RV901_911_921_931规格书

合集下载

康佳二合一(34006601 版本号35014097)电源板图纸

康佳二合一(34006601 版本号35014097)电源板图纸

CF907 101/1KV
RF906 5.1R/1206
RF913 RT901 5.1R/1206 3.0D-21 PFC
1 5
C
12 10
LF902 LF903 DF903 FMY-1106S/16003190 RF902 100K/1206 RF912 PVcc CF910 105 10R/1206 CF904 104/250V QF901 FQPF15N50 NTC
1
3
4
QW901 2N3904 1
1
VCC
2
DW904 NW950 PC817 2
1
1
QW902 2N7002
FR104
12V稳压
1K RW958 1.8K RW951 10KFra bibliotek+12V
RW914 0
1
RW954 CW956 473 18.7K/F
3
QW903 2N3904 2N3904/NC
RW905 2.7/1206
471 C753 R722
CON2_0
CVFB CSWP
21 20 2 19 18 17 16 13V
VDD 13V 11V 15 C709 ENA R706 51K R707 47 D702 L4148/NC 1
NXP2071
2 1
6 10
1:1 3mH NC
3 2 1 XS752
CT
NC GL PGND VDD
B
62K R905
6
-IN2
1
1
7 D953 L4148
GND
4
2
R909 62K R911
A
2
C959 103 103

AR9331模块规格书-4zx

AR9331模块规格书-4zx

AR9331模块规格书(无线音响模块SX-9331MK-08)SHX-TECH一、Features● MIPS 24K processor operating at up to 400 Mhz.● DD2 memory up to 512 Mb.● SPI NOR Flash memory up to 64Mb.● 1LAN ports and 1 WAN port● High-speed UART for console support● I2S audio interface● USB 2.0 host/device mode support● GPIO/LED support● SPI support.二、Hardware Specifications芯片解决方案CPU:AR9331 RF:AR9331CPU主频400MHzDDR 64Mbyte DDR2闪存8Mbyte SPI FLASH遵循标准IEEE802.3u MDI / MDIX 10/100 快速以太网IEEE802.11b/g 无线LAN接口IEEE 802.11n 无线LAN标准网络接口LAN:1 x 10/100M Auto MDI/MDIX 插针接口WAN:1 x 10/100M Auto MDI/MDIX 插针接口(可以复用为LAN口)软件功能接口I2SUSB 2.0JTAGUART接口47PIN 邮标孔焊盘(PIN 间距为2.0mm)Data rate 11b: 11M, 5.5M, 2M, 1Mbps11g: 54M, 48M, 36M, 24M, 18M, 12M, 9M, 6Mbps11N:6.5M, 13M, 13.5M,19.5M, 26M,27M, 39M, 40.5M,52M, 54M,58.5M, 65M,81M,108M,121.5M,135M,150MbpsTransmission mode DSSSModulation OFDM/BPSK/QPSK/CCK/DQPSK/DBPSK Frequency Range 2412 MHz ~ 2472MHz(channel 1 ~ channel 13) 供电需求 3.3V,1APower consumption ≦3WRF Power @25℃(±2dB) 802.11b 19 ± 2dBm @EVM -20dBm802.11g 6-24Mbps 17 ± 2dBm36-48Mbps 16 ± 2dBm54Mbps 15± 2dBm @EVM -25dBm 802.11n HT20 MCS 7 14± 2dBm @EVM -28dBm HT40 MCS 7 14 ± 2dBm @EVM -28dBmReceiver sensitivity IEEE802.11b11Mbps≦-83dBmIEEE 802.11g54Mbps≦-70dBmIEEE 802.11nHT 20MCS 7≦-65dBmHT 40MCS 7≦-62dBm尺寸53.2*30MM环境Operating Temperature: -10℃~45℃Storage Temperature: -40℃~85℃Operating Humidity: 10%~90% non-condensingStorage Humidity: 10%~90% non-condensing 环保遵循RoHs标准三、Pin Description:四、Dimensions and Footprint:五、接口参考电路:1、以太网接口电路:2、LED指示灯电路:3、复位电路:。

Datasheet MLX90614 中文 数据手册 rev008

Datasheet MLX90614 中文 数据手册 rev008
标准上,MLX90614 是按照目标物体发射率 1 进行校准的。客户可根据其目标物体的发射率进行修改, 可修改范围为 0.1 至 1.0,修改后,客户也不需要用黑体进行校准。
10-位 PWM 输出模式是连续输出所测物体温度的标准配置,测量物体的温度范围为-20…120 °C,分辨 率为 0.14 °C。PWM 通过修改 EEPROM 内 2 个单元的值,实际上可以根据需求调整至任何温度范围,而这对 出厂校准结果并无影响。
传感器的测量结果均出厂校准化,数据接口为数字式的 PWM 和 SMBus(System Management Bus) 输出。
作为标准,PWM 为 10 位,且配置为-20˚C 至 120 ˚C 内,分辨率为 0.14 ˚C 的连续输出。
传感器出厂默认,上电复位时为 SMBus 通信。
3901090614 Rev 008
PWM 引脚也可配置为热继电器(输入是 To),这样可以实现简单且性价比高的恒温控制器或温度报警(冰 点/沸点)应用,其中的温度临界值是用户可编程的。在 SMBus 系统里,这个功能可以作为处理器的中断信号, 以此触发读取主线上从动器的值,并确定精度条件。
传感器有两种供电电压选择:5V 或 3V(电池供电)。其中,5V 也可简便的从更高供电电压(例如 8 至 16V)上通过外接元件调制。(具体请参考“应用信息”)
MLX90614 connection to SMBus
图 1: 典型应用电路
2 概述
MLX90614 是一款用于非接触式的红外温度传感器,集成 了红外探测热电堆芯片与信号处理专用集成芯片,全部封装 在 TO-39。
低噪声放大器、17 位 ADC 和强大的 DSP 处理单元的全 集成,使传感器实现了高精度,高分辨率的测量。

