b2+…+b n<,n∈N*.10.设各项均为正数的数列{a n}的前n项和为S n,已知a1=1,且a n S n+1-a n+1S n=a n+1-λa n,对一切n∈N*都成立.(1)当λ=1时;①求数列{a n}的通项公式;②若b n=(n+1)a n,求数列{b n}的前n项的和T n;(2)是否存在实数λ,使数列{a n}是等差数列如果存在,求出λ的值;若不存在,说明理由.答案和解析1.【答案】解:(1)由已知{a n}为等差数列,记其公差为d.①当n≥2时,,两式相减可得d+1=2d,所以d=1,②当n=1时,a2+1=2a1+1,所以a1=1.所以a n=1+n-1=n;(2),,所以=.【解析】本题考查等差数列的定义、通项公式和求和公式,以及数列的裂项相消求和,化简运算能力,属于中档题.(1)设等差数列的公差为d,将已知等式中的n换为n-1,相减可得公差d=1,再令n=1,可得首项,进而得到所求通项公式;(2)由等差数列的求和公式可得S n,求得,再由数列的裂项相消求和,化简可得所求和.2.【答案】解:(1){a n}是递增的等差数列,设公差为d,则d>0,a2+a4=20,a1•a5=36,可得a1+a5=20,解得a1=2,a5=18,d==4,则a n=2+4(n-1)=4n-2;(2)b n=(4n-2)-30=2n-31,可得前n项和T n=n(-29+2n-31)=n2-30n=(n-15)2-225,当n=15时,前n项和T n取得最小值-225.【解析】(1)设公差为d,则d>0,运用等差数列的性质和通项公式,可得公差d,首项,进而得到所求通项公式;(2)求得b n=(4n-2)-30=2n-31,运用等差数列的求和公式,配方可得所求最小值.本题考查等差数列的通项公式和求和公式,以及单调性、前n项和的最值求法,考查运算能力,属于基础题.3.【答案】解:(1)数列{a n}满足:a1=1,a n+1=2a n+n-1.由b n=a n+n,那么b n+1=a n+1+n+1,∴===2;即公比q=2,b1=a1+1=2,∴数列{b n}是首项为2,公比为2的等比数列;(2)由(1)可得b n=2n,∴a n+n=2n那么数列{a n}的通项公式为:a n=2n-n数列{a n}的前n项和为S n=2-1+22-2+23-3+……+2n-n=(21+22+……2n)-(1+2+3+……+n)=2n+1-2.【解析】(1)由b n=a n+n,那么b n+1=a n+1+n+1,利用定义证明即可;(2)根据(1)求解数列{a n}的通项,即可求解S n.本题主要考查数列通项公式和前n项和的求解,利用分组求和法是解决本题的关键.4.【答案】解:(1)设数列{a n}的首项为a1,公差为d,设数列{b n}的首项为b1,公比为q,由a3=a1+2d=5和S3=3a1+3d=9得a1=1,d=2,a n=a1+(n-1)d=1+2(n-1)=2n-1.所以数列{a n}的通项公式为a n=2n-1.b1=a1=1,由b5=S4得,所以.所以数列{b n}的通项公式为.(2)...相减可得.即有.【解析】(1)设数列{a n}的首项为a1,公差为d,设数列{b n}的首项为b1,公比为q,运用等差数列和等比数列的通项公式,解方程可得所求;(2)运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,化简运算能力,属于中档题.5.【答案】(1)证明:∵数列{a n}是公差为-1的等差数列,∴a n=a1-(n-1),∴=3n-1.∴n≥2时,==3,数列{a n}是以3为公比的等比数列.∴a2=3a1,a3=9a1.∵a2+2是a1,a3的等差中项,∴2(a2+2)=a1+a3,∴2(3a1+2)=a1+9a1,解得a1=1.∴数列{a n}是以3为公比,1为首项的等比数列.∴a n=3n-1.(2)解:=.∴T n==.∵T n<M恒成立,∴.∴实数M的取值范围是.【解析】(1)数列{a n}是公差为-1的等差数列,可得a n=a1-(n-1),可得=3n-1.即可证明数列{a n}是以3为公比的等比数列.由a2+2是a1,a3的等差中项,可得2(a2+2)=a1+a3,解得a1.(2)由(1)可得:=.可得T n,进而得出M的取值范围.本题考查了等差数列与等比数列的定义通项公式及其求和公式、数列的单调性、对数运算性质,考查了推理能力与计算能力,属于中档题.6.【答案】(Ⅰ)证明:依题意,由=2a n+1,可得a n=2a n a n+1+a n+1,即a n-a n+1=2a n a n+1.两边同时除以a n a n+1,可得-=2(n≥2).∵-=3-1=2,也满足上式.∴数列是以1为首项,2为公差的等差数列.(Ⅱ)解:由(Ⅰ)得,=1+2(n-1)=2n-1,则=(2n-1)•3n.∴T n=1×3+3×32+…+(2n-1)•3n,3T n=1×32+3×33+…+(2n-3)•3n+(2n-1)•3n+1,两式相减,可得-2T n=3+2×32+2×33+…+2•3n-(2n-1)•3n+1,=3+18×(1+3+32+…+3n-2)-(2n-1)•3n+1=3+18×-(2n-1)•3n+1=2(1-n)•3n+1-6.∴T n=(n-1)•3n+1+3.【解析】本题第(Ⅰ)题对题干中的递推公式进行变形转化,可得-=2.进一步计算可证得为等差数列;第(Ⅱ)题先根据第(Ⅰ)题的结果计算出数列的通项公式,然后运用错位相减法可计算出前n项和T n.本题主要考查由递推公式得到通项公式,以及运用错位相减法求前n项和.考查了转化思想,逻辑推理能力和数学运算能力.本题属中档题.7.【答案】解:(1)由题意,设等差数列{a n}的公差为d,则,解得.∴a n=2+2(n-1)=2n,n∈N*.(2)由(1)知,b n=a n•2n-1=n•2n.则T n=b1+b2+b3+…+b n=1•21+2•22+3•23+…+n•2n,2T n=1•22+2•23+…+(n-1)•2n+n•2n+1.两式相减,可得-T n=2+22+23+…+2n-n•2n+1=-n•2n+1=(1-n)•2n+1-2.∴T n=(n-1)•2n+1+2.构造数列{T n}:令T n=(n-1)•2n+1+2,则T n+1-T n=n•2n+2-(n-1)•2n+1=(n+1)•2n+1>0,故数列{T n}是单调递增数列.∵T5=4•26+2=258<300,T6=5•27+2=642>300,∴满足T n>300的正整数n的取值范围为{n|n≥6,n∈N*}.【解析】本题第(1)题先设等差数列{a n}的公差为d,根据等差数列的通项公式和求和公式列出关于首项a1和公差d的方程,解出a1和d的值,即可得到数列{a n}的通项公式;第(2)题先根据第(1)题的结果计算出数列{b n}的通项公式,然后运用错位相减法计算出前n项和T n.再根据数列{T n}的单调性可计算出满足T n>300时正整数n的取值范围.本题主要考查等差数列的基础知识,错位相减法求前n项和,数列的单调性.考查了方程思想,转化思想,不等式的计算能力,逻辑思维能力和数学运算能力.本题属中档题.8.【答案】解:(1)∵b1+b2=5,∴b1(1+q)=5,又∵q=2d,a1=b1,∴a1(1+2d)=5,∴a3=a1+2d=5,∴a1=5-2d,∴(5-2d)(1+2d)=5,解得:d1=0,d2=2,若d=0,q=2d=0(舍去)若d=2,q=2d=4,∴b1=a1=a3-2d=1,∴a n=a1+(n-1)d=2n-1,b n=b1q n-1=4n-1.(2)c n=a n·b n=(2n-1)·4n-1,∴S n=1+3×4+5×42+…+(2n-1)4n-1∴4S n=4+3×42+5×43+…+(2n-1)4n,.【解析】本题考查等差数列、等比数列的通项公式和错位相减法求和,考查推理能力和计算能力,属于中档题.(1)利用等差数列和等比数列的通项公式即可求解;(2)由c n=a n·b n=(2n-1)·4n-1,利用错位相减法即可求解.9.【答案】解:(I)由a3+9是a1,a5的等差中项得a1+a5=2a3+18,所以a1+a3+a5=3a3+18=42,解得a3=8,由a1+a5=34,得,解得q2=4或,因为q>1,所以q=2,所以;(II)证明:由(I)可得,∴==,∴=.【解析】(Ⅰ)由等差中项的性质可求得a3=8,进而得到a1+a5=34,进一步求得公比q,由此即可得解;(Ⅱ)化简数列{b n},由此即可得证.本题考查等差数列与等比数列的综合运用,考查化简运算能力及逻辑推理能力,属于中档题.10.【答案】解:(1)①当λ=1时,a n S n+1-a n+1S n=a n+1-a n,则a n S n+1+a n=a n+1S n+a n+1,即(S n+1+1)a n=(S n+1)a n+1.∵数列{a n}的各项均为正数,∴=.∴•…=•…,化简,得S n+1+1=2a n+1,①∴当n≥2时,S n+1=2a n,②②-①,得a n+1=2a n,∵当n=1时,a2=2,∴n=1时上式也成立,∴数列{a n}是首项为1,公比为2的等比数列,即a n=2n-1.②由①知,b n=(n+1)a n=(n+1)•2n-1.T n=b1+b2+…+b n=2•1+3•21+…+(n+1)•2n-1,2T n=2•2+3•22+…+n•2n-1+(n+1)•2n,两式相减,可得-T n=2+2+22+…+2n-1-(n+1)•2n=2+-(n+1)•2n=-n•2n.∴T n=n•2n.(2)由题意,令n=1,得a2=λ+1;令n=2,得a3=(λ+1)2.要使数列{a n}是等差数列,必须有2a2=a1+a3,解得λ=0.当λ=0时,S n+1a n=(S n+1)a n+1,且a2=a1=1.当n≥2时,S n+1(S n-S n-1)=(S n+1)(S n+1-S n),整理,得S n2+S n=S n+1S n-1+S n+1,即=,从而•…=•…,化简,得S n+1=S n+1,即a n+1=1.综上所述,可得a n=1,n∈N*.∴λ=0时,数列{a n}是等差数列.【解析】本题第(1)①题将λ=1代入递推式并转化递推式,然后运用累乘法可得S n+1+1=2a n+1,再类比可得S n+1=2a n,两式相减,再进行计算可发现数列{a n}是等比数列,即可得到数列{a n}的通项公式;第(1)②题先根据①的结果得到数列{b n}的通项公式,然后运用错位相减法求出前n项的和T n;第(2)题可先假设数列{a n}是等差数列,则根据等差中项的性质有2a2=a1+a3,计算出a2,a3关于λ的表达式并代入可解出λ的值,再代入递推式进行验证数列{a n}是等差数列,即可得到结论.本题主要考查数列的求通项公式,等差数列和等比数列的性质应用.考查了累乘法,错位相减法,转化思想的应用,逻辑推理能力和数学运算能力.本题属较难题.。

2020届理科高考数学专题练习含解析(对数与对数函数)

2020届理科高考数学专题练习含解析(对数与对数函数)

2020届理科高考数学专题练习含解析(指数与指数函数)1、下列运算中正确的是( )A .236a a a ⋅=B .2332()()a a -=-C .01)1=D . 2510()a a -=-2、函数()21,x f x =-使()0f x ≤成立的 x 的集合是( )A. {|0}x x <B. {}=0x xC. {|1}x x <D. {}|1x x =3、如果指数函数()y f x =的图象经过点12,4⎛⎫- ⎪⎝⎭,那么()()42f f ⋅等于( )A.8B.16C.32D.644、若函数1()2x f x a ⎛⎫=- ⎪⎝⎭的图象经过一、二、四象限,则()f a 的取值范围为( ) A. ()0,1 B. 1,12⎛⎫-⎪⎝⎭ C. ()1,1- D. 1,2⎛⎫-+∞ ⎪⎝⎭5、已知函数1()2x f x a +=-(0a >且1a ≠),且函数()y f x =-的图像经过定点()1,2-,则实数a 的值是( )A.1B.2C.3D.46、下列函数中,与函数22x x y -=-的定义域、单调性与奇偶性均一致的函数是( )A.sin y x =B.3y x =C.1()2x y = D.2log y x =7、函数2212x x y -⎛⎫= ⎪⎝⎭的值域为( ) A. 1,2⎡⎫+∞⎪⎢⎣⎭B. 1,2⎛⎤-∞ ⎥⎝⎦C. 10,2⎛⎤ ⎥⎝⎦D. (]0,28、已知函数()133xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( ) A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数9、函数()log (1)x a f x a x =++ (0a >且1a ≠)在[]0,1上的最大值与最小值之和为a ,则a 的值为( ) A.12B. 14C. 2D. 410、已知函数()(0,1)x x f x a a a a -=->≠,且(1)0f >,则关于 x 的不等式的解集为( )A.()2,1- B.()(),21,-∞-⋃+∞ C.()1,2- D. ()(),12,-∞-⋃+∞11、已知5.0log 2=a ,6.03=b ,36.0=c ,c b a ,,大小关系为_______.12、若集合{}31log ,1,,1,2||x A y y x x B y y x ⎛⎫==>==> ⎪⎧⎫⎪⎪⎨⎬⎭⎪⎪⎩⎭⎝则A B ⋂=__________ 13、若2510a b ==,则11a b +=__________ 14、已知函数()()0,1x f x a a a =>≠是定义在R 上的单调递减函数,则函数()()log 1a g x x =+的图像大致是__________.15、已知函数()()()()log 1log 301a a f x x x a =-++<< 1.求函数()f x 的定义域 2.若函数()f x 的最小值为4-,求a 的值答案以及解析1答案及解析:答案:D解析:2答案及解析:解析:3答案及解析:答案:D解析:设()(0x f x a a =>且1)a ≠ 由已知得221,44a a -== ∴2a =于是()2x f x =所以()()4264222264f f ⋅=⋅==.4答案及解析:答案:B解析:依题意可得(0)1,0,f a a =-⎧⎨-<⎩解得01a <<,1()2a f a a ⎛⎫=- ⎪⎝⎭. 设函数1()2xg x x ⎛⎫=- ⎪⎝⎭,则()g x 在()0,1上为减函数,故1(),12f a ⎛⎫∈- ⎪⎝⎭.5答案及解析:答案:B解析:6答案及解析:答案:B解析:7答案及解析:答案:D8答案及解析:答案:B解析:()f x 的定义域是R ,关于原点对称,由11()33()33x xx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭可得()f x 为奇函数.单调性:函数 3?x y =是R 上的增函数,函数13x y ⎛⎫= ⎪⎝⎭是R 上的减函数,根据单调性的运算,增函数减去减函数所得新函数是增函数,即1()33xx f x ⎛⎫=- ⎪⎝⎭是R 上的增函数.综上选B9答案及解析:答案:A解析:10答案及解析:答案:A解析:11答案及解析:答案:a c b <<解析:12答案及解析: 答案:10,2⎛⎫ ⎪⎝⎭解析:13答案及解析:解析:14答案及解析:答案:④解析:根据指数函数的单调性先确定a 的范围,然后得出对数函数log a yx =的图像,最后利用平移变换得到()()log 1a gx x =+的图像. 由函数()()0,1x f x a a a =>≠是定义在R 上的单调递减函数,得01a <<,将log a y x =的图像向左平移1个单位长度得到()()log 1a gx x =+的图像.故填④.15答案及解析: 答案:1.要使函数有意义,则有10{30x x ->+>解之得31x -<<,所以函数的定义域为()3,1-2.()()()()()22log 13log 23log 14a a a f x x x x x x =-+⎡⎤=--+=-++⎣⎦∵31x -<<∴()20144x <-++≤∵01a <<∴()2log 14log 4aa x ⎡⎤-++≥⎣⎦∴()min log 4a f x =由log 44a =-得44a -=∴144a -==解析:。

2020届全国卷高考数学解三角形基础解答题专题训练含解析答案

2020届全国卷高考数学解三角形基础解答题专题训练含解析答案

当且仅当 c b 2 3 时等号成立;
故 ABC 的面积
S
1
3
bcsinA
bc 3 3
2
4

故 ABC 面积的最大值为 3 3 .

