1-函数的概念和图象、函数的表示方法、映射的概念
函数及其表示知识梳理

函数1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。
记作:y =f (x ),x ∈A 。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。
显然,值域是集合B 的子集.解读函数概念(1)“A ,B 是非空的数集”,一方面强调了A ,B 只能是数集,即A ,B 中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.(2)理解函数的概念要注意函数的定义域是非空数集A ,但函数的值域不一定是非空数集B ,而是集合B 的子集.(3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.(4) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;常用函数符号: ƒ(x) ,g(x), h(x), F(x), G(x)等.(5)函数符号“()y f x =”是数学中抽象符号之一,“()y f x =”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,()f x 也不一定是解析式,还可以是图表或图象.(6)函数只能是一对一或者多对一(7)函数求值,需要把所有定义域都做代换2.构成函数的三要素:定义域、对应关系和值域函数的构成要素由函数概念知,一个函数的构成要素为定义域、对应关系和值域_.由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:定义域和对应关系.辨析() f x 与()()f a a A ∈:()f a 表示当自变量x a =时函数() f x 的值,是一个常量,而() f x 是自变量x 的函数,它是一个变量,()f a 是() f x 的一个特殊值.(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。
函数基础知识复习

函数及其表示基础知识梳理1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.另:求复合函数y=f(t),t=q(x)的定义域的方法:①若y=f(t)的定义域为(a,b),则解不等式得a<q(x)<b即可求出y=f(q(x))的定义域;②若y=f(g(x))的定义域为(a,b),则求出g(x)的值域即为f(t)的定义域.4.函数的单调性(1)定义:一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f (x )在区间D上是减函数。
(2)单调区间的定义:若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.注:函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接.函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. 在公共的单调区间内有:增函数+增函数=增函数,增函数-减函数=增函数, 减函数+减函数=减函数,减函数-增函数=减函数。
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
1函数的定义及表示 - 中等 - 讲义

