八年级数学导学案(最新)
八年级数学上册全册导学案(XX新版人教版)
八年级数学上册全册导学案(XX新版人教版)分式方程一、学教目标:1.了解分式方程的概念,和产生增根的原因..掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.四、自主探究:前面我们已经学习了哪些方程?是怎样的方程?如何求解?前面我们已经学过了方程。
一元一次方程是方程。
一元一次方程解法步骤是:①去___;②去____;③移项;④合并_____;⑤_____化为1。
如解方程:探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:______________________.像这样分母中含未知数的方程叫做分式方程。
分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。
未知数在_____的方程是分式方程。
未知数不在分母的方程是____方程。
前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。
如解方程:=……………………①去分母:方程两边同乘以最简公分母_____________,得00=60……………………②解得V=_______.观察方程①、②中的v的取值范围相同吗?①由于是分式方程v≠_______,②而②是整式方程v可取_____实数。
这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。
如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为0,也就是说,使变形时所乘的整式的值为0,它就不适合原方程,即是原分式方程的增根。
人教版八年级数学下册导学案(全册)【最新】
第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
新人教版八年级数学下导学案(全册)
, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。
三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。
(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。
(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。
如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。
思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。
2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足,a才有意义。
3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。
八年级下数学导学案(全学期5章)
y
探索活动 1:画出反比例函数
6 6 y x 的图象. x与
讨论、观察画出的图象,思考以下问题: (1)列表取值时,自变量 x 不能取什么值?在取自变量 x 的值时还应注意什么? (2)为使画出的图象更精确,自变量 x 取值的个数应该注意什么? (3)连线时应该按怎样的顺序连接?是否可以画成折线? (4)反比例函数的图象会不会与 x 轴或者 y 轴相交?
y
(3)函数
k x 的图像在哪些象限由什么因素决定?
(4)在每一个象限内,y 随 x 的变化如何变化? 归纳:
二、知识链接:比较正比例函数和反比例函数的性质 正比例函数 解析式 图像(形状) 位置(经过象限) k>0,______象限; k<0,_______象限 k>0,_______象限 k<0,_______象限 k>0,在每个象限内 y 随 x 的增大而______ k<0,在每个象限内 y 随 x 的增大而______ 反比例函数
x>-2 时;y 的取值范围是____. 四、拓展提高 例:已知反比例函数 y (m 1) x 限内 y 随 x 的变化情况?
m2 3
D
的图象在第二、四象限,求 m 值,并指出在每个象
6
23.1.2
反比例函数的图象和性质(第 2 课时)
主备人: 刘秀平 刘杰 备课组长:刘秀平 教学主任: 张凯 【学习目标】1.进一步理解和掌握反比例函数的图象与性质; 2.能灵活运用函数图象和性质解决一些较综合的问题; 3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 【学法指导】1、体会函数三种表示方法的相互转换,对函数进行认识上的整合; 2、运用分类讨论思想、数形结合思想. 【重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 【难点】学会从图象上分析、解决问题,理解反比例函数的性质。 【温故知新】1.作反比例函数图象的基本步骤是⑪ ;⑫ ;⑬
最新人教版八年级数学上册导学案
新人教版八年级数学上导学案(全册)第十一章三角形11.1 与三角形有关的线段课题 11.1.1三角形的边【教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;2、通过具体实例,进一步认识三角形的概念及其基本要素;3、学会三角形的表示及掌握对边与对角的关系;4、掌握三角形三条边之间关系.【重点难点】重点:了解三角形定义、三边关系。
难点:理解"首尾相连"等关键语句。
【教学准备】教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
【教学过程】一、提出问题展示实物,播放课件,特别突出屋顶结构图,问题:1、请仔细观察实物与课件,找出不同的三角形。
2、与同伴交流各自找到的三角形。
3、这些三角形有什么特点?设计意图:通过观察课件,尤其是屋顶的框架结构图实例,使学生经历从现实世界抽象出几何模型的过程,认识三角形要素。
二、探究质疑1、三角形的概念:(1)通过学生间交流,师生共同得出,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形有哪些基本要素,师生共同得出:边、角、顶点.2、三角形表示:(1) 教师强调,为了简单起见:三角形用符号"△"表示,如图2的三角形ABC就表示成△ABC,三个顶点为:A,B、C,三边分别为:AB,BC,AC。
通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C 所对的边AB用。
(2)请同学们找出图3中的三角形,并用符号表示出来,同时说出各个三角形要素,并指出AD是哪些三角形的边。
3、动手操作:请小组同学们画一个△ABC,分别图3量出AB,BC,AC的长,并比较下列各式大小:AB+BC_AC; AB+AC_BC; AC+ BC AB,从中你有何启发?小组合作后,对你们的结论加以解释。
师生共同得出结论:三角形任意两边之和大于第三边。
设计意图:在识别中加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.三、巩固新知1、指出图4中有几个三角形并用符号来表示2、有两根长度分别为5 cm, 8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?设计意图:(1)是巩固三角形的表示方法;(2)渗透反证法思想,借助小组操作讨论,得出组成三角形的条件。
修订版最新人教版八年级上册数学导学案全集
11.1.1三角形的边一、学习目标1.认识三角形,能用符号语言表示三角形,并把三角形分类. 2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题 二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法. 三、合作学习(一)精讲 知识点一:三角形概念及分类 1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段顺次首尾连接所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边; 点A 、B 、C 是三角形的______; _____、 ______、_______ 是相邻两边组成的角,叫做三角形的内角,简称三角形 的角。
图中三角形记作__________。
(2)三角形按角分类可分为___________、___________、______________。
(3)三角形按边分类可分为 _____________ (二)精练一:1、如图.下列图形中是三角形的___________?2、图3中有几个三角形?用符号表示这些三角形.精讲 知识点二:知道三角形三边的不等关系,并判断三条线段 能否构成三角形1、探究:请同学们画一个△ABC ,分别量出AB ,BC ,AC 的长,并比较下列各式的大小:AB+BC_____AC AB + AC _____ BC AC +BC _____ AB 结论:三角形任意两边的和大于第三边,任意两边的差小于第三边.......................... 精练二:1、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,102、有四根木条,长度分别是12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,能组成三角形的个数是_______个。
3、如果三角形的两边长分别是3和5,那么第三边长可能是( ) A 、1 B 、9 C 、3 D 、104、阅读教科书例题,仿照例题解法完成下面这个问题:5、一个三角形有两条边相等,周长为20cm ,三角形的一边长6cm ,求其他两边长。
3 2平面直角坐标系(第二课时)导学案(表格式) 北师大版数学八年级上册
【例题】 在直角坐标系中描出下列各点,并将各组内这些点依次用线段连起来.
(1)D(-3,5),E(-7,3),C(1,3),D(-3,5);
(2)F(-6,3),G(-6,0),A(0,0),B(0,3);
观察所描出的图形,它像什么?根据图形回答下列问题:
(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?
拓展:平行于两坐标轴的直线上的点坐标有什么特点?象限角平分线上的点坐标有什么特点?
精讲:
1.连接横坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴.
2.横坐标轴上点的纵坐标为0;纵坐标轴上点的横坐标为0.
3.各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
4.已知点A(-5,0),B(3,0).
(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标(要有必要的步骤);
(2)在直角坐标平面上找一点C,能满足S△ABC=16的C有多少个?这些点有什么特征?
作业
反思
年级学科
八年级数学上
上课时间
主备人
序号
课题
3.2平面直角坐标系(第二课时)
教学目标
认识平面直角坐标系中点的坐标特征,根据坐标特点确定字母的取值,解决有关问题.
教学重难点
重点:
1.认识平面直角坐标系中点的坐标特征.
2.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标系上每个点的坐标有什么特点.
(2)线段EC与x轴有什么位置关系?点E和点C的坐标有什么特点?线段EC上其他点的坐标呢?