12 c 2 b2 bc (c b)2 3bc (b c)
3(b c)2
4

故 b c 4 3 ,当且仅当 c b 2 3 时等号成立;
解三角形
广东省肇庆市 2019 届高中毕业班第三次统一检测数学(理)试题
1.在 ABC 中, D 是 BC 上的点, AD 平分 BAC , sin C 2sin B .
BD
(1)求 CD ;
(2)若 AD AC 1 ,求 BC 的长.
3 2
【答案】(1)2;(2) 2 .
【分析】(1)在 ABD 和 ACD 中运用正弦定理,进行求解即可.
四川省成都市 2019-2020 学年高三上学期第一次诊断性检测理科数学试题
2.在 ABC 中,角 A, B, C 的对边分别为 a, b, c ,且
b2 c2 a 2
4 2
bc
3
.
(1)求 sin A 的值;
(2)若 ABC 的面积为 2 ,且 2 sin B 3sin C ,求 ABC 的周长.
又∵ 2 sinB=3sinC,由正弦定理可得 2 b=3c,∴b=3 2 ,c=2,则 a2=b2+c2﹣2bccosA=6,
a 6 ,所以周长为 a b c 2 6 3 2 .
【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,正弦定理在解三
角形中的综合应用,考查了计算能力和转化思想,属于中档题.

2020年高考数学真题汇编答案及解析

2020年高考数学真题汇编答案及解析

2020年高考数学真题汇编答案及解析(本栏目内容,学生用书中以活页形式单独装订成册!)一、选择题(每小题6分,共36分)1.集合A={1,2,a},B={2,3,a2},C={1,2,3,4},a∈R,则集合(A∩B)∩C不可能是( )A.{2} B.{1,2}C.{2,3} D.{3}【解析】若a=-1,(A∩B)∩C={1,2};若a=3,则(A∩B)∩C={2,3}若a≠-1且a≠3,则(A∩B)∩C={2},故选D.【答案】 D2.(2020全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个【解析】A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8},故选A.【答案】 A3.(2020年广东卷)已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的韦恩(Venn)图如右图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个【解析】M={x|-1≤x≤3},M∩N={1,3},有2个.【答案】 B4.给出以下集合:①M={x|x2+2x+a=0,a∈R};②N={x|-x2+x-2>0};③P={x|y=lg(-x)}∩{y|y=lg(-x)};④Q={y|y=x2}∩{y|y=x-4},其中一定是空集的有( )A.0个B.1个C.2个D.3个【解析】在集合M中,当Δ=4-4a≥0时,方程有解,集合不是空集;而Q={y|y=x2}∩{y|y=x-4}={y|y≥0}∩{y|y∈R}={y|y≥0},所以不是空集;在P中,P={x|y=lg(-x)}∩{y|y=lg(-x)}={x|x<0}∩R={x|x<0},不是空集;在N中,由于不等式-x2+x-2>0⇔x2-x+2<0,Δ=-7<0,故无解,因此,只有1个一定是空集,所以选B.【答案】 B5.如右图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,y∈R,A={x|y= },B={y|y=3x,x>0},则A#B=( )A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}【解析】依据定义,A#B就是将A∪B除去A∩B后剩余的元素所构成的集合.对于集合A,求的是函数y=2x-x2的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1},依据定义得:A#B={x|0≤x≤1或x>2}.【答案】 D6.定义一种集合运算A⊗B={x|x∈(A∪B),且x∉(A∩B)},设M={x||x|<2},N={x|x2-4x+3<0},则M⊗N所表示的集合是( )A.(-∞,-2]∪[1,2)∪(3,+∞)B.(-2,1]∪[2,3)C.(-2,1)∪(2,3)D.(-∞,-2]∪(3,+∞)【解析】M={x|-2<x<2},N={x|1<x<3},所以M∩N ={x|1<x<2},M∪N={x|-2<x<3},故M⊗N=(-2,1]∪[2,3).【答案】 B二、填空题(每小题6分,共18分)7.已知集合A={x∈R|ax2+2x+1=0,a∈R}只有一个元素,则a的值为________.。

上海市2020〖人教版〗高三数学复习试卷高考数学试卷参考答案与试题解析

上海市2020〖人教版〗高三数学复习试卷高考数学试卷参考答案与试题解析

上海市2020年〖人教版〗高三数学复习试卷高考数学试卷参考答案与试题解析创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为 5 .考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专数系的扩充和复数.题:分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(•江苏)根据如图所示的伪代码,可知输出的结果S 为7 .考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3 .考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为 3 .考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2 .考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c 恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4 .考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=+++=++=++,∴(a k•a k+1)=+++++++…++ =+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,答:得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g (x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤26.(10分)(•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.点评:25.(10分)(•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校。

【高考专项】2020年高考数学 数列 解答题专项练习40题(含答案详解)

【高考专项】2020年高考数学 数列 解答题专项练习40题(含答案详解)

2020年高考数学数列解答题专项练习40题1、数列{a n}的前n项和为S n,,且成等差数列.(1)求a1的值,并证明为等比数列;(2)设,若对任意的,不等式恒成立,试求实数的取值范围.2、已知数列{a n}的前n项和,{b n}是等差数列,且(1)求数列{b n}的通项公式;(2)令求数列{c n}的前n项和.3、已知等差数列{a n}的前n项和为S n,公差,且成等比数列.(1)求数列{a n}的通项公式;(2)令,求数列{c n}的前n项和.4、已知数列{a n}满足,.(1)证明数列{a n+1}是等比数列,并求数列{a n}的通项公式;(2)令,求数列{b n}的前n项和5、已知数列{a n}前n项和为。

(1)求数列{a n}的通项公式;(2)设数列;求数列的前n项和。

6、设数列{a n}的前n项和为S n,若.(1)求出数列{a n}的通项公式;(2)已知,数列{b n}的前n项和记为,证明:.7、已知等差数列{a n}满足,,数列{b n}满足.(1)求数列{a n}、{b n}的通项公式;(2)求数列的前n项和.8、正项数列{a n}的前n项和为S n,且.(1)试求数列{a n}的通项公式;(2)设,求{b n}的前n项和为.(3)在(2)的条件下,若对一切恒成立,求实数m的取值范围.9、已知等差数列{a n}的公差d≠0,它的前n项和为S n,若,且a2,a6,a18成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为,求证:.10、等差数列{a n}中,已知,且为递增的等比数列.(1)求数列{a n}的通项公式;(2)若数列{b n}的通项公式(),求数列{b n}的前n项和S n.11、已知等比数列{a n}的前n项和为S n,且是S n与2的等差中项,等差数列中,,点在一次函数的图象上.(1)求数列{a n},{b n}的通项和;(2)设,求数列{c n}的前n项和.12、已知公差不为零的等差数列{a n}的前n项和为S n,,且成等比数列.(1)求数列{a n}的通项公式;(2)若,数列{b n}的前n项和为,求.13、记为各项为正数的等比数列{a n}的前S n项和,已知.(1)求数列{a n}的通项公式;(2)令,求的前n项和.14、设数列{a n}的前n项和为S n,已知3S n=4-4,.(1)求数列{a n}的通项公式;(2)令,求数列{b n}的前n项和Tn.15、已知数列{a n}的各项均为正数,对任意,它的前n项和S n满足,并且,,成等比数列.(1)求数列{a n}的通项公式;(2)设,为数列{b n}的前n项和,求.16、已知数列{a n}的前n项和为S n,且,.(1)求数列{a n}的通项公式;(2)当时,求证:数列的前n项和.17、已知数列为等差数列,且,.(1)求数列{a n}的通项公式;(2)证明:.18、已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且,,;求:(1){a n}和{b n}的通项公式;(2)设,,求数列{c n}的前n项和.19、已知公差大于零的等差数列{a n}的前n项和为S n,且满足:,.(1)求数列{a n}的通项公式;(2)若数列{b n}是等差数列,且,求非零常数.20、等差数列{a n}中,,.(1)求数列{a n}的通项公式;(2)设,求的值.21、已知等差数列{a n}的前n项的和为S n,(1)求数列{a n}的通项公式;(2)设(3)设,表示不超过的最大整数,求{c n}的前1000项的和22、S n为数列{a n}的前n项和.已知,.(1)求{a n}的通项公式;(2)设,求数列{b n}的前项和.23、已知数列{a n}满足a1=1,a n+1=2S n+1,其中S n为{a n}的前n项和,n∈N*.(1)求a n;(2)若数列{b n}满足b n=,{b n}的前n项和为T n,且对任意的正整数n都有T n <m,求m的最小值.24、已知数列{a n},a=1,=a-n²-n-(1)求数列{a n}的通项公式;(2)证明++…+<(n∈N).25、已知数列{a n}的首项a1=a(a>0),其前n项和为S n,设().(1)若a2=a+1,a3=2a2,且数列{b n}是公差为3的等差数列,求S2n;(2)设数列{b n}的前n项和为T n,满足T n=n2.①求数列{a n}的通项公式;②若对且n≥2,不等式恒成立,求a的取值范围.26、设数列{a n}的各项均为不等的正整数,其前n项和为S n,我们称满足条件“对任意的m,n∈N*. 均有”的数列{a n}为“好”数列.(1)试分别判断数列{a n},{b n}是否为“好”数列,其中,,n∈N*,并给出证明;(2)已知数列{c n}为“好”数列.①若c2017=2018,求数列{c n}的通项公式;②若c1=p,且对任意给定正整数p,s(s>1),有c1,c2,c3成等比数列,求证:t≥s2.27、已知数列{a n}的各项均为正数,,前n项和为S n,且,为正常数.(1)求数列{a n}的通项公式;(2)记,().求证:①;②.28、已知数列{a n}满足….(1)求,,的值;(2)猜想数列{a n}的通项公式,并证明.29、等差数列{a n}的公差为正数,,其前n项和为S n;数列{b n}为等比数列,,且.(1)求数列{a n}和{b n}的通项公式;(2)设,求数列{c n}的前n项和.30、设数列{a n}的前n项和为S n,已知,().(1)求证:数列{a n}为等比数列;(2)若数列{b n}满足:,.①求数列{b n}的通项公式;②是否存在正整数n,使得成立?若存在,求出所有n的值;若不存在,请说明理由.31、已知数列{a n}的前n项和S n,且,数列是首项为1,公比为的等比数列. (1)若数列{a n+b n}是等差数列,求该等差数列的通项公式;(2)求数列{a n+n+b n}的前项和.32、已知等比数列{a n}中,.(1)求{a n}的通项公式;(2)设,求数列的前项和.33、已知数列{a n}为等差数列,S n为{a n}的前n项和,.数列为等比数列且.(1)求数列{a n}和{b n}的通项公式;(2)记,其前n项和为,求证:.34、已知数列{a n}的前n项和为S n,满足(1)求证:数列{a n+2}为等比数列;(2)求数列{a n}的通项;(3)若数列{b n}满足为数列的前n项和,求.35、已知各项均为正数的数列{a n},满足且.(1)求数列{a n}的通项公式;(2)设,若的前n项和为S n,求S n;(3)在(2)的条件下,求使成立的正整数n的最小值.36、设数列{a n}的前n项和,数列满足.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和.37、已知数列{a n}满足,且.(1)求证:数列是等差数列,并求出数列{a n}的通项公式;(2)令,求数列{b n}的前n项和S n38、已知{a n}是等比数列,满足,且成等差数列(1)求数列{a n}的通项公式(2)设,数列{b n}的前项和为,求正整数k的值,使得对任意n≥2均有g(k)≥g(n)39、已知二次函数f(x)=3x2-2x.,数列{a n}的前n项和为,点均在函数的图像上。

2020届新高考数学模拟试卷及答案解析(9)

2020届新高考数学模拟试卷及答案解析(9)

