河北省青龙满族自治县逸夫中学2012届九年级数学上学期期末质量检测试题
2012年九年级第一次质量检测数学试题
2012年九年级第一次质量检测数学试题(时间:120分钟 满分:120分)一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.2-等于( ▲ )A.2ﻩB . ﻩC .12ﻩD.12- 2.2010年我国总人口约为l 370 000 000人,该人口数用科学记数法表示为( ▲ ) A.110.13710⨯ﻩB .91.3710⨯ﻩC.813.710⨯D.713710⨯3.下列计算正确的是( ▲ )A.3a ﹣a=3ﻩﻩB.2a•a3=a6ﻩC.(3a)2=2a 6ﻩD.2a÷a=24.如图,CD∥AB ,∠1=120°,∠2=80°,则∠E 的度数是(▲ ) A.40°ﻩ B.60°ﻩC .80°ﻩ D.120°第4题5.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ▲ )A.2℃~3℃ B .3℃~6℃ C .6℃~8℃ D.2℃~8℃6.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线C D向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ▲ )A. B.C. D.第6题7.甲、乙两人沿相同的路线由A 地到B地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (k m),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( ▲ )A .甲的速度是4k m/hB .乙的速度是10km/h C.乙比甲晚出发1h D.甲比乙晚到B 地3h第7题Ots 甲乙1 2 3 4 20 108.如图,空心圆柱的主视图是(▲)第8题9.四边形ABCD的4个内角之比为A∠∶B∠∶C∠∶D∠=1∶5∶5∶1,则该四边形是( ▲)A.直角梯形B.等腰梯形 C.平行四边形D.矩形10.如图,在平面直角坐标系中,点P在第一象限,⊙p与x轴相切于Q点,与y轴交于M(0,2),N(0,8) 两点,则点P的坐标是(▲)A.(5,3) B.(3,5)ﻩC.(5,4)ﻩD.(4,5)第10题二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 因式分解2a2-8=▲12.函数1y x=-中,自变量x的取值范围是▲13.反比例函数xmy1-=的图象在第一、三象限,则m的取值范围是▲14.若方程290x kx++=有两个相等的实数根,则k=▲15.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为▲.第15题第16题16.如图,小明在A时测得某树的影长为2m,在B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为▲m17.如图,已知⊙O的半径为2,弦BC的长为23,点A为弦BC所对优弧上任意一点(B,C两点除外).则∠BAC=▲度.A B C DAB CO第17题 第18题18.如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点从点开始沿边AB 向以2mm/s 的速度移动(不与点重合),动点从点开始沿边BC 向以4mm/s 的速度移动(不与点重合).如果、分别从、同时出发,那么 经过▲秒,四边形APQC 的面积最小.三、解答题(本大题共有10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题8分)计算:(1)12)2()21(02+---π;(2)221(2).1a a a a -+---20.(本题6分)如图,□AB CD的对角线交于点O ,E、F 分别为OB 、OD 的中点,线段AE 与C F的大小和位置有什么关系?请说明理由.21.(本题6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22.(本题6分)如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A,B ,求劣弧A B与弦AB 围成的图形的面积(结果保留π).23.(本题6分)已知抛物线y =-x2+2x +2.(1)该抛物线的对称轴是,顶点坐标;yx-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6 第22题(2)(3)若该抛物线上两点A (1,y 1),B(x 2,y 2)的横坐标满足x 1>2>1,试比较1与y 2的大小.第23题24.(本题8分)(注意:乙组得6分改为1人,图中有误)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格, 成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:/分(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组。
2012年九年级(上)第一次质量分析数学试卷(含答案)
2012学年九年级第一次质量分析数学试卷一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.估计11 的值……………………………………………………………… ( ) A 、在2到3之间 B 、在3到4之间 C 、在4到5之间D 、在5到6之间2. 若正比例函数y =-2x 与反比例函数y=kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为…( )A .(2,-1)B .(1,-2)C .(-2,-1)D . (-2,1)3.过原点的抛物线的解析式是…………………………………………………… ( ) A 、y=3x 2-1 B 、y=3x 2+1 C 、y=3(x+1)2 D 、y=3x 2+x4.抛物线y =-2x 2+4x +3的顶点坐标是…………………………………………… ( ) A 、(1,5) B 、(1,-5) C 、(-1,-4) D 、(-1,-5)5.两圆的圆心都是点O ,半径分别为r 1,r 2(r 1<r 2),若r 1<OP<r 2,则有…… ( ) A 、点P 在大圆外 B 、点P 在大圆内 C 、点P 在小圆外 D 、点P 在大圆内小圆外 6.在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在……( )7.点(﹣1,y 1),(2,y 2),(3,y 3)均在函数y=6x 的图象上,则y 1,y 2,y 3的大小关系是……( )A 、y 3<y 2<y 1B 、y 2<y 3<y 1C 、y 1<y 2<y 3D 、y 1<y 3<y 28.如图1,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB=10cm ,CD=6cm ,那么AC 的长为…( )A、0.5cmB、1cmC、1.5cmD、2cm9.已知照明电压为220 (V),则通过电路中电阻R 的电流强度I(A )与电阻R (Ω)的大小关系用图象表示大致是…… ( )10、把抛物线y=x 2+bx+4的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x 2-2x+3,则b 的值为( )A 、2B 、4C 、6D 、811.下列命题:①顶点在圆周上的角是圆周角; ②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.其中真命题的个数为……( ) A 、1 个 B 、 2 个 C 、 3 个 D 、 4 个12.小莉与小明一起用A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y ,来确定点P (x ,y ),那么他们各掷一次所确定的点P (x ,y )落在已知抛物线y=-x 2+x 上的概率为( )图1图2二、填空题(每小题3分,共18分)13、若点P (2, m ) 在函数 y =x 2-1 的图像上,则 P 点的坐标是 。
2012年九年级(上)数学期末考试试卷及答案
2012学年第一学期期末考试卷九 年 级 数 学温馨提示:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分. 2.答题前,请在答题卷的密封区内填写学校、准考证号、班级和姓名等. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.试 题 卷一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.若双曲线y =2x ,经过点A (m ,-1),则m 的值为…………………………………( ▲ )A .3B .2C .-2D .-32.二次函数y =-2(x +1)2-4,图象的顶点坐标…………………………………………( ▲ ) A .(1,4) B .(-1,-4) C .(1,-4) D .(-1,4) 3.如图O 是圆心,半径OC ⊥弦AB 于点D ,AB =8,CD =2, 则OD 等于………………………………………( ▲ )A .2B .3C .D .4.已知x : y =3 : 2,则x : (x +y )= …………………( ▲ )A .35 B .53 C .85D .83 5.在Rt △ABC 中,∠C =90°,AC =3,BC =4,那么cos B 的值是………………………( ▲ )A .54 B .53 C .43 D .346.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只. 则从中任意取 一只,是二等品的概率等于……………………………………………………………( ▲ )A .112B .16C .14D .7127.如图,直线AB 切⊙O 于点C ,∠OAC =∠OBC ,则下列结论错误的是………………………………………………( ▲ A .OC 是△ABO 中AB 边上的高B .OC 所在直线是△ABO 的一条对称轴C .OC 是△AOB 中∠AOB 的平分线D .AC >BC (第3题图) (第7题图)B8.如图,下列选项中不是正六棱柱三视图的是…………………………………………( ▲ )A .B .C .D .9.有一圆心角为120o 、半径长为6cm 的扇形,若将扇形外围的两条半径OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是 ………………………………………………………( ▲ ) A .32cmB .35cmC .62cmD .24cm10.如图,已知二次函数y =ax 2+bx +c (a ≠0)图象过点(-1,0), 顶点为(1,2),则结论:①abc >0;②x =1时,函数最大值是2; ③4a +2b +c >0;④2a +b =0;⑤2c <3b . 其中正确的结论有( ▲ )A .1个B .2个C .3个D .4个二、认真填一填(本题有6小题,每小题4分,共24分) 11.抛物线222013y x x =+-的对称轴是 ▲ . 12.已知正比例函数2y x =与反比例函数2y x=的图象相交于A ,B 两点,若A 点的坐标为(1,2),则B 点的坐标为 ▲ .13.比较三角函数值的大小:cos40° ▲ cos50°.14.在“正三角形、正方形、正五边形、正六边形、等腰梯形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为 ▲ .15.如图△ABC 中边BC 所在直线与圆相切于C 点,边AC 交圆于另一点D ,若∠A =70︒,∠B =60︒,则劣弧 C D 的度数是 ▲ .(第15题图) (第16题图)16.如图,已知在直角梯形ABCD 中,AD ⊥DC ,AB ∥DC ,AB =2,DC =3,AD =7,动点P 在梯形边AB 、BC 上,当梯形某两个顶点和动点P 能构成直角三角形时,点P 到AD 之距记为d ,则d 为 ▲.ABDx (第10题图)D C三、解答题(本题有8题,共66分,各小题都要写出解答过程) 17.(本题6分)已知:△ABC 中,∠C =90°,a =3,∠A =30°,求∠B 、b 、c . 18.(本题6分)(1)请在坐标系中画出二次函数 y =-x 2+2x 的大致图象; (2)在同一个坐标系中画出y =-x 2+2x 的图象向上平移两个单位后的大致图象. 19.(本题6分)已知图中的曲线是函数5m y x-=(m 为常数) 图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函 数的解析式.20.(本题8分)在ABCD 中,过A 作AE ⊥BC 于E ,连结DE ,F 为线段DE 上一点,且∠B =∠AFE . (1)求证:△ADF ∽△DEC . (2)若AB =5,AD =33,AE =3, ①求DE 的长; ②求AF 的长.21.(本题8分)已知矩形ABCD,以点A 为圆心、AD 为半径的圆交AC 、AB 于点M 、E,CE 的延长 线交⊙A 于点F,连结AF ,CM=2,AB=4. (1)求⊙A 的半径; (2)求CE 的长;CxbA 1ABC B 1(3)求△AFC 的面积。
2012年第一学期期末九年级数学试题及参考答案
2012年第一学期期末九年级数学试题及参考答案各位同学,欢迎参加本次考试。
全卷满分为150分,考试时间为120分钟,有三大题,24题。
考试时不得使用计算器,请仔细答题。
一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.式子4化简结果正确的是( ) A .2 B .-2 C .±2 D .4 2.方程 x (x -1)=0的解是( )A .x=1B .x=0C .x=0或x=1D .x=±13.点P (2,-1)关于原点对称的点的坐标为( )A .(2,1)B .(-2,1)C .(-2,-1)D .(-1,2) 4.二次函数y=(x +2)2-3的图象的顶点坐标为( )A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3) 5.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BCD =50°, 则∠A 的度数是( )A .40°B .35°C .30°D .25°6.有4抽出的一张是中心对称图形的概率是( ).A .0B .41 C .21D .437.一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示, 那么这个圆锥的侧面展开图的面积是( )A .6πB .12πC .15πD .30π8.如图,AB 是⊙O 的直径,弦BC =2cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以2cm/s 的速度从A 点出发沿着A→B→A 的方向运动,设运动时间为t(s)(0≤t <3), 连接EF ,当△BEF 是直角三角形时,t 的值为( )A. 47B. 1C. 47或1D. 47或1或499.如图,AB 是半圆O 的直径,点P 从点O 出发,沿线段OA —弧AB —线段OB 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )10.无论x 取何实数,已知关于x 的分式kx x --212总有意义,则k 的取值范围是( )A .k ≠-1B .k >-1C .k ≥-1D .k <-1二、填空题(本题有6小题,每小题5分,共30分) 11.式子2-m 有意义,则m 的取值范围是 ;12.已知⊙O 1与⊙O 2的半径分别为2cm 、4cm ,且圆心距O 1O 2=6cm ,则⊙O 1与⊙O 2的位置关系是 ;13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .14.九年级某班有48名学生,所在教室有6行8列座位,用(,)m n 表示第m 行第n 列的座位,新学期后准备调整座位,设某个学生原来的座位为(,)m n ,如果调整后的座位为(,)i j ,则称该生作了平移[,a b ]],m i n j⎡=--⎣,并称a b +为该生的位置数。
