最新6章习题解材料力学课后习题题解

合集下载

第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

2 z
W
M
2 x
W2
[ ]
7-17 图示直角曲拐,C端受铅垂集中力F作用。已知a=160mm,AB杆直径D=40mm,
l=200mm ,E=200GPa, μ=0.3,实验测得D点沿45º方向的线应变 ε45º=0.265 × 10-3。试求:
(1)力F的大小;(2)若AB杆的[σ]=140MPa,试按最大切应力理论校核其强度。
T Wp
16 M 0
D3
16 125 .6
0.023
79.96MPa
单元体可画成平面单元体如图(从上往下观察)
A
6-5 试用求下列各单元体中ab面上的应力(单位MPa) 。
解:(a)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70 1 2
35
(MPa)
x y sin(2 30 ) 70
2
3 60.62 (MPa) 2
(b)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70
(MPa)
x
y
2
sin(2 30 )
0
6-6 各单元体的受力如图所示,试求:(1)主应力大小及方向并在原单元体图上绘出主 单元体;(2)最大切应力(单位MPa) 。
解: (3) My 、Mz、Mx 和F 同时作用,拉弯扭组合,任一截 面D1点是危险点
应力状态:
D1
FN M F
M
2 y
M
2 z
y
AW A

章习题参考答案材料力学课后习题题解

章习题参考答案材料力学课后习题题解

C
C
FAC
FCB
FA
FAC BF FA
FCB
FAB
F
FAD FAB
FBD
D (a)
FAD
FBD
D
解 (a)受力分析如图,由C点平衡可知:F’AC=F’CB=0; 由D点平衡可知: F’AD=F’BD=0;再由A点的平衡:
F x=0:F A B=F因此
LAB
FABl EA
Fl EA
(b)受力分析如图, 由C点平衡可知:
1.5m 1m

F A
a 2m
② B
解:受力分析如图
FN1
F
FN2
M A
0:
2FN2
Fa
0
A
a
B
FN2
1 2
Fa
2m
M B 0 :F 2 a 2 F N 1 0 ,F N 1 2 2 a F
L1
L2
FN1l1 E1 A1
FN2l2 E2 A2
F 2 - a l1 Fal2
2E1 A1
载[F]。
解:受力分析如图
C
A
Fy 0:
FBC sin60o FBA sin30o 0 (1)
Fx 0:
FBA cos30o FBC cos60o F 0 (2)
o
F60
FBC
o
F60
B
FBA
B
联立(1)和(2)解得:FBC=25kN;FBA=43.3kN。查型钢表 可得:ABC=6.928cm2,
FN
α
pαcos 30o
FN0 4
b
a


bτ α
τ α p α s in 3 0 o F A N 0c o s3 0 o s in 3 0 o 2 0 5 0 1 0 0 34 3 1 7 .3 2 M P a

《材料力学》课后习题答案详细

《材料力学》课后习题答案详细

N(x) F F x a
x (a,0]
轴力图如图所示。
[习题 2-2] 试求图示等直杆横截面 1-1、2-2 和平 3-3 上的轴力,并作轴
力图。若横截面面积 A 400mm2 ,试
求各横截面上的应力。
解:(1)求指定截面上的轴力
N11 20kN N 22 10 20 10(kN )
10000 100
0
100 100.0 0.0
10000 100
30
100 75.0 43.3
10000 100
45
100 50.0 50.0
10000 100
60
100 25.0 43.3
10000 100
90
100
0.0
0.0
[习题 2-7] 一根等直杆受力如图所 示。已知杆的横截面面积 A 和材料 的弹性模量 E。试作轴力图,并求杆 端点 D 的位移。 解:(1)作轴力图
N33 F 2F 2F F
轴力图如图所示。
1
(c)
解:(1)求指定截面上的轴力
N11 2F N22 F 2F F
(2)作轴力图
N33 2F F 2F 3F
轴力图如图所示。
(d)
解:(1)求指定截面上的轴力
N11 F
N 22
2F
qa
F
2F
F a
a
F
2F
(2)作轴力图
中间段的轴力方程为:
解:墩身底面的轴力为:
N (F G) F Alg
1000 (3 2 3.14 12 ) 10 2.35 9.8 3104.942(kN )
1000 (3 2 3.14 12 ) 10 2.35 9.8