2020届新高考数学模拟试题(9)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数1z ,2z 在复平面内对应的点分别为(1,1),(0,1),则12(z z = ) A .1i +B .1i -+C .1i --D .1i -2.“sin cos αα=”是“sin 21α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a ,b 满足||1a =,||2b =,()(2)a b a b +⊥-,则向量a 与b 的夹角为( ) A .45︒B .60︒C .90︒D .120︒4.已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5(a = )A .23B .32C .43D .345.已知点(2,4)M 在抛物线2:2(0)C y px p =>上,点M 到抛物线C 的焦点的距离是( ) A .4B .3C .2D .16.在ABC ∆中,2AB AC AD +=,20AE DE +=,若EB xAB y AC =+,则( ) A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线2222:1,(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,O 为坐标原点,P 是双曲线在第一象限上的点,21212||2||2,(0),PF PF m m PF PF m ==>=,则双曲线C 的渐近线方程为( )A .12y x =±B .y =C .y x =±D .y =8.已知奇函数()f x 是R 上增函数,()()g x xf x =则( )A .233231(log )(2)(2)4g g g -->>B .233231(log )(2)(2)4g g g -->>C .233231(2)(2)(log )4g g g -->>D .233231(2)(2)(log )4g g g -->>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求,全部选对的得5分,部分选对的得3分,有选错的0分. 9.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABCD 2C .两条异面直线1D C 和1BC 所成的角为4πD .三棱柱1111AA D BB C -3 10.要得到cos2y x =的图象1C ,只要将sin(2)3y x π=+图象2C 怎样变化得到?( )A .将sin(2)3y x π=+的图象2C 沿x 轴方向向左平移12π个单位B .sin(2)3y x π=+的图象2C 沿x 轴方向向右平移1112π个单位C .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位11.已知集合{(M x =,)|()}y y f x =,若对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:21{(,)|1}M x y y x ==+;{}2(,)|1M x y y x ==+;3{(,)|}x M x y y e ==;4{(,)|sin 1}M x y y x ==+.其中是“互垂点集”集合的为( ) A .1MB .2MC .3MD .4M12.德国著名数学家狄利克雷(,1805~859)Dirichlet l 在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 1,()0,Rx Qy f x x Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,其中真命题的是( ) A .函数()f x 是偶函数B .1x ∀,2R x Q ∈,1212()()()f x x f x f x +=+恒成立C .任取一个不为零的有理数T ,()()f x T f x +=对任意的x R ∈恒成立D .不存在三个点1(A x ,1())f x ,2(B x ,2())f x ,3(C x ,3())f x ,使得ABC ∆为等腰直角三角形三、填空题:本题共4小题,每小题5分,共20分.13.已知直线0x y a -+=与圆22:2O x y +=相交于A ,B 两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为 ;14.已知直线2y x =+与曲线()y ln x a =+相切,则a 的值为 .15.5.2019l 年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间T (单位:年)的衰变规律满足5730002(TN N N -=表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的 ;经过测定,良渚古城遗址文物样本中碳14的质量是原来的37至12,据此推测良渚古城存在的时期距今约在5730年到 年之间.(参考数据:20.3lg ≈,70.84lg ≈,30.48)lg ≈16.已知ABC ∆的顶点A ∈平面α,点B ,C在平面α异侧,且2AB =,AC 若AB ,AC 与α所成的角分别为,36ππ,则线段BC 长度的取值范围为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知()2cos (sin )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期及单调递减区间; (Ⅱ)求函数()f x 在区间[,0]2π-的取值范围.18.(12分)在ABC ∆,a ,b ,c 分别为内角A ,B ,C 的对边,且2228sin 3()ab C b c a =+-,若10,5a c ==. ()I 求cos A(Ⅱ)求ABC ∆的面积S .19.(12分)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,*n N ∈. ()I 证明:{1}n S +为等比数列,求出{}n a 的通项公式;(Ⅱ)若n nnb a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -=+成立?若存在求出所有n 值;若不存在说明理由.20.(12分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵()qiandu ;阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑()bienao 指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥. ()I 求证:四棱锥11B A ACC -为阳马;(Ⅱ)若12C C BC ==,当鳖臑1C ABC -体积最大时,求锐二面角11C A B C --的余弦值.21.(12分)给定椭圆2222:1(0)x y C a b a b+=>>,称圆心在原点O 22a b +的圆是椭圆C 的“卫星圆”.若椭圆C 的离心率22,点2)在C 上. ()I 求椭圆C 的方程和其“卫星圆”方程;(Ⅱ)点P 是椭圆C 的“卫星圆”上的一个动点,过点P 作直线1l ,2l ,使得12l l ⊥,与椭圆C 都只有一个交点,且1l ,2l ,分别交其“卫星圆”于点M ,N ,证明:弦长||MN 为定值.22.(12分)已知函数()2sin f x lnx x x =-+,()f x '为()f x 的导函数. (Ⅰ)求证:()f x '在(0,)π上存在唯一零点; (Ⅱ)求证:()f x 有且仅有两个不同的零点2020届新高考数学模拟试题(9)答案解析一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数1z ,2z 在复平面内对应的点分别为(1,1),(0,1),则12(z z = ) A .1i +B .1i -+C .1i --D .1i -【解析】复数1z ,2z 在复平面内对应的点分别为(1,1),(0,1), 11z i ∴=+,2z i =.∴1221(1)1z i i i i z i i +-+===--. 故选:D .2.“sin cos αα=”是“sin 21α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】sin cos αα=,可得4k παπ=+,k Z ∈,222k παπ=+,sin21α∴=,“sin cos αα=”是“sin 21α=”的充分条件,sin 21α=,可得222k παπ=+,4k παπ∴=+,k Z ∈,可得sin cos αα=,“sin cos αα=”是“sin 21α=”的必要条件, 所以“sin cos αα=”是“sin 21α=”的充要条件. 故选:C .3.向量a ,b 满足||1a =,||2b =,()(2)a b a b +⊥-,则向量a 与b 的夹角为( ) A .45︒B .60︒C .90︒D .120︒【解析】设向量a 与b 的夹角为θ.()(2)a b a b +⊥-,2222()(2)221(2)1cos 0a b a b a b a b θ∴+-=-+=⨯-+=,化为cos 0θ=,[0θ∈,]π,90θ∴=︒.故选:C .4.已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5(a = )A .23B .32C .43D .34【解析】设等差数列1n a ⎧⎫⎨⎬⎩⎭的公差为d ,则73114d a a =+,即1142d =+,解得18d =. 则53111132244d a a =+=+=,解得543a =. 故选:C .5.已知点(2,4)M 在抛物线2:2(0)C y px p =>上,点M 到抛物线C 的焦点的距离是( ) A .4B .3C .2D .1【解析】由点(2,4)M 在抛物线2:2(0)C y px p =>上,可得164p =,4p =, 抛物线2:8C y x =,焦点坐标(2,0)F ,准线方程为2x =-, 点M 到抛物线C 的准线方程的距离为4, 则点M 到抛物线C 焦点的距离是:4, 故选:A .6.在ABC ∆中,2AB AC AD +=,20AE DE +=,若EB xAB y AC =+,则( ) A .2y x = B .2y x =- C .2x y = D .2x y =-【解析】如图, 2AB AC AD +=,∴点D 为边BC 的中点,20AE DE +=,∴2AE DE =-,∴11()36DE AD AB AC =-=-+,又11()22DB CB AB AC ==-,∴1121()()2633EB DB DE AB AC AB AC AB AC =-=-++=-,又EB xAB y AC =+,∴21,33x y ==-, 2x y ∴=-.故选:D .7.已知双曲线2222:1,(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,O 为坐标原点,P 是双曲线在第一象限上的点,21212||2||2,(0),PF PF m m PF PF m ==>=,则双曲线C 的渐近线方程为( ) A .12y x =±B .2y =C .y x =±D .2y x =±【解析】双曲线2222:1,(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,O 为坐标原点,P是双曲线在第一象限上的点,21212||2||2,(0),PF PF m m PF PF m ==>=,可得2m a =,21242cos 4a a F PF a ∠=,所以1260F PF ∠=︒, 则222214416242122c a a a a a =+-⨯⨯⨯=,即2223a b a +=, 所以2ba= 所以双曲线的渐近线方程为:2y x =. 故选:D .8.已知奇函数()f x 是R 上增函数,()()g x xf x =则( )A .233231(log )(2)(2)4g g g -->>B .233231(log )(2)(2)4g g g -->>C .233231(2)(2)(log )4g g g -->>D .233231(2)(2)(log )4g g g -->>【解析】由奇函数()f x 是R 上增函数可得当0x >时,()0f x >, 又()()g x xf x =,则()()()()g x xf x xf x g x -=--==, 即()g x 为偶函数,且当0x >时单调递增,根据偶函数的对称性可知,当0x <时,函数单调递减,距离对称轴越远,函数值越大,因为331()(log 4)4g log g =,233(2)()4g g -=,322(2)()4g g -=,所以为233231()(2)(2)4g log g g -->>故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求,全部选对的得5分,部分选对的得3分,有选错的0分. 9.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABCD 2C .两条异面直线1D C 和1BC 所成的角为4πD .三棱柱1111AA D BB C -3 【解析】正方体1111ABCD A B C D -的棱长为1,对于选项A :直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确.对于选项B :点C 到面11ABC D 的距离为1B C 长度的一半,即2h ,故选项B 正确. 对于选项C :两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误.对于选项D :三棱柱1111AA D BB C -外接球半径r ==,故选项D 正确. 故选:ABD .10.要得到cos2y x =的图象1C ,只要将sin(2)3y x π=+图象2C 怎样变化得到?( ) A .将sin(2)3y x π=+的图象2C 沿x 轴方向向左平移12π个单位B .sin(2)3y x π=+的图象2C 沿x 轴方向向右平移1112π个单位C .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位【解析】要得到cos2y x =的图象1C ,只要将sin(2)3y x π=+图象2C 将sin(2)3y x π=+的图象2C 沿x 轴方向向左平移12π个单位即可,故选项A 正确.或将sin(2)3y x π=+的图象2C 沿x 轴方向向右平移1112π个单位,也可得到,故选项B 正确.或先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位,故选项C 正确.故选:ABC .11.已知集合{(M x =,)|()}y y f x =,若对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:21{(,)|1}M x y y x ==+;{2(,)|M x y y ==;3{(,)|}x M x y y e ==;4{(,)|sin 1}M x y y x ==+.其中是“互垂点集”集合的为( ) A .1MB .2MC .3MD .4M【解析】由题意,对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立 即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'.21y x =+中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以所以1M 不是“互垂点集”集合,y =所以在2M 中的任意点1(P x ∀,1)y ,在2M 中存在另一个点P ',使得OP OP ⊥'. 所以2M 是“互垂点集”集合,x y e =中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以3M 不是“互垂点集”集合,sin 1y x =+的图象中,将两坐标轴进行任意旋转,均与函数图象有交点,所以所以4M 是“互垂点集”集合, 故选:BD .12.德国著名数学家狄利克雷(,1805~859)Dirichlet l 在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 1,()0,Rx Qy f x x Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,其中真命题的是( ) A .函数()f x 是偶函数B .1x ∀,2R x Q ∈,1212()()()f x x f x f x +=+恒成立C .任取一个不为零的有理数T ,()()f x T f x +=对任意的x R ∈恒成立D .不存在三个点1(A x ,1())f x ,2(B x ,2())f x ,3(C x ,3())f x ,使得ABC ∆为等腰直角三角形【解析】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x Q ∈,则R x Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,2R R x Q x Q ==-∈,则12()(0)1f x x f +==,12()()0f x f x +=,10≠,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x Q ∈,则R x T Q +∈,满足()()f x f x T =+;故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点1(A x ,1())f x ,2(B x ,2())f x ,3(C x ,3())f x ,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知直线0x y a -+=与圆22:2O x y +=相交于A ,B 两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为【解析】根据题意,圆22:2O x y +=的圆心为(0,0),半径r 若直线0x y a -+=与圆O 交于A ,B 两点,且AOB ∆为等腰直角三角形, 则圆心到直线的距离1d ==,解可得a =故答案为:14.已知直线2y x =+与曲线()y ln x a =+相切,则a 的值为 3 . 【解析】依题意得1y x a '=+,因此曲线()y ln x a =+在切点处的切线的斜率等于1x a+, ∴11x a=+,1x a ∴=-. 此时,0y =,即切点坐标为(1,0)a - 相应的切线方程是1(1)y x a =⨯-+, 即直线2y x =+, 12a ∴-=, 3a =故答案为:3.15.5.2019l 年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间T (单位:年)的衰变规律满足5730002(TN N N -=表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的 12;经过测定,良渚古城遗址文物样本中碳14的质量是原来的37至12,据此推测良渚古城存在的时期距今约在5730年到 年之间.(参考数据:20.3lg ≈,70.84lg ≈,30.48)lg ≈【解析】573002T N N -=,∴当5730T =时,100122N N N -==, ∴经过5730年后,碳14的质量变为原来的12, 由题意可知:3573072T ->,两边同时取以2为底的对数得:573022327T log log ->, ∴3377 1.2573022lgT lg lg lg lg -->=≈-, 6876T ∴<,∴推测良渚古城存在的时期距今约在5730年到6876年之间.16.已知ABC ∆的顶点A ∈平面α,点B ,C 在平面α异侧,且2AB =,3AC =,若AB ,AC 与α所成的角分别为,36ππ,则线段BC 长度的取值范围为 [7,13] . 【解析】分别过B ,C 作底面的垂线,垂足分别为1B ,1C . 由已知可得,13BB =,13CC =,11AB =,132AC =. 如图,当AB ,AC 所在平面与α垂直,且B ,C 在底面上的射影1B ,1C 在A 点同侧时BC 长度最小,当AB ,AC 所在平面与α垂直,且B ,C 在底面上的射影1B ,1C 在A 点两侧时BC 长度最大.过C 作1CD BB ⊥的延长线,垂足为D ,则33BD =,12CD =, 则BC 2331()724+=23325()1324+ ∴线段BC 长度的取值范围为[713],故答案为:[7,13].四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知()2cos (sin )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期及单调递减区间; (Ⅱ)求函数()f x 在区间[,0]2π-的取值范围.【解析】(Ⅰ) 由题意,化简得2()2cos sin 1)sin 22sin(2)3f x x x x x x x π=-==-,所以函数()f x 的最小正周期π. sin y x =的减区间为3[2,2],22k k k Z ππππ++∈, 由3222232k x k πππππ+-+, 得5111212k x k ππππ++, 所以函数()f x 的单调递减区间为511[,],1212k k k Z ππππ++∈. (Ⅱ)因为[,0]2x π∈-,所以42[,]333x πππ-∈--.所以22sin(2)33x π--.所以函数()f x 在区间[,0]2π-上的取值范围是[-.18.(12分)在ABC ∆,a ,b ,c 分别为内角A ,B ,C 的对边,且2228sin 3()ab C b c a =+-,若5a c ==. ()I 求cos A(Ⅱ)求ABC ∆的面积S .【解析】()I 由题意得2228sin 3()22ab C b c a bc bc+-=, 由余弦定理得:4sin 3cos a CA c=,由正弦定理得4sin 3cos A A =, 所以3tan 4A =, 可得ABC ∆中,4cos 5A =.(Ⅱ)由4cos 5A =,5a c ==.可得余弦定理2222cos a b c bc A =+-,得28150b b -+=, 解得3b =或5b =, 可得3sin 5A =, 由1sin 2S bc A =,得152S =或92S =.19.(12分)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,*n N ∈. ()I 证明:{1}n S +为等比数列,求出{}n a 的通项公式;(Ⅱ)若n nnb a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -=+成立?若存在求出所有n 值;若不存在说明理由.【解析】(Ⅰ)证明:121n n S S +-=,*112(1)n n S S n N +∴+=+∈ {1}n S ∴+为等比数列, 112S +=,公比为2,∴12n n S +=,21n n S =-,∴1121n n S --=-,当2n 时,112n n n n a S S --=-=,11a =也满足此式,∴12n n a -=;(Ⅱ)12n n n n n b a -==,01112222n n nT -=++⋯+, 121122222n n n T =++⋯+,两式相减得:011111122222222n n n n n n T -+=++⋯+-=-, 1242n n n T -+=-, 代入1250n n T n -=+,得2260n n --=,令()226(1)x f x x x =--,()2210x f x ln '=->在[1x ∈,)+∞成立,()226x f x x ∴=--,(1,)x ∈+∞为增函数;由f (5)f (4)0<,所以不存在正整数n 使得1250n n T n -=+成立.20.(12分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵()qiandu ;阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑()bienao 指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥. ()I 求证:四棱锥11B A ACC -为阳马;(Ⅱ)若12C C BC ==,当鳖臑1C ABC -体积最大时,求锐二面角11C A B C --的余弦值.【解答】(Ⅰ)证明:1A A ⊥底面ABC ,AB ⊂面ABC ,1A A AB ∴⊥,又AB AC ⊥,1A A AC A =,AB ∴⊥面11ACC A ,又四边形11ACC A 为矩形,∴四棱锥11B A ACC -为阳马.(Ⅱ)解:AB AC ⊥,2BC =,224AB AC ∴+=,又1A A ⊥底面ABC ,∴122111112323323C ABC AB AC V C C AB AC AB AC -+===,当且仅当2AB AC ==113C ABC V AB AC -=取最大值,AB AC ⊥,1A A ⊥底面ABC ∴以A 为原点,建立如图所示空间直角坐标系,(2,0,0)B ,2,0)C ,1(0A ,0,12)(2,0,2)A B =-,(2,2,0)BC =-,11(0,2,0)A C =,设面1A BC 的一个法向量1111(,,)n x y z =, 由11100n A B n BC ⎧=⎪⎨=⎪⎩得1(22,1)n =, 同理得2(2,0,1)n =,∴12121215cos ,5||||n n n n n n <>==二面角11C A B C --的余弦值为15. 21.(12分)给定椭圆2222:1(0)x y C a b a b+=>>,称圆心在原点O 22a b +的圆是椭圆C 的“卫星圆”.若椭圆C 2,点2)在C 上. ()I 求椭圆C 的方程和其“卫星圆”方程;(Ⅱ)点P 是椭圆C 的“卫星圆”上的一个动点,过点P 作直线1l ,2l ,使得12l l ⊥,与椭圆C 都只有一个交点,且1l ,2l ,分别交其“卫星圆”于点M ,N ,证明:弦长||MN 为定值.【解析】(Ⅰ)由条件可得:222421c a a b ⎧⎪⎪⎨⎪+=⎪⎩ 解得22,2a b ==所以椭圆的方程为22184x y +=,⋯(3分)卫星圆的方程为2212x y +=⋯(4分)()II 证明:①当1l ,2l 中有一条无斜率时,不妨设1l 无斜率,因为1l 与椭圆只有一个公共点,则其方程为22x =22x =- 当1l 方程为22x =1l 与“卫星圆”交于点(22,2)和(22,2)-,此时经过点(22,2)(22,2)-且与椭圆只有一个公共点的直线是2y =或2y =-,即2l 为2y =或2y =-,所以12l l ⊥,所以线段MN应为“卫星圆”的直径,所以||MN =(7分) ②当1l ,2l 都有斜率时,设点0(P x ,0)y ,其中220012x y +=, 设经过点0(P x ,0)y 与椭圆只有一个公共点的直线为00()y t x x y =-+,则,联立方程组0022()184y tx y tx x y =+-⎧⎪⎨+=⎪⎩,消去y ,整理得2220000(12)4()2()80t x t y tx x y tx ++-+--=,⋯(9分)所以222000(648)163280x t x y t y =-++-=⋯(10分) 所以2200122200328328(12)1648648y x t t x x ---===-⋯--(11分)所以121t t =-,满足条件的两直线1l ,2l 垂直. 所以线段MN 应为“卫星圆”的直径, 所以||MN =综合①②知:因为1l ,2l 经过点0(P x ,0)y ,又分别交其“卫星圆”于点MN ,且1l ,2l 垂直,所以线段MN 为“卫星圆” 220012x y +=的直径, 所以||MN =⋯(12分)22.(12分)已知函数()2sin f x lnx x x =-+,()f x '为()f x 的导函数. (Ⅰ)求证:()f x '在(0,)π上存在唯一零点; (Ⅱ)求证:()f x 有且仅有两个不同的零点 【解析】(Ⅰ)设1()()12cos g x f x x x'==-+, 当(0,)x π∈时,21()2sin 0g x x x'=--<,()g x ∴在(0,)π上单调递减. 又32()110,()1032g g ππππ=-+>=-<,()g x ∴在(,)32ππ上有唯一的零点.(Ⅱ)①由(Ⅰ)知,当(0,)x α∈时,()0f x '>,()f x 在(0,)α上单调递增; 当(,)x απ∈时,()0f x '<,()f x 在(,)απ上单调递减; ()f x ∴在(0,)π上存在唯一的极大值点()32ππαα<<,∴()()2202222f f lnππππα>=-+>->.22221111()22sin 220f e e e e=--+<--+<,()f x ∴在(0,)α上恰有一个零点. ()20f ln ππππ=-<-<,()f x ∴在(,)απ上也恰有一个零点;②当[x π∈,2)π时,sin 0x ,()f x lnx x -. 设()h x lnx x =-,1()10h x x'=-<, ()h x ∴在[π,2)π上单调递减,()()0h x h π∴<,∴当[x π∈,2)π时,()()()0f x h x h π<恒成立,()f x ∴在[π,2)π上没有零点.③当[2x π∈,)+∞时,()2f x lnx x -+, 设()2x lnx x ϕ=-+,1()10x xϕ'=-<, ()x ϕ∴在[2π,)+∞上单调递减,()(2)0x ϕϕπ∴<,∴当[2x π∈,)+∞时,()()(2)0f x x ϕϕπ<恒成立,()f x ∴在[2π,)+∞上没有零点.综上,()f x 有且仅有两个零点.。