九年级数学上册期末试题_含答案(2012.12)
(第7题图)B'A'ABC座位号2012---2013学年度第一学期期末监测试题 九年级数学一、选择题(每小题3分,共30分)1、下列方程中一定是关于x 的一元二次方程是( )A 、)1(2)1(32+=+x x B、02112=-+x xC、02=++c bx ax D、0)7(2=+-x x x 2、在下列图形中,既是中心对称图形又是轴对称图形的是( )3、下列事件中,是必然事件的是( )A 打开电视机,正在播放新闻B 父亲年龄比儿子年龄大C 通过长期学习,你会成为数学家D 下雨天,每个人都打伞4、袋子中有两个同样大小的4个小球,其中3个红球,1个白球,从袋中 任意地同时摸出两个小球,则这两个小球颜色相同的概率是( ) A 、21 B 、31 C 、32 D 、415、如图,∠A 是⊙O 的圆周角,∠A=40°,则∠OBC=( ) A 、30° B 、40° C 、 50° D 、 60°6、下列语句中,正确的有( )A 、在同圆或等圆中,相等的圆心角所对的弧相等。
B 、平分弦的直径垂直于弦。
C 、长度相等的两条弧相等。
D 、圆是轴对称图形,任何一条直径都是它的对称轴。
7、如图,将△ABC 绕点C 旋转60°得到△C B A '',已知AC=6,BC=4,则线段AB 扫过的图形的面积为( ) A 、32π B 、310π C 、6π D 、38π。
8、如图,AB 是⊙O 的直径,∠ABC=30°,则∠BAC 的度数是( ) A.90° B.60° C.45° D.30°9、直线AB CD BC 分别与⊙O 相切于E 、F 、G且A B ∥CD ,若OB=6cm,0C=8cm ,则BE+CG 的长等于( ) A 、13 B 、12 C 、11 D 、1010、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 、 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是( ) A 、外离 B 、外切 C 、相交 D 、内含。
2012年上学期期末九年级数学试题卷含答案
2012学年第一学期期末考试卷九年级数学亲爱的同学:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分; 2.答题前,请在答题卷的密封区内填写学校、学籍号、班级和姓名; 3.不能使用计算器;4.所有答案都必须做在答题卷规定的位置上,注意试题序号和答题序号相对应.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1. 如图,△ABC 中,DE ∥BC ,则下列结论:①△ADE ∽△ABC ;②ECAE DB AD =;③AC ABAE AD =,正确的有 A .①② B .①③ C .②③ D .①②③2.已知反比例函数1m y x-=的图像分布在二、四象限,则实数m 的取值范围是 A .m <1 B .m >1 C . m <0 D . m >0 3.二次函数142--=x x y 图象的顶点的纵坐标是A. —5B. -4C. -3D.-1 4.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径, ∠BAD =80°, 且弦BD 垂直于AC ,则∠C 的度数是 A .40° B .45° C .50° D .55° 5.请比较sin 30°、cos 45°、tan 60°的大小关系A. sin 30°< cos 45°<tan 60°B. cos 45°< tan 60°<sin 30°C. tan 60°< sin 30°<cos 45°D. sin 30°< tan 60°<cos 45°6.在比例尺为10000:1的地图上,某建筑物在图上的面积为50 cm 2,则该建筑物实际占地面积为(第1题)(第4题)A .50 m 2B .5000 m 2C .50000 m 2D . 500000 m 27. 在△ABC 中,∠C =90°,若cosB =43,则tanB 的值为 A.53 B. 54C. 47D. 378.如图,在等边△ABC 中,AB 、AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =1,那么△ABC 的面积为A.33B.3C. 3D. 49.正比例函数y 1=kx 的图像和反比例函数y 2=2k x的图像交于A (-1,3)、B (1,-3)两点,若y 1 <y 2,则x 的取值范围是A. x <-1或x >1B. x <-1或0<x <1C. -1<x <0或x >1D. -1<x <0或 0<x <110.如图, 将二次函数2)47(22--=x y 的图象向上平移m 个单位后,与二次函数4)2(21-+=x y 的图象相交于点A ,过A 作x 轴的平行线分别交1y 、2y 于点B 、C ,当 AC =21BA 时,m 的值是 A. 2 B.1643C.415D. 4二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11.如果3=-+yx yx ,那么y x :等于 ▲ . 12. 已知二次函数322+-=x x y ,当0≤x ≤3时,y 的最大值是 ▲ ,y 的最小值是 ▲ .13.把一个半圆形纸片卷成圆锥的侧面,那么圆锥母线与高的夹角为 ▲ .(第8题)(第10题)14.在平面直角坐标系中,将抛物线62--=x x y 向左(或向右)平移m 个单位,使平移后的抛物线恰好经过原点,则m 的值为 ▲ . 15.如图,△ABC 的外接圆⊙O 的半径为2,AC =3,则sinB = ▲ . 16.如图,△ABC 、△D CE 、△GEF 都是正三角形,且B 、C 、E 、F 在同一直线上,A 、D 、G 也在同一直线上,设△ABC ,△DCE ,△GEF 的面积分别为123,,S S S.当9,421==S S 时,3S = ▲ ;若依次作正三角形,则第n 个正三角形的面积n s = ▲ .三. 全面答一答 (本题有7个小题, 共66分) 17.(本小题6分)计算:1245tan 30cos 1241--︒⋅︒-18.(本小题8分)如图,在44⨯的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. 求证:EDF BAC ∠=∠19.(本小题8分)小明要制作一个三角形的钢架模型,在这个三角形中,长度为x (单位:cm )的边与这条边上的高之和为20cm ,这个三角形的面积S (单位:cm 2)随x (单位:cm )的变化而变化.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?(第15题)(第16题)(第18题)20.(本小题10分)如图,矩形广场ABCD ,AB =4m ,BC =3m ,E 是AD 边上一点,AE =2m ,AC 、BE 交于F ,把广场分为四部分,这四部分分别由红、黄、蓝、白四种颜色的地砖铺成,四种颜色的地砖位置如图所示,则黄色部分面积是多少平方米?21.(本小题10分)由于现在中学生的视力问题日渐严重,某课桌生产单位根据保护视力“一寸,一拳,一尺”的要求,给初三学生制作了新课桌. 现测得某学生坐在椅子上时的部分数据,如图所示:高AB =1.2米,腿长BC =0.3米,课桌到脚的距离DC =0.2米. 假如人眼A 看俯角为53°,距离为1尺(约0.3米)的P 处看得最清楚.(1)课桌的高FD 为多少?(2)如果课桌到人的距离即E 到AB 的距离为一拳(约0.04米),则要使EP 等于GE 的四分之一,则FG 等于多少?(sin 53°= 0.8 ,cos 53°=0.6,tan 53°=1.3)22.(本小题12分) 如图,正方形ABCD 边长为2,AB ∥x 轴,顶点A 恰好落在双曲线xy 21=上,边CD 、BC 分别交该双曲线于E 、F 点,若线段AE 过原点. 求:(1)点E 的坐标; (2)△AEF 的面积.23.(本小题12分)如图,⊙Q 过坐标原点,分别与x 轴、y 轴交于点A 、B ,劣弧AO 的度数是90°.经过A 、B 两点的抛物线32++=bx x y 交x 轴于另一点C .(1)求A 、B 两点的坐标; (2)求抛物线的解析式;E A(第20题)(第22题)D CB(第21题)(3)若点M 是抛物线在y 轴右侧部分上的一个动点,作MN ⊥x 轴于点N .问是否存在点M ,使△CMN 与△OCB 相似?若存在,求出点M 的坐标;若不存在,说明理由.2012学年第一学期九年级期末考试数学 参考解答和评分标准一.选择题(每题3分,共30分)二.填空题(每题4分,共24分)11. 2; 12. 6, 2; 13. 30°; 14. 3或者2 ; 15. 43; 16.481,1)49(4-n ; 三.解答题(共66分)17.(本题6分)解:原式=211233241-⨯-⨯=21-(4+2分) 18.(本题8分)解:由图形可得AB =2,AC =52, BC =22, DE =2, DF =10, EF =2,----3分∴EFBCDF AC DE AB == ------------2分 ∴△ABC ∽△DEF ------------2分 ∴ EDF BAC ∠=∠------------1分(第23题)(第23题备用图)19.(本题8分)解:(1)2)20(x x S -=------------4分 (2)当x =10时,S 最大值是50------------4分20.(本题10分)解:过点F 做BC ,AD 的垂线段FM ,FN ----------1分AE ∥BC∴△AEF ∽△CBF ------------2分 AE =2,BC =3,AB =4∴FM =2.4,FN =1.6------------4分 ∴△AEF 的面积为1.6------------1分∴黄色面积为3×4÷2-1.6=4.4-----------2分21.(本题10分)解:(1) FD=AB -AP sin 53°=1.2-0.3×0.8=0.96------4分 (2)EP =AP cos 53°-0.04=0.3×0.6-0.04=0.14-----3分 GE =4EP =0.56FG =GE +0.04-BD =0.1------------3分22.(本题12分)解: (1)∵点A ,E 关于原点对称 ∴A ,E 的纵坐标相反------------2分∵正方形边长为2 ∴点A 的纵坐标为-1,点E 的纵坐标为1-------2分把y =1代入xy 21=,得到点E (21,1)-----2分(2)把y =-1代入xy 21=,得到点A (-21,-1)----2分 ∴F (23,31) C (23,1) D (-21,1) ------------2分 NMD CB(第21题)∴△AEF 的面积=34213222122232=÷⨯-÷⨯-÷⨯⎪⎭⎫⎝⎛+---------2分23.(本题12分)解:(1)连接AB , ∵抛物线与y 轴交于点(0,3) ∴点B (0,3)------------2分 ∵劣弧AO 的度数是90° ∴∠ABO=︒45 ∵ ∠AOB=︒90 ∴点A (3,0) ------------2分(2)把点A 的坐标代入抛物线得到b =-4 ------------2分 ∴抛物线342+-=x x y ------------1分 (3)把y =0代入抛物线解得点C (1,0)设点M 的坐标为(34,2+-a a a )则点N 的坐标为(a ,0)------------1分 当10<<a 时,∵△CMN 与△OCB∴313412=+--a a a 或者3 解得a =0(舍)或1(舍)或38(舍)------------1分 当31<<a 时,∵△CMN 与△OCB ∴31)34(12=+---a a a 或者3 解得a =0(舍)或1(舍)或38------------1分 当3>a 时,∵△CMN 与△OCB∴313412=+--a a a 或者3 解得a =1(舍)或6或310------------1分∴a =38或6或310------------1分 综上所述:M 1(38,95 )或M 2(6,15)或M 3(310,97).。
2012年九年级数学上册期末测试卷
2012年九年级数学上册期末测试卷2012年九年级数学上册期末测试卷一.选择题(每题3分,共30分).1.已知直角三角形中30deg;角所对的直角边长是2cm,则斜边的长是( ).A.2 cmB.4 cmC.6 cmD.8 cm2.在RtABC中,ang;C=90deg;,AB=13,AC=12,BC=5,则下列各式中正确的是( ).A. B. C. D.3.在Rt△ABC中,ang;C=90deg;,若,则cosB的值为( ).A. B. C. D.14.在△ABC中,ang;C=90deg;,ang;B=2ang;A,则cosA 等于( ).A. B. C. D.5.在△ABC中,ang;C=90deg;,如果,那么sinB的值等于( ).A. B. C. D.6.下列关系式中,属于二次函数的是(x为自变量) ( )A B C D7.如图,Rt△ABC中,ang;ACB=90deg;,CDperp;AB,D为垂足,若AC=4,BC=3,则sinang;ACD的值为( ).8.如图,为测楼房BC的高,在距离房30米的A处测得楼顶的仰角为,则楼高BC的高为( ).A. 米B. 米C. 米D. 米9.二次函数的最小值为( )A 2B -2C 3D -310 、设抛物线y=x2+8x-k的顶点在x轴上,则k的值为( )A -16B 16C -8D 8二.填空题(每题3分,共21分).11.若 .12、如图,P是ang;AOx的边OA上的一点,且点P的坐标为(1, ),则ang;AOx=_______度.13.如图,飞机A在目标B的正上方1 000米处,飞行员测得地面目标C的俯角为30deg;,则地面目标B、C之间的距离是______________.14.如图,有一斜坡AB长40m,此斜坡的坡角为60deg;,则坡顶离地面的高度为 .(答案可以带根号)15.若二次函数y=ax2的图象经过点(-1,2),则二次函数y=ax2的解析式是___.16、已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的解析式是 .17、已知二次函数的图象如图所示,则a 0,b 0,c 0。
