竞赛不等式(教师版)对于abc=1一类题型总结
不等式的各类题型归纳总结
不等式不等式的解法一、知识导学1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为abx <;(3)当a =0,b ≥0时无解;当a =0,b <0时,解为R .2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 23.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积;③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集.4.分式不等式:先整理成)()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即:)()(x g x f >0⇔f(x)·g(x)>0 )()(x g x f ≥0⇔0)x (g )x (f 0)x (g 0)x (f >或⋅⎩⎨⎧≠= 然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.类型解集 ax 2+bx+c >0ax 2+bx+c≥0ax 2+bx+c <0ax 2+bx+c≤0Δ>0{x |x <x 1或x >x 2} {x |x≤x 1或x≥x 2} {x |x 1<x <x 2} {x |x 1≤x≤x 2} Δ=0 {x |x≠-ab 2,x ∈R } R Ф {x |x=-ab 2} Δ<0RRΦΦ2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集.3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的另一个难点是含字母系数的不等式求解—注意分类.三、经典例题导讲[例1] 如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___.A. -1≤k ≤0 B. -1≤k<0 C. -1<k ≤0 D. -1<k<0错解:由题意:⎩⎨⎧<+-⋅-<0)]2([4)2(02k k k k 解得:-1<k<0错因:将kx 2+2kx -(k+2)<0看成了一定是一元二次不等式,忽略了k =0的情况.正解:当k =0时,原不等式等价于-2<0,显然恒成立,∴ k =0符合题意.当k ≠0时,由题意:⎩⎨⎧<+-⋅-<0)]2([4)2(02k k k k 解得:-1<k<0∴ 01≤<-k ,故选C.[例2] 命题:1A x -<3,命题:(2)()B x x a ++<0,若A 是B 的充分不必要条件,则a 的取值范围是_______A.(4,)+∞B.[)4,+∞C.(,4)-∞-D.(],4-∞-错解:由|x -1|<3得:-2<x <4,又由(x +2)(x +a)=0得x=-2或x =-a,A 是B 的充分不必要条件,∴{x|-2<x <4}⊂{x|-2<x <-a }∴-a>4故选D.错因:忽略了a =-4时,{x|-2<x <4}={x|-2<x <-a },此时A 是B 的充要条件,不是充分不必要条件.正解:由|x -1|<3得:-2<x <4,又由(x +2)(x +a)=0得x=-2或x =-a,A 是B 的充分不必要条件,∴{x|-2<x <4}⊂{x|-2<x <-a }∴-a>4故选C.[例3]已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围.错解: 由条件得⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③①×2-②得 32338-≤≤-b ④③+④得.343)3(310,34333310≤≤≤+≤f b a 即错因:采用这种解法,忽视了这样一个事实:作为满足条件的函数bxax x f +=)(,其值是同时受b a 和制约的.当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的.正解: 由题意有⎪⎩⎪⎨⎧+=+=22)2()1(b a f b a f ,解得:)],2()1(2[32)],1()2(2[31f f b f f a -=-=).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .337)3(316≤≤f [例4] 解不等式(x+2)2(x+3)(x -2)0≥错解: (x+2)2≥∴原不等式可化为:(x+3)(x -2)0≥∴原不等式的解集为{x| x ≤ -3或x 2≥}错因:忽视了“≥”的含义,机械的将等式的运算性质套用到不等式运算中.正解:原不等式可化为:(x+2)2(x+3)(x -2)0= ①或(x+2)2(x+3)(x -2)0>②,解①得:x=-3或x =-2或x =2解②得:x < -3或x >2∴原不等式的解集为{x| x ≤ -3或x 2≥或x 2-=}[例5] 解关于x 的不等式)()(ab x b ab x a +>-解:将原不等式展开,整理得:)()(b a ab x b a +>- 讨论:当b a >时,ba b a ab x -+>)(当b a =时,若b a =≥0时φ∈x ;若b a =<0时Rx ∈当b a <时,ba b a ab x -+<)(点评:在解一次不等式时,要讨论一次项系数的符号.[例6]关于x 的不等式02<++c bx ax 的解集为}212|{->-<x x x 或求关于x 的不等式02>+-c bx ax 的解集.解:由题设知 0<a ,且21,2=-=x x 是方程02=++c bx ax 的两根∴25-=-a b , 1=ac 从而 02>+-c bx ax 可以变形为02<+-acx a b x 即:01252<+-x x ∴221<<x 点评:二次不等式的解集与二次方程的根之间的联系是解本题的关健,这也体现了方程思想在解题中的简单应用.[例7]不等式3)61(log 2≤++xx 的解集为 解:∵3)61(log 2≤++x x ,∴0<168x x ++≤,∴ 12160x xx x ⎧+≤⎪⎪⎨⎪++>⎪⎩∴⎪⎩⎪⎨⎧>+-<<--=<0x 2232231,0或或x x x 解得{}(322,322)1x ∈---+⋃反思:在数的比较大小过程中,要遵循这样的规律,异中求同即先将这些数的部分因式化成相同的部分,再去比较它们剩余部分,就会很轻易啦.一般在数的比较大小中有如下几种方法:(1)作差比较法和作商比较法,前者和零比较,后者和1比较大小;(2)找中间量,往往是1,在这些数中,有的比1大,有的比1小;,(3)计算所有数的值;(4)选用数形结合的方法,画出相应的图形;(5)利用函数的单调性等等.四、典型习题导练1.解不等式0322322<--+-x x x x 2. 解不等式 62323+>+x x x 3.解不等式 0)2)(54(22<++--x x x x 4. 解不等式 0)2)(1()1()2(32<-+-+x x x x 5.解不等式1116-<-x x 6.k 为何值时,下式恒成立:13642222<++++x x kkx x 7. 解不等式0343>---x x 8. 解不等式24622+<+-x x x §5.2简单的线性规划一、知识导学1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.三、经典例题导讲[例1] .画出不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.错解:如图(1)所示阴影部分即为不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.正解:如图(2)所示阴影部分即为不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.[例2] 已知1≤x -y ≤2,且2≤x+y ≤4,求4x -2y 的范围. 错解:由于 1≤x -y ≤2 ①,2≤x+y ≤4 ②,①+② 得3≤2x ≤6 ③①×(-1)+② 得:0≤2y ≤3 ④. ③×2+④×(-1)得. 3≤4x -2y ≤12错因:可行域范围扩大了.正解:线性约束条件是:⎩⎨⎧≤+≤≤≤4y x 22y -x 1令z =4x -2y ,画出可行域如右图所示, 由⎩⎨⎧=+=2y x 1y -x 得A 点坐标(1.5,0.5)此时z =4×1.5-2×0.5=5.由⎩⎨⎧=+=4y x 2y -x 得B 点坐标(3,1)此时z =4×3-2×1=10.∴ 5≤4x -2y ≤10[例3] 已知⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x ,求x 2+y 2的最值.错解:不等式组⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 表示的平面区域如右图所示∆ABC 的内部(包括边界),令z= x 2+y 2由⎩⎨⎧≥++≤--010402357y x y x 得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧≥++≤--010402357y x y x 得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37, 由⎩⎨⎧≥++≤-+01040117y x y x 得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13,∴ 当⎩⎨⎧-=-=61y x 时x 2+y 2取得最大值37,当⎩⎨⎧=-=23y x 时x 2+y 2取得最小值13.错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A 、B 、C 到原点的距离的平方的最值.正解:不等式组⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 表示的平面区域如图所示∆ABC 的内部(包括边界),令z= x 2+y 2,则z 即为点(x ,y )到原点的距离的平方. 由⎩⎨⎧≥++≤--010402357y x y x 得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧≥++≤--010402357y x y x 得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37,由⎩⎨⎧≥++≤-+01040117y x y x 得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13, 而在原点处,⎩⎨⎧==00y x ,此时z =x 2+y 2=02+02=0,∴ 当⎩⎨⎧-=-=61y x 时x 2+y 2取得最大值37,当⎩⎨⎧==00y x 时x 2+y 2取得最小值0.[例4]某家具厂有方木料90m 3,五合板600m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m 3,五合板2m 2,生产每个书橱需要方木料0.2m 3,五合板1m 2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大? 分析: 数据分析列表书桌 书橱 资源限制 木料(m 3) 0.1 0.2 90 五合板(m 2) 2 1 600 利润(元/张) 80 120 计划生产(张)xy设生产书桌x 张,书橱y 张,利润z 元,则约束条件为⎪⎪⎩⎪⎪⎨⎧∈∈≤+≤+N y N x 600y 2x 902.01.0y x目标函数z=80x+120y作出上可行域:作出一组平行直线2x+3y=t, 此直线经过点A (100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为z max =80×100+400×120=56000(元)若只生产书桌,得0<x ≤300,即最多生产300张书桌,利润为z=80×300=24000(元)若只生产书橱,得0<y ≤450,即最多生产450张书橱,利润为z=120×450=54000(元) 答:略[例5]某钢材厂要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格小钢板的块数如下表:A 规格B 规格C 规格 第一种钢板 1 2 1 第二种钢板 1 1 3 需求121527每张钢板的面积,第一种为1m 2,第二种为2 m 2,今需要A 、B 、C 三种规格的成品各12、15、27块,请你们为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?只用第一种钢板行吗?解:设需要截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z m 2,则⎪⎪⎩⎪⎪⎨⎧∈≥+≥+≥+Ny x y x y x y x ,27315212目标函数z=x+2y作出可行域如图2x+y-600=0 A(100,400) x+2y-900=0 2x+3y=0作一组平行直线x+2y=t ,由⎩⎨⎧=+=+27312y x y x可得交点⎪⎭⎫⎝⎛215,29,但点⎪⎭⎫⎝⎛215,29不是可行域内的整点,其附近的整点(4,8)或(6,7)可都使z 有最小值,且z min =4+2×8=20 或z min =6+2×7=20若只截第一种钢板,由上可知x ≥27,所用钢板面积最少为z=27(m 2);若只截第二种钢板,则y ≥15,最少需要钢板面积z=2×15=30(m 2).