函数的定义及表示知识讲解一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()∈,(),x a bu m n∈,那么[()]y f u=,(),=,()u g xy f x称为复合函数,u称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是()y f xx称为y的原象,映射f也可记为::f A B()x f xf x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c dac =+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆经典例题一.选择题(共12小题)1.(2017秋•潮南区期末)下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .【解答】解:B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性, A ,C ,D 满足函数的定义, 故选:B .2.(2017秋•大观区校级期中)已知集合P={x |0≤x ≤4},集合N={y |0≤y ≤2},下列从P 到N 的各对应关系f 不是函数的是( ) A .f :x→y=12xB .f :x→y=13xC .f :x→y=23xD .f :x→y=√x【解答】解:f :x→y=12x ,是函数,f :x→y=13x ,是函数,f :x→y=23x ,不是函数,4→23×4=83∉N ;f :x→y=√x ,是函数, 故选:C .3.(2017秋•定远县期中)下列各式中,表示y 是x 的函数的有( ) ①y=x ﹣(x ﹣3); ②y=√x −2+√1−x ; ③y={x −1(x <0)x +1(x ≥0) ④y={0(x 为有理数)1(x 为实数)..A .4个B .3个C .2个D .1个【解答】解:根据函数的定义,当自变量x 在它的允许取值范围内任意取一个值,y 都有唯一确定的值与之对应,故①③表示y 是x 的函数;在②中由{x −2≥01−x ≥0知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x的函数;在④中若x=0,则对应的y 的值不唯一,可以等于0,也可以等于1,所以④不表示y 是x 的函数. 故选:C .4.(2017秋•凉州区校级期末)下列四组函数中,表示同一函数的是( )A .y=x 与y=√x 2B .y=2lgx 与y=lgx 2C .y =√x 33与y=xD .y=x ﹣1与y=x 2−1x+1【解答】解:要表示同一个函数,必须有相同的对应法则,相同的定义域和值域, 观察四个选项,得到A 答案中两个函数的对应法则不同,B 选项中两个函数的定义域不同,C 选项中两个函数相同,D 选项中两个函数的定义域不同, 故选:C .5.(2017秋•鹰潭期末)下列四组函数中,表示同一函数的是( ) A .f (x )=|x |,g (x )=√x 2B .f (x )=lg x 2,g (x )=2lg xC .f (x )=x 2−1x−1,g (x )=x +1D .f (x )=√x +1•√x −1,g (x )=√x 2−1【解答】解:对于A ,∵g (x )=√x 2=|x|,f (x )=|x |,∴两函数为同一函数; 对于B ,函数f (x )的定义域为{x |x ≠0},而函数g (x )的定义域为{x |x >0},两函数定义域不同,∴两函数为不同函数;对于C ,函数f (x )的定义域为{x |x ≠1},而函数g (x )的定义域为R ,两函数定义域不同,∴两函数为不同函数;对于D ,函数f (x )的定义域为{x |x >1},而函数g (x )的定义域为{x |x <﹣1或x >1},两函数定义域不同,∴两函数为不同函数. 故选:A .6.(2018春•天心区校级期末)定义运算a*b ,a ∗b ={a(a ≤b)b(a >b),例如1*2=1,则函数y=1*2x的值域为()A.(0,1)B.(﹣∞,1)C.[1,+∞)D.(0,1]【解答】解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x1,x≥0∴f(x)={2x,x<0由图知,函数y=1*2x的值域为:(0,1].故选:D.7.(2018春•海州区校级期末)若函数y=√ax2+2ax+3的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【解答】解:由题意:函数y=√ax2+2ax+3是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:{a>0f(−1)≤0⇒{a>0a−2a+3≤0解得:a≥3所以a的取值范围是[3,+∞).故选:B.8.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x【解答】解:设lnx=t则x=e t∴f(t)=3e t+4∴f(x)=3e x+4故选:A.9.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32【解答】解:∵f(x)满足关系式f(x)+2f(1x)=3x,∴{f(2)+2f(12)=6,①f(12)+2f(2)=32,②,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.10.(2017秋•咸阳期末)已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【解答】解:设t=x+1,∵函数f(x+1)=3x+2=3(x+1)﹣1∴函数f(t)=3t﹣1,即函数f(x)=3x﹣1故选:C.11.(2017秋•尖山区校级期末)已知f(x﹣2)=x2﹣4x,那么f(x)=()A.x2﹣8x﹣4B.x2﹣x﹣4C.x2+8x D.x2﹣4【解答】解:由于f(x﹣2)=x2﹣4x=(x2﹣4x+4)﹣4=(x﹣2)2﹣4,从而f(x)=x2﹣4.故选:D.12.(2017秋•潮南区期末)已知函数f(x)=√3x−13ax2+ax−3的定义域是R,则实数a的取值范围是()A.a>13B.﹣12<a≤0C .﹣12<a <0D .a ≤13【解答】解:由a=0或{a ≠0△=a 2−4a ×(−3)<0可得﹣12<a ≤0, 故选:B .二.填空题(共7小题)13.(2017春•陆川县校级期末)已知函数y=f (x 2﹣1)的定义域为(﹣2,2),函数g (x )=f (x ﹣1)+f (3﹣2x ).则函数g (x )的定义域为 [0,2) . 【解答】解:由函数y=f (x 2﹣1)的定义域为(﹣2,2), 得:﹣1≤x 2﹣1<3,故函数f (x )的定义域是[﹣1,3), 故﹣1≤x ﹣1<3,﹣1≤3﹣2x <3, 解得:0≤x <2,故函数g (x )的定义域是[0,2), 故答案为:[0,2).14.(2017•重庆模拟)设函数f (x )={log 2(−x2),x ≤−1−13x 2+43x +23,x >−1,若f (x )在区间[m ,4]上的值域为[﹣1,2],则实数m 的取值范围为 [﹣8,﹣1] . 【解答】解:函数f (x )的图象如图所示,结合图象易得 当m ∈[﹣8,﹣1]时, f (x )∈[﹣1,2].故答案为:[﹣8,﹣1].15.(2018•榆林三模)已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a+1c +c+1a的最小值为 4 . 【解答】解:由题意知,a ,>0,△=4﹣4ac=0,∴ac=1,c >0,则a+1c +c+1a =a c +1c +c a +1a =(a c +c a )+(1a +1c)≥2+2√1ac =2+2=4,当且仅当a=c=1时取等号.∴a+1c +c+1a的最小值为4.16.(2017秋•南阳期中)函数f (x )=x ﹣√1−x 的值域是 (﹣∞,1] .【解答】解:设√1−x =t ,则t ≥0,f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣12,开口向下,在区间[0,+∞)上单调减,∴f (t )max =f (0)=1,∴函数f (x )的值域为(﹣∞,1].故答案为:(﹣∞,1].17.(2017秋•天心区校级期末)已知函数f (x +1)=3x +2,则f (x )的解析式是 f (x )=3x ﹣1 .【解答】解:令x+1=t,则x=t﹣1,∴f(t)=3(t﹣1)+2=3t﹣1,∴f(x)=3x﹣1.故答案为f(x)=3x﹣1.18.(2017秋•清河区校级期中)已知a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=1.【解答】解:∵a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,∴1通过映射可得1∈N,解得a=1,b a →ba∈N,可得ba=0,解得b=0,∴a+b=1,故答案为1;19.(2018•开封一模)f(x)={2e x−1,x<2log3(x2−1),x≥2.则f(f(2))的值为2.【解答】解:由题意,自变量为2,故内层函数f(2)=log3(22﹣1)=1<2,故有f(1)=2×e1﹣1=2,即f(f(2))=f(1)=2×e1﹣1=2,故答案为2三.解答题(共1小题)20.(2016春•江阴市期末)已知函数f (x )满足f (x +1)=lg (2+x )﹣lg (﹣x ).(1)求函数f (x )的解析式及定义域;(2)解不等式f (x )<1.【解答】解:(1)由已知令t=x +1,则f (t )=lg (t +1)﹣lg (1﹣t ), 即f (x )=lg (x +1)﹣lg (1﹣x );由{x +1>01−x >0得到﹣1<x <1,所以函数定义域为(﹣1,1); (2)f (x )=lg (x +1)﹣lg (1﹣x )=lg 1+x 1−x <1,即{1+x 1−x <10−1<x <1,解得﹣1<x <911.。
(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。
②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。
B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。
二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。
求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。
3。
复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。
三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。
函数的概念知识点总结