TSV911ILT,TSV912IDT,TSV912IDT 规格书,Datasheet 资料

TSV911ILT,TSV912IDT,TSV912IDT 规格书,Datasheet 资料

This is information on a product in full production.March 2012Doc ID 12584 Rev 81/22TSV91x, TSV91xASingle, dual and quad rail-to-rail input/output 8 MHzoperational amplifiersDatasheet − production dataFeatures■Rail-to-rail input and output ■Wide bandwidth■Low power consumption: 820µA typ ■Unity gain stability ■High output current: 35mA ■Operating from 2.5V to 5.5V ■Low input bias current, 1pA typ■Low input offset voltage: 1.5mV max (A grade)■ESD internal protection ≥5kV ■Latch-up immunityApplications■Battery-powered applications ■Portable devices ■Signal conditioning ■Active filtering■Medical instrumentation ■Automotive applicationsDescriptionThe TSV91x operational amplifiers offer lowvoltage operation and rail-to-rail input and output, as well as an excellent speed/power consumption ratio, providing an 8MHz gain-bandwidth product while consuming only 1.1mA maximum at 5V . The op-amps are unity gain stable and feature an ultra-low input bias current.The devices are ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.Table 1.Device summaryReference Single Dual Quad TSV91x TSV911TSV912TSV914TSV91xATSV911ATSV912ATSV914AAbsolute maximum ratings and operating conditions TSV91x, TSV91xA2/22Doc ID 12584 Rev 81 Absolute maximum ratings and operating conditionsTable 2.Absolute maximum ratingsSymbol ParameterValue Unit V CC Supply voltage (1)1.All voltage values, except differential voltage, are with respect to network ground terminal.6V V id Differential input voltage (2)2.Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. ±V CCV V in Input voltage (3)3.V CC -V in must not exceed 6V.V CC- -0.2 to V CC+ +0.2V I in Input current (4)4.Input current must be limited by a resistor in series with the inputs.10mA T stgStorage temperature-65 to +150°CR thjaThermal resistance junction to ambient (5) (6)SOT23-5DFN8 2x2SO-8MiniSO-8SO-14TSSOP145.Short-circuits can cause excessive heating and destructive dissipation.6.R th are typical values.25057125190103100°C/WR thjcThermal resistance junction to case (5) (6)SOT23-5SO-8MiniSO-8SO-14TSSOP148140393132°C/WT jMaximum junction temperature 150°C ESDHBM: human body model (7)7.Human body model: a 100pF capacitor is charged to the specified voltage, then discharged through a1.5k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 5kV MM: machine model (8)8.Machine model: a 200pF capacitor is charged to the specified voltage, then discharged directly betweentwo pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.400VCDM: charged device model (9)SOT23-5, SO-8, MiniSO-8TSSOP14SO-149.Charged device model: all pins and the package are charged together to the specified voltage and thendischarged directly to the ground through only one pin. This is done for all pins.1500750500VLatch-up immunity200mATSV91x, TSV91xAAbsolute maximum ratings and operating conditionsDoc ID 12584 Rev 83/22Table 3.Operating conditionsSymbol ParameterValue Unit V CC Supply voltage-40°C < T op < 125°C 0°C < T op < 125°C2.5 to 5.52.3 to 5.5V V icm Common mode input voltage range V CC- -0.1 to V CC+ +0.1V T operOperating free air temperature range-40 to +125°CElectrical characteristics TSV91x, TSV91xA4/22Doc ID 12584 Rev 82 Electrical characteristicsTable 4.Electrical characteristics at V CC+ = +2.5V with V CC- = 0V, V icm = V CC /2, R L connected to V CC /2, full temperature range (unless otherwise specified)(1)Symbol ParameterConditionsMin.Typ.Max.UnitDC performanceV ioOffset voltageTSV91x T op = 25°CT min < T op < T max 0.14.57.5mVTSV91xAT =25°CT min < T op < T max1.53DV io /DT Input offset voltage drift 5μV/°C I io Input offset current (2)T op = 25°CT min < T op < T max 110100pA I ib Input bias current (2)T op = 25°CT min < T op < T max110100pA CMR Common mode rejection ratio 20 log (ΔV ic /ΔV io )0V to 2.5V , V out = 1.25V ,T op = 25°C T min < T op < T max 585375dB A vdLarge signal voltage gainR L = 10k Ω, V out = 0.5V to 2V , T= 25°C T min < T op < T max 807589dBV CC -V OH High level output voltageR L =10k ΩT min < T op < T max R L =600ΩT min < T op < T max 15454040150150mVV OLLow level output voltage R L =10k ΩT min < T op < T max R L =600ΩT min < T op < T max 15454040150150mVI outI sinkV o = 2.5V , T op = 25°C T min < T op < T max 181632mAI sourceV o = 0V , T op = 25°C T min < T op < T max 181635I CCSupply current (per operator)No load, V out =V CC /2T min < T op < T max0.781.11.1m AAC performance GBP Gain bandwidth product R L =2k Ω, C L =100pF , f =100kHz, T op =25°C8MHz F u Unity gain frequency R L =2k Ω, C L =100pF , T op = 25°C 7.2MHz φm Phase margin R L =2k Ω, C L =100pF , T op = 25°C 45Degrees G m Gain margin R L =2k Ω, C L =100pF , T op = 25°C 8dB SRSlew rateR L =2k Ω, C L =100pF , A v =1, T op =25°C4.5V/μsTSV91x, TSV91xA Electrical characteristicsDoc ID 12584 Rev 85/22e n Equivalent input noise voltage f= 10kHz, T op = 25°C 21THD+e nT otal harmonic distortionG=1, f=1kHz, R L =2k Ω, Bw= 22kHz, T op =25°C, V icm =(V CC +1)/2,V out =1.1V pp0.001%1.All parameter limits at temperatures other than 25°C are guaranteed by correlation.2.Guaranteed by design.Table 4.Electrical characteristics at V CC+ = +2.5V with V CC- = 0V, V icm = V CC /2, R L connected to V CC /2, full temperature range (unless otherwise specified)(1) (continued)Symbol ParameterConditionsMin.Typ.Max.UnitnV Hz-----------Table 5.Electrical characteristics at V CC+ = +3.3V with V CC- = 0V, V icm = V CC /2, R L connected to V CC /2, full temperature range (unless otherwise specified)(1)SymbolParameterConditionsMin.Typ.Max.UnitDC performanceV ioOffset voltage TSV91x T op =25°CT min < T op < T max 0.14.57.5mVTSV91xAT op =25°CT min < T op < T max1.53DV io Input offset voltage drift 5μV/°C I io Input offset current (2)T op =25°CT min < T op < T max 110100pA I ib Input bias current (2)T op =25°CT min < T op < T max110100pA CMR Common mode rejection ratio 20 log (ΔV ic /ΔV io )0V to 3.3V , V out = 1.65VT min < T op < T max 605578dB A vdLarge signal voltage gainR L =10k Ω, V out = 0.5V to 2.8V , T=25°C T min < T op < T max 807590dBV CC -V OH High level output voltageR L =10k ΩT min < T op < T max R L =600ΩT min < T op < T max 15454040150150mVV OLLow level output voltage R L =10k ΩT min < T op < T max R L =600ΩT min < T op < T max 15454040150150mVI outI sinkV o = 3.3V , T op = 25°C T min < T op < T max 181632mAI sourceV o = 0V , T op = 25°C T min < T op < T max 181635I CCSupply current (per operator)No load, V out =V CC /2T min < T op < T max0.81.11.1m AAC performance GBPGain bandwidth productR L =2k Ω, C L =100pF , f =100kHz,T op =25°C8MHzElectrical characteristics TSV91x, TSV91xA6/22Doc ID 12584 Rev 8F u Unity gain frequency R L = 2k Ω, C L =100pF , T op =25°C 7.2MHz φm Phase margin R L =2k Ω, C L =100pF , T op =25°C 45DegreesG m Gain margin R L =2k Ω, C L =100pF , T op =25°C 8dB SR Slew rateR L =2k Ω, C L =100pF , A v =1, T op =25°C4.5V/μse nEquivalent input noise voltage f= 10kHz, T op = 25°C21THD+e n T otal harmonic distortionG=1, f=1kHz, R L =2k Ω, BW= 22kHz, V icm =(V CC +1)/2, V out =1.9V pp , T op =25°C0.0007%1.All parameter limits at temperatures other than 25°C are guaranteed by correlation.2.Guaranteed by design.Table 5.Electrical characteristics at V CC+ = +3.3V with V CC- = 0V, V icm = V CC /2, R L connected to V CC /2, full temperature range (unless otherwise specified)(1) (continued)Symbol ParameterConditionsMin.Typ.Max.Unit nV Hz-----------Table 6.Electrical characteristics at V CC+ = +5V with V CC- = 0V, V icm = V CC /2, R L connected to V CC /2, full temperature range (unless otherwise specified)(1)SymbolParameterConditionsMin.Typ.Max.UnitDC performanceV ioOffset voltage TSV91x T op = 25°CT min < T op < T max 0.14.57.5mVTSV91xAT op = 25°CT min < T op < T max1.53DV io Input offset voltage drift 5-μV/°C I io Input offset current (2)T op = 25°CT min < T op < T max 110100pA I ib Input bias current (2)T op = 25°CT min < T op < T max110100pA CMR Common mode rejection ratio 20 log (ΔV ic /ΔV io )0V to 5V , V out = 2.5VT min < T op < T max 625882-dB SVR Supply voltage rejection ratio20 log (ΔV CC /ΔV io ) V CC = 2.5 to 5V7086-dB A vdLarge signal voltage gainR L =10k Ω, V out = 0.5V to 4.5V , T= 25°C T min < T op < T max 807591-dBV CC -V OH High level output voltageR L =10k ΩT min < T op < T max R L =600ΩT min < T op < T max 15454040150150mVV OLLow level output voltage R L =10k ΩT min < T op < T max R L =600ΩT min < T op < T max15454040150150mVTSV91x, TSV91xA Electrical characteristicsDoc ID 12584 Rev 87/22I outI sinkV o = 5V , T op =25°C T min < T op < T max 181632mAI sourceV o = 0V , T op = 25°C T min < T op < T max 181635I CCSupply current (per operator)No load, V out = 2.5V T min < T op < T max0.821.11.1m AAC performance GBP Gain bandwidth product R L =2k Ω, C L =100pF , f =100kHz,T op =25°C8MHz F u Unity gain frequency R L = 2k Ω, C L =100pF , T op = 25°C 7.5MHz φm Phase margin R L = 2k Ω, C L =100pF , T op = 25°C 45Degrees G m Gain margin R L = 2k Ω, C L =100pF , T op = 25°C 8dB SR Slew rateR L =2k Ω, C L = 100pF , A V =1, T op =25°C4.5V/μse nEquivalent input noise