《材料力学》第6章 简单超静定问题 习题解

《材料力学》第6章 简单超静定问题 习题解

第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。

设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。

试求各杆的轴力。

解:以节点A 为研究对象,其受力图如图所示。

∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。

材料力学课后习题答案详细

材料力学课后习题答案详细
由对称性可知,受力CH图 0
N1 N 2 0.5F 0.5 20 10(kN )
10
(2)求 C 点的水平位移与铅垂位移。 变形协调图
A
点的铅垂位移:l1

N1l EA1

10000N 1000mm 210000N / mm2 100mm2
0.476mm
B 点的铅垂位移: l2
材料可认为符合胡克定律,其弹性模量 E 10GPa 。如不计柱的自重,试求:
(1)作轴力图;
(2)各段柱横截面上的应力;
(3)各段柱的纵向线应变;
(4)柱的总变形。
解:(1)作轴力图
N AC 100kN NCB 100 160 260(kN )
轴力图如图所示。
(2)计算各段上的应力
第二章 轴向拉(压)变形
[习题 2-1] 试求图示各杆 1-1 和 2-2 横截面上的轴力,并作轴力图。 (a) 解:(1)求指定截面上的轴力
N11 F N 22 2F F F
(2)作轴力图 轴力图如图所示。
(b) 解:(1)求指定截面上的轴力
N11 2F N 22 2F 2F 0
如以 表示斜截面与横截面的夹角,试求当 0o ,30o ,45o ,60o ,90o 时各斜截面
上的正应力和切应力,并用图表示其方
向。
解:斜截面上的正应力与切应力的公式
为:
5
0 cos 2

0 2
sin 2
式中, 0

N A

10000 N 100mm 2
100MPa ,把
示。
由平平衡条件可得:
X 0
N EG N EA cos 0

材料力学课后习题答案

材料力学课后习题答案


2 2 Fl 2 4 Fl E (d1 d 2 ) d 2 d1 Ed 1 d 2
[习题 2-10] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性常数为 E , ,试 求 C 与 D 两点间的距离改变量 CD 。
解:
'
(2)由变形能原理求 A 点的铅垂方向的位移
2 N12 l1 N 2 l2 1 F A 2 2 EA1 2 EA2 2 l2 1 N12 l1 N 2 ( ) F EA1 EA2
A
式中, l1 1000 / sin 45o 1414(mm) ; l 2 800 / sin 30 o 1600(mm)
解:墩身底面的轴力为:
N ( F G) F Alg
2-3 图
1000 (3 2 3.14 12 ) 10 2.35 9.8 3104.942(kN)
墩身底面积: A (3 2 3.14 12 ) 9.14(m 2 ) 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
FN 2l 40 107 0.15 l2 4.76 EA2 210 109 12 106 从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
( 2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ()
F 35kN 。已知杆 AB 和 AC 的直径分别为 d1 12mm 和 d 2 15mm ,钢的弹性模量
E 210GPa 。试求 A 点在铅垂方向的位移。 解: (1)求 AB、AC 杆的轴力 以节点 A 为研究对象,其受力图如图所示。 由平衡条件得出:

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。

2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。

5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。

材料力学第六版答案第06章

材料力学第六版答案第06章

材料力学(金忠谋)第六版答案第06章(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max 48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)3 MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

4解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

材料力学第6章弯曲应力习题答案

材料力学第6章弯曲应力习题答案
本章节主要讨论了弯曲应力的相关概念和计算方法,通过一系列习题和答案展示了如何在实际问题中应用这些原理。然而,关于只受弯矩的转动心轴外径处的弯曲应力,文档没有直接给出详细的解析或公式。这类问题通常涉及到材料力学的基本原理,需要考虑轴的几何尺寸、材料属性以及所受的弯矩大小。在实际应用中,可以通过相关的弯曲应力公式,结合具体的边界条件和载荷情况,来分析和计算转动心轴外径处的弯曲应力。这需要一定的材料力学知识和数学分析能力。虽然文档没有直接提供这一Байду номын сангаас定问题的答案,但它为理解和解决这类问题提供了必要的理论基础和计算方法。

《材料力学》课后习题答案(详细)

《材料力学》课后习题答案(详细)