函数的概念知识点总结(含例题和答案)(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--函数的概念总结一、知识梳理1.映射的概念:设是两个集合,如果按照某种对应法则,对于集合中的任意元素,在集合中都有唯一确定的元素与之对应,那么这样的单值对应叫做从到的映射,通常记为,f 表示对应法则注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
2.函数的概念(1)函数的定义:设是两个非空的数集,如果按照某种对应法则,对于集合中的每一个数,在集合中都有唯一确定的数和它对应,那么这样的对应叫做从到的一个函数,通常记为(2)函数的三要素:定义域、值域和对应法则(3)函数的定义域、值域:在函数中,叫做自变量,的取值范围叫做的定义域;与的值相对应的值叫做函数值,函数值的集合称为函数的值域。
3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
二、考点分析考点1:映射的概念例1.(1)A R =,{|0}B y y =>,:||f x y x →=;(2)*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;(3){|0}A x x =>,{|}B y y R =∈,:f x y →=上述三个对应是A 到B 的映射.B A 、f A B A B B A f →:B A 、f A x B A B A x x f y ∈=),(A x x f y ∈=),(x x A )(x f y =x y {}A x x f ∈)()(x f y =例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有个,B 到A 的映射有个,A 到B 的函数有个例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是()()A 8个()B 12个()C 16个()D 18个答案:1.(2);2.81,64,81;3.D考点2:判断两函数是否为同一个函数方法总结:看化简后的表达式定义域值域是否完全一样。
函数及其表示

函数及其表示1.函数与映射函数映射两集合A、B设A,B是两个非空数集设A,B是两个非空集合对应法则f:A→B 如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应如果按某种对应法则f,对于A中的每一个元素,在B中都有唯一的元素与之对应名称这样的对应叫做从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的映射记法y=f(x)(x∈A)f:A→B2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应法则和值域.(3)函数的表示法表示函数的常用方法有列表法、解析法和图象法.3.分段函数在定义域内不同部分上,有不同的解析表达式,这样的函数,通常叫做分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法类型x满足的条件2nf(x),n∈N*f(x)≥01f(x)与[f(x)]0f(x)≠0log a f(x)(a>0,a≠1)f(x)>0log f(x)g(x)f(x)>0,且f(x)≠1,g(x)>0tan f (x )f (x )≠k π+π2,k ∈Z【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (3)映射是特殊的函数.( )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( )(6)若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.( )1.已知f (x )=⎩⎪⎨⎪⎧1+x ,x ∈R (1+i )x ,x ∉R ,其中i 是虚数单位,则f (f (1-i))=________.2.函数f (x )=1(log 2x )2-1的定义域为______________.3.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=________.4.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是________(填序号).5.给出下列四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数的定义域和值域一定是无限集合. 其中真命题的序号有________.题型一 函数的概念例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数; ④若f (x )=|x -1|-|x |,则⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛21f f =0. 其中正确判断的序号是________.思维升华 函数的值域可由定义域和对应法则唯一确定;当且仅当定义域和对应法则都相同的函数才是同一函数.值得注意的是,函数的对应法则是就结果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同).(1)下列四组函数中,表示同一函数的是________.①y =x -1与y =(x -1)2; ②y =x -1与y =x -1x -1;③y =4lg x 与y =2lg x 2; ④y =lg x -2与y =lgx 100. (2)下列所给图象是函数图象的个数为________.题型二 函数的定义域命题点1 求给定函数解析式的定义域 例2 (1)函数f (x )=1-2x +1x +3的定义域为__________. (2)函数f (x )=lg (x +1)x -1的定义域是______________.命题点2 求抽象函数的定义域例3 (1)若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)x -1的定义域是____________.(2)若函数f (x )的定义域为(0,1],则函数⎪⎪⎭⎫⎝⎛+2lg 2x x f 的定义域为___________________.命题点3 已知定义域求参数范围例4 若函数f (x )=2221+--x ax a 的定义域为R ,则a 的取值范围为________.思维升华 简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)抽象函数:①无论是已知定义域还是求定义域,均是指其中的自变量x 的取值集合; ②对应f 下的范围一致.(3)已知定义域求参数范围,可将问题转化,列出含参数的不等式(组),进而求范围.(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________.(2)函数y =ln (x +1)-x 2-3x +4的定义域为______________.题型三 求函数解析式例5 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x )·x -1,则f (x )=________.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎪⎭⎫⎝⎛x 1或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________________.2.分类讨论思想在函数中的应用典例 (1)(2014·课标全国Ⅰ)设函数f (x )=⎪⎩⎪⎨⎧≥<-1,1,311x x x e x ,则使得f (x )≤2成立的x 的取值范围是________.(2)(2015·山东改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是____________.温馨提醒 (1)求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解. (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. (3)当自变量含参数或范围不确定时,要根据定义域分成的不同子集进行分类讨论.[方法与技巧]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应法则是否相同. 2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行. 3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. [失误与防范]1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.A 组 专项基础训练(时间:40分钟)1.下列各组函数中,表示同一函数的是________. ①f (x )=x ,g (x )=(x )2; ②f (x )=x 2,g (x )=(x +1)2; ③f (x )=x 2,g (x )=|x |; ④f (x )=0,g (x )=x -1+1-x . 2.已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )=______________.3.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))的值为________.4.已知f (x )=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0,则不等式x +x ·f (x )≤2的解集是__________.5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是______________.6.已知函数f (x )=log 21x +1,f (a )=3,则a =________.7.设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为__________.8.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.10.根据如图所示的函数y =f (x )的图象,写出函数的解析式.B 组 专项能力提升 (时间:20分钟)11.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.12.已知函数f (x )=4x -12x -1,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛20152014201520132015220151f f f f =________.13.已知函数f (x )=4|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.14.已知x ∈R ,定义:A (x )表示不小于x 的最小整数.如A (3)=2,A (-0.4)=0,A (-1.1)=-1.若A (2x +1)=3,则实数x 的取值范围是__________.15.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?。
函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
函数的概念和图像