voltagef=1kHz, T=25°C f=10kHz, T op =25°C2721THD+e n Total harmonic distortionG=1, f=1kHz, R L =2k Ω, Bw= 22kHz, T op =25°C, V icm =(V CC +1)/2, V out =3.6V pp0.0004%1.All parameter limits at temperatures other than 25°C are guaranteed by correlation.2.Guaranteed by design.Table 6.Electrical characteristics at V CC+ = +5V with V CC- = 0V, V icm = V CC /2, R L connected to V CC /2, full temperature range (unless otherwise specified)(1) (continued)SymbolParameterConditionsMin.Typ.Max.UnitnV Hz-----------Electrical characteristicsTSV91x, TSV91xA8/22Doc ID 12584 Rev 8Figure 1.Input offset voltage distribution atFigure 2.Input offset voltage distribution at Figure 3.Supply current vs. input common mode voltage at V=2.5VFigure 4.Supply current vs. input common mode voltage at V =5VFigure 5.Output current vs. output voltage at V=2.5V Figure 6.Output current vs. output voltage at V =5VTSV91x, TSV91xAElectrical characteristicsDoc ID 12584 Rev 89/22Figure 7.Voltage gain and phase vs. frequency at V CC = 2.5V andFigure 8.Voltage gain and phase vs. frequency at V CC = 5.5V andElectrical characteristics TSV91x, TSV91xA Figure 13.Distortion + noise vs. frequency Figure 14.Distortion + noise vs. outputFigure 15.Noise vs. frequency Figure 16.Phase margin vs. capacitive load10/22Doc ID 12584 Rev 8information3 Application3.1 Driving resistive and capacitive loadsThese products are low-voltage, low-power operational amplifiers optimized to drive ratherlarge resistive loads above 2kΩ.In a follower configuration, these operational amplifiers can drive capacitive loads up to100pF with no oscillations. When driving larger capacitive loads, adding a small in-seriesresistor at the output can improve the stability of the device (Figure18 shows therecommended in-series resistor values). Once the in-series resistor value has beenselected, the stability of the circuit should be tested on bench and simulated with thesimulation model.layouts3.2 PCBFor correct operation, it is advised to add 10nF decoupling capacitors as close as possibleto the power supply pins.3.3 MacromodelAn accurate macromodel of the TSV91x is available on STMicroelectronics’ web site at. This model is a trade-off between accuracy and complexity (that is, timesimulation) of the TSV91x operational amplifiers. It emulates the nominal performances of atypical device within the specified operating conditions mentioned in the datasheet. It helpsto validate a design approach and to select the right operational amplifier, but it does notreplace on-board measurements.Doc ID 12584 Rev 811/224 PackageinformationIn order to meet environmental requirements, ST offers these devices in different grades ofECOPACK® packages, depending on their level of environmental compliance. ECOPACK®specifications, grade definitions and product status are available at: .ECOPACK® is an ST trademark.12/22Doc ID 12584 Rev 8Doc ID 12584 Rev 813/224.1 SOT23-5 package informationFigure 19.SOT23-5 package mechanical drawingTable 7.SOT23-5 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 0.901.201.450.0350.0470.057A10.150.006A20.90 1.05 1.300.0350.0410.051B 0.350.400.500.0130.0150.019C 0.090.150.200.0030.0060.008D 2.80 2.90 3.000.1100.1140.118D1 1.900.075e 0.950.037E 2.60 2.80 3.000.1020.1100.118F 1.50 1.60 1.750.0590.0630.069L 0.100.350.600.0040.0130.023K0 degrees 10 degrees4.2 DFN8 2x2 mm package informationTable 8.DFN8 2x2x0.6 mm package mechanical data (pitch 0.5 mm)Ref.DimensionsMillimeters InchesMin.Typ.Max.Min.Typ.Max.A0.510.550.600.0200.0220.024A10.050.002A30.150.006b0.180.250.300.0070.0100.012D 1.85 2.00 2.150.0730.0790.085D2 1.45 1.60 1.700.0570.0630.067E 1.85 2.00 2.150.0730.0790.085E20.750.90 1.000.0300.0350.039e0.500.020L0.500.020ddd0.080.00314/22Doc ID 12584 Rev 8Doc ID 12584 Rev 815/2216/22Doc ID 12584 Rev 84.3 MiniSO-8 package informationTable 9.MiniSO-8 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 1.10.043A100.1500.006A20.750.850.950.0300.0330.037b 0.220.400.0090.016c 0.080.230.0030.009D 2.80 3.00 3.200.110.1180.126E 4.65 4.90 5.150.1830.1930.203E1 2.803.00 3.100.110.1180.122e 0.650.026L 0.400.600.800.0160.0240.031L10.950.037L20.250.010k 0°8°0°8°ccc0.100.004Doc ID 12584 Rev 817/224.4 SO-8 package informationTable 10.SO-8 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 1.750.069A10.100.250.0040.010A2 1.250.049b 0.280.480.0110.019c 0.170.230.0070.010D 4.80 4.90 5.000.1890.1930.197E 5.80 6.00 6.200.2280.2360.244E1 3.803.904.000.1500.1540.157e 1.270.050h 0.250.500.0100.020L 0.40 1.270.0160.050L1 1.040.040k 08°1°8°ccc0.100.0044.5 TSSOP14 package informationTable 11.TSSOP14 package mechanical dataRef.DimensionsMillimeters InchesMin.Typ.Max.Min.Typ.Max.A 1.200.047A10.050.150.0020.0040.006A20.80 1.00 1.050.0310.0390.041b0.190.300.0070.012c0.090.200.0040.0089D 4.90 5.00 5.100.1930.1970.201E 6.20 6.40 6.600.2440.2520.260E1 4.30 4.40 4.500.1690.1730.176e0.650.0256L0.450.600.750.0180.0240.030L1 1.000.039k0°8°0°8°aaa0.100.00418/22Doc ID 12584 Rev 84.6 SO-14 package informationTable 12.SO-14 package mechanical dataDimensionsMillimeters InchesRef.Min.Typ.Max.Min.Typ.Max.A 1.35 1.750.050.068A10.100.250.0040.009A2 1.10 1.650.040.06B0.330.510.010.02C0.190.250.0070.009D8.558.750.330.34E 3.80 4.00.150.15e 1.270.05H 5.80 6.200.220.24h0.250.500.0090.02L0.40 1.270.0150.05k8° (max.)ddd0.100.004Doc ID 12584 Rev 819/2220/22Doc ID 12584 Rev 85 Ordering informationTable 13.Order codes (1)1.All packages are Moisture Sensitivity Level 1 as per Jedec J-STD-020-C, except SO-14 which is Jedeclevel 3.Order code TemperaturerangePackagePackingMarking TSV911ID TSV911IDT -40°C to +125°CSO-8T ube o T ape & reelV911I TSV911AID TSV911AIDT V911AI TSV911ILT SOT23-5T ape & reelK127TSV911AILT K128TSV911RILT K125TSV912IST MiniSO-8T ape & reelK125TSV912AIST K126TSV912ID TSV912IDT SO-8T ube or T ape & reel V912I TSV912AID TSV912AIDT V912AI TSV912IQ2T DFN8 2x2T ape & reel K1Q TSV914IPT TSSOP14T ape & reelV914I TSV914AIPT V914AI TSV914ID TSV914IDT SO-14(1)T ube or T ape & reelV914I TSV914AID TSV914AIDT V914AI TSV911IYLT (2)2.Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screeningaccording to AEC Q001 & Q 002 or equivalent.SOT23-5Automotive gradeT ape & reelK147TSV911AIYLT (2)K148TSV911IYDT (2)SO-8Automotive gradeT ape & reelV911IYTSV911AIYDT (2)V911AIY TSV912IYDT (2)V912IY TSV912AIYDT (2)V912AYTSV912IYST (2)MiniSO-8Automotive grade T ape & reelK147TSV912AIYST (2)K148TSV914IYDT (2)SO-14(1)Automotive grade T ape & reelV914IY TSV914AIYDT (2)V914AY TSV914IYPT (2)TSSOP14Automotive gradeT ape & reelV914IY TSV914AIYPT (2)V914AYTSV91x, TSV91xA Revision history Doc ID 12584 Rev 821/226 Revision historyTable 14.Document revision history DateRevision Changes 28-Aug-20061First release.07-Jun-20072Modified ESD CDM parameter for SO-14 package in T able 2:Absolute maximum ratings .Noise parameters updated in Section 2: Electrical characteristics .Added limits in temperature in Section 2: Electrical characteristics .Added automotive grade level description in T able 13: Order codes .Added footnote about SO-14 package in Table 13: Order codes .Added Figure 16: Phase margin vs. capacitive load and serialresistor .11-Feb-20083Updated footnotes for ESD parameters in T able 2: Absolutemaximum ratings .Corrected MiniSO-8 package information in Table 9: MiniSO-8package mechanical data .Added missing markings for order codes TSV911AILT andTSV912AILT in Table 13: Order codes .22-Jun-20094Added input current information in Table 2: Absolute maximumratings .Changed Figure 7 and Figure 8.Added Chapter 3: Application information .Updated package information in Chapter 4.Added automotive order codes: TSV911IYLT, TSV911AIYLT,TSV912IYST , TSV912AIYST, TSV914IYPT and TSV914AIYPT inTable 13: Order codes .17-Sep-20095Added A versions of devices in title on cover page.Modified ESD value for machine model in T able 2: Absolutemaximum ratings .Added Figure 17: Supply current vs. supply voltage on page 10.18-Mar-20106Added TSV911RILT in Table 13: Order codes , housed in a SOT23-5package with a new pinout.24-Jun-20107Added pin connections for TSV911ILT and TSV91RILT on coverpage.Added T able 1: Device summary on cover page.Modified supply voltage value in Table 3.Corrected typical value of DV io in T able 4, Table 5 and Table 6.Added TSV911RILT , TSV911IYDT and TSV911AIYDT order codesin Table 13.Modified Note 2 under Table 13.06-Mar-20128Added DFN8 2x2 package and ordering information for TSV912device to Chapter 4 and Chapter 5.TSV91x, TSV91xAPlease Read Carefully:Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.All ST products are sold pursuant to ST’s terms and conditions of sale.Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.UNLESS OTHERWI SE SET FORTH I N ST’S TERMS AND CONDI TI ONS OF SALE ST DI SCLAI MS ANY EXPRESS OR I MPLI ED WARRANTY W TH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS NCLUD NG W THOUT L M TAT ON MPL ED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED N WR T NG BY TWO AUTHOR ZED ST REPRESENTAT VES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.© 2012 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America22/22Doc ID 12584 Rev 8。