新人教版八年级下册数学教案《导学案》
新人教版八年级下册数学教学设计《导教案》一、选择题1.以下式子中,是二次根式的是()A.-7B.37C.x D.x2.以下式子中,不是二次根式的是()A.4B.16C.8D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5B.51D.以上皆不对C.5二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提升题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少?2.当x是多少时,2x3x+x2在实数范围内存心义?3.若3x+x 3存心义,则x2=_______.4.使式子(x5)2存心义的未知数x有()个.A.0B.1C.2D.无数5.已知a、b为实数,且a5+2102a=b+4,求a、b的值.第一课时作业设计答案:一、1.A2.D3.B二、1.a(a≥0)2.a3.没有三、1.设底面边长为x,则0.2x2=1,解答:x=5.2x30,x 32.依题意得:2x0x0∴当x>-32x3且x≠0时,x+x2在实数范围内没存心义.213.34.B5.a=5,b=-4新人教版八年级下册数学教学设计《导教案》第二课时作业设计一、选择题1.以下各式中15、3a、b21、a2b2、m220、144,二次根式的个数是().A.4B.3C.2D.12.数a没有算术平方根,则a的取值范围是().A.a>0B.a≥0C.a<0D.a=0二、填空题1.(-3)2=________.2.已知x1存心义,那么是一个_______数.三、综合提升题1.计算(1)(9)2(2)-(3)2(3)(16)2(4)(-32)2 23(2332)(2332)2.把以下非负数写成一个数的平方的形式:(1)5(2)3.41(4)x(x≥0)(3)63.已知xy1+x3=0,求x y的值.4.在实数范围内分解以下因式:(1)x2-2(2)x4-93x2-5第二课时作业设计答案:一、1.B2.C二、1.32.非负数三、1.(1)(9)2=9(2)-(3)2=-3(3)(16)2=1×6=3 242(4)(22(5)-6 -3)2=9×=6332.(1)5=(5)2(2)3.4=( 3.4)2(3)1=(1)2(4)x=(x)2(x≥0)66x y10x3x y=34=81 3.30y4x4.(1)x2-2=(x+2)(x-2)新人教版八年级下册数学教学设计《导教案》(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+3)(x-3)(3)略第三课时作业设计一、选择题1.(21)2(21)2的值是().33A.02C.42D.以上都不对B.332.a≥0时,a2、(a)2、-a2,比较它们的结果,下边四个选项中正确的选项是().A.a2=(a)2≥-a2B.a2>(a)2>-a2C.a2<(a)2<-a2D.-a2>a2=(a)2二、填空题1.-0.0004=________.2.若20m是一个正整数,则正整数m的最小值是________.三、综合提升题1.先化简再求值:当a=9时,求a+12a a2的值,甲乙两人的解答以下:甲的解答为:原式=a+(1a)2=a+(1-a)=1;乙的解答为:原式=a+(1a)2=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原由是__________.2.若│1995-a│+ a 2000=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a?的值是正数仍是负数,去掉绝对值)3.若-3≤x≤2时,试化简│x-2│+(x3)2+x210x25。
八年级数学导学案(15_2_2分式的混合运算(4))
八年级数学导学案(八年级备课组)课题:15.2.2 分式的混合运算(4)学教目标:明确分式混合运算的顺序,熟练地实行分式的混合运算. 学教重点:熟练地实行分式的混合运算.学教难点:熟练地实行分式的混合运算.学教过程一、温故知新: (1)说出有理数混合运算的顺序.(2)分式的混合运算与有理数的混合运算顺序相同计算:(1)2131111x x x x +⎛⎫-÷ ⎪+--⎝⎭ (2) 22224y y x x ⎛⎫⎛⎫÷- ⎪ ⎪⎝⎭⎝⎭ 分析:这两道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要实行约分,注意运算的结果要是最简分式或整式。
(3)探究此题怎样计算:211x x x -++ ⑷ 221111x x x -⎛⎫-÷ ⎪++⎝⎭二、学教互动:计算(1)x x x x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.(2)2224442y x x y x y x y x y y x x +÷--+⋅- (3)2214a ab b a b b ⎛⎫⋅-÷ ⎪-⎝⎭ [分析] 这道题先做乘除,再做减法。
[分析]先乘方再乘除,然后加减。
三、课堂检测 计算:⑴ 221169926x x x x x ++-+-+ ⑵ 211a a a ---(3) 232a b b a b b a++-- (4) 2293424a a a a --÷-+四、小结与反思:五、作业 计算(1)2222x y x y x y x y -+-+- (2)422a a ++-;。
2022-2023新人教版八年级数学下册导学案全册
2022-2023新人教版八年级数学下册导学案全册第一单元:有理数的加减第一课时:有理数的加法- 研究目标:掌握有理数的加法运算- 研究内容:正数加正数、负数加负数、正数加负数、有理数加零的运算法则- 研究重点:灵活运用有理数的加法规则解决实际问题- 研究方法:理解规则,多做练题第二课时:有理数的减法- 研究目标:掌握有理数的减法运算- 研究内容:正数减正数、负数减负数、正数减负数、有理数减零的运算法则- 研究重点:理解减法的本质,解决实际问题- 研究方法:理解规则,多做练题第三课时:加减混合运算- 研究目标:运用有理数加减法解决实际问题- 研究内容:有理数的混合运算,包括正数、负数的加减混合运算- 研究重点:分析问题,运用加减法的规则解决问题- 研究方法:多做实际问题练,加强思维训练第二单元:比例与相似第一课时:比例- 研究目标:了解比例的概念,掌握比例的基本性质- 研究内容:比例的定义、比例的基本性质- 研究重点:掌握比例的性质,能够应用到实际问题中- 研究方法:理解概念,多做练题第二课时:比例的应用- 研究目标:学会应用比例解决实际问题- 研究内容:比例的应用,包括物体的放大缩小、图形的相似等- 研究重点:分析问题,应用比例的知识解决实际问题- 研究方法:多做应用题,强化实际操作能力第三课时:相似图形- 研究目标:了解相似图形的性质和判定条件- 研究内容:相似图形的定义、相似图形的性质- 研究重点:掌握相似图形的性质和确定相似关系的条件- 研究方法:理解概念,多做练题......(继续给出下一单元的导学案)。
新人教版八年级数学下导学案(全册)
新人教版八年级数学下导学案(全册)导学目标1.了解八年级数学下学期的学习内容和重点。
2.掌握学习方法和技巧,提高自主学习能力。
3.激发兴趣,增强学习动力,达到学以致用的目的。
课章安排本课程共分为以下 9 章:1.有理数的加减运算2.有理数的乘除运算3.整式的加减4.一元一次方程5.一元一次方程的应用6.几何图形的认识7.平面图形的性质8.空间图形的认识9.统计图表的制作和分析学习方法指导1. 每节课前预习在开始上课前,先预习本节课的内容。
预习时要重点阅读所学内容的目的、重点、难点等,对照教材和导学资料,理清思路,确定自己需要掌握的知识点和技能。
2. 记笔记,做好知识点概念的总结在学习和预习过程中,要及时记录下来遇到的问题、困惑和需要加强的知识点等要点,做好知识点的概念总结。
笔记可以在课后补充和完善。
3. 练习题目,加强练习认真完成教材和导学资料中的例题和练习题,加强练习,熟练掌握所学知识,做到理论联系实际。
4. 交流讨论,相互帮助在学习中,可以结伴学习、交流讨论,相互帮助、提高互动性和学习效果。
5. 总结复习,强化记忆及时总结复习所学知识点和技能,对个人掌握程度进行自我评估,找出不足之处进一步加强练习,强化记忆。
学习注意事项1.学习时要耐心细心,认真思考和分析问题,不急不躁,遇到困难要针对性地加以解决。
2.课上所学知识要及时总结、前瞻下节课程的内容,尽量形成自己的思维导图和学习笔记,方便课后回顾。
3.做题时不要死记硬背,要结合实际情况,理解原理和逻辑,并联系实际问题进行练习。
4.学习过程中要不断提高自己的自主学习能力和学习动力,积极探索、创新,促进自己的全面发展。
结语通过本次导学,相信大家对八年级数学下学期的课程安排和学习方法已经有了更全面的认知。
在学习过程中,我们一起努力、相互支持,一定能够理清思路、掌握技巧,取得更好的学习成果!。
数学课堂导学案答案
数学课堂导学案答案【篇一:新人教版八年级数学上册导学案(全有答案)】们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
新人教版八年级数学上册全册导学案(137页)
新人教版八年级数学上册全册导学案第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y=-x2,y=-12x2和y=-2x2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0.解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y 随x 的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y =ax 2与y =-ax 2的图象之间有何关系?2.已知函数y =ax 2经过点(-1,3).(1)求a 的值;(2)当x<0时,y 的值随x 值的增大而变化的情况.3.二次函数y =-2x 2,当x 1>x 2>0,则y 1与y 2的关系是__y 1<y 2__.4.二次函数y =ax 2与一次函数y =-ax(a ≠0)在同一坐标系中的图象大致是( B )点拨精讲:1.二次函数y =ax 2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y =ax 2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是(C)A.(4,4)B.(1,-4)C.(2,2) D.(0,4)2.抛物线y=x2-16与x轴交于B,C两点,顶点为A,则△ABC的面积为__64__.点拨精讲:与x轴的交点的横坐标即当y等于0时x的值,即可求出两个交点的坐标.3.画出二次函数y=x2-1,y=x2,y=x2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1抛物线y=ax2与y=ax2±c有什么关系?解:(1)抛物线y=ax2±c的形状与y=ax2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2) 3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y=ax2+c的图象与函数y=5x2+1的图象关于x轴对称,则a=__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P33~34“探究”与“思考”,掌握y=a(x-h)2与y=ax2之间的关系,理解并掌握y=a(x-h)2的相关性质,完成填空.画函数y=-12x2、y=-12(x+1)2和y=-12(x-1)2的图象,观察后两个函数图象与抛物线y=-12x2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y=a(x-h)2的顶点坐标为(h,0),对称轴为直线x=h.当a>0时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,抛物线有最低点,函数y有最小值;当a<0时,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小,抛物线有最高点,函数y有最大值.抛物线y=ax2向左平移h个单位,即为抛物线y =a(x +h)2(h>0);抛物线y =ax 2向右平移h 个单位,即为抛物线y =a(x -h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟) 1.教材P 35练习题;2.抛物线y =-12(x -1)2的开口向下,顶点坐标是(1,0),对称轴是x =1,通过向左平移1个单位后,得到抛物线y =-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象. 