第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。

(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。

(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积2400mm A =,试求各横截面上的应力。

解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。

解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。

章习题参考答案材料力学课后习题题解_图文

章习题参考答案材料力学课后习题题解_图文

2.37 图示销钉连接中,F=100kN ,销钉材料许用剪切应力 [τj]=60MPa,试确定销钉的直径d25kN;FBA=43.3kN。查型钢表 可得:ABC=6.928cm2,
FBC=25kN;FBA=43.3kN;ABC=6.928cm2, [σ]1=160MPa;AAB=100×50mm2 ;[σ]2=8MPa。
杆BC满足强度要求,但杆BA不满足强度要求。 将[FBA]带入(1)、(2)式中求得许用荷载[F]=46.2kN
2.25 图示结构中,横杆AB为刚性杆,斜杆CD为直径d=20mm 的圆杆,材料的许用应力[σ]=160MPa ,试求许用荷载[F]。
解:CD=1.25m, sinθ=0.75/1.25=0.6
2.25 图示结构中,横杆AB为刚性杆,斜杆CD为直径d=20mm 的圆杆,材料的许用应力[σ]=160MPa ,试求许用荷载[F]。
解:受力分析如图
d1=20mm,E1=200GPa; d2=25mm,E2=100GPa。
2.15 图示结构中,AB杆和AC杆均为圆截面钢杆,材料相同 。已知结点A无水平位移,试求两杆直径之比。 解:
由两杆变形的几何关系可得
2.20 图示结构中,杆①和杆②均为圆截面钢杆,直径分别 为d1=16mm,d2=20mm ,已知F=40kN ,刚材的许用应力 [σ]=160MPa,试分别校核二杆的强度。 解:受力分析如图
解:CD=1.25m, sinθ=0.75/1.25=0.6
d=20mm [σ]=160MPa
2.27 图示杆系中,木杆的长度a不变,其强度也足够高,但 钢杆与木杆的夹角α可以改变(悬挂点C点的位置可上、下 调整)。若欲使钢杆AC的用料最少,夹角α应多大? 解:
答 45o

材料力学全部习题解答讲解

材料力学全部习题解答讲解

1 2 R2
3
2
(b)
yc =
ydA
A
=
A
b 0
y ayndy b ayndy
=
n n

1 2
b
0
26
Iz =
y2dA
A
Iy =
z2dA
A
解: 边长为a的正方截面可视为由图示截面和一个半 径为R的圆截面组成,则
Iz
=I(za)
I(zR)=
a4 12


2R 4
0

FN A
10103 N 1000 106 m2
10MPa
由于斜截面的方位角 450
得该截面上的正应力和切应力分别为
45
0 cos2 10106 cos2 450 pa 5MPa
0 sin 2 1 10106 sin 900 pa 5MPa
2
18
解:1.求预紧力 由公式l FNl 和叠加原理,故有
EA
l

l1

l2

l3

Fl1 EA1

Fl2 EA2

Fl3 EA3

4F
E

l1 d12

l2 d22

l3 d32

由此得 F
El
18.65kN
4

l1
d
2 1

l2
d
2 2

l3
根据式
tan 2 2I y0z0
I z0 I y0
解得主形心轴 y 的方位角为 a =
3.计算主形心惯性矩

材料力学课后答案

材料力学课后答案

材料力学课后答案材料力学是研究材料内部力学性质和行为的学科,它是材料科学与工程学的重要基础课程之一。

通过学习材料力学,我们可以了解材料的力学性能和行为,为材料的设计、加工和应用提供理论基础和指导。

在课堂学习之外,课后习题是巩固知识、提高能力的重要途径。

下面是一些材料力学课后习题的答案,希望能对大家的学习有所帮助。

1. 什么是应力?应变?它们之间的关系是什么?答,应力是单位面积上的力,通常用σ表示,其公式为σ=F/A,其中F为作用在物体上的力,A为物体的受力面积。

应变是物体单位长度的形变,通常用ε表示,其公式为ε=ΔL/L0,其中ΔL为长度变化量,L0为原始长度。

应力和应变之间的关系由杨氏模量E来描述,公式为σ=Eε。

2. 什么是弹性模量?它有哪些类型?答,弹性模量是描述材料在弹性阶段的刚度和变形能力的物理量。

常见的弹性模量包括杨氏模量、剪切模量、泊松比等。

3. 什么是拉伸、压缩、剪切?答,拉伸是指物体在外力作用下沿着其长度方向发生的形变;压缩是指物体在外力作用下沿着其长度方向发生的缩短形变;剪切是指物体在外力作用下沿着其平面内部发生的相对位移形变。

4. 什么是胶性变形?塑性变形?答,胶性变形是指材料在受力作用下发生的可逆形变,即在去除外力后,材料可以恢复到原来的形状;塑性变形是指材料在受力作用下发生的不可逆形变,即在去除外力后,材料无法完全恢复到原来的形状。