2020年高三下学期数学解答题专题训练题精选(有答案解析) (2)

2020年高三下学期数学解答题专题训练题精选(有答案解析) (2)

2020年高三下学期数学解答题专题训练题精选21.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.2.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.3.函数f(x)=ax3+3x2+3x(a≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)上是增函数,求a的取值范围.4.已知函数.若函数在其定义域上是增函数,求实数a的取值范围;当时,求出的极值:在的条件下,若在内恒成立,试确定a的取值范围.5.已知数列{a n}中,a1=1,a n+1=(n∈N*).(1)求a2,a3;(2)求证:{}是等比数列,并求{a n}的通项公式a n;(3)数列{b n}满足b n=(3n-1)·a n,数列{b n}的前n项和为T n,若不等式(-1)nλ<T n对一切n∈N*恒成立,求λ的取值范围.6.已知圆A:x2+y2+2x-15=0和定点B(1,0),M是圆A上任意一点,线段MB的垂直平分线交MA于点N,设点N的轨迹为C.(Ⅰ)求C的方程;(Ⅱ)若直线y=k(x-1)与曲线C相交于P,Q两点,试问:在x轴上是否存在定点R,使当k变化时,总有∠ORP=∠ORQ?若存在,求出点R的坐标;若不存在,请说明理由.7.已知函数f(x)=x-a ln x,g(x)=-(a>0)(1)若a=1,求f(x)的极值;(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.8.已知函数f(x)=sin2x+sin x cosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[-,m]上的最大值为,求m的最小值.9.在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.(1)求圆C的普通方程和直线l的直角坐标方程;(2)点P是圆C上任一点,求△PAB面积的最小值.10.等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.答案和解析1.【答案】证明:(Ⅰ)取AD的中点F,连接EF,CF,∵E为PD的中点,∴EF∥PA,EF∥平面PAB,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴四边形CBAF为平行四边形,故CF∥AB,CF∥平面PAB,∵CF∩EF=F,EF∥平面PAB,CF∥平面PAB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连接BF,过F作FM⊥PB于M,连接PF,∵PA=PD,∴PF⊥AD,∵DF∥BC,DF=BC,CD⊥AD,∴四边形BCDF为矩形,∴BF⊥AD,又AD∥BC,故PF⊥BC,BF⊥BC,又BF PF=F,BF、PF平面PBF,BC平面PBF,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,又PB BC=B,PB、BC平面PBC,MF平面PBC,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,均为,E为PD中点,E到平面PBC的垂足也为所在线段的中点,即中位线,∴E到平面PBC的距离为,在,,故由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.2.【答案】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=;(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.【解析】本题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题.(1)根据正弦定理即可求出答案;(2)根据同角的三角函数的关系求出cos C,再根据两角和正弦公式求出sin B,根据面积公式计算即可.3.【答案】解:(1)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1-a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(-∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(-∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(-∞,x1)或(x2,+∞)时,f′(x)<0,故函数在(-∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(2)当a>0,x>0时,f′(x)=3ax2+6x+3>0 恒成立,故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得-,所以a的取值范围[)∪(0,+∞).【解析】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.(1)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(2)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.4.【答案】解:函数f(x)=ln x+x2-ax(x>0),则=+2x-a(x>0).∵函数f(x)在(0,+∞)上是单调增函数,∴≥0在(0,+∞)上恒成立,即+2x-a≥0在(0,+∞)上恒成立.∴+2x≥a.。

2020年高三下学期数学解答题专题训练题精选(有答案解析) (4)

2020年高三下学期数学解答题专题训练题精选(有答案解析) (4)

2020年高三下学期数学解答题专题训练题精选41.在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,且=.(Ⅰ)求B的大小;(Ⅱ)若点M为BC的中点,且AM=AC,求的值.3.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.4.已知圆心在x轴上的圆C与直线l:切于点求圆C的标准方程;已知,经过原点,且斜率为正数的直线L与圆C交于,两点.求证:为定值;求的最大值.5.如图,四棱锥P-ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB=PD,PA⊥PC,CD⊥PC,O,M分别是BD,PC的中点,连结OM.求证:(1)OM∥平面PAD;(2)OM⊥平面PCD.6.已知函数.若,求在区间上的最小值;若在区间上有最大值3,求实数a的值.7.已知直线l:(t为参数),曲线C1:(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.8.△ABC的内角A、B、C的对边分别为a、b、c,已知3a cos C=2c cos A,tan A=,求B.9.已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log4(4x+1).(1)求f(x),g(x)的解析式;(2)若函数h(x)=f(x)-在R上只有一个零点,求实数a的取值范围.10.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.-------- 答案及其解析 --------1.答案:解:(1)直线l的参数方程为:(α为参数).曲线C的极坐标方程是,即,整理得.转化为直角坐标方程为:y2=8x.(2)设t1和t2为A和B的参数,当时,直线l的参数方程为:(t为参数),代入y2=8x得到:,所以,t1t2=-16<0 ,故异号,所以:.O到直线AB的距离为:d=.则:=.解析:本题考查了参数方程和极坐标方程与直角坐标方程的转化,点到直线的距离公式的应用以及三角形面积公式的应用.(1)直接把参数方程和极坐标方程与直角坐标方程的转化;(2)利用点到直线的距离公式和三角形的面积公式求出结果.2.答案:解:(Ⅰ)在△ABC中,∵,∴2a cos B=c cos B+b cos C,利用正弦定理可得,,∵≠0,∴,∵,∴;(Ⅱ)在△ABC中,由余弦定理得,,在△ABM中,由余弦定理得,.∵AM=AC,∴,∴,∴由正弦定理得,.解析:本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于中档题.(Ⅰ)由已知化简,利用正弦定理,三角形内角和定理,两角和的正弦函数公式可得:2sin A cos B=sin A,由于sin A≠0,可求cos B,结合B的范围即可得解B的值.(Ⅱ)由AM=AC,利用余弦定理得,,结合正弦定理即可得的值.3.答案:证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC,又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1,又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1,又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,。

2020年高三高考数学解答题专题训练题(难题解析) (4)

2020年高三高考数学解答题专题训练题(难题解析) (4)