点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y =x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.不画图象,回答下列问题:(1)函数y=3(x-1)2的图象可以看成是由函数y=3x2的图象作怎样的平移得到的?(2)说出函数y=3(x-1)2的图象的开口方向、对称轴和顶点坐标.(3)函数有哪些性质?(4)若将函数y=3(x-1)2的图象向左平移3个单位得到哪个函数图象?点拨精讲:性质从增减性、最值来说.2.与抛物线y=-2(x+5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y=2(x+5)2.3.对于函数y=-3(x+1)2,当x>-1时,函数y随x的增大而减小,当x=-1时,函数取得最大值,最大值y=0.4.二次函数y=ax2+bx+c的图象向左平移2个单位长度得到y=x2-2x+1的图象,则b=-6,c=9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.2.能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2+k的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.难点:能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2+k的平移规律.一、自学指导.(10分钟)自学:自学课本P35~36“例3、例4”,掌握y=a(x-h)2+k与y=ax2之间的关系,理解并掌握y=a(x-h)2+k的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟 1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填写下表:解析式 开口方向 对称轴 顶点坐标 y =-2x 2 向下 y 轴 (0,0) y =12x 2+1 向上 y 轴 (0,1) y =-5(x +2)2 向下 x =-2 (-2,0) y =3(x +1)2-4向上x =-1(-1,-4)点拨精讲:解这类型题要将不同形式的解析式统一为y =a(x -h)+k 的形式,便于解答. 探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y=-12x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y=-12(x-1)2+2,∴a=-12,h=1,k=2;(2)函数y=-12(x-1)2+2与y=-12x2的图象如图;(3)观察y=-12(x-1)2+2的图象可知,当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小;(4)由y=-12(x-1)2+2的图象可知,对于一切x的值,y≤2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y=-2x2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y=-2(x-3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y=2x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y=2x2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y=2(x-1)2-3.4.已知A(1,y1),B(-2,y2),C(-2,y3)在函数y=a(x+1)2+k(a>0)的图象上,则y1,y2,y3的大小关系是y2<y3<y1.点拨精讲:本节所学的知识是:二次函数y=a(x-h)2+k的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(1)1.会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法. 3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空. 总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c化成y =a(x -h)2+k的形式,则h =-b2a ,k =4ac -b 24a;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b2a 时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象. 点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y=14x2-3x+21;(2)y=-3x2-18x-22.解:(1)y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.(2)y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.点拨精讲:第(2)小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2用总长为60 m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l =15时,场地的面积S 最大(S 的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.y =-2x 2+8x -7的开口方向是向下,对称轴是x =2,顶点坐标是(2,1);当x =2时,函数y 有最大值,其值为y =1.2.已知二次函数y =ax 2+2x +c(a ≠0)有最大值,且ac =4,则二次函数的顶点在第四象限.3.抛物线y =ax 2+bx +c ,与y 轴交点的坐标是(0,c),当b 2-4ac =0时,抛物线与x 轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a ,0);当b 2-4ac >0时,抛物线与x轴有两个交点,交点坐标是(-b±b 2-4ac2a ,0);当b 2-4ac<0时,抛物线与x 轴没有交点,若抛物线与x 轴的两个交点坐标为(x 1,0),(x 2,0),则y =ax 2+bx +c =a(x -x 1)(x -x 2).点拨精讲:与y 轴的交点坐标即当x =0时求y 的值;与x 轴交点即当y =0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x 轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x 轴的两个交点坐标时,可先用交点式:y =a(x -x 1)(x -x 2),x 1,x 2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y=ax2+bx+c,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y=a(x-h)2+k,把另一点坐标代入式中,可求出解析式;若知道抛物线与x轴的两个交点(x1,0),(x2,0),可设函数的关系式为y=a(x-x1)(x-x2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y=4x2-mx+2,当x<-2时,y随x的增大而减小;当x>-2时,y随x 的增大而增大,则当x=1时,y的值为22.点拨精讲:可根据顶点公式用含m的代数式表示对称轴,从而求出m的值.2.抛物线y=-x2+6x+2的顶点坐标是(3,11).3.二次函数y=ax2+bx+c的图象大致如图所示,下列判断错误的是(D)A.a<0B.b>0C.c>0D.ac>0第3题图第4题图第5题图4.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为(A)A.0 B.-1 C.1 D.2点拨精讲:根据二次函数图象的对称性得知图象与x轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a-b+c的值.5.如图是二次函数y=ax2+3x+a2-1的图象,a的值是-1.点拨精讲:可根据图象经过原点求出a的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有 a(2-3)(2+1)=9, ∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y=ax2+bx+c;2.顶点式y=a(x-h)2+k;3.交点式y=a(x-x1)(x-x2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.2二次函数与一元二次方程(1)1.理解二次函数与一元二次方程的关系.2.会判断抛物线与x轴的交点个数.3.掌握方程与函数间的转化.重点:理解二次函数与一元二次方程的关系;会判断抛物线与x轴的交点个数.难点:掌握方程与函数间的转化.一、自学指导.(10分钟)自学:自学课本P43~45.自学“思考”与“例题”,理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点情况,会利用二次函数的图象求对应一元二次方程的近似解,完成填空.总结归纳:抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.二次函数的图象与x轴的位置关系有三种:当b2-4ac>0时,抛物线与x轴有两个交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac<0时,抛物线与x轴有0个交点.这对应着一元二次方程ax2+bx+c=0根的三种情况:有两个不等的实数根,有两个相等实数。
八年级数学上导学案全册(新人教版)
EDCBADCB ADCBAED CBAFE DCB A EDCBA11.1全等三角形一、导学自习看教材1-2页,并解决下列问题:(聚焦学习目标1)1.找出各图中形状、大小完全相同的图形.2.举出现实生活中能够完全重合的图形的例子? 3.什么是全等形?什么是全等三角形?看教材P 3第一个“思考”及下面的两段,并解决下列问题:(聚焦学习目标2)1.一个图形经过平移、翻转、旋转后,位置变化了,但 和 都没有改变。
即平移、翻转、旋转前后的图形 .2.全等三角形的记法.如下图,△ABC 与△A 1B 1C 1全等,记作,“≌”读作 .3.指出上图中全等三角形的对应顶点、对应边和对应角.温馨提示:书写全等式时要求把对应顶点字母写在 的位置上. 看教材P 3第二个“思考”,并解决下列问题:(聚焦学习目标3) 全等三角形具有什么性质? 文字语言: 几何语言:二、研习展评(一)问题探究(一)(聚焦学习目标2) 1.在找全等三角形的对应元素时一般有什么规律?(二)问题探究(二)(聚焦学习目标3)2.如图,△ABC ≌△AED,AB 是△ABC 的最大边,AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE 的度数和线段DE,AE 的长度。
∠BAD 与∠EAC 相等吗?为什么?(三)学习体会(从知识、方法和思想等方面谈收获和体会)(四)检测反馈1.教材P 4练习1、2题.(做在书上)2.教材P 4习题11.1 1、2、3题(做在书上)3.如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,则∠DAE= ; ∠DAB= . 4.判断题1B 1ABA 1ED CBADCBAEDCBA1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等,面积也相等. ( ) 3)面积相等的三角形是全等三角形. ( ) 4)周长相等的三角形是全等三角形. ( ) 4.如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长. 11.2 三角形全等的判定 (1) 一、导学自习1.复习:什么是全等三角形?全等三角形有些什么性质? 如图,△ABC ≌△A ′B ′C ′那么相等的边是: 相等的角是:2.(聚焦学习目标2)讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2) 给出两个条件画三角形,有 种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等(3) 给出三个条件画三角形,有 种情形。