它们都比z min 大,因此都不行. 答:略[例6]设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.解:由引例可知:直线0l 与AC 所在直线平行,则由引例的解题过程知,当l 与AC 所在直线35250x y +-=重合时z 最大,此时满足条件的最优解有无数多个, 当l 经过点(1,1)B 时,对应z 最小,∴max 61050z x y =+=,min 6110116z =⨯+⨯=. 说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;2.线性目标函数的最值也可在可行域的边界上取得,即满足条件的最优解有无数多个.四、典型习题导练1.画出不等式-x +2y -4<0表示的平面区域.2.画出不等式组⎪⎪⎩⎪⎪⎨⎧<≤≥-≥-+53006x y y x y x 表示的平面区域3.求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x4.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?2x+y=15x+y=12x+3y=27 x+2y=05.某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?6.在约束条件0,0,,2 4.xyy x sy x≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s≤≤时,目标函数32z x y=+的最大值的变化范围是A.[6,15]B.[7,15]C.[6,8]D.[7,8]§5.3 基本不等式的证明一、知识导学1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法).(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0⇔a≥b;a-b≤0⇔a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法.(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1⇔a≥b;a/b≤1⇔a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法.2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B.3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件.4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法.主要有两种换元形式.(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示.此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题; (2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简.如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元.二、疑难知识导析1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向.2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯.但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误.而用综合法书写的形式,它掩盖了分析、探索的过程.因而证明不等式时,分析法、综合法常常是不能分离的.如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律.还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的.这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了.用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语.4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾.5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果.这是换元法的重点,也是难点,且要注意整体思想的应用. 三、经典例题导讲[例1] 已知a>b(ab 0≠),比较a 1与b 1的大小. 错解: a>b(ab 0≠),∴a 1<b1.错因:简单的认为大数的倒数必定小,小数的倒数必定大.正确的结论是:当两数同号时,大数的倒数必定小,小数的倒数必定大.正解:aba b b a -=-11,又 a>b(ab 0≠), (1)当a 、b 同号时,即a>b>0或b<a<0时,则ab>0,b -a<0, 0<-aba b ,∴a 1<b 1.(2)当a 、b 异号时,则a>0,b<0,a 1>0,b 1<0∴a 1>b1. [例2] 当a 、b 为两个不相等的正实数时,下列各式中最小的是( )A.2b a +B.abC.222b a + D.111)2(---+b a错解:所以选B.错因是由于在2b a +、ab 、222b a +中很容易确定ab 最小,所以易误选B.而事实上三者中最小者,并不一定是四者中最小者,要得到正确的结论,就需要全面比较,不可遗漏111)2(---+b a 与前三者的大小比较. 正解:由均值不等式≥+2ba ab 及a 2+b 2≥2ab,可知选项A 、B 、C 中,ab 最小,而111)2(---+b a =ba ab +2,由当a ≠b 时,a+b>2ab ,两端同乘以ab ,可得(a+b )·ab>2ab,∴ba ab+2<ab ,因此选D. [例3] 已知:a>0 , b>0 , a+b=1,求(a+ 1a)2+(b+ 1b)2的最小值.错解: (a+a 1)2+(b+b 1)2=a 2+b 2+21a +21b +4≥2ab+ab 2+4≥4abab 1∙+4=8, ∴(a+a 1)2+(b+b1)2的最小值是8. 错因:上面的解答中,两次用到了基本不等式a 2+b 2≥2ab ,第一次等号成立的条件是a=b=21,第二次等号成立的条件是ab=ab1,显然,这两个条件是不能同时成立的.因此,8不是最小值.正解:原式= a 2+b 2+21a +21b +4=( a 2+b 2)+(21a +21b )+4=[(a+b)2-2ab]+[(a 1+b 1)2-ab 2]+4= (1-2ab)(1+221ba )+4,由ab ≤(2b a +)2=41 得:1-2ab ≥1-21=21, 且221b a ≥16,1+221b a ≥17,∴原式≥21×17+4=225 (当且仅当a=b=21时,等号成立),∴(a + a 1)2 + (b + b1)2的最小值是252 .[例4] 已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小.解法一:[][])1(log )1(log )1(log )1(log |)1(log | |)1(log |22x x x x x x a a a a a a +---+-=+--xxx aa +--=11log )1(log 2∵0 < 1 - x 2< 1, 1110<+-<x x ∴011log )1(log 2>+--xx x a a∴|)1(log | |)1(log |x x a a +>- 解法二:2111111log 11log )1(log )1(log )1(log )1(log xxx x x x x x x x x a a -+=-=--=-=+-++++ )1(log 121x x --=+∵0 < 1 - x 2< 1, 1 + x > 1, ∴0)1(log 21>--+x x∴1)1(log 121>--+x x ∴|)1(log | |)1(log |x x a a +>-解法三:∵0 < x < 1, ∴0 < 1 - x < 1, 1 < 1 + x < 2,∴0)1(log ,0)1(log <+>-x x a a∴左 - 右 = )1(log )1(log )1(log 2x x x a a a -=++- ∵0 < 1 - x 2< 1, 且0 < a < 1 ∴0)1(log 2>-x a∴|)1(log | |)1(log |x x a a +>-[例5]已知x 2= a 2+ b 2,y 2= c 2+ d 2,且所有字母均为正,求证:xy ≥ac + bd证:证法一(分析法)∵a , b , c , d , x , y 都是正数 ∴要证:xy ≥ac + bd只需证:(xy )2≥(ac + bd )2即:(a 2 + b 2)(c 2 + d 2)≥a 2c 2 + b 2d 2+ 2abcd展开得:a 2c 2 + b 2d 2 + a 2d 2 + b 2c 2≥a 2c 2 + b 2d 2 + 2abcd即:a 2d 2 + b 2c 2≥2abcd 由基本不等式,显然成立 ∴xy ≥ac + bd证法二(综合法)xy =222222222222d b d a c b c a d c b a +++=++≥bd ac bd ac db abcdc a +=+=++22222)(2证法三(三角代换法)∵x 2 = a 2 + b 2,∴不妨设a = x sin α, b = x cos αy 2 = c 2 + d 2 c = y sin β, d = y cos β∴ac + bd = xy sin αsin β + xy cos αcos β = xy cos(α - β)≤xy [例6] 已知x > 0,求证: 25111≥+++xx xx 证:构造函数)0(1)(>+=x xx x f 则21≥+x x , 设2≤α<β由αβ-αββ-α=⎪⎪⎭⎫ ⎝⎛β-α+β-α=β+β-α+α=β-α)1)((11)()1(1)()(f f 显然 ∵2≤α<β ∴α - β > 0, αβ - 1 > 0, αβ > 0 ∴上式 > 0 ∴f (x )在),2[+∞上单调递增,∴左边25)2(=≥f 四、典型习题导练1.比较(a +3)(a -5)与(a +2)(a -4)的大小.2.已知a ,b ,c ,d 都是正数,求证:abcd bd ac cd ab 4))((≥++3.已知x > 0 , y > 0,2x + y = 1,求证:22311+≥+y x 4.若122≤+y x ,求证:2|2|22≤-+y xy x5.若x > 1,y > 1,求证:)1)(1(1--+≥y x xy6.证明:若a > 0,则212122-+≥-+a a aa §5.4不等式的应用一、基础知识导学1.利用均值不等式求最值:如果a 1,a 2∈R +,那么ab ba ≥+2. 2.求函数定义域、值域、方程的有解性、判断函数单调性及单调区间,确定参数的取值范围等.这些问题一般转化为解不等式或不等式组,或证明不等式. 3.涉及不等式知识解决的实际应用问题,这些问题大体分为两类:一是建立不等式解不等式;二是建立函数式求最大值或最小值. 二、疑难知识导析不等式既属数学的基础知识,又是解决数学问题的重要工具,在解决函数定义域、值域、单调性、恒成立问题、方程根的分布、参数范围的确定、曲线位置关系的讨论、解析几何、立体几何中的最值等问题中有广泛的应用,特别是近几年来,高考试题带动了一大批实际应用题问世,其特点是:1.问题的背景是人们关心的社会热点问题,如“物价、税收、销售收入、市场信息”等,题目往往篇幅较长.2.函数模型除了常见的“正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数、三角函数、反三角函数”等标准形式外,又出现了以“函数)])(()[(,,2bx d ax c x b a k y x bax y x b ax y --+=+=+=”为模型的新的形式. 三 经典例题导讲[例1]求y=4522++x x 的最小值.错解: y=414241445222222+⋅+≥+++=++x x x x x x =2∴ y 的最小值为2.错因:等号取不到,利用均值定理求最值时“正、定、等”这三个条件缺一不可. 正解:令t=42+x ,则t 2≥,于是y=)2(,1≤+t tt 由于当t 1≥时,y=t t 1+是递增的,故当t =2即x=0时,y 取最小值25. [例2]m 为何值时,方程x 2+(2m+1)x+m 2-3=0有两个正根. 错解:由根与系数的关系得3030122-<⇒⎩⎨⎧>-<+m m m ,因此当3-<m 时,原方程有两个正根.错因:忽视了一元二次方程有实根的条件,即判别式大于等于0.正解:由题意:⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<-<-≥⇒⎪⎩⎪⎨⎧>-<+≥--+=∆3m 321413030120)3(4)12(222或m m m m m m m ,3m 413-≤≤-⇒因此当3m 413-≤≤-时,原方程有两个正根. [例3]若正数x ,y 满足365y 6x =+,求xy 的最大值. 