冀教版九年级数学上册期末测试卷【参考答案】
冀教版九年级数学上册期末测试卷【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.因式分解:a 3-a =_____________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、B6、B7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、a(a-1)(a + 1)3、84、425、-36、454353x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、x=12、(1)12,32-;(2)证明见解析.3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m1,2.4、河宽为17米5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
(完整word版)冀教版九年级上学期期末考试数学试卷
九年级第一学期期末测试卷一、选择题1.方程2350x x --=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根 2.在Rt △ABC 中,∠C =90º,35BC AB ==,,则sin A 的值为A.35 B.45 C. 34 D. 433.若右图是某个几何体的三视图,则这个几何体是A. 长方体B. 正方体C. 圆柱D.圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是 A.16 B. 13 C. 12 D. 235.如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为A. 1B. 2C. 4D. 86.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC =2,则OF 的长为A .12B .34C .1D .28.如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的图1 图2A .线段EFB .线段DEC .线段CED .线段BE 二、填空题9.若扇形的半径为3cm ,圆心角为120°,则这个扇形的面积为__________ cm 2.10.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为 m.11.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为__________.12.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===. (1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F =,则正整数m 的最小值是_____________.三、解答题 13.计算:()()1201511sin 30 3.142-⎛⎫-+-π-+ ⎪⎝⎭.14.如图,△ABC 中,AB =AC ,D 是BC 中点,BE ⊥AC 于E . 求证:△ACD ∽△BCE .15.已知m 是一元二次方程2320x x --=的实数根,求代数式(1)(1)1m m m+--的值.B16.抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC .(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.18.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E . (1)求线段CD 的长; (2)求cos ABE ∠的值.四、解答题19.已知关于x 的一元二次方程()2220mx m x -++=有两个不相等的实数根12,x x .(1)求m 的取值范围; (2)若20x <,且121x x >-,求整数m 的值.A20. 某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x 的产品时,当天的利润为y 万元.(1)求y 关于x 的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.21.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切,射线AO 交BC 于点E ,交⊙O 于点F .点P 在射线AO 上,且∠PCB =2∠BAF . (1)求证:直线PC 是⊙O 的切线;(2)若AB AD =2,求线段PC 的长.22.阅读下面材料:小明观察一个由11⨯正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A 、B 、C 是点阵中的三个点,请在点阵中找到点D ,作出线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出AOD ∠的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE CD ⊥于F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC =_______________;tan AOD ∠=_______________;C图1 图2 图3参考小明思考问题的方法,解决问题:如图3,计算:tan AOD ∠=_______________.五、解答题23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.24.如图1,在△ABC 中,BC =4,以线段AB 为边作△ABD ,使得AD=BD , 连接DC ,再以DC 为边作△CDE ,使得DC = DE ,∠CDE =∠ADB =α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系;(2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ① 若α=90°,依题意补全图3, 求线段AF 的长; ②请直接写出线段AF 的长(用含α的式子表示).图2 图3 备用图BBB图1图325. 在平面直角坐标系xOy 中,设点()11,P x y ,()22,Q x y 是图形W 上的任意两点.定义图形W 的测度面积:若12x x -的最大值为m ,12y y -的最大值为n ,则S m n =为图形W 的测度面积.例如,若图形W 是半径为1的⊙O .当P ,Q 分别是⊙O 与x 轴的交点时,如图1,12x x - 取得最大值,且最大值m =2;当P ,Q 分别是⊙O 与y 轴的交点时,如图2,12y y -取得最大值,且最大值n =2.则图形W 的测度面积4S mn ==.(1)若图形W 是等腰直角三角形ABO ,OA =OB =1.①如图3,当点A ,B 在坐标轴上时,它的测度面积S = ; ②如图4,当AB ⊥x 轴时,它的测度面积S = ;(2)若图形W 是一个边长为1的正方形ABCD ,则此图形测度面积S 的最大值为 ;(3)若图形W 是一个边长分别为3和4的矩形ABCD ,求它的测度面积S 的取值范围.图1图2九年级第一学期期末测试卷答案二、填空题(本题共16分,每小题4分) 9. 3π;10. 24 ;11. 122,1x x =-= ; 12. (1)37,26 三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分) 解:原式11122=-+-+ ……………………………………………………………………4分 12=. ………………………………………………………………………………5分 14. (本小题满分5分)证明:∵AB =AC ,D 是BC 中点,∴AD ⊥BC . …………………………………………………………………………1分 ∴∠ADC =90°. ∵BE ⊥AC , ∴∠BEC =90°.∴∠ADC =∠BEC . ……………………………………………………………………3分 在△ACD 和△BCE 中,ACD BCE ADC BEC ∠=∠⎧⎨∠=∠⎩,, ∴△ACD ∽△BCE .……………………………………………………………………5分15. (本小题满分5分)解:由已知,可得2320m m --=.………………………………………………………1分∴223m m -=. ………………………………………………………………………2分∴原式=2211233m m mm m m---===.………………………………………………5分16. (本小题满分5分)解一:设平移后抛物线的表达式为22y x bx c =++. …………………………………1分∵平移后的抛物线经过点(0,3)A ,(2,3)B , ∴3,382.c b c =⎧⎨=++⎩ ………………………………………………………………………3分解得4,3.b c =-⎧⎨=⎩…………………………………………………………………………4分所以平移后抛物线的表达式为2243y x x =-+. ………………………………5分 解二:∵平移后的抛物线经过点(0,3)A ,(2,3)B ,∴平移后的抛物线的对称轴为直线1x =. …………………………………………1分 ∴设平移后抛物线的表达式为()221y x k =-+. ………………………………2分 ∴()23221k =⨯-+..………………………………………………………………3分 ∴1k =..………………………………………………………………………………4分 所以平移后抛物线的表达式为()2211y x =-+. ………………………………5分 17. (本小题满分5分)解:(1)将2x =代入2y x =中,得224y =⨯=.∴点A 坐标为(2,4).………………………………………………………………1分 ∵点A 在反比例函数ky x=的图象上, ∴248k =⨯=.……………………………………………………………………2分 ∴反比例函数的解析式为8y x=. ………………………………………………3分 (2)()1,8P 或()1,8P --.……………………………………………………………5分 18. (本小题满分5分)解:(1)∵△ABC 中,∠ACB =90°,4sin 5A =, BC =8, ∴8104sin 5BC AB A ===.…………………………………………………………1分 ∵△ABC 中,∠ACB =90°,D 是AB 中点, ∴152CD AB ==.…………………………………………………………………2分(2)解法一:过点C 作CF ⊥AB 于F ,如图.∴∠CFD =90°.在Rt △ABC中,由勾股定理得6AC ===.∵CF AB AC BC ⋅=⋅, ∴245AC BC CF AB ⋅==.………………………………3分 ∵BE ⊥CE ,∴∠BED =90°.∵∠BDE =∠CDF ,∴∠ABE =∠DCF .………………………………………4分∴24245cos cos 525CF ABE DCF CD ∠=∠===. …………………………………5分 解法二:∵D 是AB 中点,AB =10,∴152BD AB ==.……………………………………………………………………3分 ∴12BDCABC S S ∆∆=. 在Rt △ABC中,由勾股定理得6AC ===.∴168242ABC S ∆=⨯⨯=. ∴12BDC S ∆=.∴1122BE CD =. ∵5CD =,∴245BE =. ………………………………………………4分∵BE ⊥CE , ∴∠BED =90°.∴24245cos 525BE ABE BD ∠===.……………………………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)由已知,得0m ≠且()()2222424420m m m m m ∆=+-⨯=-+=->,∴0m ≠且2m ≠.…………………………………………………………………2分 (2)原方程的解为()()222m m x m+±-=.∴1x =或2x m=. …………………………………………………………………3分 ∵20x <,∴11x =,220x m=<.∴0m <.A∵121x x >-, ∴12m>-.∴2m >-. 又∵02m m ≠≠且,∴20m -<<.……………………………………………………………………4分 ∵m 是整数,∴1m =-. ………………………………………………………5分20. (本小题满分5分)解:(1)()()210052410180400y x x x x =-+=-++. ……………………………2分(110x ≤≤且x 为整数).(2)∵()22101804001091210y x x x =-++=--+.…………………………3分又∵110x ≤≤且x 为整数,∴当9x =时,函数取得最大值1210.…………………………………………4分 答:工厂为获得最大利润,应生产第9档次的产品,当天的最大利润为1210万元.………………………………………………………………5分21. (本小题满分5分)解:(1)连接OB ,OC .∵AD 与⊙O 相切于点A ,∴FA ⊥AD .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴FA ⊥BC .……………………………………1分∵FA 经过圆心O ,∴OF ⊥BC 于E ,CF BF =.∴∠OEC =90°,∠COF =∠BOF . ∵∠BOF =2∠BAF . ∴∠COF =2∠BAF . ∵∠PCB =2∠BAF , ∴∠PCB =∠COF .∵∠OCE +∠COF =180°-∠OEC =90°,∴∠OCE +∠PCB =90°,即∠OCP =90°. ∴OC ⊥PC .∵点C 在⊙O 上,∴直线PC 是⊙O 的切线.…………………………………………………………2分(2) ∵四边形ABCD 是平行四边形,∴BC=AD=2. ∴BE=CE =1.在Rt △ABE 中,∠AEB =90°,AB∴3AE ==.…………………………………………………………3分设⊙O 的半径为r ,则OC OA r ==,3OE r =-.在Rt △OCE 中,∠OEC =90°, ∴222OC OE CE =+. ∴ ()2231r r =-+.解得53r =.…………………………………………………………………………4分 ∵∠COE=∠PCE ,∠OEC=∠CEP =90°, ∴△OCE ∽△CPE .∴OE OCCE CP =. ∴553331CP-=. ∴54CP =.……………………………………………………………………………5分22.(本小题满分5分)(1)如图,线段CD 即为所求;……………………1分 (2)OCtan AOD ∠=5;……………………3分 (3)tan AOD ∠=74.