【初中数学导学案】八年级数学初二数学下册全套精品导学案
(六)反思
第2课时 分式——分式乘除法(1)
一、学习目标:
1、能说出分式约分的意义
2、掌握分式约分的方法,了解并能进行简单的分式乘法的运算
二、教学重点难点
分式约分的方法,了解并能进行简单的分式乘法的运算
三、教学过程
(一)复习导入
(1) 的公因式是
(2)因式分解下列各式:
① =② =
③ =④ =
一、学习目标:
1、使学生了解同分母、异分母的分式加减法法则。
2、使学生能熟练地进行同分母、异分母的分式加减法运算。
二、练习A组:
1、计算:
(1) (2)解:原式 = Nhomakorabea(3) (4)
(5) (6)
(7) (8)
(9) (10)
三、练习B组:
1、计算:
(1) (2)
解:原式 =
(3) (4)
(5) (6)
(4) = (5) = (6) =
7、把分式 中的a、b都有扩大2倍,则分式值( )
(A)不变 (B)扩大2倍 (C) 缩小2倍 (D)扩大4倍
8、当x取何值时,分式 的值为正数?
9、数m使得 为正整数,m的值是多少?
10、式子 的值为整数的整数x的值是多少?
(四)课堂小结
这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?
1能说出分式约分的意义2掌握分式约分的方法了解并能进行简单的分式乘法的运算二教学重点难点分式约分的方法了解并能进行简单的分式乘法的运算三教学过程一复习导入的公因式是2因式分解下列各式
【初中数学导学案】八年级数学初二数学下册全套精品导学案
八年级数学下册导学案
第16章 分式
第1课时 分式——分式基本性质
新人教版八年级下册数学导学案(总)
0.2 1-2a⑶(a-1)2⑸(-65)2a新人教版八年级下册数学导学案(总)③从运算结果来看:(a)2=,a2==第一周导学案编号001【课题】二次根式(1课时) 4.归纳,二次根式的性质有:①a≥0,a≥(双重非负性)②(a)=a(a≥0)【学习目标】1、使学生理解二次根式的概念2、使学生掌握二次根式的化简和计算【重点难点】重点:二次根式有意义的条件难点:算术平方根的意义课前准备:1、什么叫做一个数的平方根?如何表示?一般地,若一个数的等于a,则这个数就叫做a的平方根,a的平方根是2、什么是一个数的算术平方根?如何表示?③【二、合作交流】小组内交流完成教材P4练习1、2题(组内核对答案,不懂的才问)【三、展示评价】对学生自主学习和合作交流部分学习困难较大的知识点进行点评。
【四、再认重构】(请同学们静下心来认真独立完成下面的检测)1.当a是怎么样的实数时,下列各式在实数范围内有意义?若一个的平方等于a,则这个数就叫做a的算术平方根,表示为3、认真完成教材P2思考的三个小题:⑴-a+2⑵1⑷-5a⑴,⑵⑶观察以上结果,它们都有什么特点?【一、自主学习】阅读教材P2–P4,结合教材完成下面问题:1.二次根式的定义:注意:定义包含三个内容①1.必需含有二次根号“”②被开方数a≥0③a可以是数,也可以是含有字母的式子判断:2-234a m(m≥0)n2+1是二次根式的有(被开方数或者字母的取值必须大于等于零)2.二次根式有意义的条件:练习:当a是怎样的实数时,下列各式在实数范围内有意义?⑴a-2⑵5-2a⑶-2a⑷a2+23.(a)2和a2的区别:①从运算顺序来看,(a)2是而a2是;②从取值范围来看,(a)2中a而a2中a;2.计算:⑴(7)2⑵(-23)2⑶(3)2⑷(-7)253⑹(-)2⑺-(-m)2653.思维拓展:⑴若a.b为实数,且2-a+b-2=0,求2+b2-2b+1⑵已知24n是整数,求正整数n的最小值。
最新八年级数学上册全册精品导学案(pdf版,241页)
§11.1 与三角形有关的线段11.1.1 三角形的边1.理解三角形及三角形边、内角、顶点的概念,会用符号语言表示它们. 2.理解“三角形两边之和大于第三边”的含义,并会利用这个结论解决问题. 3.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.三角形 1.判断:下列图形是三角形的是( )?A .B .C .2.如图11.1.1-1,线段AB , , ,是三角形的 边 ,点A , , ,是三角形的 顶点 ,∠A , , ,是相邻两边组成的角,叫做三角形的 内角 .图11.1.1-13.顶点是A ,B ,C 的三角形,记作: △ABC ,读作“三角形ABC ”. 4.如图11.1.1-1中,顶点A 所对的边 BC 用 表示,顶点B 所对的边 用 表示,顶点C 所对的边 用 表示.EFDC BAAC EDB CBACBA试一试a答案:1.C ; 2.BC ,CD ,B ,C ,∠B ,∠C ; 4.AC ,b ,AB ,c ;小结:不在,首尾顺次;三角形的三边关系1.⎧⎪⎧⎨⎨⎪⎩⎩三边都不相等的三角形三角形底边和腰不相等的等腰三角形2.对于任何一个△ABC :(1)把顶点A ,B 看成定点,由“两点之间,线段最短”,可得 .(2)把顶点B ,C 看成定点,由“两点之间,线段最短”,可得 . (2)把顶点 , 看成定点,由“ , ”,可得 . 3.由AC BC AB +>,AB BC AC +>移项可得, , .由AC BC AB +>, 移项可得, , . 由 , 移项可得, , . 答案:1.等腰三角形,等边三角形;2.AB AC BC +>,A ,C ,两点之间,线段最短,AB BC AC +>;小结:大于;3.AB AC BC +>,AC AB BC >-,AC BC AB >-,AB BC AC +>,AB AC BC +>,AB AC BC >-,AB BC AC >-;小结:小于.学习迁移题组一:三角形的认识1.下面图形中哪些是三角形,哪些不是(是的打“√”,不是的打“×”)做一做试一试AC BC AB +>BC AB AC >-BC AC AB >-2. 图11.1.1-3中有几个三角形?用符号表示这些三角形.3.判断正误(正确的填“√”,错误的填“╳”) (1)有三个角的图形一定是三角形.( ) (2)由三条线段围成的图形叫三角形.( )答案:1.√,╳,╳,╳,╳,╳,√;2.5个,△ABC ,△BCD ,△BCE ,△ABE ,△CDE ; 3.╳,╳;小结:线段,首尾顺次.题组二:与三角形边长有关的计算1.下列长度的三条线段能否组成三角形?(能够组成的填“√”,不能组成的填“╳”)(1)4,6,11.( ) (2)5,6,11.( ) (3)5,6,10.( )2.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ). A .4cm B .5cm C .6cm D .13cmEDCBA做一做做一做3.用一条长为18cm 的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm 的等腰三角形吗?为什么?答案:1.╳,╳,√; 2.C ;3.(1)3.6cm ,7.2cm ,7.2cm ;(2)能,略.1.已知a ,b ,c 为△ABC 的边长,b ,c 满足()2230b c -+-=,且a 为方程42x -=的解,则△ABC 的形状是( ).A .直角三角形B .等腰三角形C .等边三角形D .钝角三角形2.在平面内,分别用3根、5根、6根、…火柴首尾依次相接,能搭成什么形状的三角形?通过尝试,列表表示如下,请阅读下表后,再回答问题:(1)4根火柴能搭成三角形吗?答: .(2)8根、12根火柴能搭成几种不同相状的三角形? 请在下表中画出它们的示意图.答案:1.B ;2.(1)不能;(2)8根火柴能搭成1种三角形,三边长分别为2,3,3;12根火柴能搭成3种三角形,三边长分别为4,4,4或2,5,5或3,4,5.11.1.2 三角形的高、中线与角平分线1.理解三角形的高、中线与角平分线的概念,会画这些基本线段. 2.了解三角形中心的概念,并会利用这个结论解决问题.3.通过画图,探索和认识三角形的三条中线、三条角平分线、三条高所在的直线的交点问题.高 1.如图11.1.2-1,请画出△ABC 中边BC 上的高.图11.1.2-1AB C试一试2.如图11.1.2-2,请画出△ABC 中边BC 上的高.图11.1.2-23.如图11.1.2-3,请画出△ABC 中边BC 上的高.图11.1.2-3答案:1.略; 2.略; 3.略;小结:直线,垂线;中线1.三角形中线的定义:如图11.1.2-5,连接△AB C 的顶点A 和它所对的边BC 的 ,所得线段AD 叫做边BC 上的 中线 .请在图中画出△ABC 的其它中线.图11.1.2-5ABCB CAD AB C试一试2.如图11.1.2-2,请画出△ABC 的所有中线.图11.1.2-23.如图11.1.2-3,请画出△ABC 的所有中线.图11.1.2-3答案:1.中点,略;小结:AD ,CD ,AC ;2.略; 3.略;小结:三,一点.角平分线1.三角形角平分线的定义:如图11.1.2-7,画∠A 的 AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的 角平分线 .AB CB CA试一试图11.1.2-7答案:1.平分线;小结:∠2,∠ABC ,∠4.学习迁移题组一:高线的运用1.已知AD 是△ABC 的高,∠BAD =62°,∠CAD =28°,求∠BAC 的度数.答案:1.90°或50°;小结:内部、外部、边上.做一做题组二:中线的运用1.已知在△ABC中,AD 是中线,若△AB D 的周长比△ACD 的周长小2cm ,且AB =3cm ,则AC = .2.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为12和15两部分,求三角形各边的长.答案:1.5cm ; 2.AB =AC =8,BC =11,或AB =AC =10,BC =7;小结:三边不等.题组三:角平分线的运用1.如图11.1.2-9,AE 是△ABC 的角平分线,AD 是△AEC 的角平分线,若∠BAC =80°,那么∠EAD =( ).图11.1.2-9A .30°B .45°C .20°D .60°AB D CE做一做做一做答案:1.C; 2.C;3.(1)3.6cm,7.2cm,7.2cm;(2)能,略.1.如图11.1.2-10 ,已知D,E分别是△ABG的边BC和边AC的中点,连接DE,AD,若S△ABC=24cm2,则△DEC的面积为cm2.图11.1.2-102.不等腰△ABC的两条高的长度分别为4和12,若第三条高的长为整数,试求第三条高的长.答案:1.6;2.设长度为4和12的高分别是边a,b上的,边c上的高为h,△ABC的面积为S,则有a=24S,b=212S,c=2Sh,由得36h<<,而△ABC为不等边三角形,且h为整数,故h=5.11.1.3三角形的稳定性AB D CE1.了解三角形的稳定性,并会利用三角形的稳定性解决一些实际问题.2.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.三角形的稳定性1.工程建筑中经常要采用三角形的结构,如屋顶钢架(如图11.1.3-1)其中的道理是什么?图11.1.3-12.如图11.1.3-2,试将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?图11.1.3-23.如图11.1.3-3,试将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?图11.1.3-34.如图11.1.3-4,试将四边形木架上再钉一根木条,将它的一对不相邻的顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?为什么?试一试图11.1.3-4答案:1.三角形具有稳定性;2.不会; 3.会; 4.不会,因为斜钉一根木条后,四边形变成两个三角形;小结:稳定,不稳定 ;学习迁移题组一:三角形稳定性的运用1.下列图形中有稳定性的是( ).A .正方形B .长方形C .直角三角形D .平行四边形 2.下列图形中那些具有稳定性?(1) (2) (3)(4) (5) (6)3.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?做一做答案:1.C ;2.(1)、(4)、(6);3.1根、2根、3根;小结:三角形.§11.2 与三角形有关的角11.2.1 三角形的内角1.探索和证明与三角形的内角有关的结论(三角形的内角和定于180°,直角三角形的两个锐角互余),并运用这些结论解决问题.2.学会利用平行线的性质与平角的定义给出三角形内角和的证明.3.