解:由于x ,y 为正数,则6x ,5y 也是正数,所以xy y x x 3056256=⋅≥+ 当且仅当6x=5y 时,取“=”号. 因365y 6x =+,则23630≤xy ,即554≤xy ,所以xy 的最大值为554. [例4] 已知:长方体的全面积为定值S ,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.分析:经过审题可以看出,长方体的全面积S 是定值.因此最大值一定要用S 来表示.首要问题是列出函数关系式.设长方体体积为y ,其长、宽、高分别为a ,b ,c ,则y=abc .由于a+b+c 不是定值,所以肯定要对函数式进行变形.可以利用平均值定理先求出y 2的最大值,这样y 的最大值也就可以求出来了.解:设长方体的体积为y ,长、宽、高分别是为a ,b ,c ,则 y=abc ,2ab+2bc+2ac=S . 而 y 2=(abc )2=(ab )(bc )(ac )当且仅当ab=bc=ac ,即a=b=c 时,上式取“=”号,y 2有最小值答:长方体的长、宽、高都等于66s 时体积的最大值为366s s . 说明:对应用问题的处理,要把实际问题转化成数学问题,列好函数关系式是求解问题的关健.四、典型习题导练1.某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?2.证明:通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.3.在四面体P-ABC 中,∠APB=∠BPC=∠CPA=90°,各棱长的和为m ,求这个四面体体积的最大值.4. 设函数f(x)=ax 2+bx+c 的图象与两直线y=x ,y=-x ,均不相 交,试证明对一切∈x R 都有||41||2a c bx ax >++. 5.青工小李需制作一批容积为V 的圆锥形漏斗,欲使其用料最省,问漏斗高与漏斗底面半径应具有怎样的比例?6.轮船每小时使用燃料费用(单位:元)和轮船速度(单位:海里/时)的立方成正比.已知某轮船的最大船速是18海里/时,当速度是10海里/时时,它的燃料费用是每小时30元,其余费用(不论速度如何)都是每小时480元,如果甲、乙两地相距1000海里,求轮船从甲地行驶到乙地,所需的总费用与船速的函数关系,并问船速为多少时,总费用最低?5.5 推理与证明一、基础知识导学1. 推理一般包括合情推理和演绎推理.2. 合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳、类比是合情推理常用的思维方法.3.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.4.归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想).5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理.8.直接证明的两种基本方法:分析法和综合法;间接证明的一种基本方法──反证法.9.分析法:从原因推导到结果的思维方法.10.综合法:从结果追溯到产生这一结果的原因的思维方法.11.反证法:判定非q为假,推出q为真的方法.12.应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真.13.数学归纳法:设{p n}是一个与自然数相关的命题集合,如果⑴证明起始命题p1成立;⑵在假设p k成立的前提上,推出p k+1也成立,那么可以断定,{p n}对一切正整数成立.14.数学归纳法的步骤:(1)证明当(如或2等)时,结论正确;(2)假设时结论正确,证明时结论也正确.二、疑难知识导析1.归纳推理是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.而类比推理是根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.2. 应用反证法证明命题的逻辑依据:做出与命题结论相矛盾的假定,由假定出发,应用正确的推理方法,推出矛盾的结果3. 数学归纳法是一种证明方法,归纳推理是一种推理方法.三、经典例题导讲[例1] {n a}是正数组成的数列,其前n项和为n s,并且对于所有的自然数n,n a与2的等差中项等于n s与2的等比中项.(1)写出数列{n a}的前3项;(2)求数列{n a}的通项公式(写出推证过程);错解:由(1)猜想数列{n a}有通项公式n a=4n-2.下面用数学归纳法证明数列{n a}的通项公式是。
高中竞赛不等式公式大全
高中竞赛不等式公式大全摘要:一、引言二、高中竞赛中常见的不等式类型1.基本不等式2.柯西不等式3.排序不等式4.切比雪夫不等式5.其他不等式三、各类不等式的应用及解题技巧1.基本不等式的应用及解题技巧2.柯西不等式的应用及解题技巧3.排序不等式的应用及解题技巧4.切比雪夫不等式的应用及解题技巧5.其他不等式的应用及解题技巧四、高中竞赛不等式公式大全的总结正文:一、引言不等式作为数学中的一个重要部分,在高中竞赛中占据着举足轻重的地位。
熟练掌握各类不等式及其应用,对于提高竞赛成绩具有至关重要的作用。
本文将为您整理一份高中竞赛不等式公式大全,助您竞赛之路一臂之力。
二、高中竞赛中常见的不等式类型1.基本不等式基本不等式是最常见的不等式类型之一,主要包含算术平均数与几何平均数的不等式、调和平均数与几何平均数的不等式等。
2.柯西不等式柯西不等式是一种在向量空间中的重要不等式,它可以用于证明其他许多不等式,同时也是解决某些问题的重要工具。
3.排序不等式排序不等式是一种与排序相关的不等式,可以用于解决一些与排序有关的问题,如求解排序问题、证明排序的稳定性等。
4.切比雪夫不等式切比雪夫不等式是一种在概率论和统计学中常见的不等式,可以用于求解一些概率和方差的问题。
5.其他不等式除了以上常见的不等式类型,还有一些其他的不等式,如赫尔德不等式、闵可夫斯基不等式等。
三、各类不等式的应用及解题技巧1.基本不等式的应用及解题技巧基本不等式在求解一些最值问题、比较大小问题等方面有着广泛的应用。
解题时需要注意观察题目条件,灵活运用基本不等式。
2.柯西不等式的应用及解题技巧柯西不等式在求解一些向量空间中的最值问题、证明其他不等式等方面具有重要意义。
解题时应熟练掌握柯西不等式的形式,灵活运用。
3.排序不等式的应用及解题技巧排序不等式在解决排序问题、证明排序的稳定性等方面具有重要意义。
解题时需要注意排序不等式的适用范围,正确运用。
4.切比雪夫不等式的应用及解题技巧切比雪夫不等式在求解一些概率和方差的问题中具有重要作用。
一类不等式竞赛题的统一证法
。<
1
1
,
当 >1 时,. . . 1 <_ / ‘ ( ) 1 +
・ . .
,
当. j } >2时 , 1 < . 厂 ( ) 1 +
; 若对 任 意 的实数 。 , X , X , 要使 f ( x . ) +f ( x ) > f ( x 3 ) 成立 ,
区问 ( 1 , 6 ] M ,必 有 k 一 2 >0,即 函数 f( x ) = 0 ) 的值 域为 M _( 1 ’ l +
. .
.
这时 _ 厂 ( ) +f ( X z ) >f ( x 3 ) 显然 成立 ;
当 <1 时,1 + / ( ) <1 ,
] ,
筒捷证 明 .
面+ 面 + 面 { 2 . ‘
+ +
1
这是 2 0 1 0 年美国国家队选拔考试第二题 , 刊在
2 0 1 3 年第 l 期
福建中学数 学
4 7
证 明
a 5 ( b + — 2 c ) 2 + 丽
—
1
1
卜 c 5 — ( a + — 2 b ) 2
斗 一
=
ห้องสมุดไป่ตู้
=
( a b )
( c a + 2 b c )
‘
… ) ≥ 1
・
3 瓣
1
+ —-——一
= ,
3
≥一 .
】
— — — 一
1
+ —-——一
+
一
竺
.
.
a ( b +c ) b ( c + a ) c ( a + 6 ) 2
基本不等式题型及常用方法总结
基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
高中数学基本不等式题型总结:
高中数学基本不等式题型总结:
一、一元一次不等式
1. 原理:在一元一次不等式中,如果两个不等式的不等号方向
相同,且两个不等式的等号两边都乘以同一个正数或同一个负数,
那么不等式保持不变。
2. 解法:
a. 将不等式化简为标准形式:ax + b > 0 或 ax + b < 0,其中 a
和 b 均为实数,且a ≠ 0。
b. 对不等式进行相同操作后得到的不等式,得到不等式的解集。
二、一元二次不等式
1. 原理:在一元二次不等式中,解不等式的关键是确定二次函
数的凹凸性和零点情况。
2. 解法:
a. 将不等式化简为标准形式:ax^2 + bx + c > 0 或 ax^2 + bx + c < 0,其中 a、b 和 c 均为实数,且a ≠ 0。
b. 利用一元二次函数的凹凸性和零点情况进行分析,得到不等
式的解集。
三、绝对值不等式
1. 原理:对于绝对值不等式,根据绝对值的定义可分为绝对值大于等于零和绝对值小于等于零两种情况。
2. 解法:
a. 将不等式化简为标准形式:|ax + b| > c、|ax + b| < c 或 |ax + b| ≥ c、|ax + b| ≤ c,其中 a、b 和 c 均为实数,且a ≠ 0。
b. 根据绝对值的定义和不等式方向进行分析,得到不等式的解集。
四、其他常见不等式
1. 根据题目要求和不等式的特点,灵活运用数学运算符和基本不等式的性质,确定不等式的解集。
以上是高中数学中基本的不等式题型总结,希望能对你的研究有所帮助。
高中数学联赛不等式专题练习(带答案详解,word精校版)
高中数学联赛不等式专题练习(带答案详解)一、解答题1.已知a ,b 为正数,且a b2112a b a b+>>>+. 【答案】证明见解析 【分析】如图所示,可先构造Rt ABC △,再构造Rt BCD ,最后,作Rt Rt BC D BCD '△≌△,由图形直观得AB BC BD BE >>>,即得证. 【详解】=可先构造Rt ABC △,使得2a b BC +=,2a bAC -=,如图所示.此时,AB =再以2a b BC +=为斜边,2a bCD -=为直角边构造Rt BCD ,则BD ===最后,作Rt Rt BC D BCD '△≌△,过点D 作DE BC ⊥'交BC '于点E ,由2BD BE BC =⋅'得22112BD BE BC a b==='+, 由图形直观得AB BC BD BE >>>,2112a ba b+>>>+.2.已知:0a>,0b>,1a b+=.2≤.【答案】证明见解析.【分析】构造一个直角三角形,图所示)cos)2αα+≤,即得证.【详解】证明:为了使得条件1a b+=与待证式的中间部分在形式上接近一些,我们将该条件作如下变形:11222a b⎛⎫⎛⎫+++=⎪ ⎪⎝⎭⎝⎭,进而有222+=.①.显然,这个直角三角形的三边长之间的关系是符合①的,从而满足条件1a b+=.由图所示,根据定理“三角形任意两边之和大于第三边”,而有不等式.至于这个双联不等式的右边部分,也可由图,并根据直角三角形的边角关系知αα=.cos)24πααα⎛⎫+=+≤⎪⎝⎭∴2≤成立.3.设x,y,0z>1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.【答案】证明见解析. 【详解】等价于已知x ,y ,0z >,1x y z ++=,证:()8445221x y z x y z +≥+∑, 由三元均值不等式有()844522x y z x y z +≥+∑由柯西不等式有()84444622()x y z x y xyz yx ∏+⎛⎫=∏+ ⎪⎝⎭,所以有()()8446653()()xy z x y xyz xyz ++≥∏∏,则可知()844522x y z x y z +≥+∑由柯西不等式有()()()866444444322()893xy x y x xyxyz xxy++≥≥≥+∏∏∑∑∑∏,则有()844522x y z x y z+≥+∑1x y z =++≥∴≥又13,所以()8445221x y z x y z +≥+∑, 所以原不等式成立.4.对每一个正整数2n ≥,求最大的常数n c 使得不等式1nn i i j i i jc a a a =<≤-∑∑对任意满足10nii a==∑的实数12,,,n a a a 成立.【答案】2n【详解】首先,我们证明2n n c ≤;若n 为偶数,设2n k =,取1121,1k k k a a a a a +=======-,此时21,2nii j i i jan a a k =<=-=∑∑.所以2122iji jn nii a ak n c k n a<=-≤===∑∑. 若n 为奇数,设21n k =+,取121221,11k k k ka a a a a k +++=======-+,此时1(1)121ni i k a k k k k ==++⋅=+∑,(1)1(21)1i j i j k a a k k k k k <⎡⎤⎛⎫-=++=+ ⎪⎢⎥+⎝⎭⎣⎦∑. 所以1(21)21222iji jn nii a ak k k nc k a<=-++≤===∑∑,所以对n +∈Z 均有2n n c ≤. 下面我们证明2n nc =满足条件,即12ni i j i i jn a a a =<≤-∑∑.