函数 - 函数的概念和图像一、函数的概念和图像● 定义总结1. 函数的定义设,A B 是非空的数集,如果按某种对应法则f ,对于集合A 中的每一个...元素x ,在集合B 中都有唯一..的元素y ,和它对应,这样的对应叫做A 到B 的一个函数,通常记为(),y A f x x =∈.其中,所有的输入值x 所组成的集合A 叫做函数()y f x =的定义域,与输入值x 对应的所有的输出值y 所组成的集合B 称为函数的值域. 1. 函数的图像将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()00,x f x ,当自变量取遍..函数定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的集合为()(){},x f x x A ∈,所有这些点组成的图形就是函数()y f x =的图象.● 知识归纳1. 相同函数的判断关键点:定义域、不等式.【例1】判断下列各组函数中的两个函数是否为同一函数: (1)()()2221,21x x x g t t f t =+-=+-;(2)()(),f x x g x ==(3)()(),f x x g x ==;(4)()()24,22x f x g x x x -==+-;(5)()()2f x g x x ==+.2. 函数的图像及应用关键点:作图、识图、用图.【例2】下图中可以作为函数图像的是 .A B C D【例3】画出()223f x x x =-++的图象,并根据图像回答问题:(Ⅰ)比较()()()0,1,3f f f 的大小;(Ⅱ)若121x x <<,比较()1f x 与()2f x 的大小.3. 函数的定义域关键点:熟知各种基本函数的定义域,列不等式组求解; 【例4】求下列函数的定义域:(1)03x y +=(2)y =注意点:注意y =2y =. 4. 定义域的逆向问题关键点:已知函数定义域,求参数的值. 【例5】已知函数y =的定义域为[]3,6-,求,a b 的值.424232121132132142【例6】已知函数y =的定义域是R ,求实数k 的取值范围.5. 函数的值域常用方法:直接法、配方法、判别式法、反表示法、换元法、部分分式法、图象法. 【例7】求下列函数的值域:(1)3y =;(2)y =二、函数的表示方法● 定义总结1. 解析法、列表法、图象法;2. 分段函数对于自变量x 的不同的取值范围有不同的解析式.● 知识归纳1. 函数的解析式常用方法:待定系数法、换元法、整体代换法(换元注意范围......). 【例1】已知()f x 是二次函数,其图象的顶点是()1,3,且过原点,求()f x .【例2】(1)已知()3221f x x -=+,求()f x 的解析式; (2)已知21111f x x ⎛⎫+=- ⎪⎝⎭,求()f x 的解析式.2. 简单函数图像的作法关键点:化简,注意定义域;列表,描点,作图。
函数的概念及其表示法ppt课件

∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.
一函数与映射的基本概念

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。
例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。
3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。
函数的概念及其表示法