…………………………………5分五、解答题:(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分) 解:(1)∵反比例函数ky x=的图象经过点(1,4)A , ∴4k =.………………………………………………………………………1分 ∴反比例函数的解析式为4y x=. ∵反比例函数4y x=的图象经过点(,)B m n , ∴4mn =.………………………………………………………………………2分 (2)∵二次函数2(1)y x =-的图象经过点(,)B m n ,∴2(1)n m =-.…………………………………………………………………3分 由(1)得4mn =,∴原式2(21)24mn m m mn n =-++-B24184m n =-+-() 484n n =+-8=.……………………………………………………………………4分(3)由(1)得反比例函数的解析式为4y x=. 令y x =,可得24x =,解得2x =±.∴反比例函数4y x=的图象与直线y x =交于点(2,2),(2,2)--.…………………………5分当二次函数2(1)y a x =-的图象经过点(2,2)当二次函数2(1)y a x =-的图象经过点(2,2)--∵二次函数2(1)y a x =-的顶点为(1,0),∴由图象可知,符合题意的a 的取值范围是02a <<或29a <-.…………7分24. (本小题满分7分)(1) AD +DE =4. ……………………………………………………………………………………1分 (2)① 补全图形.……………………………………………………………………………………2分 解: 设DE 与BC 相交于点H ,连接 AE ,交BC 于点G ,如图. ∠ADB =∠CDE =90°, ∴∠ADE =∠BDC . 在 △ADE 与△BDC 中,,,,AD BD ADE BDC DE DC =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△BDC .……………………………………3分 ∴AE= BC ,∠AED =∠BCD .DE 与BC 相交于点H ,∴∠GHE =∠DHC .∴∠EGH=∠EDC=90°.…………………………………………………………………………4分 线段CB 沿着射线CE 的方向平移,得到线段EF , ∴EF = CB =4, EF // CB . ∴AE= EF .CB//EF ,∴∠AEF=∠EGH=90°. AE=EF ,∠AEF=90°,∴∠AFE=45°. ∴AF =cos 45EF…………………………………………………………………………5分② 8sin2AF α=. ………………………………………………………………………………7分25.(本小题满分8分)解:(1)① 1;………………………………………………………………………………1分② 1.………………………………………………………………………………2分 (2) 2. …………………………………………………………………………………4分 (3)不妨设矩形ABCD 的边AB =4,BC =3.由已知可得,平移图形W 不会改变其测度面积S 的大小,将矩形ABCD 的其中一个顶点B 平移至x 轴上.当顶点A ,B 或B ,C 都在x 轴上时,如图5和图6,矩形ABCD 的测度面积S 就是矩形ABCD 的面积,此时S =12.………………………………5分 当顶点A ,C 都不在x 轴上时,如图7. 过A 作直线AE ⊥x 轴于点E ,过C 作直线CF⊥x 轴于点F , 过D 作直线GH ∥x 轴,与直线AE ,CFG ,则可得四边形EFGH 是矩形.当点P ,Q 分别与点A ,C 重合时,12x x -且最大值m EF =;当点P ,Q 分别与点B ,D 重合时,12y y -取得最大值n ,且最大值n GF =. ∴图形W 的测度面积S EF GF =⋅.∵∠ABC =90°,∴∠ABE +∠CBF =90°. ∵∠AEB =90°,∴∠ABE +∠BAE =90°. ∴∠BAE =∠CBF .又∵90AEB BFC ∠=∠=,∴△ABE ∽△BCF .…………………………………………………………………………6分 ∴43AE EB AB BF FC BC ===.设4,4AE a EB b ==()0,0a b >>,则3,3BF a FC b ==, 在Rt △ABE 中,由勾股定理得222AE BE AB +=. ∴22161616a b +=.即221a b +=.∵0b >,∴b =易证△ABE ≌△CDG . ∴4CG AE a ==.∴43EF EB BF b a =+=+,34GF FC CG b a =+=+.∴()()4334S EF GF b a b a =⋅=++22121225a b ab =++1225=+12=+12=+12=+∴当212a =,即a =S 取得最大值4912252+=.…………7分∵0,0a b >>0>.∴12S >. ∴当顶点A ,C 都不在x 轴上时,S 的范围为49122≤S <. 综上所述,测度面积S 的取值范围是49122≤≤S .………………………………………8分。
河北省青龙满族自治县逸夫中学2012届九年级数学上学期期末质量检测试题(无答案) 冀教版
河北省青龙满族自治县逸夫中学2012届九年级上学期期末质量检测数学试题(无答案) 冀教版说明:1、本试卷共8页,28题2、本试卷总分120分,答题时间120分钟,≥72分为及格,≥96分为优秀。
题号一二三总分 212223 24 25 26 27 28得分一、选择题(本题共10个小题,每小题2分,合计20分)。
在下面各题给出的四个选项中,只有一个选项符合题意,请你把它选出来,并把代表该选项的字母填在下表中相应题号下面的空格内。
题号 1 2 3 4 5 6 7 8 9 10 选项1、下列一元二次方程有两个不等的实数根的是A 、(n -25)2=0 B 、y 2+1=0 C 、x 2+3x -5=0 D 、2m 2+m =-1 2、下列各函数中,是反比例函数的是A 、x y 2=B 、x y 8-=C 、7x y =D 、21-=xy3、三角形的外接圆的圆心一定在三角形的:A 、内部;B 、外部;C 、边上;D 、以上说法都不准确 4、顺次连接矩形四边中点所得到的图形,确切地说是A 、矩形;B 、菱形;C 、正方形;D 、等腰梯形。
5、下列关于“圆”的说法不正确的是:A 、圆是中心对称图形,圆心就是对称中心;B 、垂直于弦的直径一定平分这条弦;C 、相等的弧所对的弦一定相等,反过来,相等的弦所对的弧也一定相等D 、圆是轴对称图形,任意一条通过圆心的直线都是它的一条对称轴; 6、下列关于“圆周角及圆心角”的说法不正确的是:A 、圆心角的度数与其所对的弧的度数相等;B 、顶点在圆周上的角叫做圆周角;C 、在同圆或等圆中,相等的圆心角所对的弦也相等;D 、在圆中,同弧所对的圆周角等于圆心角的一半。
7、下列语句描述的各组图形中,不一定是相似形的是: A 、两个半径不等的圆; B 、两个边长不等的正方形; C 、两个大小不等的正三角形, D 、两个长、宽均不相等的矩形。
8、若k d cb a ==,则下列各式错误的是: A. d bc a = B.d d c b b a +=+ C. k d b c a 2=++ D. ddb c c a 22-=-得分9、下面关于“坡度”的说法正确的是:A 、坡度是坡角的正弦值 ;B 、坡度是坡角的余弦值;C 、坡度是坡角的正切值 ;D 、以上说法都不正确。
河北省青龙满族自治县逸夫中学九年级数学上学期期末质量检测试题(无答案) 冀教版
说明:1、本试卷共8页,27题2、本试卷总分120分,答题时间120分钟,≥72分为及格,≥96分为优秀。
题号 一 二 三总分 19 20 21 22 23 24 25 26 27得分一、选择题(本题共12个小题,每小题2分,合计24分)。
在下面各题给出的四个选项中,只有一个选项符合题意,请你把它选出来,并把代表该选项的字母填在下表中相应题号下面的空格内。
题号 1 2 3 4 5 6 7 8 9 10 选项1、方程0132=+-x x 的根的情况是A 有两个不相等的实根;B 只有一个根;C 有两个相等的实根;D 没有实根2、投掷两枚质地均匀的硬币,出现一正一反的概率为: A81 B 21C 41D 43 3、下列说法正确的是:A 、三角形的内心到三个顶点的距离相等;B 、圆心角等于圆周角的2倍;C 、同弧所对的圆周角相等;D 、过三点一定能做一个圆。
4、二次函数5)1(22+-=x y 的顶点位于A 第一象限B 第二象限C 第三象限D 第四象限 5、在数轴上,有一点A 在数0——6之间,那么,该点落在2——4之间的概率为: A32 B 31 C 21D 616、在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的直角边,c 是斜边。
则 A a c A =sin B c b B =cos C b a A =tan D a bB =cos 7、已知r 1、r 2分别是⊙O 1、⊙O 2的半径,d 是两圆的的圆心距,当r 1+r 2=d 时,两圆A 外切;B 内切 ;C 外离或内含;D 相交 ; 8、下列说法不正确的是A 两个相似形的周长比等于它们的相似比;B 任意两个矩形都相似;C 所有的正方形都是形状相同的图形;D 成位似关系的两个图形是相似形。
9、若0522=+-x ax 是一元二次方程,则不等式093≥+a 的解是: A 3-≥a B 31-≥a C 03≠-≥a a 且 D 3-≤a 10、下列函数的图像在第三象限随x 的增大而减小的是 A x y 3=; B 122-+-=x x y C xy 2-= D 2+-=x y 11、在直角坐标系中,二次函数1522-+=y y x ( y 是自变量,x 是y 的函数)的图像开口 A 向左 B 向右 C 向上 D 向下12、如图,两个圆是以O 为圆心的同心圆,大圆的弦PQ 与小圆相切于A 点,则下列结论可能错误的是 A PA =QA ; B OA ⊥PQ ; C PQ =2OA ; D OP =OQ ;得分二、填空题(本题共6个小题,每小题3分,合计18分)请把正确的答案填在相应题中的空格上。
河北省秦皇岛市青龙县九年级数学上学期期末复习试题含解析
河北省秦皇岛市青龙县九年级数学上学期期末复习试题一.选择题(满分42分,每小题3分)1.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=02.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)3.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.⊙O的直径为15cm,O点与P点的距离为8cm,点P的位置()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定5.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数6.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm7.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.60°B.45°C.30°D.25°8.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60cm,水面至管道顶差距离为10cm,修理人员应准备内径为()cm的管道.A.50 B.50C.100 D.809.如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为()A.B.10 C.D.1210.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁11.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是()A .B .C .D .12.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )A .B .C .D .13.如图,⊙O 过正方形ABCD 的顶点AB 且与CD 边相切,若AB =2,则圆的半径为( )A .B .C .D .114.如图,⊙A ,⊙B ,⊙C 的半径都是2cm ,则图中三个扇形(即阴影部分)面积之和是( )A .2πB .πC .D .6π二.填空题(共6小题,满分18分,每小题3分)15.关于x 的一元二次方程(m ﹣2)x 2+(m +3)x +m 2﹣4=0有一个根是零,则m = .16.抛物线y=3(x+2)2﹣7的对称轴是.17.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.18.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为cm2.19.盒中有6枚黑棋和n枚白棋,从中随机取一枚棋子,恰好是白棋的概率为,则n的值为.20.如图所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0)且与y轴交于负半轴.给出四个结论:①a+b+c=0,②abc<0;③2a+b>0;④a+c=1;其中正确的结论的序号是三.解答题(共6小题,满分60分)21.(8分)解方程:x2+4x﹣3=0.22.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.23.(8分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA 与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.25.(12分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?26.(12分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x 轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.参考答案一.选择题1.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=0【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.4.⊙O的直径为15cm,O点与P点的距离为8cm,点P的位置()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【分析】由⊙O的直径为15cm,O点与P点的距离为8cm,根据点与圆心的距离与半径的大小关系,即可求得答案.解:∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选:A.【点评】此题考查了点与圆的位置关系.注意点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.6.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm【分析】连接OA,根据垂径定理求出AD,根据勾股定理计算即可.