又()1112(1)n n ni j i j i j i j i ji j ii j ii j ia a a a a a n a a <=≠=≠=≠-=-≥-=--∑∑∑∑∑∑∑.因为10n i i a ==∑,所以0i j j ia a ≠+=∑.所以112(1)n ni j i i i i j i i a a n a a n a <==-≥-+=∑∑∑,得证.所以n c 的最大值为2n.5.已知正实数12,,,(2)n a a a n >满足121n a a a +++=.证明:23131212121222(1)n nn n a a a a a a a a a a n a n a n n -+++≤+-+-+--.【答案】证明见解析. 【详解】当4n ≥时,由平均值不等式知1111111n nn j i nj i jj j ia a a a n n --==≠⎛⎫- ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⎪⎝⎭∑∏.又111i a n -<-,则131111n i i a a n n ---⎛⎫⎛⎫≤ ⎪ ⎪--⎝⎭⎝⎭,所以 231312112222n n n n a a a a a a a a a a n a n a n -++++-+-+-()()3311(1)2ni i ia n a n =-≤-+-∑ 33321(10)1(1)(02)(1)(2)(1)ni n n n n n n =-<=≤-+----∑.当3n =时,即证312311(1)4=≤+∑i i i a a a a a . 由于()()()()11123121311111111411a a a a a a a a a ⎛⎫=≤+ ⎪+-+---⎝⎭,所以3112131111()(1)4(1)(1)=≤++--∑∑i iia a a a a a()()2131111411a a a a ⎛⎫=+⎪--⎝⎭∑ ()2323123111414a a a a a a a +==-∑∑,所以31231111(1)44=≤=+∑∑i i i a a a a a a .命题得证.6.已知12,,,n a a a …为正实数(4)n ≥,且满足(1)j i ia ja i j i j n +≥+≤<≤,求证:()()()()12121n a a a n n +++≥+!.【答案】证明见解析 【详解】设ii a b i =,则有11(1)i j b b j i j i n +≤≥<≤+,命题即证1(1)(1)ni i b n =+≥+∏.(1)若对于所有(1)i i n ≤≤,有1i b i ≥,则11111(1)(1)1n n ni i i i i b n i i ===+⎛⎫+≥+==+ ⎪⎝⎭∏∏∏.(2)若存在某一个(1)i i n ≤≤,有1i b i<.设1i c b i=-,则有111111()j i b b i c j i j j +≥+-++≠=+,则11111(1)(1)11nni i i c i b c j c i==+-+≥⋅++++∏∏. 注意到21111111111(1)111c c i i i c c c i i i+-+-+=⋅≥++++++, 故只需证211111(1)11(1)n ni i n c c j j ==⎛⎫⋅+++=+ ⎪⎝⎭≥+∏∏, 即2111(1)11n i c jc j =⎛⎫++ ⎪ ⎪≥+ ⎪+ ⎪⎝⎭∏.又因为111111211cc c jj j++=+≥+++, 故()421244122111312121122212ni c c c c c c c j C C =⎛⎫++ ⎪⎛⎫⎛⎫⎪≥+≥++ ⎪=++ ⎪⎝⎭⎝⎭ ⎪ ⎪⎭≥++⎝∏ 因此命题成立.7.求所有实数1,1,1x y z ≥≥≥满足:=【答案】22221{,,}1,1,11l x y z l l l ⎧⎫⎪⎪⎛⎫=+++⎨⎬ ⎪+⎝⎭⎪⎪⎩⎭,其中0l >. 【详解】记2221,1,1x k y l z m =+=+=+,不妨0k l m ≤≤≤,k l m =++.平方整理得()2221(1)(1)0k lm kl km +-++-=,于是有11,ml m l k=+=, 所以210,,,1ll m k l l l ≠===+相应的222211,11y y yx k z m y y +-=+==+=-. 由x y ≤,即2321(1)(1)0y y y y y +-≤⇔-+≥,符合假设.由x z ≤,即()231(1)210y y y y y +--≤⇔-≥,又1y ≥,符合假设.综上,22221{,,}1,1,11l x y z l l l ⎧⎫⎪⎪⎛⎫=+++⎨⎬ ⎪+⎝⎭⎪⎪⎩⎭,其中0l >. 8.已知12,,,0n a a a >,求证:()()()()()()1232341212231n n n a a a a a a a a a a a a a a a ++++++>+++.【答案】证明见解析. 【详解】因为()()()2221232213132a a a a a a a a a ++=++++ ()222131324a a a a a a ≥+++()()221321222a a a a a a =+++()()122322a a a a =++,所以()()()()()()21232341212231n n a a a a a a a a a a a a a a a ⎛⎫++++++ ⎪ ⎪+++⎝⎭()()()()()()()()()1223233411222212231222222nn a a aa a a a a aa a a a a a a a a +++++≥++++, 当且仅当1324,a a a a ==⋅⋅⋅==⋅⋅⋅时等号成立. 以下配对柯西约分: 因为()()()22121212222a a a a a a ++≥=+,()()()22232323222a a a a a a ++≥=+,……,显然柯西不等式等号不成立.所以()()()()()()212323412122312n nn a a a a a a a a a a a a a a a ⎛⎫++++++ ⎪ ⎪+++⎝⎭>, 即()()()()()()1232341212231n n n a a a a a a a a a a a a a a a ++++++>+++.9.在ABC 中,三内角A 、B 、C 满足tan tan tan tan tan tan A B B C C A =+,求cos C 的最小值. 【答案】23【详解】由tan tan tan tan tan tan A B B C C A =+,得: sin sin sin sin sin sin cos cos cos cos cos cos A B B C C AA B B C C A =+sin (sin cos sin cos )cos cos cos C B A A B A B C +=sin sin()cos cos cos C A B A B C+=2sin cos cos cos C A B C=, 所以2sin sin cos sin A B C C =.由正余弦定理,得22222a b c abc ab+-=, 所以2222222sin 223,cos sin sin 333C c a b ab a b c C A B ab ab ab ++====≥=, 当且仅当a b =时等号成立,所以cos C 的最小值为23.10.求常数C 的最大值,使得对于任意实数122020,,x x x ﹐均有20192120201()i i i i x x x Cx +=+≥∑.【答案】20194040- 【详解】定义数列{}n a 满足1110,()4(1)n n a a n a N ++=-∈=.不难用数学归纳法证明1()2n n a n nN +-∈=. 对于正整数i ,由22222111111111(1))04i i i i i i i i i i i i i a x x x a x x x x a x a ++++++++-++=++=≥, 得222111i i i i i i i x x x a x a x ++++≥-.上式两边对i 从1到2019求和,得2019201922222111202020002020112019()()4040ii i i i i i i i x x x a x a x a x x +++==+≥-=-=-∑∑. 另一方面,取11111,1,2,,201(9)2n n n n x n x x x n a n +++==-=-⋅=⋅⋅,可得20194040C ≤-. 故常数C 的最大值为20194040-. 11.设正整数2n ≥,非负实数12,,,n a a a ,满足11ni i a ==∑,求2211n n i i i i a i a i ==⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭∑∑的最大值.【答案】23224(1)27(1)n n n n +++ 【详解】注意到,对任意的1i n ≤≤,都有22(1)1n n n i n i++++≤, (这是因为上式等价于(1)()(1)0i n i n i i--++≥) 于是由均值不等式,()222222111114()()()(1)2nnnn i i i i i i i i n n a i a i a a i n n i ====+⎛⎫⋅=⋅ ⎪+⎝⎭∑∑∑∑ 32122(1)4(1)3n i i n n i a i n n =⎡+⎤⎛⎫+ ⎪⎢⎥⎝⎭⎢⎥≤+⎢⎥⎢⎥⎣⎦∑ 32232222414(1)(1)327(1)n n n n n n n n ⎛⎫++++≤= ⎪++⎝⎭等号成立当且仅当2111(1),12n nni i i i i i n n i a a a i ===+==∑∑∑及2310n a a a -====,即1231212,,03(1)3(1)n n n n a a a a a n n -++======++时.综上,原式的最大值为23224(1)27(1)n n n n +++. 12.设正实数1299,,,a a a 满足对任意199i j ≤≤≤有i j ja ia i j +≥+,求证:()()()12991299100a a a +++≥!.【答案】证明见解析 【详解】 令(199)ii a b i i=≤≤,条件转化为对任意199i j ≤<≤有11i j b b i j +≥+.要证不等式即()()()1299111100b b b +++≥.若对任意199i ≤≤均有1i b i ≥,则左式99111100i i=⎛⎫≥+= ⎪⎝⎭∏.否则恰存在一个i 使得1i b i <,记1i c b i=-,则对任意j i ≠,有1j b c j ≥+.于是左式9919911111111111j j j ic i c c c i j j c i≤≤=≠-+⎛⎫⎛⎫⎛⎫≥-+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭++∏∏. 即只需证:991121100111j c c j c i =⎛⎫ ⎪⎛⎫++≥+ ⎪ ⎪⎝⎭ ⎪-+⎝⎭∏. ① 由Bernoulli 不等式知 ①式左端9999999911111110011001111j j j j j j j j c c c j j j j ====⎛⎫⎛⎫⎛⎫+=+⋅=+⋅≥+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∏∏∏. 显然99122111j j j c i=>>+-+∑,因此①式成立,即证原不等式成立. 13.已知12,,,n a a a R ∈,且满足222121n a a a +++=,求122311n n n a a a a a a a a --+-++-+-的最大值.【答案】当n为偶数时,最大值为n 为奇数时,最大值为【详解】i j i j a a a a -≤+当且仅当·0i j a a ≤时等号成立. (1)当n 为偶数时,122311n n n a a a a a a a a --+-++-+-最大时,显然需满足10i i a a +⋅≤,否则用1i a +-替换1i a +依然满足条件,且值增大.设11n a a +=,所以()111112n n ni i i i i i i i a a a a a ++===-≤+=≤=∑∑∑当且仅当i j a a ==i 为奇数,j 为偶数或i 为偶数,j 为奇数)时等号成立. (2)当n 为奇数时,122311,,,,n n n a a a a a a a a -----必存在()111,i i n a a a a ++=同号,不妨设12,a a 同号,则:112112211232A nn ni i i i i i i i a aa a a a a a a a a ++===-=-+-≤-+++=∑∑∑.不妨设210a a ≥≥,则122122aa a a a-++=,所以:23A 22ni i a a ==+≤≤=∑当且仅当12413110,,11a a a a a n n =======---或12413110,,11a a a a a n n ====-===--时等号成立.14.已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++. 【答案】证明见解析 【详解】()()()()111abc a b ab bc ca c a b ab ⎡⎤⎣⎦++-++=-+⨯-,因为a ,b ,0,2c a b c ≥++=,所以()1,1c a b ab +≤≤. 