5. 什么是材料的疲劳破坏?有哪些影响因素?答,材料的疲劳破坏是指在交变应力作用下,材料在循环载荷下发生的破坏。

影响因素包括应力幅值、载荷次数、材料的强度和韧性等。

以上是对材料力学课后习题的部分答案,希望能够帮助大家更好地理解和掌握材料力学的知识。

在学习过程中,要多做习题、多思考、多讨论,相信通过努力,一定能够取得好成绩。

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第6章_圆轴扭转

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第6章_圆轴扭转

该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =

ρ ⋅ τdA =

r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
16 M x
3 π d1
=
16 M x
3 π D2 (1 − α 4 )

d1 = (1 − α 4 ) 3 D2
1
(a)
二者重量之比
W1 A1 d2 = = 2 1 2 W2 A2 D2 (1 − α )
(b)
式(a)代入式(b) ,得
W1 (1 − α 4 ) = W2 1−α2
2 3
所以,正确答案是
16 M x 3 16 × 10.53 × 10 6 = = 96.3 π [τ ] π × 60
(3)按刚度条件求轴的直径
θ=
Mx ≤ [θ ] GI P
[θ ] = 1D / 2m =
π
180 × 2 × 10 3
rad/mm
6
D≥4
32M x 32 × 10.53 × 10 6 =4 = 110.6mm Gπ [θ ] 82 × 10 3 π [θ ]

材料力学课后答案

材料力学课后答案
其中 已知。
对固定端截面, 引起 , 引起
,得
作用下: ,
得 ,
作用下:
同上,
得 。叠加得:
7-2图示悬臂梁在两个不同截面上分别受有水平力 和铅锤力 作用。若 , ,试求以下两种情况下梁内的最大正应力及其作用位置。
(1)梁的截面为矩形,其宽和高分别为 。
(2)梁为圆截面,其直径 。
题7-2图
解:(1)矩形截面
第六章应力状态理论和应变状态理论
6-1构件受力如图所示。 确定危险点的位置。 用单元体表示危险点的应力状态。
( )不计自重时,危险点为任一横截面上的任意一点
( )危险点在 与 之间的任一截面的边缘上任一
( )危险点在图示三处
( )危险点为任一截面的外边缘上任一点
题6-1图
题6-2图
6-2已知应力状态如图所示,图中应力单位皆为兆帕。试用解析法及图解法求: 主应力大小,主平面位置; 在单元体上绘出主平面位置及主应力方向; 最大剪应力。
综合,取
题7-4图题7-5图
7-6承受偏心载荷的矩形截面杆如图所示。今用实验方法测得杆左、右两侧面的纵向应变 和 ,试证明偏心矩 和 、 满足下列关系式:
解:偏心力 的作用等效为(简化为)轴力 (拉),和弯矩
组合变形下:
左侧表面处 ,右侧表面处
,代到 中:
则: ,两式比较:
即:
7-7手摇式提升机如图所示,轴的直径 ,材料为 钢, ,试按第三强度理论求提升机的最大起吊重量 。
综合知:
题6-10图
6-10列车通过钢桥时,在钢桥横梁的 点用变形仪测得 , 。试求 点在 及 方向的正应力。设 , 。
解:广义虎克定律知:
,代到上述两式中,解得

材料力学习题解

材料力学习题解

习 题第六章 拉伸与压缩变形6-1 试求图6-32所示各杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。

(a)解:01=N F , KN F N 22= , KN F N 33-=(b)解:KN F N 501=, KN F N 102= , KN F N 203-=(c)解:KN F N 21=, KN F N 62=(d)解:01=N F , F F N 42= , F F N 33=6-2 如图6-33所示,一正中开槽的直杆,承受轴向载荷F=40kN 的作用。

已知h=30mm ,h 0=10mm b=25mm 。

试求杆内1—1、2—2截面上的应力。

解:(1)求各截面的轴力:KN F F F N N 4021-=-==(压力)(2)求各截面的面积:217503025.mm h b A =⨯==202500)1030(25)(mm h h b A =-⨯=-=(3)求各截面上的应力:MPa A F N 3.5375010403111=⨯==σ(压应力)MPa A F N 8050010403222=⨯==σ(压应力)6-3 如图6-34所示支架,在节点B 处悬挂一重量G=20kN 的重物,杆AB 及BC 均为圆截面铅制件。