解:连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选:C.【点评】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.7.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.60°B.45°C.30°D.25°【分析】根据已知条件得到四边形ABCO是菱形,推出△OAB是等边三角形,得到∠ABD=60°,根据三角形的内角和即可得到结论.解:∵四边形ABCO是平行四边形,OA=OC,∴四边形ABCO是菱形,∴OA=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠ABD=60°,∵BD为⊙O的直径,∴∠BAD=90°,∴∠ADB=30°,故选:C.【点评】本题考查了圆内接四边形的性质,圆周角定理、平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.8.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60cm,水面至管道顶差距离为10cm,修理人员应准备内径为()cm的管道.A.50 B.50C.100 D.80【分析】连接OA作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.解:如图,过O作OC⊥AB于C,连接AO,∴AC=AB=×60=30,CO=AO﹣10,在Rt△AOC中,AO2=AC2+OC2,AO2=302+(AO﹣10)2,解得AO=50cm.∴内径为2×50=100cm.故选:C.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为()A.B.10 C.D.12【分析】由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S+S△ODC得(a+2a)×b=a×b+7+×2a×b,整理可得ab=,即可得到k的△ADC值.解:连DC,如图,∵EC=AC,△ADE的面积为5,∴△CDE的面积为2,∴△ADC的面积为7,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+7+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故选:A.【点评】本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系.10.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c值是解题的关键.11.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是()A.B.C.D.【分析】用涂上阴影的小正方形的个数除以所有小正方形的个数即可求得概率.解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影,则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:.故选:B.【点评】此题主要考查了几何概率问题,了解几何概率的求法是解答本题的关键.12.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A .B .C .D .【分析】本题可先由二次函数y =ax 2+bx +c 图象得到字母系数的正负,再与一次函数y =ax +b 的图象相比较看是否一致.解:A 、由抛物线可知,a <0,x =﹣<0,得b <0,由直线可知,a <0,b <0,故本选项正确; B 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误;C 、由抛物线可知,a >0,x =﹣>0,得b <0,由直线可知,a >0,b >0,故本选项错误; D 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误.故选:A .【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.13.如图,⊙O 过正方形ABCD 的顶点AB 且与CD 边相切,若AB =2,则圆的半径为( )A .B .C .D .1【分析】作OM ⊥AB 于点M ,连接OB ,在直角△OBM 中根据勾股定理即可得到一个关于半径的方程,即可求得.解:作OM ⊥AB 于点M ,连接OB ,设圆的半径是x ,则在直角△OBM 中,OM =2﹣x ,BM =1,∵OB 2=OM 2+BM 2,∴x2=(2﹣x)2+1,解得x=.故选:B.【点评】在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.14.如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A.2πB.πC.D.6π【分析】根据三角形的内角和是180°和扇形的面积公式进行计算.解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==2π.故选:A.【点评】考查了扇形面积的计算,因为三个扇形的半径相等,所以不需知道各个扇形的圆心角的度数,只需知道三个圆心角的和即可.二.填空题(共6小题,满分18分,每小题3分)15.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2 .【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.抛物线y=3(x+2)2﹣7的对称轴是x=﹣2 .【分析】根据抛物线y=a(x﹣h)2+k的对称轴是x=h即可确定.解:∵y=3(x+2)2﹣7,∴抛物线的对称轴为直线x=﹣2,故答案为:x=﹣2.【点评】本题考查二次函数的性质,解题的关键是掌握由抛物线的顶点坐标式写出抛物线的对称轴方程,比较容易.17.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为90°.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.18.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为cm2.【分析】根据扇形的面积公式,利用贴布部分的面积=S扇形BAC﹣S扇形DAE进行计算即可.解:贴布部分的面积=S扇形BAC﹣S扇形DAE=﹣=(cm2).故答案为.【点评】本题考查了扇形面积的计算:扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S ,则S 扇形=πR 2或S 扇形=lR (其中l 为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.19.盒中有6枚黑棋和n 枚白棋,从中随机取一枚棋子,恰好是白棋的概率为,则n 的值为 2 .【分析】直接以概率求法得出关于n 的等式进而得出答案.解:由题意可得:=,解得:n =2.故答案为:2.【点评】此题主要考查了概率的意义,正确把握概率的意义是解题关键.20.如图所示,二次函数y =ax 2+bx +c 的图象开口向上,图象经过点(﹣1,2)和(1,0)且与y 轴交于负半轴.给出四个结论:①a +b +c =0,②abc <0;③2a +b >0;④a +c =1; 其中正确的结论的序号是 ①③④【分析】①由点(1,0)在二次函数图象上,利用二次函数图象上点的坐标特征可得出a +b +c =0,结论①正确;②由二次函数图象的开口方向、对称轴在y 轴右侧以及与y 轴交于负半轴,可得出a >0,﹣>0,c <0,进而可得出abc >0,结论②错误;③由二次函数图象对称轴所在的位置及a >0,可得出2a >﹣b ,进而可得出2a +b >0,结论③正确;④由二次函数y =ax 2+bx +c 的图象经过点(﹣1,2)和(1,0),利用二次函数图象上点的坐标特征可得出a ﹣b +c =2,a +b +c =0,进而可得出a +c =1,结论④正确.综上,此题得解.解:①∵点(1,0)在二次函数图象上,∴a +b +c =0,结论①正确;②∵二次函数y =ax 2+bx +c 的图象开口向上,对称轴在y 轴右侧,与y 轴交于负半轴, ∴a >0,﹣>0,c <0,∴b<0,∴abc>0,结论②错误;③∵﹣<1,a>0,∴2a>﹣b,∴2a+b>0,结论③正确;④∵二次函数y=ax2+bx+c的图象经过点(﹣1,2)和(1,0),∴a﹣b+c=2,a+b+c=0,∴a+c=1,结论④正确.综上所述,正确的结论有①③④.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及二次函数图象上点的坐标特征,观察函数图象,利用二次函数图象与系数的关系及二次函数图象上点的坐标特征逐一分析四个结论的正误是解题的关键.三.解答题(共6小题,满分60分)21.(8分)解方程:x2+4x﹣3=0.【分析】先利用配方法将原式化为完全平方的形式,再用直接开平方法解答.解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣﹣配方法,熟悉完全平方公式是解题的关键.22.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P .【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P ==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.(8分)在平面直角坐标系xOy 中,函数y =(x >0)的图象G 经过点A (4,1),直线l :y =+b 与图象G 交于点B ,与y 轴交于点C .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当b =﹣1时,直接写出区域W 内的整点个数; ②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.【分析】(1)把A (4,1)代入y =中可得k 的值;(2)直线OA 的解析式为:y =x ,可知直线l 与OA 平行,①将b =﹣1时代入可得:直线解析式为y =x ﹣1,画图可得整点的个数;②分两种情况:直线l 在OA 的下方和上方,画图计算边界时点b 的值,可得b 的取值.解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(12分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA 与⊙O的另一个交点为E,连接AC,C E.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.【分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.【点评】此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.25.(12分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?【分析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.解:(1)y=w(x﹣20)=(﹣2x+80)(x﹣20)=﹣2x2+120x﹣1600;(2)y=﹣2(x﹣30)2+200.∵20≤x≤40,a=﹣2<0,∴当x=30时,y最大值=200.答:当销售单价定为每双30元时,每天的利润最大,最大利润为200元.【点评】本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x的值.26.(12分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x 轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=AM×EM=.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC=.∵FG=2DQ,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).【点评】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m表示出矩形PMNQ的周长.。
河北省青龙满族自治县逸夫中学2011-2012学年八年级数学上学期期末质量检测试题(无答案) 冀教版
河北省青龙满族自治县逸夫中学2011-2012学年八年级上学期期末质量检测数学试题(无答案) 冀教版说明:1、本试卷共6页,26题。
答题时间90分钟。
2、本试卷总分100分,60分以上为及格,80分以上为优秀。
题号 一二三四总分2223242526得分一、选择题(本题共10个小题,每小题2分,合计20分)。
在下面各题给出的四个选项中,只有一个选项符合题意,请你把它选出来,并把代表该选项的字母填在下表中相应题号下面的空格内。
1、边长为下列各组数的三角形中,不是直角三角形的是:A 9、40、41;B 8、15、17;C 36、64、100;D 7、25、24。
2、不等式4x-3>5的解是A 、x = 2B 、x > -2C 、 x < 2D 、x > 23、当分式242--a a 的值等于0时,a 的值为:A 、2=aB 、2-=aC 、2±=aD 、4±=a 4、下列分式的约分,正确的是A 、235b b b = B 、21233=b a C 、1=+--y x y x D 、n m m n m 224)(=- 5、已知,2+x 和62-x 都是正数,那么,x 的取值范围是A 、x > 2B 、x > -2C 、 x > 3D 、x < 36、下面关于“等边三角形”的说法不正确的是 A 、等边三角形的三条边都相等;B 、等边三角形的三个内角都相等且都等于600; C 、等边三角形是轴对称图形,有三条对称轴; D 、等边三角形与等腰三角形具有相同的性质; 7、下列图形中,是轴对称图形的有 个:A 、 2B 、 3C 、 4D 、5 8、下列各式中,是最简二次根式的是: A 、133 B 、332 C 、83D 、50 9、在直角坐标系中,点M 1(a ,b )是某平面图形上的一点,当将这个图形沿横向、纵向都拉伸至原图形的2得分题号 12 3 4 5 6 7 8 9 10 选项倍时,与点M 1(a ,b )对应的点M 2的坐标为;A 、(a+2,b+2)B 、(2a ,2b )C 、(2a ,b+2)D 、(a+2,2b ) 10、下列事件中,是确定事件的有 个:(1)投掷一枚质地均匀的硬币,落地后正面朝上; (2)小明在上学的路口遇到红灯; (3)在非常干燥的环境下,大豆种子发了芽;(4)一个袋子中装有5个红球,2个黑球,从中任意取出3个球,至少有一个是红球; A 、1 ; B 、 2 ; C 、3 ; D 、4 。
河北省秦皇岛市青龙县九年级(上)期末数学试卷 (2)
上的点,则 b=
.