于是()1abc a b ab bc ca ++≥++,同理()1abc b c ab bc ca ++≥++,()1abc c a ab bc ca ++≥++. 则:1()1()1()bc ca ababc a b abc b c abc c a ++++++++1bc ca abab bc ca ab bc ca ab bc ca≤++=++++++.故题中的不等式成立. 15.设1,2,3,,()k k a b k n =、均为正数,证明:(1)若112212n n n a b a b a b b b b ++⋯+≤++⋯+,则12121n b b bn a a a ≤;(2)若121n b b b +++=…,则1222212121n b b b n n b b b b b b n++≤+≤.【答案】(1)证明见解析;(2)证明见解析.【详解】设()()ln 1,0,f x x x x =-+∈+∞,令1()10f x x'=-=解得1x =. 当01x <<时,()()0,f x f x '>在()0,1内是增函数; 当1x >时,()()0,f x f x <在()1,+∞内是减函数; 故函数()f x 在1x =处取得最大值()10,ln 1f x x =≤-.(1)因为,0k k a b ≥,从而有ln 1k k a a ≤-,得()ln 1,2,k k k k k b a a b b k n ≤-=⋯, 求和得111ln k nnnb kk k k k k k a b b a ===≤-∑∑∑.因为11nnk k k k k a b b ==≤∑∑,所以1n 0l k nbk k a =≤∑,即1212ln()0n b b b n a a a ⋅⋅≤⋅,所以12121n b b bn a a a ⋯≤.(2)①先证12121n n b b b b nb b ≤令1(1,2,,)k k a k n nb ==.则11111nnnk k k k k k a b b n ======∑∑∑,于是由(1)得1212111()()()1nb b b nnb nb nb ≤, 即1212211nn b b b b b b nb n bn b+++≤=,所以12121n n b b b b nb b ≤⋯. ②再证122221212n b bbn n b b b b b b ≤+++.记21nkk S b ==∑,令(1,2,,)kk b a k n S ==,则211111n n nk k k k k k k a b b b S ======∑∑∑,于是由(1)得1212()()()1n b b bn b b b S S S≤.即121212nnb b b b b bn b b S S b +++==,所以122221212n b b n n b b b b b b b ⋯≤+++.综合①②,(2)得证. 16.给定整数2n ≥.设1212,,,,,,,0n n a a a b b b >,满足1212n n a a a b b b +++=+++,且对任意,(1)i j i j n ≤<≤,均有i j i j a a b b ≥+.求12n a a a +++的最小值.【答案】最小值为2n . 【分析】 记1212n n S a a a b b b =+++=+++.由条件知()11(1)i j iji j ni j na ab b n S ≤<≤≤<≤≥+=-∑∑.结合222111122n i ji j i i j ni j ni a a n a a a ≤<≤≤<≤=+-≤=⋅∑∑∑,将2221112n ni i i j i i i j n S a a a a ==≤<≤⎛⎫==+ ⎪⎝⎭∑∑∑变成不等关系,求得最小值,并验证等号成立条件即可. 【详解】 解:记1212n n S a a a b b b =+++=+++.由条件知()11(1)i j iji j ni j na ab b n S ≤<≤≤<≤≥+=-∑∑.又222111122n i ji j i i j ni j ni a a n a a a ≤<≤≤<≤=+-≤=⋅∑∑∑,于是222111122221n ni i i j i j i i i j n i j n S a a a a a a nS n ==≤<≤≤<≤⎛⎫⎛⎫==+≥+≥⎪ ⎪-⎝⎭⎝⎭∑∑∑∑. 注意0S >,故2S n ≥. 另一方面,当2(1,2,,)i i a b i n ===时,条件满足,且2S n =.综上,12n S a a a =+++的最小值为2n .17.设,,x y z 均为正数,且1x y z ++=,证明:(Ⅰ)13xy yz zx ++≤(Ⅱ)22212x y z y z x z x y ++≥+++ 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【分析】(1)先由基本不等式可得222x y z xy yz xz ++≥++,再结合()2x y z ++的展开式即可证明原式成立;(2)利用柯西不等式[]2222()()()()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭证明. 【详解】证明:(Ⅰ):因为()()()2222222222x y y z x z x y zxy yz xz +++++++=≥++所以22221()2223()x y z x y z xy yz xz xy yz zx =++=+++++≥++故13xy yz zx ++≤,当且仅当x y z ==时“=”成立.(Ⅱ),,x y z 均为正数,由柯西不等式得:2222[()()()]()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭即22221x y z y z x z x y ⎛⎫++≥ ⎪+++⎝⎭, 故22212x y z y z x z x y ++≥+++,当且仅当x y z ==时“=”成立. 【点睛】本题考查利用基本不等式、柯西不等式等证明不等式,难度一般.证明时,利用整体思想,注意“1”的巧妙代换.18.设x ,y ,z 均为正实数,且4xyz =,求证:33311116xy yz zxx y y z z x ++++≥ . 【答案】证明见解析 【分析】由基本不等式+a b ≥. 【详解】因为x ,y ,z 均为正实数,且4xyz =,所以31682xy yz x y x+≥==(当且仅当24x y =,即x z =时取等号),31682yz xz y z y +≥==(当且仅当24y z =,即x y =时取等号),31682xz xy z x z+≥=(当且仅当24z x =,即y z =时取等号), 所以333161616+++2+2+2xy yz xz yz xz xy x y y z z x ⎛⎫⎛⎫⎛⎫++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(当且仅当x y z ==取等号),所以33311116xy yz zx x y y z z x ++++≥,当且仅当x y z ==取等号. 【点睛】本题考查运用基本不等式证明不等式,关键在于构造基本不等式和满足基本不等式的条件,属于中档题.19.设数列{}n a 的前n 项的积为n T ,满足1n n T a =-,*N n ∈,记22212n n S T T T =++⋅⋅⋅+(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;(2)记1n n n d a S +=-,证明:1132n d <<【答案】(1)证明见解析;(2)证明见解析; 【分析】(1)先令n=1求出首项,再由前n 项的积的定义表示1111n n na a a ++-=-,进而整理化简,再由等差数列定义得证;(2)由(1)表示数列{}n a 的通项公式,进而由放缩法放缩2n T ,再由裂项相消法求n S ,最后再放缩不等式得证. 【详解】解析:(1)因为1n n T a =-,所以111a a =-,解得112a =. 由题可知11111n n n n nT a a T a +++-==-, 所以11111n n n a a a ++=--,即()1111111n n n a a a ++--=--,则111111n n a a +-=--. 所以11n a ⎧⎫⎨⎬-⎩⎭是公差为1的等差数列,且首项1121a =-. (2)由(1)可知()1121111111n n n nn n a a a n n =+-⋅=+⇒-=⇒=-++,则111n n T a n =-=+. 首先,()()()22111112121n T n n n n n =>=-+++++.所以222111111111123341222n n S T T T n n n ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+>-+-+⋅⋅⋅+-=-⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 又112n n a n ++=+,所以111112222n n n n d a S n n ++=-<+-=++. 其次,()()2221111112113212311422n T n n n n n n ⎛⎫=<=-=- ⎪++⎝⎭++-++. 所以2221111111111222235572123323n n S T T T n n n ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+<-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭.所以111112212232322433n n n n n d a S n n n n +++⎛⎫=->-->+-= ⎪++++⎝⎭. 综上所述:1132n d <<.【点睛】本题考查由已知递推关系证明等差数列,还考查了由放缩法证明数列不等式以及裂项相消法求和,属于难题.20.用适当的方法证明下列不等式: (1)若0x >,0y >,证明:22x y xyx y+≥+;(2)设a ,b 是两个不相等的正数,且111a b+=,证明:4a b +>.【答案】(1)详见解析;(2)详见解析. 【分析】(1)采用分析法证明,当0x >,0y >时,欲证22x y xyx y+≥+,只需证2()4x y xy +≥,再根据重要不等式即可证明;(2)采用综合法证明,由题意得()11a b a b a b ⎛⎫+=++ ⎪⎝⎭11b a a b =+++,再根据基本不等式即可证明. 【详解】证明:(1)当0x >,0y >时,欲证22x y xyx y+≥+, 则只需证:2()4x y xy +≥, 即证:2()40x y xy +-≥, 即证:2220x xy y -+≥,∵,x y R ∀∈,2222()0x xy y x y -+=-≥恒成立, ∴22x y xyx y+≥+成立; (2)∵0a >,0b >,111a b+=且ab ,∴()11a b a b a b ⎛⎫+=++ ⎪⎝⎭11b a a b =+++24≥+,∵a b ,∴不能取等号,即4a b +>.【点睛】本题主要考查不等式的证明方法,考查分析法与综合法证明不等式,考查基本不等式的应用,属于中档题.。
高中数学竞赛解题方法篇(不等式)
高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。
希望对广大喜爱竞赛数学的师生有所帮助。
不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。
不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。
全国高中数学竞赛专题-不等式
全国高中数学竞赛专题-不等式(2)商值比较法(原理:若>1,且B>0,则A>B 。
)例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|. 解:因为1-x ≠1,所以log a (1-x)≠0,|)1(log ||)1(log |x x aa -+=|log (1-x)(1+x)|=-log (1-x)(1+x)=log (1-x)x +11>log (1-x)(1-x)=1(因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1). 所以|log a (1+x)|>|log a (1-x)|.2.分析法(即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。
)例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab - 证明:要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+,因为33332abc b a c ab ab c ab c =⋅⋅≥++=+, 所以原不等式成立。
例 4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤-证明:因为0<a ≤b ≤c ≤21,由二次函数性质可证a(1-a) ≤b(1-b) ≤c(1-c),所以)1(1)1(1)1(1c c b b a a -≥-≥-, 所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-, 所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-, 也就是证)1)(1()1)(1(b a b b a b a a b a ---≤---,只需证b(a-b) ≤a(a-b),即(a-b)2≥0,显然成立。