时,有x=f^(-1)(y),则称x=f^(-1)(y)为y=f(x)的反函数。
性质
02
原函数和反函数在相应的区间上单调性相同。
求导法则
03
原函数的导数等于反函数的导数的倒数。
05 函数的实际应用
一次函数的应用
01
02
03
线性回归分析
一次函数是线性回归分析 的基础,通过拟合数据点, 可以预测因变量的变化趋 势。
函数的概念及其表示法
目录
• 函数的基本概念 • 函数的表示法 • 函数的定义域和值域 • 函数的运算 • 函数的实际应用
01 函数的基本概念
函数的定义
01
函数是一种特殊的对应关系,它 使得集合A中的每一个元素都能通 过某种法则对应到集合B中的唯一 一个元素。
02
函数通常用大写字母表示,如f(x), g(x)等,其中x是自变量,f(x)是因 变量。
初等函数
由代数函数和三角函数经过有限次四则运算 得到的函数。
三角函数
与三角学相关的函数,如正弦函数、余弦函 数等。
超越函数
不能表示为有限次四则运算的初等函数的函 数,如自然对数函数、正切函数等。
02 函数的表示法
解析法
解析法
使用数学表达式来表示函数,如 $f(x) = x^2 + 2x + 1$。解析法 精确地描述了函数与自变量之间的数学关系,适用于需要精确计算 的情况。
表格法
01 02
表格法
列出自变量和因变量的若干组对应数值,以表格的形式表示函数。适用 于已知部分函数值的情况,可以通过插值或拟合的方法确定其他点的函 数值。
优点
简单、直观,能够提供一定程度的近似值。
函数的概念及表示方法

特级教师 王新敞
3.两个函数的相等: 函数的定义含有三个要素, 即定义域A、值域C和对应法则 f. 当函数的定义 域及从定义域到值域的对应法则确定之后,函 数的值域也就随之确定 .因此,定义域和对应法 则为函数的两个基本条件,当且仅当两个函数 的定义域和对应法则都分别相同时,这两个函 数才是同一个函数 .
由映射和函数的定义可知,函数是一类特 殊的映射,它要求 A、B非空且皆为数集 .
特级教师 王新敞
特级教师 王新敞
5.映射的概念中象、原象的理解: (1) A中每
一个元素都有象 ;(2)B中每一个元素不一定都有原
象,不一定只一个原象; (3)A中每一个元素的象
唯一. 6.分段函数:如
? x2 f (x) ? ?
特级教师 王新敞
练习
1.购买某种饮料 x听,所需钱数为 y元. 若每听2元, 试分别用解析法、列表法、图象法将 y表示成x (x∈{1,2,3,4})的函数,并y指出该函数的值域 . 解:(1)解析法:
y=2x, x∈{1,2,3,4}. 8
(2)列表法:
6
X/听 1 2 3 4
4
Y/元 2 4 6 8
特级教师 王新敞 特级教师 王新敞
特级教师 王新敞
特级教师
王新敞
例 1 已知函数 f (x) =
3 3x ? 1
的定义域
ax 2 ? ax ? 3
是 R,则实数 a 的取值范围是 ( B )
A. a ? 1 3
B. ? 12 ? a ? 0
C. ? 12 ? a ? 0
D. a ? 1 3
剖析:由 a
2
(3) 图象法 (如图)
函数的值域是 {2,4,6,8}
《映射和函数》课件

奇函数
如果一个函数满足f(-x)=f(x),则该函数为奇函数, 其图像关于原点对称。
06
常见函数的图像和性质
正比例函数
总结词
正比关系,过原点
详细描述
正比例函数是形如$y=kx$($k neq 0$)的函数,图像是一条经过原点的直线。当 $k>0$时,图像过一、三象限;当$k<0$时,图像过二、四象限。
总结词
函数是数学中一个重要的概念, 它描述了两个集合之间的对应关 系。
详细描述
函数是建立在两个非空集合A和B 之间的对应关系,使得集合A中的 每一个元素x,通过某种对应关系 f,在集合B中都有唯一确定的元 素与之对应。
函数的性质
总结词
函数的性质包括有界性、单调性、奇偶性和周期性等。
详细描述
有界性是指函数在一定区间内存在上界和下界;单调性是指函数在某一区间内 的增减性;奇偶性是指函数对于原点的对称性;周期性是指函数按照一定的周 期重复的性质。
详细描述
函数加法是将两个函数的输出作为输入,对应输出相加得到的新的函数。函数加 法满足交换律和结合律。
函数的数乘
总结词
数乘函数的概念和性质
详细描述
数乘是指将一个常数与一个函数相乘,得到一个新的函数。数乘满足结合律和分配律。数乘对函数的图像有伸缩 变换的影响。
函数的复合
总结词
复合函数的概念和性质
详细描述
映射中集合A的元素x的取值范围。
陪域
映射中集合B中元素y的取值范围。
函数
特殊的映射,其定义域和陪域都是数集, 且数集中的每一个元素都有唯一的一个数 与之对应。
映射的性质
01
02
03
04
一一对应
函数的概念及其表示