18.(2 分)已知: = =k(k≠0),则
=
.
19.(2 分)当 xm2﹣m+2xm+1=0 是一个一元二次方程时,m=
.
20.(2 分)一个圆锥的轴截面的顶角为 60°,底边长为 8cm,那么这个圆锥的侧
面积为:
cm2.
三、解答题:解答应写出必要的计算过程,推演步骤或文字说明。本题共 8 个 小题,合计 80 分.
A.4
B.6
C.7.2
7.(2 分)反比例函数 y= 经过点(2,﹣3),则(
D.9.6 )
A.k=2
B.k=﹣3
C.k=﹣6
D.k=6
8.(2 分)函数 y= (y>0)与 y=2x(y>0)的交点坐标为( )
A.(1,2)
B.(1,﹣2)
C.(﹣1,2) D.(﹣1,﹣2)
9.(2 分)圆上有两点 A,B,劣弧 AB 的度数为 120°,那么,优弧 AB 所对的圆
是它的对称中心.
15.(2 分)在 Rt△ABC 中,∠BCA=90°,AC=8cm,sinB= ,那么,AB=
cm.
16.(2 分)某校九年级二班学生共 45 名,其中 14 岁的有 9 人,15 岁的有 27
人,16 岁的有 9 人,这个班学生的平均年龄是
.
17.(2 分)若点 P(2,6)、点 Q(﹣3,b)都是反比例函数 y= (k≠0)图象
C.﹣12
D.±12
5.(2 分)下列各一元二次方程中,有两个相等实数解的是( )
A.x2﹣3x=1
B.x2﹣3=0
C.x2﹣x+2=0
D.(ቤተ መጻሕፍቲ ባይዱ+2)2=0
冀教版九年级数学(上册)期末综合检测试卷(有答案)
冀教版九年级数学上册期末综合检测试卷一、单项选择题(共10 题;共 30 分)1. 假如∠α 是等边三角形的一个内角,那么cos α的值等于()A. B.C.D. 12. 在反比率函数图象的每一支曲线上,y 都随 x 的增大而减小,则k 的取值范围是A. k> 3B. k>0 C. k<3 D. k< 03. 正方形网格中,如图搁置,则 tan 的值是()A. B.C.D. 24. 在 Rt△ABC中,∠ C=90°, AB=13, AC= 12,则 sinB 的值是A. B.C.D.5.以下图,已知△ ABC 中, BC=12,BC边上的高 h=6,D 为 BC上一点, EF∥BC,交 AB于点 E,交 AC于点F,设点 E 到边 BC的距离为x.则△ DEF 的面积 y 对于 x 的函数图象大概为()A. B.C. D.6. 在半径为A. 6π. 4π12 的⊙O中, 60°圆心角所对的弧长是()BC.2π D.π7. 某住所小区六月份中 1 日至 6 日每日用水量变化状况以下图,那么这 6 天的均匀用水量是()A. 30 吨B. 31 吨C. 32 吨D. 33 吨8. 对于对于x 的一元二次方程x2+x-2=0 的根的状况是()A.有两个不相等的实数根B.有两个相等的实数根9. 以下说法正确的选项是()C.无实数根D.没法判断A.长度相等的弧是等弧 B.圆既是轴对称图形,又是中心对称图形C.弧是半圆D.三点确立一个圆10.某小组 5 名同学在一周内参加家务劳动的时间以下表所示,对于“劳动时间”的这组数据,以下说法正确的选项是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是 4,均匀数是3.75 B.众数是4,均匀数是 3.75C.中位数是 4,均匀数是3.8 D.众数是2,平均数是 3.8二、填空题(共10 题;共 30 分)11. 方程的解为 ________.12. △ABC的三边分别为、、2,△A′B′C′的两边长分别为2和 2 ,假如△ ABC∽△ A′B′C′,那么△ A′B′C′的第三边的长是________.13.若方程 x2﹣ bx+2=0 的一个根为 1,则另一个根为 ________ .14. 如图,在Rt△ABC内画有边长为9, 6, x 的三个正方形,则x 的值为 ________.15. 如图, PA、 PB 是⊙0的切线, A、 B 为切点, AC是⊙O的直径,∠ P=40°,则∠ BAC=________.16. 在△ ABC中,∠ A=120°, AB= 4,AC= 2,则 sinB 的值是 ________ .17. 已知 y 是 x 的反比率函数,当 x=3 时, y=8,则这个函数关系式为 ________ .18.如图,已知 ? ABCD,∠ A=45°, AD=4,以 AD为直径的半圆 O与 BC相切于点 B,则图中暗影部分的面积为 ________(结果保存π).19. 如图,,DE=2AE,CF=2BF,且DC=5,AB=8,则EF=________.20. 如图,⊙O 的半径为2,AB, CD是相互垂直的两条直径,点P 是⊙O上随意一点( P 与 A,B, C,D 不重合),过点P 作 PM⊥AB 于点 M,PN⊥CD于点 N,点 Q是 MN的中点,当点 P 沿着圆周转过45°时,点Q走过的路径长为________.三、解答题(共8 题;共 60 分)21.求以下 x 的值:( 1)x2﹣25=0(2)(x+5)2=16.22.以下图.在△ ABC 中, EF∥BC,且 AE: EB=m,求证: AF: FC=m.23. 如图,以O为位似中心,在网格内作出四边形ABCD的位似图形,使新图形与原图形的相像比为2:1,并以 O为原点,写出新图形各点的坐标.24.某校举行黑板报评选,由参加评选的10 个班各派一名同学担当评委,每个班的黑板报得分取各个评委所给分值的均匀数,下边是各评委给八年级(6)班黑板报的分数:该班的黑板报的得分是多少?此得分可否反应其设计水平?25. 如图,小明一家自驾到古镇至地,再沿北偏东游乐,抵达地后,导航显示车辆应沿北偏西方向行驶一段距离抵达古镇,小明发现古镇恰幸亏方向行驶12 千米地的正北方向,求两地的距离 . (结果保存根号)26. 如图,半圆O的直径AB=8,半径OC⊥AB, D为弧AC上一点, DE⊥OC,DF⊥OA,垂足分别为E、 F,求EF 的长.27. ( 2017? 吉林)如图,一枚运载火箭从距雷达站 C 处 5km的地面 O处发射,当火箭抵达点A, B 时,在雷达站 C 处测得点A,B 的仰角分别为34°, 45°,此中点O,A,B在同一条直线上.求A,B 两点间的距离(结果精准到0.1km).(参照数据: sin34 °=0.56 ,cos34°=0.83 ,tan34 °=0.67 .)28. 某商铺经营小孩益智玩具,已知成批购进时的单价是20 元.检查发现:销售单价是30 元时,月销售量是 230 件,而销售单价每上升 1 元,月销售量就减少10 件,但每件玩具售价不可以高于40 元.设每件玩具的销售单价上升了 x 元时( x 为正整数),月销售收益为y 元.( 1)求 y 与 x 的函数关系式并直接写出自变量x 的取值范围.( 2)每件玩具的售价定为多少元时,月销售收益恰为2520 元?( 3)每件玩具的售价定为多少元时可使月销售收益最大?最大的月收益是多少?答案分析部分一、单项选择题1.【答案】 A2.【答案】 A3.【答案】 D4.【答案】 B5.【答案】 D6.【答案】 B7.【答案】 C8.【答案】 A9.【答案】 B10.【答案】 C二、填空题11.【答案】12.【答案】13.【答案】 214.【答案】 415.【答案】 20°16.【答案】17.【答案】18.【答案】 6﹣π19.【答案】 720.【答案】三、解答题21.【答案】解:( 1)∵x2﹣ 25=0,2∴x=25,∴x=±5.(2)∵( x+5)2=16,∴x+5=±4,∴x=﹣ 1 或﹣ 9.22.【答案】证明:∵ EF∥BC,∴ AF: FC=AE: EB,∵AE: EB=m,23.【答案】解:以下图,新图形为四边形A′B′C′D′,新图形各点坐标分别为A′( 2, 4), B′( 4, 8), C′( 8, 10), D′( 6, 2).24.【答案】解答:解:该班的黑板报的得分是= 8.36 (分),∴该班的黑板报的得分是8.36 分;不可以反应其设计水平,由于有两个评委给出了异样分.25.【答案】解:过点 B 作 BH⊥AC 于点 H∴∠ BHC=∠AHB=90°依据题意得:∠ CBH=45°,∠ BAH=60°,AB=12∴B H=ABsin60°=∴故答案为:26.【答案】解:连结 OD.∵OC⊥AB DE⊥OC,DF⊥OA,∴∠AOC=∠DEO=∠DFO=90°,∴四边形 DEOF是矩形,∴EF=OD.∵OD=OA∴E F=OA=4.27.【答案】解:由题意可得:∠ AOC=90°, OC=5km.在 Rt△AOC中,∵tan34 °=,∴O A=OC? tan34 °=5×0.67=3.35km,在 Rt△BOC中,∠ BCO=45°,∴O B=OC=5km,∴A B=5﹣3.35=1.65 ≈1.7km,答: A, B两点间的距离约为 1.7km .28.【答案】解:( 1)依据题意得:2y=( 30+x﹣20)( 230﹣ 10x) =﹣ 10x +130x+2300 ,(2)当 y=2520 时,得﹣ 10x2+130x+2300=2520,解得 x1=2, x2=11(不合题意,舍去)当 x=2 时, 30+x=32(元)答:每件玩具的售价定为32 元时,月销售收益恰为2520 元.( 3)依据题意得:y=﹣ 10x 2+130x+2300=﹣ 10( x﹣6.5 )2+2722.5 ,∵a=﹣ 10<0,∴当 x=6.5 时, y 有最大值为2722.5 ,∵0<x≤10 且 x 为正整数,∴当 x=6 时, 30+x=36, y=2720(元),当 x=7 时, 30+x=37, y=2720(元),答:每件玩具的售价定为36 元或 37 元时,每个月可获取最大收益,最大的月收益是2720 元.。
冀教版九年级上期末测试数学试题
2011--—2012学年度第一学期期末考试九年级数学试题题号 一 二 三21 22 23 24 2526得分一、选择题:(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填写在下面的表格内).1.一元二次方程x 2 – 2x = 0的解是A 。
0 B.0或2 C 。
2 D.此方程无实数解 2由几个小立方体搭成的一个几何体如图1所示,那么它的俯视图为3.若直径为8和10的两圆相外切,则两圆的圆心距是 ( ) A.18 B 。
2 C.9 D.1 4.抛物线y=x 2-1的顶点坐标是( ).A 。
(0,—1) B.(0,1) C 。
(1,0) D.(—1,0)5.我市2004年底已有绿化面积350公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到400公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .350(1+x )=400B B 。