MAX9111中文资料

MAX9111中文资料

General DescriptionThe MAX9111/MAX9113 single/dual low-voltage differen-tial signaling (LVDS) receivers are designed for high-speed applications requiring minimum power consumption, space, and noise. Both devices support switching rates exceeding 500Mbps while operating from a single +3.3V supply, and feature ultra-low 300ps (max)pulse skew required for high-resolution imaging applica-tions such as laser printers and digital copiers.The MAX9111 is a single LVDS receiver, and the MAX9113 is a dual LVDS receiver.Both devices conform to the EIA/TIA-644 LVDS standard and convert LVDS to LVTTL/CMOS-compatible outputs.A fail-safe feature sets the outputs high when the inputs are undriven and open, terminated, or shorted. The MAX9111/MAX9113 are available in space-saving 8-pin SOT23 and SO packages. Refer to the MAX9110/MAX9112 data sheet for single/dual LVDS line drivers.________________________ApplicationsFeatureso Low 300ps (max) Pulse Skew for High-Resolution Imaging and High-Speed Interconnecto Space-Saving 8-Pin SOT23 and SO Packages o Pin-Compatible Upgrades to DS90LV018A and DS90LV028A (SO Packages Only)o Guaranteed 500Mbps Data Rateo Low 29mW Power Dissipation at 3.3V o Conform to EIA/TIA-644 Standard o Single +3.3V Supplyo Flow-Through Pinout Simplifies PC Board Layout o Fail-Safe Circuit Sets Output High for Undriven Inputso High-Impedance LVDS Inputs when Powered OffMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23________________________________________________________________Maxim Integrated Products 1≥Pin Configurations/Functional Diagrams/Truth Table19-4802; Rev 0; 7/00For free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.Ordering InformationLaser Printers Digital Copiers Cellular Phone Base Stations Telecom Switching EquipmentNetwork Switches/Routers LCD DisplaysBackplane Interconnect Clock DistributionTypical Operating Circuit appears at end of data sheet.M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT232_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.0V to +3.6V, magnitude of input voltage, |V ID | = +0.1V to +1.0V, V CM = |V ID |/2 to (2.4V - (|V ID |/2)), T A = -40°C to +85°C.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +4V IN_ _ to GND .........................................................-0.3V to +3.9V OUT_ _ to GND...........................................-0.3V to (V CC + 0.3V)ESD Protection All Pins(Human Body Model, IN_+, IN_-)..................................±11kV Continuous Power Dissipation (T A = +70°C)8-Pin SOT23 (derate 7.52mW/°C above +70°C)..........602mW8-Pin SO (derate 5.88mW°C above +70°C).................471mW Operating Temperature RangesMAX911_E.......................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________3T A = +25°C.Note 2:Current into the device is defined as positive. Current out of the devices is defined as negative. All voltages are referencedto ground except V TH and V TL .Note 3:Guaranteed by design, not production tested.Note 4:AC parameters are guaranteed by design and characterization.Note 5:C L includes probe and test jig capacitance.Note 6:f MAX generator output conditions: t R = t F < 1ns (0% to 100%), 50% duty cycle, V OH = 1.3V, V OL = 1.1V.Note 7:t SKD1is the magnitude difference of differential propagation delays in a channel. t SKD1= |t PLHD - t PHLD |.Note 8:t SKD2is the magnitude difference of the t PLHD or t PHLD of one channel and the t PLHD or t PHLD of the other channel on thesame device.Note 9:t SKD3is the magnitude difference of any differential propagation delays between devices at the same V CC and within 5°Cof each other.Note 10:t SKD4, is the magnitude difference of any differential propagation delays between devices operating over the rated supplyand temperature ranges.Test Circuit DiagramsM A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT234_______________________________________________________________________________________Figure 1. Receiver Propagation Delay and Transition Time Test CircuitFigure 2. Receiver Propagation Delay and Transition Time WaveformsMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________5Typical Operating Characteristics(V CC = 3.3V, |V ID | = 200mV, V CM = 1.2V, f IN = 200MHz, C L = 15pF, T A = +25°C and over recommended operating conditions unless otherwise specified.)3.03.23.13.33.43.53.6SUPPLY VOLTAGE (V)O U T P U T H I G H V O L T A G E (V )OUTPUT HIGH VOLTAGE vs. SUPPLY VOLTAGE2.52.72.62.82.93.03.13.23.33.43.53.63.73.03.23.33.13.43.53.6SUPPLY VOLTAGE (V)O U T P U T L O W V O L T A G E (m V )OUTPUT LOW VOLTAGE vs. SUPPLY VOLTAGE1301201101009048585368637873833.0 3.2 3.33.1 3.4 3.53.6SUPPLY VOLTAGE (V)O U T P U T S H O R T -C I R C U I T C U R R E N T (m A )OUTPUT SHORT-CIRCUIT CURRENTvs. SUPPLY VOLTAGE1416201822243.03.23.13.33.43.53.6SUPPLY VOLTAGE (V)D I F FE R E N T I A L T H R E S H O L D V O L T A G E (m V )DIFFERENTIAL THRESHOLD VOLTAGEvs. SUPPLY VOLTAGE0.010.11101001000FREQUENCY (MHz)P O W E R -S U P P L Y C U R R E N T (m A )0201040305060MAX9113 POWER-SUPPLY CURRENTvs. FREQUENCY-4010-15356085TEMPERATURE (°C)P O W E R -S U P P L Y C U R R E N T (m A )POWER-SUPPLY CURRENTvs. TEMPERATURE6.56.76.66.86.97.07.17.27.37.47.57.67.71.501.601.551.651.701.751.801.851.901.952.002.052.103.03.13.23.43.3 3.53.6DIFFERENTIAL PROPAGATION DELAYvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )1.501.601.551.651.751.701.801.851.902.001.952.052.102.152.20-40-1510356085DIFFERENTIAL PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )1201008060403.03.33.13.2 3.4 3.53.6DIFFERENTIAL PULSE SKEW vs. SUPPLY VOLTAGEM A X 9111 t o c 09SUPPLY VOLTAGE (V)D I F FE R E N T I A L S K E W (n s )M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT236_______________________________________________________________________________________1.01.61.41.21.82.02.22.42.62.83.001000500150020002500DIFFERENTIAL PROPAGATION DELAY vs. DIFFERENTIAL INPUT VOLTAGEDIFFERENTIAL INPUT VOLTAGE (mV)D I F F E R E N T I A L P R O P A G A T I O N D E L A Y (n s )050150100200250-4010-15356085TEMPERATURE (°C)D I F FE R E N T I A L S K E W (p s )DIFFERENTIAL PULSE SKEWvs. TEMPERATURE1.61.81.72.01.92.12.201.01.50.52.02.53.0DIFFERENTIAL PROPAGATION DELAY vs. COMMON-MODE VOLTAGECOMMON-MODE VOLTAGE (V)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )330430380530480630580680-4010-15356085TEMPERATURE (°C)T R A N S I T I O N T I M E (p s )TRANSITION TIME vs. TEMPERATURE1.51.91.72.32.12.52.72.93.1102025153035404550LOAD (pF)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )DIFFERENTIAL PROPAGATION DELAYvs. LOADTypical Operating Characteristics (continued)2006001000140018002200102015253035404550TRANSITION TIME vs. LOADLOAD (pF)T R A N S I T I O N T I M E (p s )(V CC = 3.3V, |V ID | = 200mV, V CM = 1.2V, f IN = 200MHz, C L = 15pF, T A = +25°C and over recommended operating conditions,unless otherwise specified.)MAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________7_______________Detailed DescriptionLVDS InputsThe MAX9111/MAX9113 feature LVDS inputs for inter-facing high-speed digital circuitry. The LVDS interface standard is a signaling method intended for point-to-point communication over a controlled impedance media, as defined by the ANSI/EIA/TIA-644 standards.The technology uses low-voltage signals to achieve fast transition times, minimize power dissipation, and noise immunity. Receivers such as the MAX9111/MAX9113convert LVDS signals to CMOS/LVTTL signals at rates in excess of 500Mbps. The devices are capable of detecting differential signals as low as 100mV and as high as 1V within a 0V to 2.4V input voltage range . The LVDS standard specifies an input voltage range of 0 to 2.4V referenced to ground.Fail-SafeThe fail-safe feature sets the output to a high state when the inputs are undriven and open, terminated, or shorted. When using one channel in the MAX9113,leave the unused channel open.ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly.The receiver inputs of the MAX9111/MAX9113 have extra protection against static electricity. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±11kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down.ESD protection can be tested in various ways; the receiver inputs of this product family are characterized for protection to the limit of ±11kV using the H uman Body Model.Human Body ModelFigure 3a shows the H uman Body Model, and Figure 3b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5k Ωresistor.__________Applications InformationSupply BypassingBypass V CC with high-frequency surface-mount ceram-ic 0.1µF and 0.001µF capacitors in parallel, as close to the device as possible, with the 0.001µF valued capaci-tor the closest to the device. For additional supply bypassing, place a 10µF tantalum or ceramic capacitor at the point where power enters the circuit board.Differential TracesOutput trace characteristics affect the performance of the MAX9111/MAX9113. Use controlled impedance traces to match trace impedance to both transmission medium impedance and the termination resistor.Eliminate reflections and ensure that noise couples as common mode by running the differential traces close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.Maintain the distance between the differential traces to avoid discontinuities in differential impedance. Avoid 90°turns and minimize the number of vias to further prevent impedance discontinuities.Cables and ConnectorsTransmission media should have a differential charac-teristic impedance of about 100Ω. Use cables and con-nectors that have matched impedance to minimize impedance discontinuities.Avoid the use of unbalanced cables such as ribbon or simple coaxial cable. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the LVDS receiver.TerminationTermination resistors should match the differential char-acteristic impedance of the transmission line. Because the MAX9111/MAX9113 are current steering devices,an output voltage will not be generated without a termi-nation resistor. Output voltage levels depend upon the value of the termination resistor. Resistance values may range from 75Ωto 150Ω.Minimize the distance between the termination resistor and receiver inputs. Use a single 1% to 2% surface-mount resistor across the receiver inputs.Board LayoutFor LVDS applications, a four-layer PC board that pro-vides separate power, ground, LVDS signals, and input signals is recommended. Isolate the input and LVDS signals from each other to prevent coupling. For best results, separate the input and LVDS signal planes with the power and ground planes.M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT238_______________________________________________________________________________________Figure 3a. Human Body ESD Test Modules Figure 3b. Human Body Current WaveformMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________9Typical Operating CircuitChip InformationTRANSISTOR COUNT:MAX9111: 675MAX9113: 675PROCESS: CMOSM A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT2310______________________________________________________________________________________Package InformationMAX9111/MAX9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23______________________________________________________________________________________11Package Information (continued)M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embod ied in a Maxim prod uct. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.NOTES。