通过从已做过的实验入手,一方面激发学生的兴趣,另一方面可以使学生从实验发现证明的思路.三角形内角和定理的证明 1.探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起,就得到一个平角,从这个操作过程中,你能发现证明三角形内角和定理的思路吗? 2.观察图11.2.1中三角形三个内角的拼合方法,回答以下问题:试一试图11.2.1-1(1)在图(1)中,∠B ∠B ',∠C ∠C ',∠A +∠B '+∠C '= ;在图(2)中,∠A ∠A ',∠B ∠B ',∠A '+∠B '+∠C = ; (2)在图(1)中,直线l 与△ABC 的边BC 有什么关系?(3)由上图你能想出证明“三角形的内角和等于180°”的方法吗?试写出证明过程.答案:1.180°; 2.略; 3.(1)=,=,180°;=,=,180°,(2)直线l 应平行于边BC ,(3)略;小结:180°;直角三角形内角和有关结论1.一个平角是 °,1个平角等于 个直角.2.如图11.2.1-2,在直角三角形ABC 中,∠C = ,由三角形内角和定理,得∠A +∠B +∠C = ,故∠A +∠B = .图11.2.1-2AB C试一试''''3.如图11.2.1-3,在△ABC 中,若∠A +∠C =90°,那么∠B.图11.2.1-3答案:1.180,2;2.90°,180°,90°;小结:互余,Rt △ABC ;3.互余;小结:直角三角形.学习迁移题组一:已知三角形的两个内角求第三个内角1.如图11.2.1-4,AD ⊥BC ,∠1=∠2,∠C =65°,求∠BAC 的度数.图11.2.1-42.如图11.2.1-5,∠A =40°,则∠1+∠2+∠3+∠4= .图11.2.1-5CA B做一做答案:1.70°;2.280°;3.直角三角形;小结:三角.题组二:已知角的关系求角度1.在△ABC 中,已知∠A +∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.2.在△ABC 中,若∠A =12∠B =13∠C ,试判断该三角形的形状.3.在△ABC 中,∠B =∠A +10°,∠C =∠B +10°,求△ABC 的各内角的度数.答案:1.∠A =30°,∠B =50°,∠C =100°;2.直角三角形;3.∠A =50°,∠B =60°,∠C =70°.1.如图11.2.1-6 ,BO ,CO 分别为∠ABC ,∠ACB 的平分线,它们的交点为O ,若∠BOC =100°,则∠A = .小结:代数法解几何计算的基本思路:通过设元,将问题转化为解方程(组)或解不等式(组).做一做图11.2.1-62.在△ABC 中,∠A=50°,高BE ,CF .交于点O ,则∠BOC = .答案:1.20°;2.分情况讨论:当△ABC 是锐角三角形时,∵BE ,CF 分别是△ABC 的高,∴∠A +∠1=90°,∠1+∠2=90°,∴∠2=∠A =50°,∴∠BOC =180°-∠2=130°;当△AB C 是钝角三角形时,∵BE ,CF 分别是△ABC 的高,∴∠1+∠A =90°,∠2+∠O =90°.又∵∠1=∠2.∴∠O =∠A =50°.11.2.2 三角形的外角1.了解三角形外角的概念及性质,并会运用三角形内角和定理、外角的性质解决相关问题.2.通过观察和画图,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯.OCBA三角形的外角 1.如图11.2.2-1,把三角形的一边BC 延长,得到∠ACD ,则∠ACB 为△ABC 的 角,∠ACD 为△ABC 的 外 角,∠ACB +∠ACD = °.图11.2.2-12.如图11.2.2-2,在△ABC 中,∠A =60°,∠C =50°,∠ABD 是△ABC 的一个外角,则∠ABC +∠ABD = °,又∠ABC +∠A +∠C = °,故∠ABD ∠A +∠C .图11.2.2-2答案:1.180;小结:延长线,补角;2.180,180,=;小结:不相邻,和.学习迁移题组一:三角形外角的定义1.写出下列图形中∠1和∠2的度数.做一做试一试∠1= ,∠2=∠1= ,∠2=∠1= ,∠2=2.如图11.2.2-3,下列选项中均为△ABC 外角的为( ).A .∠1和∠2B .∠2和∠3C .∠1和∠3D .∠1、∠2和∠3图11.2.2-3答案:1.40°,140°,110°,70°,50°,140°;2.C ;小结:2,对顶,6.题组二:三角形外角性质的运用1.如图11.2.2-4,∠BAE ,∠CBF ,∠ACD 是△ABC 的三个外角,它们的和是多少?.做一做图11.2.2-42.如图11.2.2-5,已知在△ABC 中,∠B 和∠C 的外角平分线相较于点P ,若∠BD C =40°,则∠A = .图11.2.2-5答案:1.360°; 2.100°.1.如图11.2.2-6 ,求∠A +∠B +∠C +∠D +∠E 的度数.FDCBA小结:外角可以把不在同一三角形中的几个角联系起来,也是不同三角形的内角之间相互转换的“桥梁”.图11.1.2-6答案:1.过程略,180°.§11.3 多边形及其内角和11.3.1 多边形1.了解多边形及有关概念,理解正多边形及其有关概念.2.通过类比三角形的概念归纳多边形的概念,能由实物中辨别寻找出几何图形,由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识.多边形的定义 AEB CD试一试1.请仿照三角形的定义给多边形定义.三角形的定义:由不在同一条直线上的三条线段 相接所组成的图形叫做三角形.多边形的定义:由不在同一条直线上的 线段 相接所组成的 封闭 图形叫做多边形.2.填空:形,形, 形, 形, 有 条边 有 条边 有 条边 有 条边 答案:1.首尾顺次,一些,首尾顺次; 2.三角,四边,五边,六边;小结:n边;多边形的有关概念试一试2.图11.3.1-1分别是四边形和五边形及其所有的对角线,请根据图归纳出多边形对角线的概念.图11.3.1-13.图11.3.1-2是正多边形的一些例子,请利用直尺、量角器等度量工具寻找正多边形的特征.正方形 正五边形 正六边形图11.3.1-2ABDCABDCEFABCDE答案:1.相邻,相邻两边,延长线,它的邻边,延长线;小结:相邻两边,邻边,延长线;小结:图略,不相邻,线段; 3.互余;小结:各条边.学习迁移题组一:多边形的认识1.判断下列图形是否为多边形.( ) ( ) ( )( )2.下列说法正确的个数有( )(1)由四条线段首尾顺次相接组成的图形是四边形; (2)各边都相等的多边形是正多边形; (3)各角都相等的多边形不一定是正多边形; (4)正多边形的各个外角都相等.A .1个B .2个C .3个D .4个答案:1.╳,√,╳,╳;2.A ;小结:线段,首尾顺次.做一做题组二:多边形的内角、外角和对角线做一做1.画出下列多边形的全部对角线.2.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是().A.十三边形 B.十二边形C.十一边形D.十边形3.填空:(1)从四边形的一个顶点出发没可以画出条对角线,四边形共有条对角线;(2)从五边形的一个顶点出发没可以画出条对角线,五边形共有条对角线;(3)从六边形的一个顶点出发没可以画出条对角线,六边形共有条对角线;(4)从n 边形的一个顶点出发没可以画出 条对角线,n 边形共有 条对角线.答案:1.图略;2.A ;3.1,2,2,5,3,9,()3n -,()32n n -;小结:()3n -,()32n n -.1.有一个家庭联谊会,参加的家庭全部是三口之家,在联谊会期间,每个人都要和别的家庭的每个成员握一次手.(1)若参加会议的人数为15,则一共要握手多少次? (2)若一共握手170次,则参加会议的人数是多少?答案:1.(1)90次,(2)20人(提示:将每个三口之家的成员视为多边形相邻的三个顶点,则握手次数即为多边形对角线的总数).11.3.2 多边形的内角和1.了解多边形的内角和与外角和公式,进一步了解转化的数学思想. 2.通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法.3.通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.多边形内角和公式 1.补充图形并根据所画的图填空:(1)(2)(3)试一试三角形的内角和等于 .四边形从一个顶点出发,可以引 条对角线,它们将四边形分成 个三角形,所以四边形的内角和等于 .五边形从一个顶点出发,可以引 条对角线,它们将五边形分成 个三角形,所以五边形的内角和等于 .(4)(5)答案:1.(1)180°;(2)1,2,1802360⨯=;(3)2,3,1803540⨯=;(4)3,4,1804720⨯=;(5)3n -,2n -,()2180n -⨯;小结:()2180n -⨯;多边形的外角和1.观察图11.3.2-1并填空.图11.3.2-1(1)∠1+∠EAB = ,∠2+∠ABC = ,试一试六边形从一个顶点出发,可以引 条对角线,它们将六边形分成 个三角形,所以六边形的内角和等于 .n 边形从一个顶点出发,可以引 条对角线,它们将n 边形分成 个三角形,所以n 边形的内角和等于 .……∠3+∠BCD = ,∠4+∠CDE = , ∠5+∠DEA = ,∠1+∠EAB+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEA = ; (2)∠EAB +∠ABC +∠BCD +∠CDE +∠DEA = ; (3)∠1+∠2+∠3+∠4+∠5= ;(4)五边形外角和计算公式:5⨯ -() 0 18-⨯= 180⨯= , 六边形外角和计算公式: = = , ……n 边形外角和计算公式: = = .答案:1.(1)180°,180°,180°,180°,180°,900°;(2)540°;(3)360°;(4)180°,5,2,360°,() 626180180⨯--⨯,2180⨯,360,()2180180 n n ⨯--⨯,2180⨯,360;小结:360.学习迁移题组一:多边形内角和的运用1.一个多边形的边数增加2条,则它的内角和增加( ). A .180° B .90° C .360° D .540°2.如果一个正多边形的一个内角等于150°,则这个多边形的边数是( ). A .12 B .9 C .8 D .73.一个n 边形除了一个内角之外,其余各内角之和是780°,则这个多边形的边数n 的值是多少?做一做答案:1.C ;2.A ;3.7.题组二:多边形外角和的运用1.在△ABC 中,与∠A ,∠B ,∠C 相邻的外角度数比是5:4:3,则△ABC 的最大内角是 .2.四边形的四个外角度数之比1:2:3:4,则相应各内角度数之比为 . 3.多边形的内角和与某一个外角的度数总和为1350°. (1)求多边形的边数.(2)此多边形必有一内角为多少度?答案:1.90°;2.4:3:2:1;3.直角三角形;3.(1)九边形;(2)90°.1.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形的边数为( ).A .15B .16C .17D .15或16或172.如果一个多边形的所有内角从小到大排列起来,恰好依次增加相同的度数,设最小角的度数为100°,最大角的度数为140°,求这个多边形的边数.小结:多边形外角和常有以下运用:(1)已知各相等外角度数求多边形边数; (2)已知多边形边数求各外角度数小结:运用内角和定理:(1)已知边数,求内角和(用代数式的值); (2)已知内角和,求边数(构建方程).做一做答案:1.D (解答本题需要排除的干扰信息:常常认为截去一个角是减少了一个角);2.设这个多边形的边数为n ,依题意有:()10014021802n n +⋅=-⋅,即120180360n n =-,6n ∴=.§12.1全等三角形1.理解全等和形全等三角形的概念,能识别全等三角形中的对应边、对应角.2.掌握全等三角形的性质3.在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉和识图能力,并获得用数学的思想方法处理问题的能力.全等形和全等三角形1.观察:下列图形有什么共同的特点?如果经过平移、旋转、翻折后叠放在一起它们是否能够完全重合?试一试2.探究:在图12.1-1中,把△ABC 沿直线BC 平移,得到△DEF .在图12.1-2中,把△ABC 沿直线BC 翻折,得到△DBC .在图12.1-3中,把△ABC 绕点A 旋转,得到△ADE .各图中变换前后的两个三角形全等吗?⇒图12.1-1 图12.1-2图12.1-3答案: 1.都有形状、大小相同的图形,可以;小结:重合,重合; 2.全等;小结:全等;全等三角形的性质1.