350(1+x )2=400C .400(1+2x )=350D .400(1-x )2=3506.如图2,在菱形ABCD 中,E ,F 分别是AB,AC 的中点,如果EF=2,那么菱形ABCD 的周长是( )。
A .8B .12C .16D . 207.如图3,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm ,底面圆的直径为10cm ,那么小丽要制作的这个圆锥的侧面展开扇形的纸片的圆心角度数是( )A.150°B.180° C 。
200° D 。
240°8.如图4,是一次函数y =kx +b 与反比例函数y =2x 的图像,则关于x 的方程kx +b =2x的解为 A .x l =1,x 2=2 B .x l = -2,x 2= -1 C .x l =1,x 2= -2 D .x l =2, x 2= -1总分 核分人得分评券人题号 1 2 3 4 5 6 7 8 910 11 12 答案ABCD图19.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应准备的白球,红球,黄球的个数分别为( )A 。
九年级上学期期末质量检测数学试题带答案
九年级数学上学期期末质量检测试题(一)一、选择题(每小题2分,共12分) 1.方程23x x =的根是( )A. 3x =B. 120,3x x ==C. 120,3x x ==-D. 3x =- 2.下列英文字母既是中心对称图形又是轴对称图形的是( )A . B. C. D. 3.点A (1,1y )、B (2,2y )都在反比例函数y =kx(k >0)的图象上,则21,y y 的大小关系为( )A. 21y y <B. 21y y ≤C. 21y y >D. 21y y ≥4.用半径为3cm ,圆心角120°的扇形围成一个圆锥的侧面,此圆锥的底面半径为( )5.2014年“五·一”期间,小明与小亮两家准备从鲅鱼圈、三角龙湾、南戴河中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A.13B.16C.19D.146.已知二次函数2(1)y a x c =--的图像如图所示,则一次函数y ax c =+的大致图像可能是()二、填空题(每空3分,共24分)7. ∆ABC 中,∠C =90°,AB=8,cos A =,则BC 的长为.(6题图)AB C D8.如图,在平行四边形ABCD 中,点E 在AB 上,BD CE ,交于点F ,若BE AE :=3:4,且2=BF ,则DB =_____________.(8题图) (10题图) (14题图)9.已知1=x 是一元二次方程02=++b ax x 的一个根,则代数式ab b a 222++的值是____________.10.如图,AB 是⊙O 的直径,∠42=BAC °,点D 是弦AC 的中点,则∠DOC = 度. 11.若关于x 的函数122-+=x kx y 与x 轴仅有一个公共点,则实数k 的值为 . 12.如果三角形的两边长分别是方程01582=+-x x 的两个根,那么连接这个三角形三边的中点,得到的三角形的周长l 的范围是 .13.从2、3、4这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是___________.14.如图,平行于x 轴的直线AC 分别交函数21x y =(x ≥0)与322x y =(x ≥0)的图象于B 、C两点,过点C 作y 轴的平行线交1y 的图象于点D ,直线AC DE //,交2y 的图象于点E ,则DE AB= . 三、解答题(每小题5分,共20分) 15.计算|21|45sin 28)43(2---+--o16.ABC ∆在平面直角坐标系中的位置如图所示. ⑴作ABC ∆关于点C 成中心对称的图形C B A 11∆. ⑵将C B A 11∆向右平移4个单位,作出 平移后的122C B A ∆.⑶在x 轴上求作一点P ,使11PC PA +的值最小,并写出点P 的坐标(不写解答过程,直接写出结果) (16题图)17.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀. ⑴从中任取一球,求抽取的数字为正数的概率;⑵从中任取一球,将球上的数字作为点的横坐标,记为x (不放回);再任取一球,将球上的数字作为点的纵坐标,记为y ,试用画树状图(或列表法)表示出点(y x ,)所有可能出现的结果,并求点(y x ,)落在第二象限内的概率.18.如图,某飞行运动员从离水平地面高AC =500m 的A 处出发,沿着俯角为15°的方向,直线滑行1 600米到达D 点,然后打开降落伞以75°的俯角降落到地面上的B 点.求他滑行直至落地的水平距离CB 的长.(结果精确到1m ). (sin15°≈0.26 ,cos15°≈0.97 ,tan15°≈0.27)(18题图)四、解答题(每小题7分,共28分)19.如图,在ABC ∆中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D . ⑴求证:AC 是⊙O 的切线;⑵若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)(19题图)20.如图,一次函数21+-=x y 的图象与反比例函数2y =kx的图象相交于B A ,两点,与x 轴相交于点C .已知BOC ∠tan =12,点B 的坐标为(n m ,). ⑴求反比例函数的解析式;⑵请直接写出当m x <时,2y 的取值范围.21.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?(20题图)22.如图,在矩形AOCD 中,点C 在x 轴上,点A 在y 轴上,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知8=AO ,10AD =. ⑴求F 点的坐标;⑵求过E F A ,,三点的抛物线的解析式.五、解答题(每小题8分,共16分) 23.为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.⑴求y 与x 之间的函数解析式;⑵求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?23题图23题图(22题图) (23题图)24.在平面直角坐标系中,一块等腰直角三角板ABC 的直角顶点A 在y 轴上,坐标为 (0,-1),另一顶点B 坐标为(-2,0),已知二次函数y =32c bx x ++2的图象经过CB ,两点,现将一把直尺放置在直角坐标系中,使直尺的边''D A ∥y 轴且经过点B ,直尺沿x 轴正方向平移,当''D A 与y 轴重合时运动停止. ⑴求点C 的坐标及二次函数的关系式;⑵若运动过程中直尺的边''D A 交边BC 于点M ,交抛物线 于点N .求线段MN 长度的最大值.(24题图)六、解答题(每小题10分,共20分)25.已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.AE=,请叙述你的⑴若点E是边BC的中点,我们可以构造两个三角形全等来证明EF一个构造方案,并指出是哪两个三角形全等(不要求证明);⑵若点E在线段BC上滑动(不与点B,C重合).AE=是否总成立?请给出证明;①EF②若把此正方形放在直角坐标系中,点B与坐标原点重合,当点E滑动到某处时,点F 恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.(25题图)26.如图,直线AB 的解析式为42+=x y ,交x 轴于点A ,交y 轴于点B ,以A 为顶点的抛物线交直线AB 于点D ,交y 轴负半轴于点C (0,﹣4).⑴求抛物线的解析式;⑵将抛物线顶点沿着直线AB 平移,此时抛物线顶点记为E ,与直线AB 的另一个交点记为G ,与y 轴的交点记为F .①求当△BEF 与△BAO 相似时,E 点坐标;②求当△EFG 的面积为4时,F 点坐标.(26题图)九年级数学上学期期末质量检测答案(一)一、选择题(每小题2分,共12分)1、B2、D3、C4、D5、A6、A 二、填空题(每空3分,共24)7、728、3209、1 10、48 11、0,1=-=k k 12、 85<<l 13、3114、33- 三、解答题(每小题5分,共20分) 15、原式=)(1222222916--⨯-+ ……3’ =259……5’ 16、(1) 图略 ……2’ (2)图略 ……3’(3)8(,0)3p ……5’ 17、(1) P (抽到正数)=14……1’ (2)……4’ P (点落在第二象限)=21126= ……5’ 18、解:过点D 作DE ⊥AC 于点E ,过点D 作DF ⊥BC 于点F , 由题意可得:∠ADE =15°,∠BDF =15°,AD =1600m ,AC =500m , ∴cos ∠ADE =cos 15°=≈0.97,∴≈0.97,解得:DE =1552(m ), ……2’ sin 15°=≈0.26,∴≈0.26, 解得:AE =416(m ), ……3’∴DF =500﹣416=84(m ), ∴tan ∠BDF =tan 15°=≈0.27,∴≈0.27,解得:BF =22.68(m ), ……4’∴BC =CF +BF =1552+22.68=1574.68≈1575(m ), ……5’ 答:他飞行的水平距离为1575m .