32寸康佳液晶电视EEFL高压电源板电路原理图纸

32寸康佳液晶电视EEFL高压电源板电路原理图纸

2
1
D751 BAV70 2
1 2 3
R751
3 1
10 2
D
R752 T751 DRV1 C709 100n/50V DRV2 10K
R753 10
Q751 18NK50
华升---全国液晶电视维修行业全能核心技术提供商: www.hslcd.com
ZCS
C781 472
R787 CON2_0 3k
D
7 3 8
IS1 R780 91 R781 R783 91 C782 12p,6kv VCS2 C783 472 IS2 R792 10K 91 R782 91
R784 100
4
6 5 8
D752 BAV70 22 R754
R785 NC XS782 D709
2 3 1
Q752 18NK50 C752 2.2N/450v
TW901 EER28L
3
DW951 MBR20100
+12.2V
1
LW902 FB
12 11 10 2 4 9 8 7
6
1
1 2 3
DW952 MBR20100 CW953 1000u/25V
CW955 1000u/25V
VST
4 2 1
DW905 CW904 473 2
FB
Drain
1
CW907 221
DF904
2
RF910 390K RF911 20K UF901
3 1
BAV70
RF907 22R/1206
2 1
3
2
820k/1W
3
B
COMP ZCD MOT GND

灵星雨控制卡

灵星雨控制卡
智能识别一卡通功能
智能化的识别程序可识别双色、全彩、虚拟、灯饰等的各种驱动板的各种扫描方式及各种信号走向,识别率达99%,一套卡在手,做屏无忧。
65536级(64K)灰度内任意设定功能
客户可根据显示屏的情况从无灰度到65536级(64K)灰度之间任意调整,让你的显示屏达到最佳显示效果。
刷新率任意设置、锁相、同步功能
支持容余点插入
可设定每多少点接入一个或多个空像素,用于异型屏。
支持带PWM的驱动芯片
需专用驱动芯片配合,使显示屏效果更完美。
支持硬件逐点校正功能
需专用驱动芯片配合,使显示屏逐点校正效果更好。
支持逐点检测功能
需专用驱动芯片配合,动态地检测显示屏瑕点情况。
逐点校正、逐卡(箱体)校正功能
逐点校正支持单点、2×2点、4×4点和8×8点四种校正模式,最大校正6144点/模块,红绿蓝各256级。逐卡(箱体)校正用于显示屏各箱体间色差校正,红绿蓝各256级。
智能监控
每块接收卡均有温度检测和四路风扇监控输出,可根据用户设定的温度上限智能地控制四路风扇转速。
公司图标显示
当发送卡电源没开启时显示屏自动显示设点的公司图片,图片像素为128X128,颜色数为16K色。
支持16位以内的任意扫描方式
原系统只支持1、2、4、8、16扫描,新系统为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16扫描。
智能连接功能
同一块显示屏的多块接收卡/箱体(含备用的)可以任意交换而不需重新设置,接收卡能智能地动识别需显示的内容。
智能监控
每块接收卡均有温度检测和四路风扇监控输出,可根据用户设定的温度上限智能地控制四路风扇转速。
公司图标显示
当发送卡电源没开启时显示屏自动显示设点的公司图片,图片像素为128X128,颜色数为16K色。