已知杆AB 的直径为d 1=20mm ,杆BC 的直径为d 2=40mm ,杆的许用应力[σ]=160MPa 。

试校核支架的强度。

解:(1)求两杆内力用截面法,将AB 、BC 杆截开,AB 杆内力为1N F ,BC 杆内力为2N F ,取B 为研究对象,由KN G G F N 40230sin 02===(压力) KN F F N N 64.34866.04030cos 021=⨯=⋅=(拉力)(2)求两杆横截面面积2221131442014.34mm d A =⨯=⋅=π 22222125644014.34mm d A =⨯=⋅=π (3)求两杆应力MPa A F N 1103141064.343111=⨯==σ(拉应力) MPa A F N 8.31125610403222=⨯==σ(压应力) (4)校核两杆强度因1σ<[]σ , 2σ<[]σ所以两杆强度均足够。

材料力学课后答案d

材料力学课后答案d
(3)、(4) 四种情况的最大剪力和最大弯矩,那么,下列式子中,正确的有 D E 。
-3-
工程力学习题解答
A. M 1 > M 2 > M 3 > M 4 C. M1 > M 2 = M 3 > M 4 E. FS1 = FS2 = FS3 = FS4
F
B. M1 = M 2 > M 3 > M 4 D. M 1 > M 2 > M 3 = M 4 F. FS1 > FS2 > FS3 > FS4
A
B
C
D
分析:这是对称结构承受对称荷载的情况,支反力偶矩必定对称,扭矩图必定反对称。
-2-
第 6 章 杆件的内力
因此只需根据支反力偶矩进一步判断扭矩正负即可。
6-2(4) 在梁的集中力作用处,其左、右两侧无限接近的横截面上的弯矩是 A 的。
A.相同
B.数值相等,符号相反
C.不相同
D.符号一致,数值不相等