1.已知 f(x)=π(x∈R),则 f(π2)等于( ) (A)π2 (B)π (C) π (D)不确定
1.如图,可表示函数 y=f(x)的图象的只可能是( )
2.设集合 M={x|0≤x≤2},N={y|0≤y≤2},那么下面的 4 个图形中, 能表示集合 M 到集合 N 的函数关系的有( )
2.已知 f ( x 1) x 2 x ,求 f (x)
3.若
f
(x)
满足
f
(x)
2
f
(1) x
ax,
求
f
(x)
4.已知函数 f(x2-3)=lgx2x-2 3,求 f(x)的解析式.
1.设 M 是由满足下列性质的函数 f(x)构成的集合:在定义 域内存在 x0,使得 f(x0+1)=f(x0)+f(1)成立.已知下列函 数:①f(x)=1x;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos πx.其中属于集合 M 的函数是________.
第1节 函数的基本概念(一)
1.函数的基本概念
(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对 应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一 确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一 个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域.
f(x)≤1 的解集为( )
(A)(-∞,-3]∪[-1,+∞) (B)[-3,-1]
(C)[-3,-1]∪(0,+∞) (D)[-3,+∞)
.求函数的解析式
变【式例、5】根1据. 已条知件f求( 下x列 1各) =函x数+的2,解求析f(x式)的:解析式.
第一节 函数的概念及表示 【高考文数专题--函数的概念与基本初等函数】

5.已知函数f(x)=ax3-2x的图象过点(-1,4),则f(2)=________. 解析:∵函数f(x)=ax3-2x的图象过点(-1,4), ∴4=-a+2,∴a=-2,即f(x)=-2x3-2x, ∴f(2)=-2×23-2×2=-20. 答案:-20
三、“基本思想”很重要 1.(整体代换)已知f(2x+1)=4x2+3x+2,则f(x)=________.
[过关训练] 1.已知f( x+1)=x-2 x,则f(x)=________.
解析:法一:换元法 令t= x+1,则t≥1,x=(t-1)2, 代入原式有f(t)=(t-1)2-2(t-1)=t2-4t+3, 所以f(x)=x2-4x+3(x≥1). 法二:配凑法 f( x+1)=x+2 x+1-4 x-4+3 =( x+1)2-4( x+1)+3, 因为 x+1≥1,所以f(x)=x2-4x+3(x≥1). 答案:x2-4x+3(x≥1)
=f(2-3)=f(-1)=(-1)2-2-1
=12.
[答案] D
[解题方略] 求分段函数的函数值的方法
先确定要求值的自变量的取值属于哪一段区间,然后代入该段的解析式 求值.当出现f(f(a))的形式时,应从内到外依次求值.
题点(二) 与方程结合求参数
[例 2] 已知函数 f(x)=2xx2+ +1a, x,x<x≥1,1, 若 f(f(0))=4a,则实数 a= (
答案:A
()
3.(好题分享——新人教A版必修第一册P72T1改编) 函数f(x)=x3+x4+ 16-x2的定义域是________. 答案:(-4,4]
4.已知函数f(x)=2x-3,x∈{x∈N |1≤x≤5},则函数f(x)的值域为______. 解析:∵x=1,2,3,4,5,∴f(x)=2x-3=-1,1,3,5,7. ∴f(x)的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}
函数的概念及其表示