2020年高三高考数学解答题专题训练题41.如图,在四棱锥P-ABCD中,底面ABCD是梯形,AB∥CD,PD⊥平面ABCD,BD⊥DC,PD=BD=DC=AB,E为PC中点.(Ⅰ)证明:平面BDE⊥平面PBC;(Ⅱ)若V P-ABCD=,求点A到平面PBC的距离.2.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量,,且.(Ⅰ)求角A的大小;(Ⅱ)求sin B+sin C的最大值并判断此时△ABC的形状.3.函数f(x)= |x-1 |+ |x-2a|.(1)当a=1时,解不等式f(x)≤3;(2)若不等式f(x)≥3a2对任意x∈R恒成立,求实数a的取值范围4.已知函数f(x)=a(x+ln x)(a≠0),g(x)=x2.(1)若f(x)的图象在x=1处的切线恰好也是g(x)图象的切线.①求实数a的值;②若方程f(x)=mx在区间内有唯一实数解,求实数m的取值范围.(2)当0<a<1时,求证:对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|<|g(x1)-g(x2)|成立.5.在平面直角坐标系xOy中,已知以M为圆心的圆M:x及其上一点.设圆N与x轴相切,与圆M外切,且圆心N在直线上,求圆N的标准方程;设平行于OA的直线l与圆M相交于B,C两点,且,求直线l的方程;设点满足:存在圆M上两点P和Q,使得,求实数t的取值范围.6.设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(I)求椭圆的方程;(II)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.7.已知椭圆,过右焦点F2的直线l交椭圆于M,N两点.(1)若,求直线l的方程;(2)若直线l的斜率存在,在线段OF2上是否存在点P(a,0),使得,若存在,求出a的范围,若不存在,请说明理由.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设,求直线AC与平面AEF所成角θ的正弦值.9.已知函数.若函数是单调递减函数,求实数a的取值范围;若函数在区间上既有极大值又有极小值,求实数a的取值范围.10.已知椭圆C:的离心率为,且过点.Ⅰ求椭圆C的方程;Ⅱ若P,Q是椭圆C上的两个动点,且使的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.-------- 答案及其解析 --------1.答案:证明:如图所示:(Ⅰ)PD⊥平面ABCD,CD⊂平面ABCD,BD⊂平面ABCD,∴PD⊥CD,PD⊥DB,又BD⊥DC,PD=DC=DB,∴PC=PB=BC,∵E是PC的中点,∴PC⊥DE,PC⊥BE,又DE∩BE=E,∴PC⊥平面BDE,又PC⊂平面PBC,∴平面BDE⊥平面PBC.(Ⅱ)设PD=CD=BD==a,∴S四边形ABCD==a2,则V P-ABCD===,∴a=.∴PB=PD=BC=a=2,∴S△PBC==,又=S△ABD==2,∴V A-PBC=V P-ABD==,设A到平面PBC的距离为h,则V A-PBC==.∵V P-ABC=V A-PBC,∴h=,解得h=,故A到平面PBC的距离为.。

2020年高三数学解答题专题训练题精选(含答案解析)(23)

2020年高三数学解答题专题训练题精选(含答案解析)(23)

2020年高三数学解答题专题训练题精选231.设关于x的不等式的解集为.设不等式的解集为A,集合,求;若,求的最小值.2.如图,在四棱锥,底面ABCD是矩形,平面ABCD,,,于点M.求证:;求点D到平面ACM的距离.3.如图,点P是菱形ABCD所在平面外一点,∠BAD=60°,PCD是等边三角形,AB=2,PA=2,M是PC的中点.(Ⅰ)求证:PA∥平面BDM;(Ⅱ)求证:平面PAC⊥平面BDM;(Ⅲ)求直线BC与平面BDM的所成角的大小.4.近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本单位:万元与日产量单位:吨之间的函数关系式为,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为k万元,除尘后当日产量时,总成本.(1)求k的值;(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?5.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.6.已知函数在[2,+∞)上单调递增.(1)若函数有实数零点,求满足条件的实数a的集合A;(2)若对于任意的a∈[1,2]时,不等式恒成立,求x的取值范围.7.已知函数.当时,求函数在处的切线方程;令,求函数的极值;若,正实数,满足,证明:.8.已知曲线C:y2=4x,M:(x-1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.(Ⅰ)若,求证:直线l恒过定点,并求出定点坐标;(Ⅱ)若直线l与曲线C1相切,M(1,0),求的取值范围.9.已知函数f(x)=a(x2-x)-ln x(a∈R).(1)若f(x)在x=1处取到极值,求a的值;(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范围;(3)求证:当n≥2时,++…+>.10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.。

2020年高三下学期数学解答题专题训练题精选(有答案解析) (13)

2020年高三下学期数学解答题专题训练题精选(有答案解析) (13)

2020年高三下学期数学解答题专题训练题精选131.S n为数列{a n}的前n项和,已知a n>0 ,.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和.2.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.3.已知函数f(x)=x2+ln x-ax.(1)当a=3时,求f(x)的单调增区间;(2)若f(x)在(0,1)上是增函数,求a得取值范围.4.已知a,b,c分别为△ABC三个内角A,B,C的对边,且.(1)求A;(2)若,△ABC的面积为,求b与c的值.5.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.(1)求样本容量n和频率分布直方图中的x,y的值;(2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.6.在直角坐标系中,曲线C的参数方程为,(ϕ为参数),直线l的参数方程为(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为.(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.7.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=-2sinθ.(1)求C1的极坐标方程与C2的直角坐标方程;(2))若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.8.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.9.如图,在△ABC中,AB=2,cos B=,点D在线段BC上.(1)若∠ADC=π,求AD的长;(2)若BD=2DC,△ADC的面积为,求的值.10.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为ρsin(θ+)=2.(1)写出曲线C的普通方程和直线l的直角坐标方程;(2)设点P为曲线C上的动点,求点P到直线l距离的最大值.-------- 答案及其解析 --------1.答案:解:(Ⅰ)a n>0,a n2+2a n=4S n+3,n≥2时,+2a n-1=4S n-1+3,相减可得:a n2+2a n-(+2a n-1)=4a n,化为:(a n+a n-1)(a n-a n-1-2)=0,∵a n>0,∴a n-a n-1-2=0,即a n-a n-1=2,又=4a1+3,a1>0,解得a1=3.∴数列{a n}是等差数列,首项为3,公差为2.∴a n=3+2(n-1)=2n+1.(Ⅱ)b n===,∴数列{b n}的前n项和=+…+==.解析:本题考查了数列递推关系、等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.(Ⅰ)a n>0,a n2+2a n=4S n+3,n≥2时,+2a n-1=4S n-1+3,a n>0,相减可得,a n-a n-1-2=0,利用等差数列的通项公式可得a n.(Ⅱ)b n===,利用裂项求和方法即可得出.2.答案:解:(Ⅰ)在曲线C上任意取一点(x0,y0),由题意可得点(x0,)在圆x2+y2=1上,∴+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数);(Ⅱ)由,可得或,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y-1=(x-),即x-2y+=0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα-2ρsinα+=0,即ρ=.解析:本题主要考查求点的轨迹方程的方程,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题.(Ⅰ)在曲线C上任意取一点(x0,y0),再根据点(x0,)在圆x2+y2=1上,求出C的方程,化为参数方程;(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα 可得所求的直线的极坐标方程.3.答案:解:(1)当a=3时,f(x)=x2+ln x-3x;∴f′(x)=2x+-3,由f′(x)>0得,0<x<或x>1,故所求f(x)的单调增区间为(0,),(1,+∞);(2)f′(x)=2x+-a,∵f(x)在(0,1)上是增函数,∴2x+-a>0在(0,1)上恒成立,即a<2x+恒成立,∵2x+≥2(当且仅当x=时取等号)所以a<2,当a=2时,易知f(x)在(0,1)上也是增函数,所以a≤2.故a的取值范围为.解析:本题考查利用导数研究函数的单调性和二次函数在定区间上的最值问题,体现了分类讨论和转化的思想方法,考查了学生灵活应用知识分析解决问题的能力.(1)求单调增区间,先求导,令导函数大于0即可;(2)已知f(x)在区间(0,1)上是增函数,即f′(x)≥0在区间(0,1)上恒成立,然后用分离参数求最值即可.4.答案:解:(1)∵,由正弦定理得:,即,化简得:,∴。

2020年高考数学(理)二轮专项复习专题06 平面向量(含答案)

2020年高考数学(理)二轮专项复习专题06 平面向量(含答案)