1 4
q0 L

q0
⎜⎛ ⎝
x

L 2
⎟⎞ ⎠

FS
=
0

FS
=
1 4
q0 L

q0 x

∑m = 0 ,
M
+
q0 L 4
⎜⎛ x ⎝

L 2

2 ⎟⎞ 3⎠
+
q0
⎜⎛ ⎝
x

L 2
⎟⎞ ⋅ ⎠
1 ⎜⎛ x 2⎝

L 2
⎟⎞ ⎠
=
0,
M = − q0 (12x2 − 6Lx + L2 ) 。 24

6章习题解材料力学课后习题题解解析

6章习题解材料力学课后习题题解解析

s 1,max = s 2,max =
M 1,max Wz M 2,max Wz
3F / 2 = = 1.3[s ] Wz F (6 - a ) / 4 = = [s ] Wz
A
C a/2 3m a/2
D
B
3m
F
A 3m 3m B
3F / 2 F (6 - a ) / 4 / = 1.3 Wz Wz a = 1.39m
A 2000 10kN.m
B 3000 15kN
C 1000
D
40.6
5kN
M B yB ,max M C yC ,max
5kN.m
t,max
MC 5 103 ymax 109.4 74.42MPa [ t ] 4 Iz 735 10
150
z
[σc]=160MPa Iz=735×104mm4 B截面下部受压, C截面上部受压
20kN·m
300
a b d c y z
75
I z = 4.05? 108 mm4
M -25 10-6 a = ya = -150 =9.26MPa; 8 Iz 4.05 10 M b = yb =0; Iz M -25 10-6 c = yC = 75=-4.63MPa; 8 Iz 4.05 10 M -25 10-6 d = yd = 150=-9.26MPa 8 Iz 4.05 10
120
6.9 试求图示梁固定端截面上腹板与翼缘交界处k点的切应力 τk,以及全梁横截面上的最大弯曲切应力τmax。
解:梁各个 截面剪力相 等,都等于 20kN
* FS Sz k = d Iz
20kN A 2000 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
c
2 10kN 30 20kN 10kN 30kN
200
2000
3000
1000
Fs图
10kN
y
157.2 S 30 157.2 3.72 105 mm3 2 1 2 3 I z 30 200 30 200 157.5 100 12 1 2 3 200 30 30 200 72.5 15 12 6 107 mm4
-
解:梁的弯矩图如图 对于整体梁:
h
+
1 2 ql 2 M 12 ql y 8 3 y y 3 bh Iz 8bh 12 12ql 2 h 3 ql 2 max 3 8bh 2 4 bh 2
l
(a)
b(b)+来自+ql2 /8 b
(c)
h/2 h/2
叠梁:由于小变形
q
+
M1 M2 EI z1 EI z 2 1
M 4 107 k y 50 123.5MPa 7 Iz 1.62 10
20
4 107 N mm
100
M 20 10 2000
3
20kN A
20
z
20
解:固定端截面处弯矩:
6.6 图(a)所示两根矩形截面梁,其荷载、跨度、材料都相同。 其中一根梁是截面宽度为b,高度为h的整体梁(图b),另一根 梁是由两根截面宽度为b,高度为h/2的梁相叠而成(两根梁相叠 面间可以自由错动,图c)。试分析二梁横截面上的弯曲正应力 沿截面高度的分布规律有何不同?并分别计算出各梁中的最大正 应力。 q
180
M = - 25kN
15kN I I 3000 5000
20kN·m
300
a b d c y z
75
I z = 4.05? 108 mm4
M -25 10-6 a = ya = -150 =9.26MPa; 8 Iz 4.05 10 M b = yb =0; Iz M -25 10-6 c = yC = 75=-4.63MPa; 8 Iz 4.05 10 M -25 10-6 d = yd = 150=-9.26MPa 8 Iz 4.05 10
200
6.11 T形截面铸铁梁受力如图所示,已知F=20kN,q=10kN/m 。 试计算梁中横截面上的最大弯曲切应力,以及腹板和翼缘交界 处的最大切应力。 200 解:梁中最大切应力 q F z 1 发生在 B 支座左边的 c 截面的中性轴处。
2000 3000 1000
30
zC 0 yC 72.5mm
120
6.9 试求图示梁固定端截面上腹板与翼缘交界处k点的切应力 τk,以及全梁横截面上的最大弯曲切应力τmax。
解:梁各个 截面剪力相 等,都等于 20kN
* FS Sz k = d Iz
20kN A 2000 B
20 k 100
100
z
20
τ max τ min
20
20 103 100 20 60
1 1 20 2 100 203 100 20 602 20 1003 12 12 =7.41MPa
* FS Sz = d Iz
max
20 103 100 20 60 20 50 25 1 1 20 2 100 203 100 20 602 20 1003 12 12
6.2 工字形截面悬臂梁受力如图所示,试求固定端截面上腹板 与翼缘交界处k点的正应力σk
B 2000 k 100
对中性轴的惯性矩:
3 100 203 20 100 Iz 2 20 100 602 1.62 107 mm4 12 12
由正应力公式得:
3 bh 1 3 M1 EI z1 h 123 1 1 3 M 2 EI z 2 bh 2 h 2 12
h
-
l
(a)
b
(b)
h/2 h/2
+ + -
ql2/8 b
M1 bh 2 (c) 2 3 1max W1 M 1 W2 h 1 6 h1 3 2 1 2max M 2 M 2 W1 h 2 bh 1 h 2 W2 6 1 1 2 ql 2 h 3 ql 可知上下梁各承担一半弯矩,因此: max 2 8 3 2 4 2 bh b h 12 2
6.1 矩形截面梁受力如图所示,试求I-I截面(固定端截面) 上a、b、c、d四点处的正应力。
解:1-1截面弯矩为:
15kN I I 3000 5000 20kN·m
300
180 a b d
75
z
c y
M = 20 - 15? 3
- 25kN
对中性轴z的惯性矩为:
bh3 180´ 3003 Iz = = = 4.05? 108 mm4 12 12
=8.95MPa
6.10 图示直径为145mm的圆截面木梁,已知l=3m,F=3kN, q=3kN/m。试计算梁中的最大弯曲切应力。 解:
F q
4 FS 8.5k N max 3 A 5.5k N 4 5.5 10 3 3k N 3 1 d 2 4 4 5.5 10 3 0.44 MPa 3 1 145 2 4
6.8 矩形截面简支梁如图所示,已知F=18kN,试求D截面上a、 b点处的弯曲切应力。
20
1m b 70
解:
0.5m A D 1m

F B C a
¦Σ
1 1 3 F 20 70 60 18 10 20 70 60 * FS S az a 2 2 1 1 bI z 3 70 70 140 70 70 140 3 12 12 0.67MPa b 0
l/3
l
3.5k N Fs图 3.5k N
2 10kN 30
中性轴距顶边位置:
30kN
zC 0 A1 y1 A2 y2 yC A1 A2
Fs图
10kN 20kN 10kN
y
200 30 15 30 200 130 72.5mm 200 30 30 200
相关文档
最新文档