华为CX912交换机模块V100R001C10白皮书第13版日期2017-06-08说明书

华为CX912交换机模块V100R001C10白皮书第13版日期2017-06-08说明书

Huawei CX912 Switch Module V100R001C10White PaperIssue13Date2017-06-08Copyright © Huawei Technologies Co., Ltd. 2017. All rights reserved.No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.Trademarks and Permissionsand other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.All other trademarks and trade names mentioned in this document are the property of their respective holders.NoticeThe purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.Huawei Technologies Co., Ltd.Address:Huawei Industrial BaseBantian, LonggangShenzhen 518129People's Republic of ChinaWebsite:About This DocumentPurposeThis document describes the E9000 CX912 multi-plane switch module (CX912 for short) interms of its functions, advantages, appearance, specifications, internal networking, standardsand certifications. You can learn about the CX912 by reading this document.The product features and commands for the 10GE switching plane of the CX912 varyaccording to the software version. For details, see the documents listed in the following table.Intended AudienceThis document is intended for:l Huawei presales engineersl Channel partner presales engineersl Huawei enterprise presales engineersSymbol ConventionsThe symbols that may be found in this document are defined as follows.Change HistoryIssue 13 (2017-06-08)This issue is the thirteenth official release.Issue 12 (2017-03-27)This issue is the twelfth official release.This issue is the eleventh official release.Issue 10 (2016-11-22)This issue is the tenth official release.Issue 09 (2016-05-12)This issue is the ninth official release.Issue 08 (2015-07-17)This issue is the eighth official release.Issue 07 (2015-03-20)This issue is the seventh official release.This issue is the sixth official release.Issue 05 (2015-02-26)This issue is the fifth official release.Issue 04 (2014-09-15)This issue is the fourth official release.Issue 03 (2014-05-13)This issue is the third official release. Issue 02 (2014-04-08)This issue is the second official release. Issue 01 (2014-01-02)This issue is the first official release.White Paper ContentsContentsAbout This Document (ii)1 Overview (1)1.1 Functions (2)1.2 Advantages (10)1.3 Appearance (11)1.4 Ports (15)1.5 Indicators (20)1.6 Internal Chassis Networking (22)1.7 Software and Hardware Compatibility (24)1.8 Technical Specifications (26)2 Standards and Certifications (30)2.1 Standards Compliance (31)2.2 Certifications (33)1 Overview About This Chapter1.1 FunctionsThis topic describes the functions, supported protocols, and ports of the switching planes ofthe CX912 multi-plane switch module (CX912 for short).1.2 AdvantagesThe CX912 switch module provides high performance, high port density, and multipleswitching planes (GE/10GE/Fibre Channel(FC) switching), and supports large data centernetworks, high-performance stacking, on-demand configuration, flexible deployment, andrich data center features. In addition, the CX912 switch module is easy to deploy andmaintain.1.3 AppearanceThis topic describes the CX912 in terms of its appearance, panel, and installation positions inthe chassis.1.4 PortsThis topic describes the features, numbering rules, names, types, and quantities of the CX912ports.1.5 IndicatorsThis topic describes the indicators on the CX912.1.6 Internal Chassis NetworkingThis topic describes connection relationships between the CX912 and mezz modules oncompute nodes.1.7 Software and Hardware CompatibilityThis topic describes mezz modules that can work with the CX912 and pluggable modules andcables supported by ports on the CX912 panel.1.8 Technical SpecificationsThis topic describes the physical, environmental, power, and network switching specificationsof the CX912.1.1 FunctionsThis topic describes the functions, supported protocols, and ports of the switching planes ofthe CX912 multi-plane switch module (CX912 for short).CX912 is the switching control unit of a server. It provides data switching for compute nodesin the system and external management network ports and service ports. The CX912 providestwo independent planes, including the 10GE switching plane, and FC switching plane. Thetwo planes are physically isolated.The CX912 is installed in a rear slot of the E9000 chassis and is connected to compute nodes,storage nodes, and management modules through the midplane. It exchanges internal datapackets and control and management packets to ensure high-speed data transmission.For details about the functions provided by the 10GE switching plane, see Table 1-1. Fordetails about the functions provided by the FC switching plane, see Table 1-2.Table 1-1 10GE switching plane function descriptionTable 1-2 FC switching plane function description1.2 AdvantagesThe CX912 switch module provides high performance, high port density, and multipleswitching planes (GE/10GE/Fibre Channel(FC) switching), and supports large data centernetworks, high-performance stacking, on-demand configuration, flexible deployment, andrich data center features. In addition, the CX912 switch module is easy to deploy andmaintain.High Performance and High Port DensityUnderpinned by the leading hardware platform, the CX912 provides a high port density and aline-speed forwarding capability. It supports next-generation server applications that requiresuper high performance and density.The CX912 10GE switching plane provides sixteen 10GE SFP+ optical ports for connectingto upstream aggregation/core switches, forty 10GE electrical ports for interconnecting withhigh-performance compute nodes, eight 8G FC optical ports for connecting FC storage areanetworks (FC SANs), and two 40GE ports for interconnecting with switch modules.The CX912 10GE switching planes support low-latency forwarding, providing a switchingcapability of 1.28 Tbit/s (throughput) and line-speed forwarding for Ethernet frames. Theforwarding latency for layer 2 Ethernet frames in cut through mode is less than 1.5 us.The CX912 FC switching plane provides a line-speed switching capability of 192 Gbit/s (384Gbit/s throughput).Multiple Switching Planes and Support for Large Data Center NetworksThe CX912 provides table entries of high specifications: a maximum of 131,072 MACaddress entries and 16,384 forwarding information bases (FIBs) entries.High-Performance Stacking, Easy Deployment, and Simple MaintenanceThe CX912 supports a stacking system of four devices. It has the following advantages:l High performance: A single stacking system can provide more than thirty-two 10GEports.l High bandwidth: The stacking system supports 160Gbps stacking bandwidth.l Easy deployment and maintenance:–Pre-deployment and offline configuration are supported. The system can be pre-planned and pre-configured. Devices can be added as required, supporting plug-and-play.–The slot ID of a device is the ID in the stacking system, facilitating identificationand maintenance.–Indicators on the front panel indicate the role and status of a stacking system. Thestacking system can be maintained without a terminal.l Simple upgrade operations: The stacking system supports quick and automatic software upgrades, simplifying upgrade operations and reducing upgrade workload.–Rapid software upgrades: When two switch modules are stacked, the standbyswitch module is upgraded before the active switch module. This ensures that atleast one switch module is operating.–Automatic software upgrades: When two switch modules are stacked, the softwareversion is automatically synchronized from the active switch module to the standbyone.On-Demand Configuration and Flexible DeploymentThe FC switching plane of the CX912 provides eight 8G FC ports. Four of the ports areactivated by default, and the other four ports require licenses for activation, which addressesdiverse user needs.Rich Data Center Featuresl Supports virtualization/virtual machine (VM) access.