竞赛数学中几类不等式的解法
竞赛数学中几类不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。
希望对广大喜爱竞赛数学的师生有所帮助。
关键词:排序不等式;平均值不等式;柯西不等式;切比雪夫不等式不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和)1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。
不等式 1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上,()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n na b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++ 即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b ca b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++ 有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++即 lg lg 3a b c a b ca b c abc ++≥故 3()a b c a b ca b c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明.证明:不妨设a b c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++ 222222111a b c a b c b c a a b c++≥++两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333a b c ≥≥,并且111bc ca ab≥≥利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++ 333333111a b c a b c bc ca ab ab bc ac++≥++两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列.求证:1111r s n nn ni j r sr s r s a b a b r sr s====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式. 证明:令 1s nj r s b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式 1nsr s b d r s =≤+∑又因为 12...n a a a ≤≤≤所以 11r n n r r i r r r a d a d ==≤∑∑且111n nn sr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0) 故 11111r s sr nnn nni j j ir i r r s r s r a b b a a d r sr s=======++∑∑∑∑∑11111n n nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式. 其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤. 记c = ii a b c=, 则 原不等式12...n b b b n ⇔+++≥ 其中 12121...(...)1n n nb b b a a ac == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥ 下证 ()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号. 下面证明 ()()H n G n ≤ 对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+.证明:由于 01a <<,0,0x y a a >>, 有x y a a +≥=从而log ()log log 22x y a a a x ya a ++≤=+ 下证128x y +≤ , 即 14x y +≤。
数学竞赛中的不等式知识点总结
数学竞赛中的不等式知识点总结数学竞赛在学生的学习中扮演着很重要的角色,不仅能够提高学生的数学素养,还能够培养学生的逻辑思维能力和解题能力。
在数学竞赛中,不等式是一个非常重要的知识点,很多的数学竞赛都会考察不等式相关的题目,因此在备战数学竞赛的过程中,掌握好不等式知识点是非常必要的。
1.基本不等式基本不等式是指在所有正整数中,算术平均数大于等于几何平均数。
即对于任意正整数$a_1,a_2,\cdots,a_n$,都有:$\frac{a_1+a_2+\cdots+a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$基本不等式是不等式中最基础的知识点,但是在数学竞赛中应用的非常广泛,尤其是在证明其他不等式定理时,基本不等式起到了非常重要的作用。
2.均值不等式均值不等式是指在所有实数中,算术平均数大于等于几何平均数。
均值不等式分为两种情况,一种是两个数的情况,另一种是多个数的情况。
两个实数$a$和$b$的均值不等式如下:$\frac{a+b}{2} \geq \sqrt{ab}$多个实数$a_1,a_2,\cdots,a_n$的均值不等式如下:$\frac{a_1+a_2+\cdots +a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$均值不等式是在基本不等式的基础上发展起来的,应用范围比基本不等式更广泛,也更加灵活。
3.柯西不等式柯西不等式是指两个向量的点积不大于这两个向量的模的乘积。
柯西不等式可用于证明其他不等式,也可作为求极值的工具在数学竞赛中得到广泛应用。
柯西不等式如下:$(x_1y_1+x_2y_2+\cdots+x_ny_n)^2 \leq(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)$其中$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$是任意实数。
证明不等式的竞赛题
证明不等式的竞赛题
一、引言
不等式是数学中一个重要的概念,它在数学竞赛中占据着重要的地位。
证明不等式的方法多种多样,包括代数法、几何法、三角法、数列法等。
本文将介绍一些证明不等式的竞赛题,并给出相应的解题思路和答案。
二、竞赛题
1.题目:设 a, b, c ∈ℝ+,且 a + b + c = 1。
求证:1/a + 1/b + 1/c ≥ 9。
解题思路:
首先,我们注意到给定条件 a + b + c = 1,我们可以将原不等式转化为:
(a + b + c) / a + (a + b + c) / b + (a + b + c) / c ≥ 9
即:
b/a + c/a + a/b + c/b + a/c + b/c ≥ 6
我们可以使用基本不等式(AM-GM不等式)来证明这个不等式。
答案:
根据AM-GM不等式,我们有:
b/a + c/a ≥ 2√(b/a × c/a) = 2√bc/a^2
a/b + c/b ≥ 2√(a/b × c/b) = 2√ac/b^2
a/c + b/c ≥ 2√(a/c × b/c) = 2√ab/c^2
将上述三个不等式相加,得到:
b/a + c/a + a/b + c/b + a/c + b/c ≥ 2(√bc/a^2 + √ac/b^2 + √ab/c^2)
化简得:
b/a + c/a + a/b + c/b + a/c + b/c ≥ 6
当且仅当 a = b = c 时,等号成立。
高中竞赛常用的不等式
高中竞赛常用的不等式1.柯西不等式))(()(2n 22212n 22212n 2211b b b a a a b a b a b a n ++++++≤+++ ,其中等号成立条件为nn b a b a b a ==2211。
附:给出大家可能没见过的证明:对于一元二次方程0)()(2)(2n 2221n 221122n 2221=+++++++-+++b b b x b a b a b a x a a a n 等价于0)()()(2222211=-++-+-n n b x a b x a b x a ,该方程最多只有一个解,判别式小于等于0,即0))((4)(42n 22212n 22212n 2211≤++++++-+++b b b a a a b a b a b a n , 得证,且等号成立条件,nn b a b a b a ==2211。
2.四个平均的关系: 平方平均na a a Q n 2n 2221+++= ,算术平均n a a a A n n +++= 21,几何平均n n n a a a G 21=,调和平均nn a a a H 111121+++= 。
满足关系:n n n n H G A Q ≥≥≥,其中等号成立条件为n a a a === 21。
调和平均不常用。
3.排序不等式(排序原理):设有两个有序数组:n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,则有 112121221121b a b a b a b a b a b a b a b a b a n n n j n j j n n n +++≥+++≥+++- (同序和) (乱序和) (逆序和) 。
其中n j j j ,,,21 是1,2,…,n 的一个排列。
4.切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,则有 nb b b n a a a n b a b a b a n n n n +++⋅+++≥+++ 21212211。
高中不等式竞赛题
高中不等式竞赛题一、不等式的基本概念和性质1.1 不等式的定义不等式是数学中一种比较大小关系的表示形式,用符号“<”、“>”、“≤”、“≥”表示。
1.2 不等式的解集不等式的解集是使不等式成立的实数的集合。
1.3 不等式的性质•不等式两边同时加(减)一个数,不等式的方向不变。
•不等式两边同时乘(除)一个正数,不等式的方向不变。
•不等式两边同时乘(除)一个负数,不等式的方向反向。
二、一次不等式2.1 一次不等式的解法对于一元一次不等式,可以通过画数轴、列方程、使用正值、负值来求解。
2.2 一次不等式的应用一次不等式广泛应用于实际生活中的问题,比如求解最优策略、确定范围等。
三、二次不等式3.1 二次不等式的解法对于一元二次不等式,可以通过列出函数图像、求解方程、使用符号法等方法来求解。
3.2 二次不等式的应用二次不等式常常用于求解最值问题、优化问题等。
四、综合不等式4.1 绝对值不等式绝对值不等式是一种特殊的不等式,解法与一次或二次不等式有所不同。
4.1.1 绝对值不等式的性质•绝对值不等式的解集可以用开区间、闭区间、半开半闭区间表示。
•绝对值等式的解集是使等式成立的实数的集合。
4.2 含参数的不等式当不等式中存在参数时,解集可能与参数的取值有关,需要分情况讨论。
4.2.1 参数的取值范围参数的取值范围是使不等式成立的参数的集合。
4.2.2 参数取值范围的确定方法可以通过列方程、化简、组合条件等方法来确定参数的取值范围。
五、常见不等式的应用5.1 三角不等式三角不等式是一种常见的几何不等式,用于描述三角形中两边之和大于第三边的关系。
5.2 平均值不等式平均值不等式描述了算术平均数和几何平均数之间的关系。
5.3 柯西-斯瓦茨不等式柯西-斯瓦茨不等式是描述内积空间中向量之间的关系的重要不等式。
5.4 马尔科夫不等式马尔科夫不等式是描述概率分布中随机变量与期望值之间关系的不等式。
六、总结与思考高中不等式竞赛题是学生考察解决复杂不等式问题的能力和技巧的重要考试。
不等式常见考试题型总结
当时,
当时,若解集为任意实数;
若,无解
当时,
【典型例题】
题型一:与整数解个数有关的不等式
2.作商(常用于分数指数幂的代数式);
3.分析法;
4.平方法;
间量或放缩法;
8.图象法。
(4)不等式求函数最值
技巧一:凑项
例:已知,求函数的最大值。
技巧二:凑系数
例。 当时,求的最大值.
技巧三:分离
例. 求的值域。
技巧四:换元
例。 求的值域。
∴W≤ =2
变式: 求函数的最大值.
解析:注意到与的和为定值。
又,所以
当且仅当=,即时取等号. 故。
评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件.
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。
应用二:利用基本不等式证明不等式
(5)证明不等式
常用方法:比较法、分析法、综合法和放缩法。
基本不等式—最值求法的题型
基础题型一:指数类最值的求法
1.已知,求的最小值。
变式1.已知,求的最小值.