观察图11.2-2并完成填空:C B A F E DDAC B EDB C A试一试⇒图11.2-2当△ABC 和△DEF 经过平移再次重合时,(1)点A 与点 重合,点B 与点 重合,点C 与点 重合;(2)AB 与 重合,BC 与 重合,CA 与 重合;(3)∠A 与 重合,∠B 与 重合,∠C 与 重合,故我们称点A 与点 ,点B 与点 ,点C 与点 是对应顶点,AB 与 ,BC 与 ,CA 与 是对应边,∠A 与 ,∠B 与 ,∠C 与 是对应角.学习迁移题组一:对应边、对应角的识别1.如图12.1-4,△OCA ≅△OBD ,请写出这两个三角形中相等的边和角.图12.1-42.已知:如图12.1-2,△ABC ≌△FDE . C B A F E DD B CAO做一做图12.1-2(1)若AB =10 cm ,则FD 的长为 ;(2)若∠A =80°,则∠D 的度数为 ;(3)若∠A =80°,∠B =40°,求∠E 的度数为 .答案:1.AC=BD ,AO=DO ,CO=BO ,∠A =∠D ,∠B =∠C ,∠COA =∠BOD ;2.10cm ,100°,60°;小结:对应边,对应角.题组二:全等三角形性质的运用1.如图12.1-5,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则α∠的度数为( ).A .70°B .75°C . 80°D .85°图12.1-52.如图12.1-6,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 _________.F E DB C A做一做图12.1-63.如图12.1-6将一张矩形的纸片ABCD沿EF折叠,使点D与点B重合,请你观察图形,有全等三角形吗?请说明理由.图12.1-6答案:1.C;2.(4,﹣1)或(﹣1,3)或(﹣1,﹣1);3.△ABE≌△GBF.理由:由四边形ABCD是矩形,知AB=CD,∠A=∠D=∠ABC=∠C=90°,由图形的折叠,知CD=GB,∠D=∠EBG=90°,∠C=∠G=90°,AB=GB,∠A=∠G,∠ABC=∠EBG,∴∠ABC-∠EBF=∠EBG-∠EBF,即∠ABE=∠GBF.故△ABE≌△GBF.小结:平移,翻折,旋转.1.如图所示是一个等边三角形,按下列要求分割图形:(1)用1条线段把图①分割成2个全等三角形图形;(2)用3条线段把图②分割成3个全等三角形图形;(3)用3条线段把图③分割成4个全等三角形图形.图①图②图③答案:1.图略(提示:①作高;②作角平分线;③连接各中点).§12.2三角形全等的判定1.理解三角形全等的判定定理,初步应用各种条件判定两个三角形全等,能够进行有条理的思考并进行简单的推理.2.经历探索三角形全等的判定的过程,体验用操作、归纳得出数学结论的过程,培养学生的动手能力以及发现、归纳、总结问题的能力.三角形全等的判定条件试一试1.如图12.2-1,△ABC ≅△A’B’C’,故有:图12.2-1 (1)AB = ,BC = ,A ’C’= ;(2)∠A = ,∠B = ,∠C’= ;(3)根据全等三角形的定义,如果△ABC 与△A’B’C’满足 分别相等、分别相等这六个条件,就能判定△ABC ≅△A’B’C’.2.探究:是否一定要满足全部六个条件,才能保证两个三角形全等呢?(1)当满足一个条件时,△ABC 与△A’B’C’全等吗?①任意一边对应相等,试画出不全等的两个三角形:②任意一角对应相等,试画出不全等的两个三角形:(2)当满足两个条件时,△ABC 与△A ’B’C’全等吗?①任意两边对应相等,试画出不全等的两个三角形:②任意两角对应相等,试画出不全等的两个三角形:C B A C'B'A'A BB'A'B B'B A C C'B'A'③任意一边及一角对应相等,试画出不全等的两个三角形:(3)当满足三个条件时,分别有几种情况呢?答案:1.(1)A ’B ’,B ’ C ’,AC ;(2)∠A ’,∠B ’,∠C ;(3)三个角,三条边;2.(1)①图略,②图略;(2)①图略,②图略,③图略;(3)三个角,三条边,两边一角,两角一边.“边边边”1.画一画:如图12.2-2是△ABC ,请根据下列步骤画出图形,并说说所画图形与已知△ABC 的关系.(1)画出B ’C ’=BC ;(2)分别以点B ’,C ’为圆心,线段AB ,AC 长为半径画弧,两弧相交于点A ’;(3)连接线段A ’B ’,A ’C ’ .图12.2-2C B B'C'B C B 'C 'AB C试一试答案:1.图略;小结:三边,边边边. “边角边”1.画一画:如图12.2-2是△ABC ,请根据下列步骤画出图形,并说说所画图形与已知△ABC 的关系.(1)画∠DA ’E =∠A ;(2)在射线A ’D 上截取A ’B ’=AB ,在射线AE 上截取A ’C ’=AC ;(3)连接线段B ’C ’ .图12.2-2答案:1.图略;小结:两边,它们的夹角,边角边.“角边角”&“角角边”1.画一画:如图12.2-2是△ABC ,请根据下列步骤画出图形,并说说所画图形与已知△ABC 的关系.(1)画A ’B ’=AB ;(2)在A ’B ’的同旁画∠DA’B’=∠A ,∠EB’A’=∠B ,A’D ,B’E 相交于点C’.图12.2-2 AB C AB C试一试试一试2.请补全下列解题步骤:如图12.2-3,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF .求证△ABC≅△DEF .证明:在△ABC 中,∠A +∠B +∠C =180°, ∴∠C =180°-∠A -∠B . 同理∠F =180°-∠D -∠E . 又∠A =∠D ,∠B =∠E , ∴∠ =∠ . 在△ABC 和△DEF 中,B EBC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≅△DEF ( )答案:1.图略;小结:两角,它们的夹边,角边角;2.C ,F ,ASA ;小结:两角,对边,角角边.“斜边直角边”1.画一画:如图12.2-4是Rt △ABC ,请根据下列步骤画出图形,并说说所画图形与已知Rt △ABC 的关系. (1)画∠MC ’N =90°;(2)在射线C ’M 上截取B ’C ’=BC ;(3)以点B ’为圆心,AB 长为半径画弧,交射线C ’N .图12.2-4AB C试一试答案:1.图略;小结:斜边,一条直角边,斜边直角边.学习迁移题组:补充条件证明全等1.如图12.2-5,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE=CF .求证:△ABC ≅△DEF .图12.2-52.如图12.2-6,AB ,CD 交于点O ,E ,F 为AB 上两点,OA =OB ,OE =OF ,∠A =∠B ,∠ACE =∠BDF ,求证:△ACE ≅△BDF .图12.2-6DFC E B AOFEDCBA做一做3.如图12.2-7,F 是△ABC 的AB 边上的一点,DF 交AC 于点E ,DE =EF ,AB ∥CD ,求证:△AFE △CDE .图12.2-74.如图12.2-8,D 是△ABC 的BC 边上的一点,且AD ⊥BC ,E 是AD 上的以点,且EB =EC ,求证:∠BAE =∠CAE .图12.2-8EDCBFAD CB EA答案:1.略(提示:用“SSS ”证全等);小结:SSS ,SAS ;2.略(提示:用“AAS ”或“ASA ”证全等);小结:ASA ;3.略(提示:用“ASA ”证全等); 4.略(提示:用“HL ”和“SAS ”证两次全等).1.如图12.2-9,已知:AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点,求证:AF ⊥CD .图12.2-9答案:1.略(提示:作辅助线AC 、AD ).EDF CBA小结:一般三角形全等的判定方法(“SSS ”、“SAS ”、“ASA ”、“AAS ”)对于直角三角形同样适用.§12.3角的平分线的性质1.掌握用尺规作已知角的平分线的方法,理解角平分线的性质和判定.2.在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.作已知角的平分线1.如图12.3-1是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是这个叫的角平分线,试证明它的道理.图12.3-1试一试答案:1.在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≅△ADC (SSS ), ∴∠BAC =∠DAC .∴AE 是∠BAD 的平分线;小结:O ,OA ,M (任意命名均可),OB ,N (任意命名均可),M ,N ,MN .角平分线的性质1.(1)请用尺规作图作出图12.3-2中∠AOB 的平分线OC ;图12.3-2(2)在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,垂足分别为D ,E ,测量PD ,PE 的长度并作比较,你得到什么结论?O AB试一试图12.3-3(3)通过(2)中的测量,你猜想角的平分线具有什么样的性质?试证明.图12.3-4答案:1.(1),(2)PE =PD ,(3)猜想:角的平分线上的点到角的两边的距离相等,证明:PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°.在△PDO 和△PE O 中,PDO PEOAOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PDO≅△PEO (AAS ).∴PD =PE ;小结:角的两边,相等.CBO ADEPOB CA MNCBOA角平分线的判定1.角的平分线上的点到角的两边的距离相等,那么到角的两边的距离相等的点是否在角的平分线上呢?试利用三角形全等证明.答案:1.略(提示:HL );小结:平分线.学习迁移题组一:角平分线性质的运用1.在三角形内部,到三角形三边的距离相等的点是( ). A .三条高的交点 B .三条中线的交点 C .三角角平分线的交点 D .不能确定2.已知在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5cm ,CD =2cm ,则△ABD 的面积等于 .3.如图12.3-5,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,并交BC 于D ,DE ⊥AB 于E ,若AB =6cm ,求△DEB 的周长.BE OA D做一做试一试图12.3-5答案:1.C ;2.5cm 2;3.AC 平分∠CAB ,∠C =90°,DE ⊥AB ,∴CD =DE .在Rt △ACD 和Rt △AED 中,AD AD CD ED =⎧⎨=⎩,∴Rt △ACD ≅Rt △AED (HL ),∴AC =AE =CB ,AB =6cm ,∴△DEB 的周长=DB +DE +EB =CD +DB +EB =CB +EB =AE +EB =AB =6cm ;小结:线段,首尾顺次.题组二:角平分线的判定1.如图12.3-6,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC .求证:AM 平分∠DAB .图12.3-62.如图12.3-7,Rt △ABC 中,∠C =90°,沿过点B 的一条直线BE 折叠△ABC ,EDCBAADB CM 小结:角平分线的性质在证明线段、角相等或三角形全等中经常用到.做一做点C 恰好落在AB 的中点D 处,则∠A 的度数是 .图12.3-7答案:1.过M 作MN ⊥AD 与N .DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MC =MN ,又M 是BC 的中点,则MB =MC .∴MB =MN .又MN ⊥AD ,MB ⊥AB .AM 平分∠DAB ;2.30°;小结:角.1.如图12.3-8所示,某铁路MN 与公路PQ 相交于点O ,且夹角为90°,其仓库G 在A 区,到公路和铁路距离相等,且到铁路图上距离为1cm . (1)在图上标出仓库G 的位置.(比例尺为1∶10000,用尺规作图); (2)求出仓库G 到铁路的实际距离.图12.3-8答案:1.(1)图略,(2)100m (0.1km ).EABCDA 区ONQMP。
数学导学案模板(学生版)
数学导学案模板(学生版)北师大版八年级数学(上册)导学案章节课题:菱形的性质与判别方法研究目标:1.掌握菱形的定义;2.掌握菱形的性质与判别方法;3.经历探索菱形的性质和判别条件的过程,会运用菱形的性质与判别方法进行简单的证明。
重点难点:菱形的性质与判别方法;用菱形的性质与判别方法进行简单的证明。
研究过程:一、自主预(独学)任务1:了解菱形的定义及其性质。