课前案基本知识梳理1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑦ ;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的⑧ .(2)函数的三要素:⑨ 、值域和对应关系.(3)相等函数:若两个函数的⑩ 相同,且 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 ,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒 一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为 .(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为 ;当a<0时,值域为.(3)y= (k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.课中案一、目标导引1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.二、牛刀小试判断正误(正确的打“√”,错误的打“×”)1.判断正误(正确的打“√”,错误的打“✕”).(1)函数=x 0是同一个函数. ( )(2)f (x 是一个函数. ( )(3)若两个函数的定义域与值域相同,则这两个函数相等. ( )(4)函数y =f (x )的图象与直线x =1的交点最多有1个.( )2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )3.(新教材人教A 版必修第一册P65例2改编)函数f (x 21x-( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( )A.(-1,1)B. 11,2⎛⎫-- ⎪⎝⎭ C.(-1,0) D. 1,12⎛⎫ ⎪⎝⎭5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1三、例题讲解考点一 函数、映射概念的理解例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y = 11x + ,x ∈A ,y ∈B ;②A = *1|N 2a a ⎧⎫∈⎨⎬⎩⎭ ,B= *1|,N nb b n ⎧⎫=∈⎨⎬⎩⎭,对应关系f :a →b ,b= 1a ;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆.其中是从A 到B 的映射的为 ( )A.①③B.②④C.①④D.③④(2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y 2B.y y =xx 2+1 D.y 变式练习1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根;②A =R,B =R, f :x →x 的倒数;③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2.其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③2.( )A.f (x )=|x |,g (x f (x g (x 2C.f (x )=211x x --g (x )=x +1 D.f (x g (x考点二 函数的定义域例2 (1)函数f (x x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2](2)函数f (x 2563x x x -+- 的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]角度二 已知函数定义域,求参数的取值范围例3 (1)(2019河北衡水联考)若函数y = 2143mx mx mx -++ 的定义域为R,则实数m 的取值范围是 ( )A. 30,4⎛⎤ ⎥⎝⎦30,4⎛⎫ ⎪⎝⎭ C. 30,4⎡⎤⎢⎥⎣⎦ D. 30,4⎡⎫⎪⎢⎣⎭(2)若函数f (x 2ax abx b ++的定义域为{x |1≤x ≤2},则a +b 的值为 角度三 抽象函数的定义域例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f 12x ⎛⎫+ ⎪⎝⎭ +f12x ⎛⎫- ⎪⎝⎭的定义域是.考点三 函数的解析式例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ).(2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ).变式练习(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.考点四 分段函数例6 已知函数f(x)=229,1,4,1,x ax xx a xx⎧-+≤⎪⎨++>⎪⎩ 若f(x)的最小值为f(1),则实数a的取值范围是.角度二 已知函数值,求参数的值(或取值范围)例7 设函数f(x)= 22,0,1,0,x x xx x⎧+<⎨+≥⎩则f(-1)= ; 若f(a)>f(a-1),则实数a的取值范围是 .变式练习(2018课标全国Ⅰ文,12,5分)设函数f(x)=2,0,1,0,x xx-⎧≤⎨>⎩ 则满足f(x+1)<f(2x)的x的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)课后案1.下面可以表示以M={x|0≤x≤1}为定义域,以N={x|0≤x≤1}为值域的函数图象的是( )2.(2020河北邢台模拟,理2)已知集合A={x|lg(x2-x-1)>0},B={x|0<x<3},则A∩B=( )A.{x|0<x<1}B.{x|x<-1}∪{x|x>0}C.{x|2<x<3}D.{x|0<x<1}∪{x|2<x<3}3.已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]4.下列各组函数中,表示同一函数的是( )A.f(x)=e ln x,g(x)=xB.f(x)=,g(x)=x-2C.f(x)=,g(x)=sin xD.f(x)=|x|,g(x)=5.若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是( )A.[-8,-3]B.[-5,-1]C.[-2,0]D.[1,3]6.已知函数f(x)=的值域为R,则实数a的取值范围是( )A.(-∞,-1]B C D7.(2020重庆模拟,理13)已知函数f(x)=ln(-x-x2),则函数f(2x+1)的定义域为 .8.(2020辽宁大连一中6月模拟,文3)设f(x)=且f(2)=4,则f(-2)= .9.设函数f(x)=若f(t+1)>f(2t-4),则实数t的取值范围是 .10.已知函数f(x)满足2f(x)+f(-x)=3x,则f(x)= .B组11.(2020广东华师大附中月考)已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]12.(2020河北衡水中学检测)已知函数f(x)=若实数a满足f(a)=f(a-1),则f=( )A.2B.4C.6D.813.(2020山东济南三模,5)“平均增长量”是指一段时间内某一数据指标增长量的平均值,其计算方法是将每一期增长量相加后,除以期数,即国内生产总值(GDP)被公认为是衡量国家经济状况的最佳指标,下表是我国2015—2019年GDP数据:年份20202020201516171819国内生产总值/万亿68.8974.6483.291.9399.09根据表中数据,2015—2019年我国GDP的平均增长量为( ) A.5.03万亿 B.6.04万亿C.7.55万亿D.10.07万亿14.已知函数f(x)=则f= .课后案答题纸A组1234567. 8.9. 10.B组1234.。
专升本数学一知识点