变式2.已知,求的最小值。
变式3。已知,求的最小值。
变式4。已知点在直线上,求的最小值。
基础题型二:对数类最值的求法
2.已知,且,求的最大值。
4。若,则(当且仅当时取“=”)
注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
高中竞赛不等式公式大全
高中竞赛不等式公式大全(实用版)目录1.竞赛不等式的基本概念2.高中竞赛不等式的分类3.高中竞赛不等式的解题技巧4.高中竞赛不等式的应用实例正文【高中竞赛不等式公式大全】一、竞赛不等式的基本概念竞赛不等式是高中数学竞赛中经常出现的一类题型,它涉及到较深的数学知识,需要运用较高的数学技巧来解决。
竞赛不等式主要考察学生的逻辑思维能力、分析问题和解决问题的能力。
二、高中竞赛不等式的分类高中竞赛不等式主要分为以下几类:1.一元一次不等式:涉及一个未知数,未知数的次数是一次的。
2.一元二次不等式:涉及一个未知数,未知数的次数是二次的。
3.多元不等式:涉及多个未知数。
4.绝对值不等式:包含绝对值符号的不等式。
5.复合不等式:包含多个不等式的不等式。
三、高中竞赛不等式的解题技巧1.符号法则:根据不等式的符号,确定未知数的取值范围。
2.同向相乘,反向相加:将不等式中的乘法项同向相乘,加法项反向相加,使不等式变形,便于求解。
3.移项:将不等式中的项移到同一侧,使未知数的系数为 1。
4.分类讨论:根据不等式的特点,对未知数的取值范围进行分类讨论,求解不等式。
5.利用基本不等式:运用基本不等式求解复杂的不等式。
四、高中竞赛不等式的应用实例1.求解一元一次不等式:根据符号法则,同向相乘,反向相加,移项等技巧,求解一元一次不等式。
2.求解一元二次不等式:运用符号法则,同向相乘,反向相加,移项,分类讨论等技巧,求解一元二次不等式。
3.求解多元不等式:根据不等式的特点,运用分类讨论,符号法则等技巧,求解多元不等式。
4.求解绝对值不等式:利用绝对值不等式的性质,运用符号法则,同向相乘,反向相加等技巧,求解绝对值不等式。
5.求解复合不等式:根据不等式的特点,运用符号法则,同向相乘,反向相加,移项,分类讨论等技巧,求解复合不等式。
高中数学竞赛之重要不等式汇总(相关练习答案)
(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n se n 不等式)若)(xf 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。
“abc=1”条件不等式应用举例
利用基本不等式证明含“abc=1”条件的不等式举例苗斌 (山东省济南市历城二中 250105)1310,b c ,1,1a 3()mncyccycm n m n cyc cyc cyc n n m ncyccyccycm n a R abc aa Chebyshev a a a aa +--∀>>∈=≥⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭≥=∑∑∑∑∑∑∑∏通过条件abc=1可以引出很多形式简单但非常强的不等式,在证明的过程中,恰当地运用这些不等式往往可以起到事半功倍的效果。
下面将给出这些不等式。
引理:、、有证明:由不等式,2333262226222222222222332b c ,1a 32a ,,,xyz=1333()()()22a 3b c ,1()3cyc cyc cyc cyc cyccyccyccyccyccyc a R abc abx b y c z a x x y z x x y z x x y x z x y x y x y aba R abcb ++∈=⎛⎫+≥ ⎪⎝⎭===⎛⎫+=+ ⎪⎝⎭≥+---=+≥⋅=∈=+≥∑∑∑∑∑∑∑∑∑∑引理:、、,则证明:设则,且引理:、、,则221x y x y ,z ,()()()()10, 1,b c ,1u 2,1313((u 11u 1x y x y ,z ,cyc cyc cyc cyccyca aza b c y z x x y x z x y x z c schur c x x a a a R abc a u a u z a b c y z xCauchy ++===----≥=+--∈=≥≥≤++++===∑∑∑∑∑证明:取、使取使则由不等式三式相加可得结论引理4:、、,则式一) 式二)证明:(1)取、使取使则由不等222222111()22(1)1uxy 3331()uxy 33131u 11(2),,,xyz=1cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyccyc cyccyc yy ux y x ux y u u u x xy x x u y ux y x x y ux y u a u a x b y c z ---⎛⎫+≥ ⎪+⎝⎭⎛⎫-++≤+=- ⎪⎝⎭⎛⎫+∴+=+≤ ⎪⎝⎭∴≥∴≥++++===∑∑∑∑∑∑∑∑∑∑∑∑∑∑式又设则且1x 113=(3)u 111cyc cyc cyc a xu u xu u =-≤++++∑∑∑23022b c ,1323311(()2222(1b c 313cyccyccyc cyc cyc cyc cyccyccyccyc cyc a R abc a a b c a a a b c a a a R b a a b a ++∈=≥+++≤+=++≤∈+≥+≥+≥∑∑∑∑∑∑∑∑∑∑例一:、、,证解:由均值不等式,由引理)例二:、、,证 解:不妨设abc=1,则由引理3得:22222b c ,11a)1))4(1)()2()32()()+2()()62()+32()b c ,1a 1(cyccyccyccyccyccyccyccyccyccyccycabcyca R abc a ab a a ab a a a a ab a R abc ab ++∈=+≥+≥+⇔+≥+≥+≥∈=≥∑∑∑∑∑∑∑∑∑∑∑∏例三:、、,证解:原不等式等价于((又,由引理:故原式成立例四:、、,证 解:原式等价于ln())01ln(x)11ln()=13 ()3()3cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc a x xa a a a a abb b b b b a a abb a ⋅≥-≥-∴⋅≥-=-+≥+≥+∑∑∑∑∑∑∑∑∑∑∑易知由引理得故原式成立33333222322a 3b c ,112113a 113 a 12222a 2233 abc 1 4 2133312cyccyc cyc cyc a R abc a a a a a a a a a+∈=≤+++++≥∴+=+≥+∴≤=∴≤⨯=++++∑∑∑∑3例五:、、,证:解:由引理22b c,13()22132a)62()622(1)3cyccyc cyc cyc cyccyccyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyccyca R abca ba b a b abb aa ba ab a abb a aa ba ab ab a+∈=≥+=++=+++≥+-=+-≥+∴++≥++=+≥∑∑∑∑∏∑∑∑∑∑∑∑∑∑∑∑∑∏例六:、、,证明:解:由引理:(故2422222333333233b c,1,11+8a14a4(12),a b c=113312112cyccyc cyca R abca aa+≥∈=≥≤++=+∴≥≥=++∑例七:、、证:解:易证由引理:上述的大部分题,在没有引理时是很难证明的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于1abc =一类题型总结当给定条件1abc =时,对于字母与数的代数和的解决往往利用(,,x y z a b c y z x ===或,,y z xa b c x y z===),这样可以达到齐次的效果. 结论:已知,,a b c R +∈,且1abc =.求证:111ab b =++∑(111ab a =++∑)证:法111111111111(1)(1)ab b ab b bc c ca a ab bab b ab bc c b ca a =++++++++++=++=++++++∑.法2 令,,x y z a b c y z x ===(出现ab b +) 出现ab a +用,,y z x a b c x y z === 则111zab b x y z ==++++∑∑1. 已知,,a b c R +∈,且1abc =.求证:2211232ab ≤++∑. 证明:注意到2222223122212(1)a b a b b ab b ab b ++=++++≥++=++ 则22111123212a b ab b ≤=++++∑∑.2. 已知,,a b c R +∈,且1abc =.求证:2211232a b ≤++∑.证明:同上,注意到2222223122212(1)a b a b a ab a ab a ++=++++≥++=++则22111123212a b ab a ≤=++++∑∑.3. (2005新西兰数学奥林匹克)设,,a b c R +∈,且1abc =.求证:>证明:1111abc ab a =⇔=++∑由于111 b bc ba++=++>所以1bc b>=++∑4. (2010年波兰、捷克联合数学奥林匹克)设已知,,,1x y z R xyz+∈=,求证:2221(1)1x y≤+++∑证明:由于2222(1)122222x y x y x xy x+++=+++≥++.所以2221(1)11x y xy x≤+++++因此22211(1)11x y xy x≤=+++++∑∑.3. 已知,,a b c R+∈,且1abc=.求证:221232aa b≤++∑.证明:因为22221,21,21a ab bc c≤+≤+≤+所以只要证明如下不等式即可222112(1)(1)aa b+≤+++∑令2221,1,1x a y b z c=+=+=+,不等式变为1122x yx y x y≤⇔≥++∑∑因为222()1(2)()xyy x y x≥=+∑∑∑4.已知,,,1x y z R xyz +∈=,求证1111111x y z y z x ⎛⎫⎛⎫⎛⎫-+-+-+≤ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ (IMO ,2000) 证明:令a x b =,b y c =,c z a=(),,a b c R +∈则原不等式变为 ()()()a b c b c a c a b abc -+-+-+≤,这样就变为我们熟悉的不等式题了。
5.已知,,,1x y z R xyz +∈=,且()11x z +>,()11y x +>,()11z y +> 求证:()11123x y z x y z++≥+++ 证明:令a x b =,b y c =,c z a=(),,a b c R +∈ 则()11x z +>,()11y x +>,()11z y +>变为a cb +>,a bc +>,c b a +>,要证的不等式边为 23a b c b c ab c a a b c⎛⎫++≥+++ ⎪⎝⎭ 等价于()22222223a c b a c b b c c a a b abc ++≥+++ (※)注意到以,,a b c 为边长可以构成三角形,我们令a m nb n lc l m =+⎧⎪=+⎨⎪=+⎩(),,m n l R +∈将其代入(※)即得: 333222222222l m n m n n l l m m l n m l n +++++≥++由均值不等式得:3222l n l l n +≥,3222n m n n m +≥,3222m l m m l +≥上述三式相加即得证不等式。
说明:对于条件1xyz =,常作代换a x b =,b y c =,c z a= 从而使非奇次不等式变为奇次不等式,另外,三角形三边常用的代换为:a m nb n lc l m =+⎧⎪=+⎨⎪=+⎩。