2020年高考数学(理)二轮专项复习专题06 平面向量平面向量是工具性的知识,向量的坐标化使得向量具有代数和几何两种形式,它把“数”和“形”很好地结合在一起,体现了重要的数学思想方法,在高考中,除了对向量本身的概念与运算的知识进行考察外,向量还与平面几何、三角几何、解析几何、立体几何等知识综合在一起考查,本专题应该掌握向量的基本概念、向量的运算方法与公式以及向量的应用.§6-1 向量的概念与运算【知识要点】1.向量的有关概念与表示(1)向量:既有方向又有大小的量,记作向量c b a ,,,自由向量:数学中所研究的向量是可以平移的,与位置无关,只要是长度相等,方向相同的向量都看成是相等的向量.(2)向量的模:向量的长度,记作:|||,|a AB向量的夹角:两个非零向量a ,b ,作b a ==OB OA ,,则(AOB 称为向量a ,b 的夹角,记作:〈a ,b 〉 零向量:模为0,方向任意的向量,记作:0单位向量:模为1,方向任意的向量,与a 共线的单位向量是:)0(||=/±a a a(3)相等向量:长度相等,且方向相同的向量叫相等向量. 相反向量:长度相等,方向相反的向量.向量共线:方向相同或相反的非零向量是共线向量,零向量与任意向量共线;共线向量也称为平行向量.记作a ∥b向量垂直;〈a ,b )=90°时,向量a 与b 垂直,规定:0与任意向量垂直. 2.向量的几何运算(注意:运算法则、运算律)(1)加法:平行四边形法则、三角形法则、多边形法则. (2)减法:三角形法则. (3)数乘:记作:λ a .它的长度是:|λ a |=|λ |·|a | 它的方向:①当λ >0时,λ a 与a 同向 ②当λ <0时,λ a 与a 反向 ③当λ =0时,λ a =0 (4)数量积:①定义:a ·b =|a ||b |cos 〈a ,b 〉其物理背景是力在位移方向所做的功. ②运算律:1.(交换律)a ·b =b ·a2.(实数的结合律)λ (a ·b )=(λ a )·b =a ·(λ b ) 3.(分配律)(a +b )·c =a ·c +b ·c ③性质:设a ,b 是非零向量,则: a ·b =0⇔a ⊥ba 与b 同向时,a ·b =|a |·|b |a 与b 反向时,a ·b =-|a |·|b | 特殊地:a ·a =|a |2或a a a ⋅=||夹角:||||,cos b a ba b a ⋅>=<|a ·b |≤|a | |b |3.向量的坐标运算若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) (1)加法:a +b =(x 1+x 2,y 1+y 2) (2)减法:a -b =(x 1-x 2,y 1-y 2) (3)数乘:λ a =(λ x 1,λ y 1) (4)数量积:a ·b =x 1x 2+y 1y 2 (5)若a =(x ,y ),则22||y x +=a(6)若a =(x 1,y 1),b =(x 2,y 2),则222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a(7)若A (x 1,y 1),B (x 2,y 2),则221221)()(||y y x x AB -+-=(8)a 在b 方向上的正射影的数量为22222121||,cos ||y x y y x x ++=>=<⋅b b a b a a 4.重要定理(1)平行向量基本定理:若a =λ b ,则a ∥b ,反之:若a ∥b ,且b ≠0,则存在唯一的实数λ 使得a =λ b (2)平面向量基本定理:如果e 1和e 2是平面内的两个不共线的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2使a =a 1e 1+a 2e 2(3)向量共线和垂直的充要条件:若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) 则:a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0(4)若a =(x 1,y 1),b =(x 2,y 2),则⎪⎩⎪⎨⎧==⇔=2121y y x x b a【复习要求】1.准确理解相关概念及表示,并进行简单应用;2.掌握向量的加法、减法、数乘运算的方法、几何意义和坐标运算,了解向量的线性运算的法则、性质;会选择合适的方法解决平面向量共线等相关问题;3.熟练掌握向量的数量积的运算、性质与运算律,会利用向量的数量积解决有关长度、角度、垂直、平行等问题.【例题分析】例1 向量a 、b 、c 是非零的不共线向量,下列命题是真命题的个数有( )个 (1)(b ·c )a -(c ·a )b 与c 垂直, (2)若a ·c =b ·c ,则a =b , (3)(a ·b )c =a (b ·c ), (4)a ·b ≤|a ||b |A .0B .1C .2D .3【分析】(1)真命题,注意:向量的数量积是一个实数,因此[(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,所以c (b ·c )a -(c ·a )b 与c 垂直;(2)假命题.a ·c =b ·c ≠a =b ;即向量的数量积不能两边同时消掉相同的向量,比如:向量a 与向量b 都是与向量c 垂直且模长不等的向量,可以使得左边的式子成立,但是a 、b 这两个向量不相等;(3)假命题.(a ·b )c ≠a (b ·c ),实际上(a ·b )c 是与向量c 方向相同或相反的一个向量,a (b ·c )是与a 方向相同或相反的一个向量,向量a 、c 的方向可以不同,左右两边的向量就不等;(4)真命题.a ·b =|a ||b |cos 〈a ,b 〉,且cos 〈a ,b 〉≤1,所以a ·b ≤|a ||b |. 解答:选C .【评析】(1)我们在掌握向量的有关概念时要力求准确和完整,比如平行向量(共线向量)、零向量等,注意积累像这样的容易错误的判断并纠正自己的认识;(2)向量的加减运算与数乘运算的结果仍然是一个向量,而向量的数量积运算结果是一个实数,要熟练掌握向量的运算法则和性质.例2 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A .)37,97(B .)97,37(--C .)97,37(D .)37,97(--【分析】知道向量的具体坐标,可以进行向量的坐标运算;向量的平行与垂直的关系也可以用坐标体现,因此用待定系数法通过坐标运算求解.解:不妨设c =(m ,n ),则a +c =(1+m ,2+n ),a +b =(3,-1),对于(c +a )∥b ,则有-3(1+m )=2(2+n );又c ⊥(a +b ),则有3m -n =0,则有37,97-=-=n m 故选择D 【评析】平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.此外,待定系数法是在解决向量的坐标运算中常用的方法.例3 (1)已知向量)10,(),5,4(),12,(k k -===,且A 、B 、C 三点共线,求实数k 的值. (2)已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,求实数k 的值. 【分析】(1)向量a 与b (b ≠0)共线⇔存在实数m 使a =m b . 当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.(2)利用向量的数量积能够巧妙迅速地解决有关垂直的相关问题. a ·b =0⇔a ⊥b ⇔x 1x 2+y 1y 2=0解:(1)∵)10,(),5,4(),12,(k OC OB k OA -===, ∴)5,4(),7,4(-+=--=k CB k AB , ∵A 、B 、C 三点共线,∴//,即(4-k )(-5)-(4+k )(-7)=0,解得:⋅-=32k (2)由(k a -2b )⊥a ,得(k a -2b )·a =k a 2-2b ·a =2k -2·(2-3)=0,所以k =-1. 【评析】①向量a 与b (b ≠0)共线的充要条件是存在实数m 使a =m b ;当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.若判断(或证明)两个向量是否共线,只要判断(或证明)两个向量之间是否具有这样的线性关系即可;反之,已知两个向量具有平行关系时,也有线性等量关系成立.②利用向量的共线定理来解决有关求参数、证明点共线或线段平行,以及利用向量的数量积解决垂直问题等是常见的题型,注意在解题过程中适当选择方法、正确使用公式,并注意数形结合.例4 已知:|a |=2,|b |=5,〈a ,b 〉=60°,求:①a ·b ;②(2 a +b )·b ;③|2a +b |;④2 a +b 与b 的夹角θ 的余弦值【分析】利用并选择合适的公式来求数量积、模、夹角等:a ·b =|a ||b |cos 〈a ,b 〉=x 1x 2+y 1y 2a a a a a a ⋅⋅=⇒=||||2,若a =(x ,y ),则22||y x +=a222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a解:①∵|a |=2,|b |=5,〈a ,b 〉=60°,∴a ·b =|a ||b |cos 〈a ,b 〉=5; ②(2a +b )·b =2a ·b +b ·b =10+25=35; ③;6125201644)2(|2|222=++=++=+=+⋅⋅b b a a b a b a④⋅==++=++>=+<⋅⋅⋅⋅6161756135||)2()2(|||2|)2(,2cos 2b b a b b a b b a b b a b b a【评析】向量的数量积是一个非常好的工具,利用向量的数量积可以解决求长度、角度、距离等相关问题,同时用向量的数量积解决垂直相关问题也是常见的题型,注意使用正确的公式.例5 已知向量a =(sin θ ,cos θ -2sin θ ),b =(1,2). (Ⅰ)若a ∥b ,求tan θ 的值;(Ⅱ)若|a |=|b |,0<θ <π,求θ 的值.【分析】已知向量的坐标和平行关系与模长,分别用坐标公式刻画. 解:(Ⅰ)因为a ∥b ,所以2sin θ =cos θ -2sin θ ,于是4sin θ =cos θ ,故41tan =θ. (Ⅱ)由|a |=|b |知,sin 2θ +(cos θ -2sin θ )2=5,所以1-2sin2θ +4sin 2θ =5. 从而-2sin2θ +2(1-cos2θ )=4,即sin2θ +cos2θ =-1, 于是22)4π2sin(-=+θ又由0<θ <π知,49π4π24π<+<θ,所以45π4π2=+θ,或47π4π2=-θ 因此2π=θ,或43π=θ.例6 设a 、b 、c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) (A)-2(B)22-(C)-1(D)21-【分析】由向量的模长以及夹角,考虑从数量积的运算寻找解决问题的突破口解:∵a ,b ,c 是单位向量,∴(a -c )·(b -c )=a ·b -(a +b )·c +c 221〉,〈cos 121-≥+-=⋅⋅c b a故选D .例7 在△ABC ,已知23||.||32BC ==⋅,求角A ,B ,C 的大小. 【分析】熟悉向量的数量积的形式,再结合三角公式来解决问题 解:设BC =a ,AC =b ,AB =c由||||32AC AB AC AB ⋅⋅=得bc A bc 3cos 2=,所以23cos =A 又A ∈(0,π),因此6π=A由23||||3BC =⋅得23a bc =,于是43sin 3sin sin 2==⋅A B C 所以43)sin 23cos 21(sin ,43)6π5sin(sin =+=-⋅⋅C C C C C ,因此 02cos 32sin ,3sin 32cos sin 22=-=+⋅C C C C C ,即0)3π2sin(=-C由6π=A 知6π50<<C ,所以34π3π2,3π<--C ,从而03π2=-C ,或π3π2=-C ,即6π=C ,或32π=C ,故 6π,32π,6π===C B A ,或⋅===32π,6π,6πC B A【评析】向量往往是一步工具性的知识应用,继而转化为三角函数、不等式、解三角形等知识,因此,熟练准确掌握向量的基本概念、基本运算法则、性质,以及灵活选择合适的公式非常必要.练习6-1一、选择题1.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ ∈R ,b =λ aD .存在不全为零的实数λ 1,λ 2,λ 1a +λ 2b =02.已知平面向量a =(1,-3),b =(4,-2),λ a +b 与a 垂直,则λ 是( ) A .-1 B .1 C .-2 D .2 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为( ) A .)27,2(B .)21,2(-C .(3,2)D .(1,3)4.设△ABC 的三个内角A ,B ,C ,向量)cos 3,(cos ),sin ,sin 3(A B B A ==n m ,若m ·n =1+cos(A +B ),则C =( ) A .6π B .3π C .32π D .65π 二、填空题5.设a =(2k +2,4),b =(8,k +1),若a 与b 共线,则k 值为______. 6.已知向量),3(),2,1(m OB OA =-=,若AB OA ⊥,则 m =______. 7.已知M (3,-2),N (-5,-1),MN MP 21=,则P 点坐标为______. 8.已知a 2=1,b 2=2,(a -b )·a =0,则a 和b 的夹角是______. 三、解答题9.已知向量a =(x +3,x 2-3x -4)与AB 相等,其中A (1,2),B (3,2),求实数x 的值.10.已知向量a 与b 同向,b =(1,2),a ·b =10.(1)求向量a 的坐标;(2)若c =(2,-1),求(b ·c )a .11.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,求向量a 的模.§6-2 向量的应用【知识要点】1.向量的基本概念与运算与平面几何联系解决有关三角形的形状、解三角形的知识; 2.以向量为载体考查三角函数的知识;3.在解析几何中用向量的语言来表达平行、共线、垂直、中点以及定比分点等信息,实际上还是考查向量的运算方法与公式. 【复习要求】会用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力.例1若·==⋅⋅,求证三角形ABC 是正三角形, 【分析】给出的是一个连等的等式,考虑移项进行向量的运算,进而得到正三角形的某些判定的结论. 证明0)()(=+=-=-⋅⋅⋅⋅,即与BC 边上的中线垂直,所以AB =AC ,同理BC =BA ,可以得到该三角形是等边三角形;例2 已知四边形ABCD 中,若⋅⋅⋅⋅===,判断四边形ABCD 的形状. 【分析】已知向量的数量积的对称式,可以从运算和几何意义上分别研究. 解答1从几何意义上设k ====⋅⋅⋅⋅若k >0,则∠ABC ,∠BCD ,∠CDA ,∠DAB 都是钝角,与四边形内角和为360°矛盾,舍;同理k <0时,也不可能,故k =0,即四边形ABCD 为矩形.解答2从运算上,0)()(=+=-=-⋅⋅⋅⋅ 同理;0)()(=+=-=-⋅⋅⋅⋅ 于是BC AD //,同理CD AB //,得到四边形ABCD 是平行四边形;∴02)()(==+=-=-⋅⋅⋅⋅⋅ ∴BC AB ⊥,∴四边形ABCD 为矩形.【评析】利用数量积解决三角形的形状时,常常涉及向量的夹角问题,注意向量的数量积的正负对向量夹角的约束,另外,一些对称式告诉我们几何图形应该具有一个规则的形状,不因为改变字母而变化形状,我们可以直观判断形状.例3 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量)1,3(-=m ,n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,求角A ,B 的大小.【分析】在三角形中,借助垂直向量的条件可以得到A 角的三角方程,从而求出三角形的内角A ,已知的等式左右两边是边的齐次式,可以借助三角形的正弦定理、三角公式等知识求三角形的其余内角.解:∵ 0sin cos 3=-=⊥⋅∴A A n m n m ,即3tan =A ,∴三角形内角;3π=A ∵a cosB +b cos A =c sinC ,∴sin A cos B +sin B cos A =sin 2C ,即sin(A +B )=sin 2C ,sin C =1,,2π=C ∴⋅=6πB 【评析】向量的知识经常被用在三角形或者解析几何等知识里,结合相关的知识点进行考查,常见的有中点的表达(比如221OBOA OM AB AM 、MB AM +===、等都说明M 是AB 中点)、定比分点的表达、平行(或共线)或垂直的表达等,要注意分析并积累向量语言表达的信息.