专升本数学一知识点数学一是专升本考试的一门重要科目,涵盖了高中数学的主要内容和一部分大学数学的基础知识。
以下是数学一考试中的一些重点知识点。
1.函数与方程:1.1.函数的概念:函数的定义与性质,函数的表示方法,函数的求值,函数的图像和性质;1.2.一次函数和二次函数:函数的解析式,函数的图像和性质,函数的表示方法,函数的应用;1.3.指数函数和对数函数:函数的定义,函数图像和性质,指数函数和对数函数的互逆关系,指数函数和对数函数的运算;1.4.三角函数:常见三角函数的定义,周期、图像和性质,三角函数的运算关系,解三角方程;1.5.不等式:一元不等式和二元不等式的解法,不等式的性质和应用。
2.数列与数学归纳法:2.1.数列的概念:数列的定义,数列的表示,数列的性质;2.2.数列的极限:数列的极限概念,数列极限的性质,数列极限的计算方法;2.3.等差数列与等比数列:等差数列的概念、通项公式、和的计算;等比数列的概念、通项公式、和的计算;2.4.数列求和:数列前n项和的计算方法,等差数列与等比数列的求和公式;2.5.数学归纳法:数学归纳法的基本原理,数学归纳法的应用。
3.图形的性质与计算:3.1.平面几何的基本概念:平面几何中点线面的概念,平面角的概念和性质;3.2.三角形:三角形的定义和分类,三角形的性质(角、边的关系、三角形的判定);3.3.直线和圆:直线和圆的基本性质,直线和圆的方程及其求解;3.4.二次曲线:抛物线、椭圆和双曲线的定义、方程和基本性质;3.5.空间几何:空间几何中点、线、面、体的概念,空间几何中的垂直、平行和余弦定理。
4.概率与统计:4.1.概率的基本概念:试验、样本空间、随机事件的概念和性质,事件的关系与运算;4.2.频率与概率:频率和概率的基本关系,频率稳定性定理;4.3.离散型随机变量与连续型随机变量:离散型随机变量和连续型随机变量的定义和性质,随机变量的概率分布,随机变量的数学期望和方差;4.4.统计分析:样本与总体的概念,频数分布表和频率分布表的制作,统计参数的估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
【例 4】 (1)求函数 f(x)= x2 5x 6
( x 1)0 的定义域;(2)已知函数 f(x) x | x |
的 定义域是(a,b),求函数 F(x)=f(3x-1)+f(3x+1)的定义域.
教 学 课堂练习: 过 程 1.已知 n∈N+ f (n)
n 2, n 10 ,求 f(5)和 f(0)的值. f [ f ( n 5)], n 10
课题
函数的概念和图象、函数的表示方法、映射的概念
编号
1
教学目标
1.了解构成函数的要素,会求一些简单函数的定义域和值域.了解映射的概念. 2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.了解简单的分段 函数,并能简单应用. 讲练结合 同上 方法提炼
教学方法 教学重、难点
教 学 过 程
教材回顾: 1.函数的概念 一般地,设 A,B 是两个非空的数集,如果按照某种对应法则 f,对于集合 A 中的每 一个元素 x ,在集合 B 中都有惟一的元素 y 和它对应,那么这 样的对应叫 做 ,通常记为 y=f(x),x∈A,其中,所 有的输入值 x 组成的集合 A 叫做函数 y=f(x)的 . 2.函数的值域 若 A 是函数 y=f(x)的定义域, 则对于 A 中的每一个 x, 都有一个输出 值 y 与之对应. 我 们将所有输出值 y 组成的集合称为 . 3.函数的表示法 (1)用 来表示两个变量之间函数关系的方法称为列表法. (2)用 来表示两个变量之间函数关系的方法称为解析法.这个等式通 常叫做函数的解析表达式,简称解析式. (3)用 表示两个变量之间函数关系的方法称为图象法. 4.分段函数 在定义域内不同部分上,有不同的解析表达式,像这样的函数通 常叫 做 . 5.映射的概念 设 A,B 是两个非空集合,如果按某种对应法则 f,对于 A 中的每一个元素,在 B 中都有惟一的元素与之对应,那么这样的单值对应叫做集合 B 的 , 记作 f :A→B. 基础自测: 1.已知函数 y=f(x),x∈[a,b],那么集合{(x,y)|y=f(x),x∈[a,b]}∩ {(x,y)|x=x0}中所含元素的个数是________. 2.下列方程对应的图形,其中不是函数图象的是________. ①x2+y2=1;②y= x2 1 ;③
1
考点 1:函数的定义域 【例 1】 (2010· 湖南师大附中月考)(1)求函数 f(x)=
1 x 2 1 ( x 4)0 2 | x |
的定义域. (2)若函数 y=f(x)的定义域为[-1,1),求 y=f(x2-3)的定义域.
变式 1:求下列函数的定义域: (1) y 教 学 过 程 考点 2:分段函数 【例 2】 (2009· 湖北联考题)已知函数 f(x+2)= 求 f(
x2 y 2 1 ;④y2=4x2+1 4 5
3.函数 y= 1 x2 的定义域是________,值域是________. 4.(2010· 北京华夏女中)从集合 A={1,2}到集合 B={3,4}可以建立映射 的个数是________.
x 2 1, x 0 5.函数 y= 2 的值域是________. x , x 0
1 1 1 2 3 4
f:x→x 取倒数;ห้องสมุดไป่ตู้
(3) A={(x,y)||x|<2,x+y<3,x、y∈N},B={0,1,2},f: (x,y)→x+y; (4) A=N,B={0,1,2}, f:x →x 被 3 除所得余数.
教 学 过 程 变式 3.(2010· 河北衡水模拟题)已知映射 f:x→B,其中 A=B=R,对应关系 f:x→y=-x2+2x,对于实数 k∈B,在集合 A 中存在不同的两个原象(若 A 中的元素 a 与 B 中的元素 b 对应,则 b 叫 a 的象,a 叫 b 的原象),则 k 的取值 范 围是________.
2.(1)已知 f ( x ) x
3
1 x
1 ,求 f(x); x3
(2)已知 f(x)是一次函数,且满足 3f(x+1)-2f(x-1)=2x+17,求 f(x).
配套练习 作 业 教 学 反 思
课 堂 小 结
4
x2 1 0 ( ) ;(2)y=loga(ax-1)(a>0 且 a≠1). lg(4 x 3) 5x 4
x0 tan x, log 2 ( x), x 0
4
2) f (2) 的值.
变式 2:(2010· 北京东城质检题)设函数 f(x)=
2 ,
x0
2 x bx c, x 0
若 f(-4)=f(0),
f(-2)=-2,则 f(x)的解析式为 f(x)=_____,关于 x 的方程 f(x)=x 的解 的个数为_____.
2
考点 3:映射 【例 3】 判断下列对应是否是集合 A 到集合 B 的映射. (1) 设 A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则 f:x→2x+1; (2)设 A={1,2,3,4},B= 1, , , ,