6、 设,,a b c R +∈且1abc =,则313()2a b c ≥+∑(第26届IMO )证明:22222331()()()a b c b c a b c a b c a b c ==+++∑∑∑2()32()222ab bc ca ab bc ca ab bc ca ++++≥=≥=++7、设,,,1x y z R xyz +∈=,求证:211.(1)1x y ≥++∑证明 欲证式 1.(1)yzx y yz ⇔≥++∑由柯西不等式,2()()yzyz xy yz x yz xy x yz++≥++∑∑∑ ①注意到2()()yz yz xy yz x ≥++∑∑222223y z x x y z ⇔+≥++∑∑∑∑3x ⇔≥∑又3x y z ++≥=. 故2()()yz yz x xy yz ≥++∑∑ ②由①②1.(1)yzx y yz ⇒≥++∑ ∴ 欲证式成立.点评 这种带条件的三元分式不等式很常见,用柯西不等式来证的较多,要适当选择ia 和ib ,便于运用柯西不等式()()()222.iii ia b a b ≥∑∑∑8、(2008塔吉克斯坦数学奥林匹克)设,,a b c R +∈,且1abc =.证明:13()2b a b ≥+∑证明:令,,x y z a b c y z x===则原不等式2232z y xz ⇔≥+∑由柯西推论22242223223()x z z y xz y z xz x y xz=≥+++∑∑∑∑∑ 需证2222223223()32()332x x x y xz xy xz ≥⇔≥++∑∑∑∑∑∑ 即422323x x y xz +≥∑∑∑再由均值不等式可得42232x x yx y +≥∑∑∑以及排序不等式43x x y ≥∑∑可知422323x x y xz +≥∑∑∑成立.9. (2011 摩尔多瓦)设12,0n x x x ⋅⋅⋅>,且121n x x x ⋅⋅⋅=.求证:1122111(1)(1)(1)2n n nx x x x x x ++⋅⋅⋅+≥+++特别的(当4n =时,2004年罗马尼亚数学奥林匹克) 证明:法1 令1i i y x =(1,2,,)i n =⋅⋅⋅,则121211n ny y y x x x ⋅⋅⋅==⋅⋅⋅ 原不等式等价于212i i y ny ≥+∑由于22()1i i i iy y y n y ≥++∑∑∑ 需证2()()()022i i i iy n ny n y n y ≥⇔-+≥+∑∑∑∑ 即需证 0iy n -≥∑因为iyn ≥=∑所以命题成立.法2 由于22221131(1)(1)(1)224i i i i x x x x x ++=+++≥+ 所以原不等式213(1)2i i i i x x nx x ++⇔≥+∑需证23(1)3(1)3334(1)4442i i i i i i x x n nx x x x ++==+≥+∑∑∑ 需证1in x ≥∑.由于121n x x x ⋅⋅⋅=均值不等式显然成立. 法3 由11112(1)11i i i i i i i ix x x x x x x x +=-=+-+++原不等式等价于1512i i i ix x nx x ++≥+∑∑. 根据等号成立条件由均值可得141i ii ix x n x x ++≥+∑∑ 只需证明3(1)342i ix nx +≥∑.由法2可知成立.10. (2011巴尔干)设,,a b c R +∈,且1abc =.证明:54322(1)8(1)aa a a a a a +++++≥++∏∏证明:左3232(1)(1)(1)(1)aa a a a a =+++=+⋅++∏∏∏只需证3(1)8a+≥∏由均值易得.11.(2011印度)设,,a b c R +∈,且1abc =.证明:13(1)(1)4a a ab ab ≥+++∑证明:令,,y z xa b c x y z===,则原不等式等价于 22234x y xy z xz ≥+++∑.由柯西不等式推广可知2222222222223()()()2()x x x y xy z xz x y xy z xz x y x y z =≥++++++++∑∑∑∑∑需证2222223223()34()63()2()4x x x y x y z x y x y z ≥⇔≥++++∑∑∑∑∑∑ 42222342234863()423()x x y x y x y z x x y x y z ⇔+≥++⇔+≥+∑∑∑∑∑∑∑由均值422342232,2x x y x y x x z x z +≥+≥ 所以4223222()xx y x y z +≥+∑∑∑而由排序可知432()x x y z ≥+∑∑所以原命题成立.12.(2011土耳其)已知,,,1x y z R xyz +∈=,求证: 201011x yz ≤++∑证明:13.(2004 德国IMO 代表选拔试题)设,,a b c R +∈,且1abc =.证明:1112a ≥+∑证明:令,,x y z a b c y z x === 则原不等式等价12yx y ≥+∑由柯西2222()12()x y xy y x ≥=+∑∑∑14.(2006摩洛哥数学奥林匹克)设,,a b c R +∈,且1abc =.求证: 1113111ab bc caa b c+++++≥+++ 证明:令,,x y z a b c y z x=== 则原不等式等价于3xy yzxz yz +≥+∑.这由均值不等式直接可得.如果令,,y z xa b c x y z ===,效果更好 原不等式3x z x y +⇔≥+∑15. (2003罗马尼亚数学奥林匹克)已知,,,1x y z R xyz +∈=,求证:361x y z xy yz xz+≥++++证明:原不等式等价于23()366xyxy xyxy xxyx+≥⇔+≥∑∑∑∑∑∑∑又因为2()33xy xyz xxxyxyxy⋅≥=∑∑∑∑∑∑所以只需证明2x xy xy x+≥∑∑∑∑(显然).(同类)(2005泰国、2007马其顿数学奥林匹克)设,,a b c R +∈.求证:361ab a +≥∑∑证明:原23()366aa aa abaab⇔+≥⇔+≥∑∑∑∑∑∑∑由于2()3a abaa≥∑∑∑∑,只需证2a ab ab a+≥∑∑∑∑(显然)16.(2003波罗的海数学奥林匹克)已知,,,1x y z R xyz +∈=,求证:(1)(1)(1)2(1x y z +++≥+ 证明:令333,,a x b y c z ===,则1abc =原不等式等价于3333(1)2(1)2b b a a a b a a +≥+⇔+≥∑∑∑∑∏ 即需证3312b a a a+≥∑∑∑由于33331311(1)323b b b b a a a a a a++≥⇔++≥≥+∑∑∑ 所以3312b a a a+≥∑∑∑.17. (2007年Brazilian 数学奥林匹克)设,,a b c R +∈,且1abc =.求证:221122622a b a a aa b a+++≥++∑∑∑∑∑∑ 证明:因为1abc = 所以1a bc =∑∑,以及1bc a=∑∑ 所以左式2222111(2)(2)()()a ab a a bc a =+++=+∑∑∑∑∑∑ 而右式12a a =⋅∑∑ 显然易见左≥右.18.(2008伊朗数学奥林匹克)设,,,1x y z R xyz +∈=.证明: 2227(1)3()x y x ≤++≤∑∑证明:先证明左边22211(1)(32())(322733x y x y z ++≥+++≥+⋅=∑ 再证右边222(1)3()434x y x x xy x ++≤⇔+≥+∑∑∑∑∑又因为2224()2()929629xxy x xy x xy x xy +=+=++-≥+-∑∑∑∑∑∑∑∑所以只需证6x xy +≥∑∑显然3,3x xy ≥≥∑∑所以命题成立.19.(2010美国集训队试题)设,,a b c R +∈,且1abc =.求证:5211(2)3a b c ≥+∑证明:法1利用赫尔德不等式推论可得左式3333333222()1(2)(2)((2))93bc ab a b c b c a ab ac ab ac ab ac ==≥=≥+++∑∑∑∑∑法2 也可利用均值不等式由33222(2)27273b c ab ac ab ac bcab ac ++++≥+也可以得到正确结论.20.(2010年瑞士数学奥林匹克)设,,,1x y z R xyz +∈=.证明:2(1)x y x z +-≥∑∑ 证明:由于2(1)2(1)x y z x y z +-+≥+- 所以2(1)2(1)x y z x y z +-+≥+-∑∑∑. 整理得2(1)36x y x z+-≥-∑∑又因为3x ≥=∑.命题得证.本题可直接应用柯西推论.21.(2003年捷克斯洛伐克数学奥林匹克)设,,a b c R +∈,且1abc =.求证: a b ca b c b c a++≥++ 证明: 法1令 ,,x y z a b c y z x=== 则原不等式等价于3322xz xx y xyz x z y y ≥⇔≥∑∑∑∑由于333333323x y x z x z x yz ++≥ 333333323y x y x y z y zx ++≥333333323z y z y z x z xy ++≥三式相加即得332x yxyz x z ≥∑∑.法2 原式等价于222a c b a c b a b c ++≥++由均值不等式2223a c a c b a a ++≥=,同理 2223b a b a c b b ++≥, 2223c b c b a c c ++≥三式相加即得命题.****法3令,,y z xa b c x y z===,则原不等式等价于32x x y ≥∑∑显然成立.22.(2004年罗马尼亚数学奥林匹克)已知,,,a b c d R +∈,且1abcd =,求证:12(1)a b ≥+∑证明:令,,,y z u x a b c d x y z u==== 则原不等式等价于2xy z ≥+∑.题(1989年四川省数学竞赛题)已知,,,a b c d R +∈,求证:2ab c ≥+∑证明:由柯西不等式可得22()()()a a a b c a b c a b c =≥+++∑∑∑∑.需证22()22()()()a ab ac bc bd cd ca da db a a b c ≥⇔+++++++≤+∑∑∑而2()2[()()()()]ab ac bc bd cd ca da db a d b c a b c d +++++++=+++++2222[()()]()22a a a ≤+=∑∑∑(证毕).与22题类似题目(Aassila 不等式,2000年中国国家集训队试题,2006巴尔干数学奥林匹克)已知,,a b c R +∈,求证:13(1)1a b abc ≥++∑证明:注意题目各式次数,式子中出现了零、一、二、三次,将它们和在一起.131136(1)1(1)(1)abc a ab abca b abc a b a b ++++≥⇔≥⇔≥++++∑∑∑由于11(1)1(1)6(1)(1)(1)1a ab abc a ab c a b c a b a b a b b++++++++==+≥++++∑∑∑∑(六数均值).题(Crux 问题)已知,,a b c R +∈,求证:11911a a abc ⋅≥++∑∑证明:11a ≥=+∑193)3a a ≥=++∑∑所以19119131)(1)1a a a a a⋅≥=≥+++∑∑∑∑∑t =,只需证3(1)1t t t +≤+即可322(1)11(1)0t t t t t t t +≤+⇔≤-+⇔-≥证毕.23.(2007波兰数学奥林匹克)设正数,,a b c ,满足1abc =.证明:333c b aa b b c c a b a c++≤++ 证明:法1 令,,x y z a b c y z x=== 则原不等式等价于23432x x x x yz y z y≤⇔≤∑∑∑∑.这由排序不等式直接得证.法2 原不等式等价于23a b a b ≤∑∑. 令333,,a x b y c z===则需证936374x y x y x y z ≥=∑∑∑由于9393937416421x y y z z x x y z ++≥(这可用待定参数法得到93939374123123()x y y z z x x y z λλλλλλ++≥++)得证.24.(第46届IMO 试题)正实数,,x y z 满足1xyz ≥,证明:525220x x x y z -≥++∑ 证明:原不等式等价于2225223x y z x y z ++≤++∑22222222244422225222222()11x y z x y z x y z x y z x y z x y z y z y z x x++++++=≤++++++++∑∑∑222212223xyz x yz x xx xx+=≤+=+≤∑∑∑∑∑∑∑25.(加拿大Crux 问题2023)已知,,,,a b c d e 为正数且1abcde =,求证: 1013a abcab abcd +≥++∑ 证明:令,,,,y z u v x a b c d e x y z u v===== 则原不等式102533y u x y z u v x z v x z v +++++⇔≥⇔≥++++∑∑ 1()25x z v x z v⇔++⋅≥++∑∑.这由柯西不等式显然成立.26.(2008年乌克兰数学奥林匹克)设,,a b c 是正数,且1abc ≥,证明:2121a a a +≤++∑证明:首先变形,原不等式等价于2211a a a ≥++∑ 为达到齐次,令333,,a xb yc z ===,由于1abc ≥,1xyz ≥.则2662636322211a x x a a x x x x xyz x y z=≥+++++⋅+∑∑∑ 224422422()x x x x xyz y z x xyz x x y=≥+⋅+++∑∑∑∑∑ 只需证2242222()x xxyz x x y x y xyz x ≥++⇔≥∑∑∑∑∑∑(由均值显然成立).27.(2005年IMO 国家集训队试题)设,,,a b c d 是正实数,且满足1abcd =.求证:222211111(1)(1)(1)(1)a b c d +++≥++++证明:令2222,,,yz zu ux xy a b c d x y z u====则原不等式等价于4221()x x yz ≥+∑根据柯西不等式变形可知4222222222()()()x x y z u x yz x yz +++≥++∑∑只需证22222222222222()()()222x y z u x yz x y x z y u x yz +++≥+⇔++≥∑∑∑由均值不等式易得上述不等式显然成立. ( 遇到2(1)a +时,需令2yz a x=)28.(1999年罗马尼亚,2008年新加坡国家集训队选拔试题)设12,,,n x x x ⋅⋅⋅为正实数,满足121n x x x ⋅⋅⋅=.证明:1111ni in x =≤-+∑ 证明:这是一类题型. 原不等式变形得111nii ix n x=≥-+∑令2i i y x G=,其中G =则原不等式等价于22221111(1)1i nni i i iiy y Gy n G y n G==≥⇔≥-+-+∑∑ 由柯西不等式变形可得22221()(1)(1)ni i i ii y y n G y n n G y =≥-+-+∑∑∑ 所以只需证22(1)()(1)2i i i j i jn n Gy n n G y x x <-≥-+⇔≥∑∑∑ 由均值不等式可知2(1)2i j n i jn n Gy y C <-≥=∑(证毕).注意:证明1(1)i ix n x ≥-+∑型题目可令2i i y x G =,其中G =当然题目1abc =,求证:12aa ≥+∑.可令2x a yz= 则原2212x yz x ⇔≥+∑.而222222()()122()x x x yz x x xy x ≥==++∑∑∑∑∑∑.。