四、解答题(每小题7分,共28分) 19、(1)证明:∵D 在⊙O 上, ∴∠DOC=2∠1 ∵∠A=2∠1, ∴∠A=∠DOC又 ∵90ABC ∠=︒, ∴∠A+C ∠=90° ∴∠DOC+C ∠=90°18题图即∠ODC=90° ∴AC 是⊙O 的切线. ……3’ (2)∵∠A=60°,∴C ∠=30°在Rt △ODC 中,tanC=OD CD =∴CD = ……5’∴S △DOC =12OD ·DC =12×2×. S 扇形ODE =260360OD π⋅=23π. 19题图S 阴影=S △DOB -S 扇形ODE =23π. ……7’20、(1)解:过B 作BD ⊥x 轴于D, ∵tan ∠BOC=12 ∴12BD OD = ∴m= - 2n 把B (-2n,n )代入y=x+2中得 n=-2 ∴B(4,-2) 把B(4,-2) 代入y 2=k x 得 k= - 8 ∴8y x=- ……5’ (2) 当x <4时,22y <-或20y > ……7’ 21、解:设购买了x 件这种服装,根据题意得出:[80﹣2(x ﹣10)]x =1200, ……3’ 解得:x 1=20,x 2=30, ……5’ 当x =30时,80﹣2(30﹣10)=40(元)<50不合题意舍去; ……7’ 答:她购买了20件这种服装.22、解(1)F (6,0) ……2’ (2)由AOFFCE ∆∆,得到E (10,3) ……4’设此抛物线解析式为2y ax bx c =++把A(0,8) ,F(6,0) E(10,3)代入2y ax bx c =++ 解得∴253182412y x x =-+ ……7’ 23、(1)在Rt △ABC 中,由题意得AC =312米,BC =36米,∠ABC =30°, 所以,330tan ,33360tan x EFBE x x DG AD =︒===︒=又AD +DE +BE =AB , 所以,334324333324x x x y -=--=(0<x <8). ……3’ (2)记AC 为直径的半圆、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S 3,两弯新月面积为S ,则,81,81,81232221AB S BC S AC S πππ===由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S =S 3-S △ABC ,故S =S △ABC 所以两弯新月的面积S =32163631221=⨯⨯(平方米) ……5’由13xy =⨯ 即27)9(2=-x ,解得339±=x ,符合题意, 所以当339±=x 米时,矩形DEFG 的面积等于两弯新月面积的31. ……8’24、(1)解过C 作CH ⊥y 轴于H ,由BOA AHC ∆≅∆ 求得C(-1,-3) ……2’ 把B (-2,0) ,C(-1,-3)代入y =32x 2+bx +c 得 3,32b c ==- ∴233322y x x =+- ……4’ (2)求出 :36BC l y x =-- 设N(233,322m m m +-) ,M(,36m m --)∴MN=239322m m --- ……6’求极值MN=38……8’25、取AB 的中点G ,连接EG .△AGE 与△ECF 全等. ……1’ (2)①若点E 在线段BC 上滑动时AE =EF 总成立. ……2’证明:如图2,在AB上截取AM=EC.∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°﹣45°=135°,又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF.∴AE=EF.……5’②过点F作FH⊥x轴于H,易证,FH=BE=CH,设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1)……8’∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a2=2,(负值不合题意,舍去),∴.∴点F的坐标为.……10’26、解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).……2’∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C (0,﹣4)在抛物线上,代入上式得:﹣4=4a ,解得a =﹣1, ∴抛物线的解析式为y =﹣(x +2)2. ……4’ (2)①平移过程中,设点E 的坐标为(m ,2m +4), 则平移后抛物线的解析式为:y =﹣(x ﹣m )2+2m +4, ∴F (0,﹣m 2+2m +4). ∵点E 为顶点,∴∠BEF ≥90°,∴若△BEF 与△BAO 相似,只能是点E 作为直角顶点, ∴△BAO ∽△BFE , ∴,即,可得:BE =2EF .如答图2﹣1,过点E 作EH ⊥y 轴于点H ,则点H 坐标为:H (0,2m +4). ∵B (0,4),H (0,2m +4),F (0,﹣m 2+2m +4), 又BEHBFE FEH ∆∆∆,∵BE =2EF ,∴BH=2EH, EH=2FH ∴BH =4FH , 即224m m -= ,解得1210,2m m ==- ∵E 在第二象限,∴E(1,32-) ……7’ ②联立平移抛物线:y =﹣(x ﹣m )2+2m +4与直线AB :y =2x +4,可求得:G (m ﹣2,2m ). ∴点E 与点G 横坐标相差2,即:|x G |﹣|x E |=2. S △EFG =S △BFG ﹣S △BEF =12BF •|xG |﹣12BF |xE |= 12BF •(|x G |﹣|x E |)=BF . ……8’ ∴22m m -=4 ∴F(0,0) ……10’。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省青龙满族自治县逸夫中学2012届九年级上学期期末质量检测数学试题(无
答案) 冀教版
说明:1、本试卷共8页,28题
,1、下列一元二次方程有两个不等的实数根的是
A 、(n -25)2
=0 B 、y 2
+1=0 C 、x 2
+3x -5=0 D 、2m 2
+m =-1 2、下列各函数中,是反比例函数的是
A 、x y 2=
B 、x y 8-=
C 、7x y =
D 、21
-=x
y
3、三角形的外接圆的圆心一定在三角形的:
A 、内部;
B 、外部;
C 、边上;
D 、以上说法都不准确 4、顺次连接矩形四边中点所得到的图形,确切地说是
A 、矩形;
B 、菱形;
C 、正方形;
D 、等腰梯形。
5、下列关于“圆”的说法不正确的是:
A 、圆是中心对称图形,圆心就是对称中心;
B 、垂直于弦的直径一定平分这条弦;
C 、相等的弧所对的弦一定相等,反过来,相等的弦所对的弧也一定相等
D 、圆是轴对称图形,任意一条通过圆心的直线都是它的一条对称轴; 6、下列关于“圆周角及圆心角”的说法不正确的是:
A 、圆心角的度数与其所对的弧的度数相等;
B 、顶点在圆周上的角叫做圆周角;
C 、在同圆或等圆中,相等的圆心角所对的弦也相等;
D 、在圆中,同弧所对的圆周角等于圆心角的一半。
7、下列语句描述的各组图形中,不一定是相似形的是: A 、两个半径不等的圆; B 、两个边长不等的正方形; C 、两个大小不等的正三角形, D 、两个长、宽均不相等的矩形。
8、若
k d c
b a ==,则下列各式错误的是: A. d b
c a = B.
d d c b b a +=+ C. k d b c a 2=++ D. d
d
b c c a 22-=-
9、下面关于“坡度”的说法正确的是:
A 、坡度是坡角的正弦值 ;
B 、坡度是坡角的余弦值;
C 、坡度是坡角的正切值 ;
D 、以上说法都不正确。
10、在一个暗箱里放有a 个除颜色外其它完全相同的球,其中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%,那么可以推算出a 大约是
A .15
B .10
C .5
D .3
二、填空题(本题共10个小题,每小题2分,合计20分)请把正确的答案填在相应题中的空格上。
11、一元二次方程 06352
=+-x x 的一次项是 ; 12、函数x
y 16
-=
的图像,y 随x 的增大而 ; 13、对角线垂直平分且相等的四边形一定是 ;
14、若5,221-==x x 是方程0202
=-+bx ax 的两个根,则=a ,=b ; 15、若m 2
、n 2
的比例中项是6, m 、n 均为非负整数且m >n ,则m = ;
16、若两个形状相同的多边形的面积比为9:8,则它们的对应边的比为: ; 17、“三点定圆”的含义是: 的三点确定一个圆; 18、已知一个等腰直角三角形的一腰长为6cm ,则它的外接圆的周长为: cm 。
19、已知,
22sin 2
=∂
,则∂的度数为 ; 20、篮球板的长为180cm ,宽为100cm ,篮板上在圆形球框的上方有一个长60cm ,宽40cm 的投球框。
一般情况下,投篮板球时,只要篮球磕到这个投球框内,就能投中。
某班学生学习投篮板球,试求事件“投球一次,恰好投中”的概率为 ;(以上数据均属假设,并且,每次投篮时,篮球都能与篮球板接触)
三、解答题。
( 解答应写出必要的计算过程、推演步骤或文字说明。
本题共8个小题,合
计80分 )
21、解下列方程(每小题5分,共10分):
(1)2
2
)1()2(4+=-x x (2)062
=--x x
22、计算下列各题(每小题5分,共10分):
(1)2sin 2450+3tan600-cos300tan600
(2)已知,a =sin600
,b =cos450
,求
a b b
b a b a -+
-+2的值。
(提示:2
3123-=+)
23、(8分)如图,一个质地均匀的正四面体(四个面都是正三角形),四个面上分别标有数字1、2、3、4。
若连续投掷这个四面体两次,试用适当的方法求出下列各事件的概率。
(1)“底面上的数字之和是5” (2)“底面上的数字之和是奇数” (3)“底面上的数字之和是偶数”
24、(8分)太阳能是无污染的天然能源,具有极大的开发和利用价值。
近年来,太阳能热水器已进入广大城乡千家万户,给人民生活带来了很大的方便,成为百姓家庭生活中不可缺少的必备设备之一。
各生产厂家不断改进技术,以增强市场竞争力,获得更好的利润。
某企业生产的新型太阳能热水器,前年获利200万元,今年获利312万元。
如果今年利润增长率比去年利润增长率多10个百分点,那么,去年的利润增长率是多少?
1252 )
(15625
25、(10分)某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西300,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时40海里。
求A、D两点间的距离。
(结果不取近似值)
26、(10分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(8,4).过点D (0,6)和E (12,0)的直线分别与AB ,BC 交于点M ,N .
(1)求直线DE 的解析式和点M 的坐标;
(2)若反比例函数x
m
y (x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;
27、(12分)如图27-1,在平行四边形ABCD中,点O为对角线AC、BD的交点,过点O的动直线EF分别交AD于点E,交BC于点F。
(1)线段OE OF(填“>”、“<”或“=”);
(2)如图27-2,若动直线EF分别与AD、CB的延长线相交于点E、F时,则(1)的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.;
(3)在(2)的条件下,求证:AF =CE 。
28、(12分)如图28-1,⊙O是Rt△ABC的外接圆,点P是AB延长线上一点,且OC⊥PC。
(1)求证:△PCA∽△PBC;
(2)若点B恰好是OP的中点,且⊙O的半径为R=5cm,试求出优弧BAC长;
(3)若以优弧BAC 所围成的扇形面制作一个如图28-2的圆锥,试求出该圆锥的表面积。
(3≈π,结果精确到个位)。