–Supports server virtualization, improving data center utilization.–Supports virtual sensors. During migration of VMs, network policies can beautomatically migrated using virtual sensors so that network resources can beallocated as required. Working with the layer 2 network, VMs can be freelymigrated within the data center.l Supports the Transparent Interconnection of Lots of Links (TRILL) protocol.–Complying with the Internet Engineering Task Force (IETF) standard, the TRILLprotocol supports ultra-large networks and flexible networking modes.–The TRILL protocol supports load balancing between paths, so that traffic can beshared by multiple paths according to service requirements.–The TRILL protocol supports fast network convergence. Any changes on thenetwork can be quickly sensed and fast convergence is performed.1.3 AppearanceThis topic describes the CX912 in terms of its appearance, panel, and installation positions inthe chassis.AppearanceFigure 1-1 shows the CX912.Figure 1-1 CX912Installation PositionsThe CX912 can be installed in the four slots at the rear of the E9000 chassis. The four slots are 1E, 2X, 3X, and 4E, as shown in Figure 1-2.Figure 1-2 Installation positions and slotsPanelFigure 1-3 shows the CX912 panel.Figure 1-3 Panel1Product Model2Customization label (with an ESNlabel)3BMC serial port4Power indicator5Healthy indicator6Offline button/indicator7SYS serial port8GE electrical port (reserved)9Connection status indicator of the GEelectrical port 10Data transmission status indicator ofthe GE electrical port1110GE optical port12Connection status indicator of the10GE optical port13Data transmission status indicator of the10GE optical port148G FC optical port15Connection status indicator of the 8G FC optical port 16Diagnosis status indicator of the 8GFC optical portESNsAn Equipment Serial Number (ESN) is a string that uniquely identifies a server. An ESN is required when you apply for technical support from Huawei.Figure 1-4 shows the ESN format.Figure 1-4 ESN example1.4 PortsThis topic describes the features, numbering rules, names, types, and quantities of the CX912ports.The CX912 provides ports for users to operate and configure. The ports are used to send andreceive data.The CX912 ports are numbered in Slot number/Subcard number/Port number format.l Slot number: indicates the slot number of the current switch module. Its value rangesfrom 1 to 4, from left to right mapping to slot numbers 1E, 2X, 3X, and 4E.l Subcard number: indicates the number of a subcard supported by service ports. Thevalue ranges from 1 to 19.l Port number: indicates the sequence number of a port on a subcard.The FC optical ports on the CX912 panel are numbered from 1 to 8.For details about the value options, see Figure 1-5, Table 1-3, Table 1-5 and Table 1-6.For example, if the CX912 is in slot 2X, the first GE optical port on the upper right of thepanel is numbered GE 2/17/4, as shown in Figure 1-5.Figure 1-5 Port naming rulesTable 1-3 describes the ports on the CX912.Table 1-3 External portsTable 1-4 describes the internal ports on the onboard GE switching plane of the CX912. Table 1-4 Internal ports on the onboard GE switching planeTable 1-5 describes the internal ports on the CX912 10GE switching plane.Table 1-5 Internal ports on the 10GE switching planeTable 1-6 describes the internal ports on the CX912 FC switching plane.Table 1-6 Internal ports on the FC switching planeThe internal FC interface rate must be set to 8 Gbit/s.1.5 IndicatorsThis topic describes the indicators on the CX912.You can observe the indicators to determine the current operating status of the CX912. Table 1-7 describes the indicators on the CX912 panel.Table 1-7 Indicators1.6 Internal Chassis NetworkingThis topic describes connection relationships between the CX912 and mezz modules oncompute nodes.For details about the networking of the CX912 and mezzanine cards on compute nodes, seeE9000 Blade Server Mezz Module-Switch Module Interface Mapping Tool.Figure 1-6 shows the internal chassis networking for the CX912 and compute nodes. Ports oncompute nodes for connecting to the CX912 are provided by two mezz modules. Themapping between the CX912 and the NIC and mezz modules is described as follows:l Mezz 1 connects to the 10GE switching planes and FC switching planes of the CX912s in slots 2X and 3X.l Mezz 2 connects to the 10GE switching planes and FC switching planes of the CX912s in slots 1E and 4E.Figure 1-6 Mapping between the CX912 and mezz modules on compute nodesMapping between the CX912 and ports on the MZ912The two 10GE ports (ports 1 and 2) on the MZ910 map to the 10GE switching planes of the CX912s in slots 3X and 2X respectively, as shown in Figure 1-7.The8G FC ports (ports 3 and 4) on the MZ912 map to the FC switching planes of the CX912s in slots 3X and 2X respectively.Figure 1-7 Mapping between the CX912 and ports on the MZ9121.7 Software and Hardware CompatibilityThis topic describes mezz modules that can work with the CX912 and pluggable modules andcables supported by ports on the CX912 panel.For details about the software and hardware that are compatible with the CX912, see HuaweiServer Compatibility Checker.Supported Mezz ModulesThe CX912 connects to mezz modules of compute nodes. Table 1-8 describes models andspecifications of the supported mezz modules.Table 1-8 Supported mezz modulesSupported Pluggable Modules and CablesTable 1-9 Supported pluggable modules and cablesThe CX912 supports multiple pluggable optical modules, fibers, and network cables. You canchoose the modules and cables based on site requirements.l The CX912 provides the following functions for GE applications:–Provides RJ45 ports for connecting to twisted-pair cables.–Provides SFP+ optical ports that support single-mode and multi-mode SFP+ opticalmodules.–Supports SFP electrical modules.l The CX912 provides the following functions for 10GE applications:–Provides SFP+ optical ports and supports single-mode and multi-mode SFP+optical modules.–Supports 10GE DAC cables, which can be 7 m or 10 m active DAC cables or 1 m,3 m, or 5 m passive DAC cables.l The CX912 provides the following functions for FC applications: provides SFP+ optical ports; uses single-mode and multi-mode 8G SFP+ optical modules; supports 4 Gbit/s and8 Gbit/s.FC ports of the CX912 support only single-mode and multi-mode Brocade swappable optical modules.1.8 Technical SpecificationsThis topic describes the physical, environmental, power, and network switching specificationsof the CX912.Table 1-10 describes the technical parameters of the CX912, and Table 1-11 describes thenetwork switching specifications of the CX912.For details about the FC switching plane switching performance, see theMX210&MX220_Fabric_OS_Administrator_Guide.Table 1-10 Technical specificationsTable 1-11 Network switching specifications2 Standards and Certifications About This Chapter2.1 Standards ComplianceThis topic describes the international and industrial standards and communication protocolsthat the CX912 complies with.2.2 CertificationsThis topic describes the certifications that the E9000 has passed.2.1 Standards ComplianceThis topic describes the international and industrial standards and communication protocolsthat the CX912 complies with.International StandardsTable 2-1 lists the international standards.Table 2-1 Standards and protocol complianceIndustrial StandardsTable 2-2 lists the industrial standards.Table 2-2 Industrial standardsCommunication ProtocolsTable 2-3 lists the communication protocols.Table 2-3 Communication protocols2.2 CertificationsThis topic describes the certifications that the E9000 has passed.Table 2-4 lists the certifications.Table 2-4 CertificationsHuawei CX912 Switch ModuleWhite Paper 2 Standards and CertificationsIssue 13 (2017-06-08)Huawei Proprietary and ConfidentialCopyright © Huawei Technologies Co., Ltd.34。