结论:菱形是四边形,四条边相等,对角线相交于垂直平分线,对角线相等。
练:自己画出一些菱形,并验证其性质。
任务2:掌握菱形的判别方法。
结论:一个四边形是菱形的充分必要条件是其四条边相等。
练:判断下列四边形是否为菱形,并说明理由。
任务3:运用菱形的性质与判别方法进行简单的证明。
结论:如果一个四边形是菱形,则它的内角和为360度。
练:证明一个四边形是菱形时,其内角和为360度。
二、合作探究归纳展示(对学、群学)任务1:探究菱形的对角线垂直平分线的性质。
结论:菱形的对角线垂直平分线,将菱形分成两个全等的直角三角形。
任务2:探究菱形的对角线长度关系。
结论:菱形的对角线相等。
任务3:探究菱形的内角和。
结论:菱形的内角和为360度。
三、讨论交流点拨提升师生点拨要点记载:掌握菱形的定义及其性质、掌握菱形的判别方法、用菱形的性质与判别方法进行简单的证明。
四、学能展示课堂闯关1、基础知识:画出一个菱形,标出其对角线和垂直平分线,说明菱形的定义及其性质。
2、拓展提升:证明一个四边形是菱形时,其内角和为360度。
3、考点链接:如果一个四边形的四条边相等,则它一定是菱形吗?学我学到的知识,我学到的方法与思想,我今后还要努力做好反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 整式的乘法与因式分解 主备:水冶镇一中八年级数学组§14.1 整式的乘法 第一课时 §14.1.1同底数幂的乘法学习目标⒈ 推理判断中得出同底数幂的乘法运算法则,并掌握“法则”的应用. ⒉经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.⒉ 组合作交流中,培养协作精神,探究精神,增强学习信心. 学习重点:同底数幂的乘法运算性质的推导和应用. 学习难点:同底数幂的乘法的法则的应用. 学习过程:一、自主学习: ⒈⑴ 阅读课本P 95-96(2)32 表示几个2相乘?23表示什么?5a 表示什么?m a 呢? (3)把22222⨯⨯⨯⨯表示成n a 的形式.⒉请同学们通过计算探索规律.(1)()())(222222222243=⨯⨯⨯⨯⨯=⨯(2)35 ⨯45= )(5=(3)7)3(-⨯6)3(-= ())(3-= (4))(⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1011011013(5)3a ⨯4a = =()a⒊计算(1)32⨯42和72 ; (2)5233⨯和73(3)3a ⨯4a 和7a (代数式表示);观察计算结果,你能猜想出ma ⨯n a 的结果吗?问题:(1)这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想这个结果有什么规律?⒋请同学们推算一下ma ⨯na 的结果?同底数幂的乘法法则:二、合作探究:(1)计算 ①310⨯410 ②3a a ⋅ ③53a a a ⋅⋅ ④x x x x ⋅+⋅22(2)计算 ①11010+⋅m n ②57x x ⋅ ③97m m m ⋅⋅ ④-4444⋅⑤()3922-⨯ ⑥12222+⋅n n ⑦ y y y y ⋅⋅⋅425 ⑧532333⋅⋅三、随堂练习:课本P 96页练习题 四.当堂检测:ma ⨯na = 1.计算:①10432b b b b ⋅⋅⋅ ②()()876x x x -⋅-③()()()562x y y ----④()()()3645p p p p ⋅-+-⋅-2.把下列各式化成()ny x +或()ny x -的形式.① ()()43y x y x ++ ②()()()x y y x y x ---23③()()12+++m my x y x3.已知8m n m n x x x +-=g 求m 的值.五.直击中考1.计算:(1)103×104;(2)a • a3 (3)a • a3•a5(4) x m×x3m+12.计算:(1)(-5) (-5)2 (-5)3 (2)(a+b)3 (a+b)5(3)-a·(-a)3 (4)-a3·(-a)2(5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)53. (1)已知a m=3,a n=8,求a m+n 的值.(2)若3n+3=a,请用含a的式子表示3n的值.(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.六、总结反思,归纳升华通过本节课的学习,你有哪些感悟和收获,与同学交流一下:①学到了哪些知识?②获得了哪些学习方法和学习经验?③与同学的合作交流中,你对自己满意吗?④在学习中,你受到的启发是什么?你认为应该注意的问题是什么?第二课时§14.1.2幂的乘方学习目标⒈理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.⒉经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.⒊培养学生合作交流意识和探索精神,让学生体会数学的应用价值. 学习重点:幂的乘方法则.学习难点:幂的乘方法则的推导过程及灵活应用. 学习过程: 一.自主学习:1填空①同底数幂相乘 不变,指数 ②=⨯32a a=⨯n m 1010 ③()()=-⨯-6733 ④=⋅⋅32a a a⑤())(2223= ())(x x =54())(223100=2计算:①23a a ⋅ ②55x x + ③()63a a -⋅ ④()33x3计算①()322和62②()342和122 ③)(3210和610问题:①上述几道题目有什么共同特点?②观察计算结果,你能发现什么规律?③你能推导一下)(nm a 的结果吗?请试一试二.合作探究:1计算①()3510 ②()3n x ③()77x -2下面计算是否正确,如果有误请改正.① ()633x x = ②2446a a a =⋅3选择题: ①计算()[])(=-52xA .7x B.7x - C.10x D.10x - ②16a 可以写成( )A.88a a +B.28a a ⋅C.()88a D.()28a4.归纳:...()mn m n a m n m m m m m mmn a a a a aa +++=⋅⋅⋅⋅==64474486447448个个 因此有:()nm a = (m,n 都是正整数)三.随堂练习 课本P 97页练习四.当堂检测:()nm a= (m,n 都是正整数)1.下列各式正确的是( ) A .()52322= B.7772m m m =+ C.55x x x =⋅ D.824x x x =⋅2.计算 ①()47p = ②()732x x ⋅= ③()()4334a a -=④ n10101057⋅⋅= ⑤()[]32b a -= ⑤()[]622-= ⑥()[]{}543a -=3.已知:a m =3 ;b n =3 ,用a ,b 表示n m +3和n m 323+4.已知168123=⎪⎭⎫⎝⎛n求n 的值5.求下列各式中的x ①624+=x x②167143-=⎪⎭⎫⎝⎛x五.直击中考 1.计算(1)();1053 (2)()43b ; (3)()().3553a a ∙ (4)()()()24432232x x x x ∙+∙(5)()()()()335210254a a a a a -∙-∙--+(6) ()[]()[]4332y x y x +∙+ (7)()()()[]22n n m m n n m -∙--2.填空:()=34x ;()=∙523x x ;若()==∙y a a a y 则,1135 .3.13+m x 可写成( )A .()13+m xB .()13+m xC .()x x m ∙3D .x x m∙34.(a 2)3a 4 等于( )A .m 9B .m 10C .m 12D . m 145.(1)已知,2832235x =⨯求x 的值. (2)已知,32=n x 求()23nx 的值.6.(1)若,210,310==y x 求代数式y x 4310+的值. (2)()n n 求,39162=的值.7.一个棱长为310的正方体,在某种条件下,其体积以每秒扩大为原来的210倍的速度膨胀,求10秒后该正方体的体积.六、总结反思,归纳升华知识梳理:________________________________________________________________; 反思与困惑:______________________________________________________________.第三课时§14.1.3积的乘方学习目标⒈探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质. ⒉探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.⒊小组合作与交流,培养学生团结协作精神和探索精神,有助于塑造他们挑战困难的勇气和信心.学习重点:积的乘方的运算.学习难点:积的乘方的推导过程的理解和灵活运用. 学习过程:一.自主学习: ⑴阅读教材P 97-98页⑵ 填空:①幂的乘方,底数 ,指数② 计算:()=3210 ()=55b ()=-mx 2③)()(5315==x ;)()(n m m n x ==⑶ 计算: (请观察比较)① ()332⨯和3332⨯ ;② ()253⨯和2253⨯ ;③ ()22ab 和()222b a ⨯④ 样计算()432a ?说出根据是什么?⑤请想一想:()=nab二.合作探究:1.下列计算正确的是( ). A.()422ab ab = B.()42222a a -=-C.()333y x xy =- D.()333273y x xy =2.计算:①()232a ②()35b - ③ ()324y x ⋅ ④()43x -三.随堂练习:课本P 98页练习四.当堂检测:()=nab1.计算:①325353⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛- ; ②()42xy - ; ③()na 3 ; ④ ()323ab - ; ⑤2.下列各式中错误的是( ) A.()123422= B.()33273a a -=- C.()844813y x xy = D.()3382a a -=-3.与()[]2323a -的值相等的是( )A.1218aB.12243aC.12243a -D.以上结果都不对 4.计算:①()2243b a ②33221⎪⎭⎫⎝⎛y x③()33n - ④()a a a 234-+-⑤ ()()20092008425.0-⨯- ⑥()()1032222x xx x --⋅-⋅-5.一个正方体的棱长为2102⨯毫米,①它的表面积是多少?②它的体积是多少?6.已知:823=+n m 求:n m 48⋅的值(提示:823=,422=)20082008818⎪⎭⎫ ⎝⎛⨯五.直击中考 1.计算:(1))125.0()(2012201281⨯ (2)52.055⨯(3)4)25.0(20112011⨯- (4))()()(23751514909090⨯⨯(5))1()()7(2009201120101--⨯⨯2.下列计算是否有错,错在那里?请改正.①()22xy xy = ②()442123y x xy = ③()623497x x =-④ ⑤2045x x x =⋅ ⑥()523x x =3.计算:①33+⋅n x x ②3254⎪⎭⎫ ⎝⎛-y x③ ()nc ab 233-④()()[]322223x x -- ⑤()()323223y x y x ⋅4.下列各式中错误的是( ) A.32x x x =⋅- B .()623x x =- C.1055m m m =⋅ D.()32p p p =⋅-5.3221⎪⎭⎫⎝⎛-y x 的计算结果是( ) A.3621y x -B.3661y x -C.3681y x -D.3681y x 6.若811x x xm m =+-则m 的值为( )A.4B.2C.8D.107.计算:⑴432a a a a ⋅⋅ ⑵()()()256x x x -⋅-⋅- ⑶()[]32a -- ⑷()[]3223xy -33234327x x -=⎪⎭⎫ ⎝⎛-⑷ ()[]3241x x -⋅--⑹()()431212+⋅+x x 8一个正方形的边长增加了3厘米,它的面积就增加39平方厘米,求这个正方形的边长?9阅读题:已知:52=m 求:m 32和m +32 解:()125522333===mm405822233=⨯=⨯=+m m 10.已知:73=n 求:n 43和n +4311.找简便方法计算:⑴()1011005.02⨯ ⑵22532⨯⨯ ⑶424532⨯⨯12.已知:2=m a ,3=n b 求:n m b a 32+的值六.总结反思,归纳升华知识梳理:1.