例4 已知△ABC 的三个顶点的直角坐标分别为A (3,4)、B (0,0)、C (c ,0).(1)若0=⋅,求c 的值;(2)若c =5,求sin ∠A 的值.【分析】(1)利用点的坐标求向量的坐标,利用向量数量积的坐标公式转化为代数问题进行运算求解即可.(2)向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,我们不仅可以数形结合,还可以利用解三角形的其他知识,如①利用数量积⋅求出cos A 进而求sin A ;②余弦定理正弦定理解:(1))4,3(),4,3(--=--=c 由0=⋅AC AB 可得-3(c -3)+16=0解得325=c (2)[法一]当c =5时,可得AB =5,52=AC ,BC =5,△ABC 为等腰三角形, 过B 作BD ⊥AC 交AC 于D ,可求得52=BD 故,552sin ==ABBD A[法二].cos ||||),4,2(),4,3(AC AB A AC AB AC AB ⋅=-=--=⋅=∈=+-=⨯∴∴∴552sin ],π,0[,55cos 166cos 525A A A A 【评析】向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,使用时不仅可以数形结合,还可以和解三角形的其他知识——余弦定理、正弦定理一起来解决有关三角形的问题.例5 若等边△A B C 的边长为32,平面内一点M 满足3261+=,则 =⋅______.解析:建立直角坐标系,因为三角形是正三角形,故设C (0,0),)3,3(),0,32(B A ,利用向量坐标运算,求得)21,233(M ,从而求得)25,23(),21,23(--=-=,运用数量积公式解得为-2.另外,还可以通过向量的几何运算求解.解:),3265()6131()()(--=--=⋅⋅⋅ 660cos 3232,32||||=⨯===⋅⋅ ,得到.2-=⋅【评析】注意向量有两套运算公式,有坐标时用代数形式运算,没有坐标时用向量的几何形式运算,同时注意向量在解三角形中的几何运用,以及向量的代数化手段的重要性.例6 已知向量a =(cos a ,sin a ),b =(cos β ,sin β ),c =(-1,0) (Ⅰ)求向量b +c 的长度的最大值;(Ⅱ)设4π=α,且a ⊥(b +c ),求cos β 的值. 【分析】关于向量的模一方面有坐标的计算公式和平方后用向量的数量积运算的公式,另一方面有几何意义,可以数形结合;解:(1)解法1:b +c =(cos β -1,sin β ),则 |b +c |2=(cos β -1)2+sin 2β =2(1-cos β ).∵-1≤cos β ≤1,∴0≤|b +c |2≤4,即0≤|b +c |≤2.当cos β =-1时,有|b +c |=2,所以向量b +c 的长度的最大值为2. 解法2:∵|b |=1,|c |=1,|b +c |≤|b |+|c |=2 当cos β =-1时,有|b +c |=(-2,0),即|b +c |=2, b +c 的长度的最大值为2.(2)解法1:由已知可得b +c =(cos β -1,sin β ),a ·(b +c )=cos α cos β +sin α sin β -cos α =cos(α -β )-cos α . ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos(α -β )=cos α .由4π=α,得4πcos )4πcos(=-β,即).(4ππ24πZ ∈±=-k k β ∴4ππ2+=k β或β =2k π,(k ∈Z ),于是cos β =0或cos β =1.解法2:若4π=α,则)22,22(=a ,又由b =(cos β ,sin β ),c =(-1,0)得,22sin 22cos 22)sin ,1(cos )22,22()(-+=-⋅=+⋅ββββc b a ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos β (cos β -1)=0∴sin β =1-cos β ,平方后sin 2β =(1-cos β )2=1-cos 2β ,化简得cos β (cos β -1)=0 解得cos β =0或cos β =1,经检验,cos β =0或cos β =1即为所求例7 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角,3π=C 求△ABC 的面积. 【分析】已知向量的坐标和位置关系,考虑用坐标运算入手,结合三角形的条件解决问题 证明:(1)∵m ∥n ,∴a sin A =b sin B , 即Rbb R a a 22⋅⋅=,其中R 是三角形ABC 外接圆半径,a =b , ∴△ABC 为等腰三角形.解(2)由题意可知m ⊥p ,m ·p =0,即a (b -2)+b (a -2)=0,∴a +b =ab ,由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0,∴ab =4(舍去ab =-1) ∴33πsin 421sin 21===⋅⋅C ab S 例8 已知向量)2sin ,2(cos ),23sin ,23(cos xx x x -==b a ,其中].2π,0[∈x(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ |a +b |的最小值是23-,求λ 的值. 【分析】只要借助向量的数量积以及模的坐标公式代入,继而转化为三角函数与函数的有关知识. 解:(1)x xx x x 2cos 2sin 23sin2cos 23cos =-=⋅b a ]2π,0[,cos 22cos 22)(||2∈=+=+=+x x x b a b a或]2π,0[,cos 22cos 22)2sin 23(sin )2cos 23(cos||22∈=+=-++=+x x x x x x x b a (2)f (x )=a ·b -2λ |a +b |=cos2x -4λ cos x =2cos 2x -4λ cos x -1=2(cos x -λ )2-2λ 2-1 ∵],1,0([cos ]2π,0[x x ∴∈①当λ ≤0时;f (x )的最小值是-1,不可能是23-,舍; ②当0<λ <1时,f (x )的最小值是23122-=--λ,解得;21=λ③当λ ≥1时,f (x )的最小值是2341-=-λ,解得185<=λ,舍;∴⋅=21λ【评析】向量的知识经常和三角函数、函数、不等式等的知识联系在一起进行考查,向量仅仅是一步坐标运算,继而转化为其他知识,因此使用公式时要准确,为后续解题做好准备.练习6-2一、选择题1.若为a ,b ,c 任意向量,m ∈R ,则下列等式不一定成立的是( ) A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )c =a (b ·c ) 2.设)31,(cos ),sin ,23(αα==b a ,且a ∥b ,则α 的值是( ) A .)(,4ππ2Z ∈+=k k α B .)(,4ππ2Z ∈-=k k α C .)(,4ππZ ∈+=k k α D .)(,4ππZ ∈-=k k α3.在△ABC 中,b a ==,,且a ·b >0,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰直角三角形4.已知:△ABC 的三个顶点A 、B 、C 及平面内一点P ,且=++,则点P 与△ABC 的位置关系是( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边上或其延长线上D .P 在AC 边上二、填空题5.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为3π,则|a +b |=______. 6.已知向量a =(cos θ ,sin θ ),向量)1,3(-=b ,则|2a -b |的最大值是______. 7.若)1,2(),3,1(x ==b a ,且(a +2b )⊥(2a -b ),则x =______.8.已知向量)5,3(),6,4(==OB OA ,且OB AC OA OC //,⊥,则向量=______ 三、解答题9.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,求|a +2b |.10.P 在y 轴上,Q 在x 轴的正半轴上,H (-3,0),M 在直线PQ 上,,0=⋅23-=.当点P 在y 轴移动时,求点M 的轨迹C 方程.11.已知向量a =(sin θ ,1),2π2π),cos ,1(<<-=θθb (1)若a ⊥b ,求θ ;(2)求|a +b |的最大值.习题6一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2 a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4) 2.给出下列五个命题: ①|a |2=a 2;②aba b a 2=⋅;③(a ·b )2=a 2·b 2; ④(a -b )2=a 2-2a ·b +b 2;⑤若a ·b =0,则a =0或b =0;其中正确命题的序号是( ) A .①②③ B .①④ C .①③④ D .②⑤3.函数y =2x +1的图象按向量a 平移得到函数y =2x +1的图象,则( ) A .a =(-1,-1) B .a =(1,-1) C .a =(1,1) D .a =(-1,1) 4.若a 2=1,b 2=2,(a -b )·a =0,则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 5.已知在△ABC 中,,⋅⋅⋅==则O 为△ABC 的( ) A .内心B .外心C .重心D .垂心二、填空题6.已知p =(1,2),q =(-1,3),则p 在q 方向上的正射影长为______;7.如图,正六边形ABCDEF 中,有下列四个命题:①.2=+ ②.AF AB AD 22+= ③.AB AD AD AC ⋅⋅= ④.)()(EF AF AD EF AF AD ⋅=⋅其中真命题的代号是______(写出所有真命题的代号).8.给定两个长度为1的平面向量OA 和OB ,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OB y OA x OC +=,其中x ,y ∈R ,则x +y 的最大值是______.9.已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λ b ),则实数λ 的值______;若b ba a a a c )(⋅⋅-=,则向量a 与c 的夹角为______;10.已知|a |=3,|b |=4,a ·b =-2,则|a +b |=______.三、解答题11.已知).1,3(),3,1(-==b a(1)证明:a ⊥b ;(2)若k a -b 与3a -k b 平行,求实数k ;(3)若k a -b 与k a +b 垂直,求实数k .12.设向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b ,(t ∈R ).(1)求a ·b(2)求u 的模的最小值.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,.73tan =C(1)求cos C ;(2)若25=⋅,且a +b =9,求c .14.已知函数f (x )=kx +b 的图象与x ,y 轴相交于点A ,B ,j i j i ,(22+=,分别是与x ,y 轴正半轴同方向的单位向量)函数g (x )=x 2-x -6,(1)求k ,b 的值;(2)当x 满足f (x )>g (x )时,求函数)(1)(x f x g +的最小值.15.已知向量a =(x 2,x +1),b =(1-x ,t ),若f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.专题06 平面向量参考答案练习6-1一、选择题1.D 2.A 3.A 4.C二、填空题5.3或-5 6.4 7.)23,1(-- 8.45°三、解答题 9.由已知)0,2(==AB a ,所以⎩⎨⎧=--=+043232x x x ,得x =-1.10.(1)由已知设a =(λ ,2λ )且λ >0,a ·b =λ +4λ =10,λ =2,所以a =(2,4);(2)(b ·c )a =(2-2)a =0.11.6.练习6-2一、选择题1.D . 2.C . 3.C . 4.D .二、填空题5.7 6.4 7.-6或9 8.)214,72(-三、解答题9.32 由已知|a |=2,|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴32|2|=+b a .10.解答:设M (x ,y ),∵M 在直线PQ 上, ),0,32(),2,0(,23x Q y P --=∴ ∵)2,(),2,3(,0y y x y +=-==⋅ ∴02323.=-y y x ,即y 2=4x .(除原点.) 11.解:(Ⅰ)若a ⊥b ,则sin θ +cos θ =0,由此得)2π2π(1tan <<--=θθ,所以;4π-=θ (Ⅱ)由a =(sin θ ,1),b =(1,cos θ )得)cos (sin 23)cos 1()1(sin ||22θθθθ++=++=+b a,)4πsin(223++=θ 当1)4πsin(=+θ时,|a +b |取得最大值,即当4π=θ时,|a +b |最大值为.12+ 习题6一、选择题1.B 2.B 3.A 4.B 5.D二、填空题6.210 7.①、②、④ 8.2 9.λ =-3;90° 10.21三、解答题11.(2)k =±3;(3)k =±1.12.答案:(1)22=⋅b a ,(2)22||min =u 13.解答:(1)∵73tan =C ,∴73cos sin =C C ,又∵sin 2C +cos 2C =1 解得⋅±=81cos C ∵tan C >0,∴C 是锐角. ∴⋅=81cos C (2)∵20,25cos ,25===⋅∴∴ab C ab . 又∵a +b =9 ∴a 2+2ab +b 2=81.∴a 2+b 2=41.∴c 2=a 2+b 2-2ab cos C =36.∴c =6.14.略解:(1)由已知得)0,(k bA -,B (0,b ),则),(b k b AB =,于是.2,2==b kb ∴k =1,b =2. (2)由f (x )>g (x ),得x +2>x 2-x -6,即(x +2)(x -4)<0,得-2<x <4,521225)(1)(2-+++=+--=+x x x x x x f x g由于x +2>0,则3)(1)(-≥+x f x g ,其中等号当且仅当x +2=1,即x =-1时成立 ∴)(1)(x f x g +的最小值是-3. 15.略解:解法1:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f '(x =-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∴f '(x )≥0⇔t ≥3x 2-2x ,在区间(-1,1)上恒成立,考虑函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为31=x ,开口向上的抛物线,故要使t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.而当t ≥5时,f '(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5. 解法2:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,f '(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∵f '(x )的图象是开口向下的抛物线,∴当且仅当f '(1)=t -1≥0,且f '(-1)=t -5≥0时,f '(x )在(-1,1)上满足f '(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5.。