积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab )n = a n b n(n 是正整数).2.三个或三个以上的因式的积的乘方也具有这一性质.如(abc )n = a n b n c n (n 是正整数)3.积的乘方法则可以进行逆运算.即a n b n=(ab )n (n 为正整数)方法与规律:____________________________________________________; 反思与困惑:____________________________________________________.第四课时§14.1.4整式的乘法学习目标⒈知识与技能:理解整式运算的算理,会进行简单的整式乘法运算. ⒉过程与方法:经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.⒊情感,态度与价值观:培养学生推理能力,计算能力,协作精神. 学习重点:单项式乘法运算法则的推导与应用. 学习难点:单项式乘法运算法则的推导与应用. 学习过程: 一.自主学习: ⑴P 98-99页⑵什么是单项式?次数?系数?⑶现有一长方形的象框知道长为50厘米,宽为20厘米,它的面积是多少?若长为a 3厘米,宽为b 2厘米,你能知道它的面积吗?若长为5ac 厘米,宽为2bc 厘米,你能知道它的面积吗?请试一试?二.合作探究: 1.计算4xy·3x因为:4xy·3x=4·xy·3·x =(4·3)·(x·y)·y =12x 2y. 2.仿上例计算:(1)3x 2y·(-2xy 3)= = .(2)(-5a 2b 3)·(-4b 2c)= = .观察以上每个小题的计算式子有什么特点?由此你能简便计算下列式子 (3)3a 2·2a 3 = ( )×( )= .(4)-3m 2·2m 4 =( )×( )= . (5)x 2y 3·4x 3y 2 = ( )×( )= . (6)2a 2b 3·3a 3= ( )×( )= . 得到法则:单项式与单项式相乘, 归纳:利用乘法结合律和交换律完成计算.3.完成下列计算①()()2343p p -- ②()⎪⎭⎫⎝⎛--32117a a4.你能发现什么规律吗?说说看. 单项式乘以单项式的法则:5.计算:①()3223xy x -⋅ ②()()c b b a 23245-⋅- ③b a c ab 2227⨯④()()y xz z xy 2243⨯ ⑤三.随堂练习:课本P 99页练习第1,2题 四.当堂检测:⎪⎭⎫ ⎝⎛-⨯z y x y x 62353432一家住房的结构如图,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地板砖的价格是每平方米a 元,则购买所需地砖至少多少元?y y 2x 4y 4五.直击中考 1.填空①(13a 2)·(6ab )= ; ②4y· (-2xy 2) =③(-5a 2b)(-3a)= ; ④(2x 3)·22 = ; ⑤(-3a 2b 3)(-2ab 3c)3= ; ⑥(-3x 2y) ·(-2x)2= .2.计算:⑴()()y x xy 2232- ⑵ ()()y x xz xy 210515-⎪⎭⎫⎝⎛-⑶()⎪⎭⎫ ⎝⎛--abx bc a 311162 ⑷3232⎪⎭⎫ ⎝⎛-c b ⑸514913⎪⎭⎫⎝⎛-⋅2.下列计算中正确的是( )A .()()1223322x x x -=- B.()()23322623b a ab ba =C.()()6224a x xa a -=-- D.()()5322y xxyz xy =-3.计算:()m ma a a ⋅2所得结果是( )A.m a 3B.13+m aC.m a 4D.以上结果都不对六.小结与反思第五课时§14.1.4 单项式与多项式的积学习目标⒈让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.⒉经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.⒊培养良好的探究意识与合作交流的能力,体会整式运算的应用价值. 学习重点:单项式与多项式相乘的法则. 学习难点:整式乘法法则的推导与应用. 学习过程: 一.自主学习:⑴叙述去括号法则?⑵单项式乘以单项式的法则是:⑶ 计算:①()()235x x - ②()()x x --3 ③⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛xy xy 5231 ④⎪⎭⎫⎝⎛-⋅-mn m 3152(4)写出乘法分配律?p (a+b+c )=⑸利用乘法分配律计算:①⎪⎭⎫⎝⎛+-1323233x x x ②()1326-+n m mn⑹问题二:如图长方形操场,计算操场面积?方法1: . 方法2: .可得到等式 你发现了什么规律?(乘法分配律);单项式乘以多项式的法则:()P a b c ++= 二.合作探究:⑴计算:()()322532ab ab a --⑵化简:()222210313xy y x x y xy x -⋅-⎪⎭⎫⎝⎛-⋅-⑶解方程:()()3421958--=-x x x x三.随堂练习:课本P 100页练习四.当堂检测:1.计算:⑴计算:①()8325322+-x x x ;②⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛-232211632xy xy y x③()⎪⎭⎫⎝⎛-⋅-xy y x xy 515322 ④()()()()3326510103102103⨯⨯-⨯⨯⨯2.下列各式计算正确的是( )A .()23422212321132x y x x x xy x +-=⎪⎭⎫⎝⎛---B.()()11322++-=+--x x x x xC.()2212522145y x y x xy xy x n n -=⋅⎪⎭⎫ ⎝⎛--D.()()2222225515y x y x x xy --=--3.先化简再求值:()()x x x x x x 31222---- 其中2-=x五.直击中考1.下列各题的解法是否正确,正确的请打∨错的请打× ,并说明原因.(1) 21a(a 2+a+2)=21a 3+21a 2+1 ( ) (2)3a 2b(1-ab 2c)=3a 2b-3a 3b 3 ( ) (3)5x(2x 2-y)=10x 3-5xy ( )(4)(-2x).(ax+b-3)=-2ax 2-2bx-6x ( )2.计算: ⑴ (5a 2-2b)·(-a 2) ⑵222212()5()2a ab b a a b ab -+--3.(2011中考题)先化简,再求值.2a 3b 2(2ab 3-1)-(-32a 2b 2)(3a-29a 2b 3)其中a=31,b=-3.六、归纳小结:1.用单项式乘多项式法则去括号和单项式乘单项式法则进行计算. 2.合并同类项化简.3.把已知数代入化简式,计算求值.4. 某长方形足球场的面积为(2x 2+500)平方米,长为(2x+10)米和宽为x 米,这个足球场的长与宽分别是多少米?5.你能用几种方法计算下面图形的面积S ?五、总结反思,归纳升华第六课时§14.1.4多项式与多项式的积2x 2+500学习目标⒈让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.⒉经历探索多项式与多项式相乘的运算法则的推理过程,培养学生计算能力.⒊发展有条理的思考,逐步形成主动探索的习惯. 学习重点:多项式与多项式的乘法法则的理解及应用. 学习难点:多项式与多项式的乘法法则的应用. 学习过程: 一.自主学习:⑴叙述单项式乘以单项式的法则?⑵ 计算;①()12+-x x x ②()y x xy xy 225351+⎪⎭⎫⎝⎛-(3)果把矩形剪成四块,如图所示,则:图①的面积是 n ②图②的面积是图③的面积是 a ④图④的面积是 四部分面积的和是观察上面的计算结果:原图形的面积;第一次分割后面积之和;第二次分割后面积之和相等吗?用式子表示?你能发现什么规律吗?试一试 (观察等式左边是什么形式?观察等式的右边有什么特点?)多项式乘以多项式的法则:()()a n m b ++=二.合作探究:⑴计算;①()()32-+x x ②()()1213+-x x⑵计算:① ()()y x y x 73+- ②()()y x y x 2352-+⑶先化简,再求值:()()()()y x y x y x y x 4232---+-其中:1-=x ;2=y 三.随堂练习:课本P 102练习第1,2题四.当堂检测: 1.计算()()1225-+x x 的结果是( )A.2102-xB.2102--x xC.24102-+x xD.25102--x x 2.一下等式中正确的是( )A.()()32232y xy x y x y x +-=--B.()()24412121x x x x +-=-+C.()()22943232b a b a b a -=+-D.()()2293232y xy x y x y x +-=-+3.先化简,再求值:()()()()22225533b a b a b a b a -++-++-其中8-=a ;6-=b ;五.直击中考1.判断下列各题是否正确,并说出理由 .(1).2(31)(2)36x x x x x +-=-+ ( )(2).2(2)(5)710x x x x +-=++ ( )(3).22(25)(32)641510a b a b a ab ba b +-=-+- ( )2. 选择题:下列计算结果为 x 2-5x -6的是( )A.(x -2)(x -3)B. (x -6)(x +1)C. (x -2)(x +3)D. (x +2)(x -3)3.如果ax 2+bx +c =(2x +1)(x -2),则a = b = c =4.一个三角形底边长是(5m -4n),底边上的高是(2m +3n) ,则这个三角形的面积是5.有一道题计算(2x +3)(3x +2)-6x (x +3)+5x +16的值,其中x=-666 ,小明把x=-666错抄成x=666,但他的结果也正确,这是为什么?6. 王老汉承包的长方形鱼塘,原长 2x 米,宽 x 米,现在要把四周向外扩展 y 米,问这个鱼塘的面积增加多少?六.小结与反思第七课时§14.1.4单项式除以单项式学习目标⒈ 识与技能:理解整式运算的算理,会进行简单的整式除法运算. ⒉过程与方法:经历探索单项式除以单项式的过程,体会除法的转化的思想,发展有条理的思考及语言表达能力.⒉ 感,态度与价值观:培养学生推理能力,计算能力,合作探究精神. 学习重点:单项式除法运算法则的应用. 学习难点:单项式除法运算法则的应用. 学习过程: 一. 自主学习:1.同底数幂的除法法则是什么2.填空:(1)m n n a a -⋅=______(2)()m m n a a a +⋅=3.计算:(1) ①23·22=2( ) ②103·104=10( ) ③a 4·a 3=a ( )4.计算:(8×108)÷(2×108)=5.阅读课文102104P -思考回答问题:(1)同底数幂的除法:m n a a ÷= ( 0,,a m n m n ≠>都是正整数,并且). (2)任何不等于0的数的0次幂都等于1 , 0(0)a a =≠ 1 二.合作探究:1.计算:(用幂的形式填空)①=⨯⨯⨯=÷2222222525 个;②=÷371010 = ; ③=÷37a a = . 4.类比探究:①一般地,当m 、n 为正整数,且m >n 时()()()a a a a a a a a a nm =∙∙∙∙∙∙=÷个个, ②你还能利用除法的意义来说明这个运算结果吗?③观察上面式子左右两端,你发现它们各自有什么样的特点?它们之间有怎样的运算规律?请你概括出来:5.总结法则:同底数幂的除法性质: a m ÷a n = (m 、n 为正整数,m>n ,a≠0)文字语言:同底数幂相除, .6.(1)32÷32 =9÷9= (2)32÷32 =3( )-( )=3( )=(3)a n ÷a n =a ( )-( )=a ( )=1,也就是说,任何不为0的数的 次幂等于1,即0(0)a a =≠ 1 字母作底数,如果没有特别说明一般不为0. 7.计算(1)38a a ÷ (2)()()310a a -÷- (3)()()52ab ab ÷归纳:单项式相除,把 与 分别相除作为商的 ,对于只在被除式中出现的字母,则连同它的 一起作为商的一个因. 8.计算:()am bm m +÷归纳:多项式除以单项式,先把这个 的每一项除以这个 ,再把所得的商相加.. 三、随堂练习1.()4231287x y x y ÷ ()5342515a b c a b -÷ ()()32312633a a a a -+÷2.课本P 104练习第1,2,3题 四.当堂检测: 1.做一做 (1)(x – y )7 ÷(x – y ) (2)(– x – y )3÷(x+y )22.已知3m =5,3n =4,求32m-n 的值.3.知的值。