2020届山东省新高考高三优质数学试卷分项解析 专题06 平面向量及其应用,复数(解析版)

2020届山东省新高考高三优质数学试卷分项解析 专题06 平面向量及其应用,复数(解析版)

专题6 平面向量及其应用,复数1.平面向量是高考考查的重点、热点.往往以选择题或填空题的形式出现.常以平面图形为载体,考查线性运算、数量积、夹角、垂直的条件等问题;2.同三角函数、解析几何、不等式等知识相结合,考查数形结合思想、函数方程思想以及分析问题解决问题的能力.难度为中等或中等偏易.3.考查复数的概念、几何意义、复数的运算.常见题型有选择题、填空题,重点考查除法、乘法等运算,同时考查复数的模、共轭复数等概念.预测2020年将作为必考内容,侧重平面向量的运算、复数的概念、几何意义及复数的运算考查,.一、单选题1.(2020届山东省日照市高三上期末联考)已知复数满足(为虚数单位),则复数的模为( ) A .2 B .C .5D .【答案】D 【解析】 因为,所以.2.(2020届山东省枣庄市高三上学期统考)向量(2,1), (1,1), (, 2)a b c k ==-=r r r ,若()a b c -⊥r r r ,则k 的值是( ) A .4 B .-4C .2D .-2【答案】B 【解析】()(1,2)(,2)404a b c k k k -⋅=⋅=+=⇒=-r r r,故选B.3.(2020届山东省枣庄、滕州市高三上期末)已知向量(1,1),a =r (1,3),b =-r (2,1)c =r,且()//a b c λ-r r r ,则λ=( )A .3B .-3C .17D .17-【答案】C 【解析】由题意(1,13)a b λλλ-=+-r r ,∵()//a b c λ-r r r,∴2(13)1λλ-=+,解得17λ=. 故选:C.4.(2020届山东省枣庄市高三上学期统考)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +u u u r u u u rx AB y AC =+u u u r u u u r ,则14x y+的最小值为( )A .32B .2C .52D .92【答案】D 【解析】如图可知x ,y 均为正,设=m ,AD AB nAC AE AB AC λμ+=+u u u r u u u r u u u r u u u r u u u r,:,,,B D E C 共线, 1,1m n λμ∴+=+=,()()AD AE xAB y AC m AB n AC λμ+=+=+++u u u r u u u r u u u r u u u r u u u r u u u rQ ,则2x y m n λμ+=+++=,1411414149()5(52)2222y x y x x y x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+⋅= ⎪ ⎪⎝⎭⎝⎭, 则14x y +的最小值为92,故选D. 5.(2020届山东实验中学高三上期中)i 是虚数单位,若复数21z i =-,则z 的虚部为( ) A .1- B .0C .i -D .1【答案】A【解析】i Q 是虚数单位,复数22(1)2(1)11(1)(1)2i i z i i i i ++====----+-, z ∴的虚部为1-.故选:A .6.(2020届山东省泰安市高三上期末)已知复数z 满足11ii z+=-,则z =( ) A. B .2CD .1【答案】D 【解析】 ∵11ii z+=-, ∴11i z i +=-()()()2111i i i +=-+1211(1)i i +-==--, ∴1z =, 故选:D .7.(2020届山东省泰安市高三上期末)已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(2,1)OC m m =+u u u r.若AB OC u u u r u u u r∥,则实数m 的值为( )A .15B .35-C .3-D .17-【答案】C 【解析】因为//AB OC u u u v u u u v,所以()()3,1//2,1m m +,3(1)2 3.m m m ⨯+=∴=-选C.8.(2020届山东省日照市高三上期末联考)设,a b r r 是非零向量,则2a b =r r是a a bb =r r rr 成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =v v 可知:a b v v , 方向相同,a b a b v v v v , 表示 a b v v , 方向上的单位向量所以a ba b=v vv v 成立;反之不成立.故选B9.(2020届山东省德州市高三上期末)已知向量a r ,b r 满足1a =r ,2b =r ,()()313a b a b -⋅+=-r r r r ,则ar 与b r的夹角为( ) A .6πB .3π C .23π D .56π 【答案】C 【解析】()()2232313a b a b a a b b -⋅+=+⋅-=-r r r r r r r r Q ,即21113a b ⋅-=-r r ,得1a b ⋅=-r r,则1cos 2a b a b θ⋅==-⋅r r r r ,0θπ≤≤Q ,23πθ∴=. 故选:C.10.(2020届山东省潍坊市高三上期中)如图,已知1OA OB ==u u u v u u u v ,3OC =u u u v ,OC OB ⊥u u u r u u u r ,OA <u u u r,30OC >=︒u u u r若OC xOA yOB =+u u u r u u u r u u u r ,x y +=( )A .1B .2C .3D .4【答案】C 【解析】建立如图所以坐标系,根据条件不妨设(1,0)A ,13(,22B -,33(,22C ,则3313 (,)(1,0)(,)22OC x y==+-u u u r,所以132233x yy⎧-=⎪⎪⎨⎪=⎪,解得2x=,1y=,所以3x y+=,故选:C.11.(2020·山东省淄博实验中学高三期末)已知复数133izi-=+,i为虚数单位,则()A.z i=B.z i=C.21z=D.z的虚部为i-【答案】B【解析】由题:2213(13)(3)3103=3(3)(3)9i i i i iz ii i i i----+===-++--,所以:1z=,z i=,22()1z i=-=-,z的虚部为1-.故选:B12.(2020届山东省德州市高三上期末)已知复数z满足13z i=-+(其中i为虚数单位),则zz=()A.1322-+B.13i22--C.1322i+D.1322-【答案】B【解析】1z =-+Q ,2z ∴==,因此,11222z z -==--. 故选:B.13.(2020届山东省枣庄、滕州市高三上期末)已知i 是虚数单位,1(1)i 0a +->()a R ∈,复数2i z a =-,则1z=( )A .15B .5CD 【答案】C 【解析】因为1(1)i 0a +->()a R ∈,所以10a -=,即1a =.12z i =-=,111z z z====.故选:C.14.(2020·山东省淄博实验中学高三上期末)已知复数133iz i-=+,i 为虚数单位,则( ) A .z i = B .z i = C .21z = D .z 的虚部为i -【答案】B 【解析】由题:2213(13)(3)3103=3(3)(3)9i i i i i z i i i i i----+===-++--, 所以:1z =,z i =,22()1z i =-=-,z 的虚部为1-.故选:B15.(2020届山东省潍坊市高三上期末)设(1)1i x yi +=+,其中x ,y 是实数,则||x yi +=( )A .1 BC D .2【答案】B 【解析】由已知得1x xi yi +=+,根据两复数相等可得:1x y ==,所以|||1|x yi i +=+=故选:B.16.(2020·河南高三期末(文))设复数z a bi =+(,)a b ∈R ,定义z b ai =+.若12z ii i=+-,则z =( ) A .1355i -+ B .1355i - C .3155i -+ D .3155i -- 【答案】B 【解析】因为12z i i i=+-,所以()()()(1)2(1)(1)(2)31222555i i i i i i i z i i i i +++-++====-+--+, 则1355z i =-. 故选:B.17.(2020·全国高三专题练习(文))已知复数z 满足()134z i i +=+,则||z =( )AB .54C .52D 【答案】D 【解析】因为()134z i i +=+,所以()()()()3413434711111122i i i i z i i i i +-+++====+++-+,所以||2z ==. 故选:D.18.(2020届山东省滨州市三校高三上学期联考)已知向量(1,2)a =r ,(2,)b x =r ,a b +r r 与b r 平行,则实数x 的值为( ) A .1 B .2C .3D .4【答案】D 【解析】解:由已知(3,2)a b x +=+r r ,又()//a b b +rr r ,32(2)x x ∴=+,解得:4a =,故选:D.19.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD 【答案】C 【解析】11,3,cos 3cos 1cos 3AB AC AB AC AB AC A A A ==⋅=⋅==-∴=-u u u r u u u r u u u r u u u r故sin A =,1sin 2S AB AC A =⋅=故选:C20.(2020届山东省济宁市高三上期末)已知A ,B ,C 为不共线的三点,则“AB AC AB AC +=-u u u r u u u r u u u r u u u r”是“ABC∆为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若AB AC AB AC +=-u u u r u u u r u u u r u u u r,两边平方得到222222AB AC AB AC AB AC AB AC ++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,0AB AC ∴⋅=u u u r u u u r ,即AB AC ⊥u u u r u u u r 故ABC ∆为直角三角形,充分性;若ABC ∆为直角三角形,当B Ð或C ∠为直角时,AB AC AB AC +≠-u u u r u u u r u u u r u u u r,不必要;故选:A21.(2020届山东省潍坊市高三上学期统考)若复数z =11iai++为纯虚数,则实数a 的值为( ) A .1 B .0 C .-12D .-1【答案】D 【解析】设z =bi ,b ∈R 且b ≠0,则11iai++=bi ,得到1+i =-ab +bi , ∴1=-ab ,且1=b ,解得a =-1. 故选:D.22.(2020届山东省滨州市高三上期末)已知向量(),2a x =r ,()2,b y =r ,()2,4c =-r ,且//a c r r ,b c ⊥r r,则a b -=r r( )A .3B .10C .11D .23【答案】B 【解析】因为向量(),2a x =r ,()2,b y =r ,()2,4c =-r ,且//a c r r ,b c ⊥r r, 所以440440x y --=⎧⎨-=⎩,解得:11x y =-⎧⎨=⎩,即()1,2a =-r ,()2,1b =r ,所以(3,1)a b -=-r r ,因此()223110a b -=-+=r r .故选:B.23.(2020·河南高三期末(文))如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u r( )A .3155AB AC +u u ur u u u rB .2155AB AC +u u ur u u u rC .481515AB AC +u u ur u u u rD .841515AB AC +u u ur u u u r【答案】D 【解析】设6BC =,则32,2AB AC BD DE EC =====,22π2cos4AD AE BD BA BD BA ==+-⋅⋅10=101044cos 2105DAE +-∠==⨯,所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 二、多选题24.(2020届山东实验中学高三上期中)关于平面向量,,a b c r r r,下列说法中不正确...的是( ) A .若//a b r r 且//b c r r,则//a c r rB .()a b c a c b c +⋅=⋅+⋅r r r r r r rC .若a b a c ⋅=⋅r r r r ,且0a ≠r r,则b c =r rD .()()a b c a b c ⋅⋅=⋅⋅r r r r r r【答案】ACD 【解析】对于A ,若0b =r r ,因为0r 与任意向量平行,所以a r不一定与c r 平行,故A 错;对于B ,向量数量积满足分配律,故B 对; 对于C ,向量数量积不满足消去率,故C 错;对于D ,()a b c ⋅⋅r r r 是以c r 为方向的向量,()a b c ⋅⋅r r r 是以a r 为方向的相量,故D 错.故选:ACD .25.(2020届山东省九校高三上学期联考)已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =u u u r u u u r ,2AD DC =uuu r uuu r,BD 与CE 交于点O ,则下列说法正确的是( ) A .1AB CE ⋅=-u u u r u u u rB .0OE OC +=u u u r u u u rrC.OA OB OC ++=u u u r u u u r u u u rD .ED u u u r在BC uuu r方向上的投影为76【答案】BCD 【解析】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),(0,3),(,)3E A B C D -, 设123(0,),(0,3),(1,),(,)3O y y BO y DO y ∈==--u u u r u u u r ,BO uuu r ∥DO u u u r , 所以2313y y -=-,解得:3y =, 即O 是CE 中点,0OE OC +=u u u r u u u r r ,所以选项B 正确;32OA OB OC OE OC OE ++=+==u u u r u u u r u u u r u u u r u u u r u u u r ,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=u u u r u u u r ,所以选项A 错误;123(,)33ED =u u u r ,(1,3)BC =u u u r , ED u u u r 在BC uuu r 方向上的投影为127326BC BCED +⋅==u u u u u u r u u u r r ,所以选项D 正确. 故选:BCD26.(2020届山东省泰安市高三上期末)如图,在四边形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2AD =2DC ,E 为BC 边上一点,且3BC EC =u u u r u u u r,F 为AE 的中点,则( )A .12BC AB AD =-+u u u r u u u r u u u rB .1133AF AB AD =+u u u r u u u r u u u rC .2133BF AB AD =-+u u u r u u u r u u u r D .1263CF AB AD =-u u u r u u u r u u u r 【答案】ABC【解析】∵ AB ∥CD ,AB ⊥AD ,AB =2AD =2DC ,由向量加法的三角形法则得BC BA AD DC =++u u u v u u u v u u u v u u u v 12AB AD AB =-++u u u v u u u v u u u v 12AB AD =-+u u u v u u u v ,A 对; ∵3BC EC =u u u r u u u r ,∴23BE BC =u u u r u u u r 1233AB AD =-+u u u v u u u v , ∴AE AB BE =+u u u r u u u r u u u r 1233AB AB AD ⎛⎫=+-+ ⎪⎝⎭u u u v u u u v u u u v 2233AB AD =+u u u v u u u v , 又F 为AE 的中点,∴12AF AE =u u u v u u u v 1133AB AD =+u u u v u u u v ,B 对; ∴BF BA AF =+u u u v u u u v u u u v 1133AB AB AD =-++u u u v u u u v u u u v 2133AB AD =-+u u u v u u u v ,C 对; ∴CF CB BF =+u u u v u u u v u u u v BF BC =-u u u v u u u v 2133AB AD =-+u u u v u u u v 12AB AD ⎛⎫--+ ⎪⎝⎭u u u v u u u v 1263AB AD =--u u u v u u u v ,D 错; 故选:ABC .三、填空题27.(2020届山东省潍坊市高三上期末)向量()(),4,1,a x b x =-=-r r ,若a r 与b r 共线,则实数x =__________.【答案】2±【解析】//a br r Q ()40x x ∴⋅-+=,解得:2x =±.故答案为:2±28.(2020届山东省潍坊市高三上期中)已知向量,a b r r 满足||1a =r ,1a b ⋅=-r r ,则()a a b ⋅-=r r r __________.【答案】2【解析】()a a b ⋅-=r r r 222||1(1)2a a b a a b -⋅=-⋅=--=r r r r r r .故答案为:2.29.(2020届山东省滨州市三校高三上学期联考)若数列{}n a 的通项公式(1)(32)n n a n =--,则1210a a a ++⋯+=________.【答案】15【解析】数列{}n a 的通项公式(1)(32)n n a n =--,则当n 为奇数时,()1(32)3123n n a a n n +=--++-=+,12103515a a a ++⋯+=⨯=,故答案为:15.30.(2020届山东省滨州市三校高三上学期联考)若|1,2a b a b ==-=v v v v 且则向量a v 与向量b r 夹角的大小是_______. 【答案】6π 【解析】由2a b v v -=得223|44|7144372a ab b a b a b -⋅+=∴-⋅+⨯=∴⋅=v v v v v v v v3cos ,,.26a b a b π∴===v v v v31.(2020·山东省淄博实验中学高三上期末)若非零向量a r 、b r ,满足a b =r r ,()2a b b +⊥r r r ,则a r 与b r 的夹角为___________.【答案】120o【解析】设a r 与b r 的夹角为θ,由题意a b =r r ,()2a b b +⊥r r r ,, 可得2(2)2cos 0a b b a b b θ+⋅=+=v v v v v v ,所以1cos 2θ=-,再由0180θ≤≤o o 可得,120θ=o ,故答案是120o .32.(2020届山东实验中学高三上期中)已知向量,a b r r 满足3a =r ,2b =r ,4a b +=r r ,则a b -=r r ___________. 【答案】10【解析】由已知:3a =r ,2b =r ,4a b +=r r ,所以224a b +=r r ,展开得到22216a a b b +⋅+=r r r r ,所以23a b ⋅=r r , 所以222210a b a a b b -=⋅+=-r r r r r r ,所以10a b -=r r ;故答案为:10.33.(2020届山东省潍坊市高三上学期统考)已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =u u u v ,则()()4PA PB PC PM ⋅+⋅⋅u u u v u u u v u u u v u u u u v 的最小值 ________. 【答案】48322-【解析】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B 22M 02-,,,,,,, ∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅++⎣⎦u u u v u u u v u u u v u u u u v ,, ()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322- 34.(2020届山东省烟台市高三上期末) 已知向量a r ,b r 满足||1a =r ,||2b =r ()a a b ⊥+r r r ,则a r 与b r 夹角的大小是______. 【答案】34π【解析】由()a a b ⊥+r r r 得,()0a a b ⋅+=v v v ,即20a a b +⋅=r r r , 据此可得:2cos ,a b a b a b a ⋅=⋅⋅=-v v v v v v v ,cos ,2a b ∴==-v v ,又a r 与b r 的夹角的取值范围为[0,]π,故a r 与b r 的夹角为34π.四、解答题35.(2020届山东省枣庄市高三上学期统考)已知平面向量()()1,2,2,a b m =-=r r(1)若a b ⊥r r ,求2a b +rr;(2)若0m =,求a b +r r 与a b -r r 夹角的余弦值.【答案】(1)25a b +=r r (2【解析】因为a b ⊥r r ,()()1,2,2,a b m =-=r r所以0a b ⋅=r r ,即220m -+=解得1m =所以()()()21,24,23,4a b +=-+=r r25a b +==r r(2) 若0m =,则()2,0b =r所以(1,2)a b +=r r ,-(3,2)a b =-r ra b +=r r,-a b =r r341a b ⋅=-+=r r所以cos 65-a b a b a bθ⋅===+r r r r r r。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高中数学解答题专题复习0630 (9)
1.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农
民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务.某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,且以后每年比前一年增加4万美元,每年的总收入为50万美元.设表示前n年的纯收入.前n年的总收入前n年的总支出投资额
从第几年开始获取纯利润
若干年后,该台商为开发新项目,有两种处理方案:
年平均利润最大时以48万美元出售该厂;
纯利润总和最大时,以16万美元出售该厂,问哪种方案更合算
2.的内角A,B,C的对边分别为a,b,c,
已知.
求C;
若,的面积为,求的周长.
3.Sn为数列的前n项和.
已知,.
求的通项公式;
设,求数列的前n项和.
4.已知函数
求的最小正周期和它的递减区间
当时,求的最大值和最小值.
5.已知,,其中,.
求;求的值.
6.已知向量,函数的最小值为

当时,求的值;
求;
已知函数为定义在R上的增函数,且对任意的都满足问:是否存在这样的实数m,使不等式对所有恒成立,
若存在,求出m的取值范围;若不存在,说明理由.
7.已知某个公司生产某产品的年固定成本为40万元,每生产1万只还需另投入16万元,设该公
司一年内共生产该款产品x万只并全部销售完,每万只的销售收入为万元,且

写出年利润万元关于年产量万只的函数解析式;
当年产量为多少万只时,该公司在该款产品的生产中所获得的利润最大,并求出最大利润.
8.已知函数.
若是的极值点,求的极大值;
求实数t的范围,使得恒成立.
9.在中,内角A,B,C对应的三边长分别为a,b,c,且满足.
求角A;
若,求的取值范围.
10.已知圆O:与x轴交于、两点,圆D:其中
与y轴交于、两点.
求直线与交点M的轨迹C的方程;
过的直线与轨迹C交于P,Q两点,过P作轴且与轨迹C交于另一点N,点,若,求证:.
11.已知函数.
Ⅰ当时,求不等式的解集;
Ⅱ证明:.
12.已知在平面直角坐标系xOy中,曲线C的参数方程为为参数以坐标原点
为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.求曲线C的普通方程和直线l的直角坐标方程;
求曲线C上的点到直线l的距离的取值范围.
13.在平面直角坐标系中,O是坐标原点,向量,,.
若,当,求实数的值;
若,的夹角为钝角,求实数t的取值范围.
14.已知a,b,c分别为内角A,B,C的对边,若同时满足下列四个条件中的三个:
;;;.
满足有解三角形的序号组合有哪些?
在所有组合中任选一组,并求对应的面积.
15.设复数,复数若是纯虚数,求
已知复数,,,求的最大值和最小值.
16.在中,内角所对的边分别为已知,.
求的值;
求的值.
17.已知向量,设函数.
Ⅰ求的最小正周期与单调递减区间;
Ⅱ在中,a、b、c分别是角A、B、C的对边,若,的面积为,求a的值.
18.已知函数,,其中.
若,求证:.
若不等式对恒成立,试求a的取值范围.
19.已知的内角A,B,C的对边分别为a,b,c,且满足.
求C;
若D是边BC的中点,,,求的周长.
20.已知函数为自然对数的底数.
求函数的极值.
证明:对任意恒成立.
-------- 答案与解析 --------
1.答案:解:由题意知,每年的经费是以12为首项,4为公差的等差数列,
设纯利润与年数的关系为,

纯利润就是要求,,
解得.
又,所以从第三年开始获取纯利润.
年平均利润.
当且仅当时取等号.
故此方案先获利万美元,此时,
当时,.
故第种方案共获利万美元,
故比较两种方案,获利都是144万美元.
比较两方案,第种方案只需6年,第种方案需要10年,故选择第种方案.
解析:本题考查函数模型的建立问题,关键要理解题意,通过相应的数学知识建立数学模型,通过不等式工具、函数最值的思想和方法达到求解的目的.考查转化与化归的思想.弄清纯利润就是纯收入大于零的关系,将纯收入表示为年份n的表达式,注意等差数列知识的运用,通过求解不等式得出开始获得纯利润的年份;
通过比较法得出哪种方案最合算,关键要得出每种方案获得的利润和年份的关系,用到求函数最值的思想和方法.
2.答案:解:Ⅰ由已知及正弦定理得,
所以,即,
所以,
由得,
所以.
Ⅱ由已知,得.
又,所以.
由已知及余弦定理得,
故,从而.。

相关文档
最新文档