(20YX1739-03)扬声器规格书VIT90170-10W8--03

(20YX1739-03)扬声器规格书VIT90170-10W8--03

内置音响组件\VIT90170-10W8Ω-03\ROH 版本页数1.0 3 常规电声性能参数:序号项目测试条件单位技术要求1 额定正弦功率分别在1.5 f0和1000Hz,持续1小时; W 82 额定噪声功率粉噪,持续100小时。

W 103 长期最大功率按GB/T9396-1996中19.2项。

W 154 额定阻抗输入<1/4W。

(实测要求阻抗曲线上极小值不小于0.85R)。

Ω8±15%5 谐振频率f0测试电压统一为2V。

Hz 90±186 正弦纯音检听0.5 f0-2kHz扫频,馈以要求的正弦电压,无异常音V 8.97 特性灵敏度级1m,1w。

100Hz-12.5kHz内取平均值dB 78±28 有效频率范围1m,1w,测试频响-14dB Hz 100Hz-12.5k 1m,1w,测试频响-9dB Hz 125Hz-4k9 总谐波失真1W,1m,125Hz-5000Hz内按1/3oct取点。

≤7%10 总品质因素Qt通过阻抗曲线计算11 等效容积Vas按GB/T9396-1996中18.4.2项。

lts12 漏磁场轴向正面,以轭环上平面为起点。

μT/轴向背面,以后盖底面为起点。

mm 45度角,以上夹板外沿为起点。

13 极性扬声器接线板“+”接正向直流电,扬声器纸盆向前推极性标识正确14 绝缘电阻在端子与盆架间施加1分钟的100V 直流电≥1MΩ(打开音箱对扬声器单元进行检验)15 耐电压在扬声器引出端子与盆架和磁路的金属部分间加50Hz,100V交流电1分钟,试验中无打火击穿现象。

(打开音箱对扬声器单元进行检验)16 1-15项仅规定了扬声器常规技术参数要求,其他通用技术条件如外观、机械性能、可焊性、负荷试验、周期检验及包装等要求须符合GB/T 9396-1996和GB/T 9397-1996的要求。

机械性能指标:序号项目判定标准1 滑落冲击试验将扬声器依下图所示滑落1次,试验后扬声器不能有擦圈、破损、异常音,性能不能有改变内置音响组件\VIT90170-10W8Ω-03\ROH 版本页数1.0 5 频响曲线:内置音响组件\VIT90170-10W8Ω-03\ROH 版本页数1.0 6 阻抗曲线:。

最新灵星雨系统教程

最新灵星雨系统教程
设置硬件参数 发送卡
接收卡
接收卡
接收卡
连接方法: U口
发送卡
D口
接收卡 接收卡 接收卡
测试功能使用方法(TEST): 1).硬件连接:从发送卡U口输出网线,从最后一张接收卡回流网线给发送卡D口; 2).点右边"Start"再点"stop"最后再点一次"Start",就会自动运行侦测程序.正常情况"sends"和 "Receives"会有数据不断变动,下面的列表应没有内容.当空白列表出现内容时,就表示有问题 了.(注:losts为丢帧,Errors为错误,shorts为短路或网线有问题.)另"sends"和"Receives"为"0"时 表示网线有问题发送卡的U口和D口没有数据回流. 3).测试时间一般10分钟.
3.支持单卡色度空间变换。 设 接收卡 置 设置硬件参数 方 更多设置 色度空间 法
4.支持12 位的HDMI 颜色输入(需九代发送卡配合).
支持12位HDMI颜色深度。深度数值越高,就可以获得更多的色彩。
5.软件亮\色度校正功能
可实现1024 级单点色度校正;(其它系统一般只能支持256级色度校正)
显示屏监控 箱体/卡监控 温度
16.湿度监控(需另购湿度传感器). 接收卡直接实现,不需多功能卡
17.烟雾监控(需另购烟雾模块). 接收卡直接实现,不需多功能卡
查 看 : 设置 显示屏监控 位 置
箱体/卡监控
湿度/烟雾
18.超高刷新率,高灰度 ,可从一级亮度起灰。
新增可选刷新率模式,超高刷新模式是标准模式(客户原来可达到的刷新率)的 8-128倍,并且可上65536级灰度.实现灰度和刷新率分离,不管上多少的刷新率, 灰度都可上16bit(65536级)灰度。

RV09电位器

RV09电位器

Model
Dimensions
RV91 0NO
Vertical Type,Single Unit
7
L± 0.5
W
R1
C0.5
9.5 30°
FULL C.C.W POSITION
A
0.8 5
2
0.8 5
RV91 0NS
Vertical Type with Switch, Single Unit
RV91 0GO
0.8 6 5
Mounting hole detail
20-Ø 1+00.1Holes
MOUNTING SURFACE
S1
R6 R5
R4 R3
R2 R1
6.25 2.5 5 2.5 5 2.5 5
O FF
ON
( S1)
1 23 ( R6)
1 23 ( R5)
1 23 ( R4)
1 23 ( R3)
1 23 ( R1)
0.8 6 5
Mounting hole detail
18-Ø 1+00.1Holes
R6 R5
R4 R3
R2 R1
MOUNTING
2.5 5 2.5 5 2.5 5 SURFACE
1 23 (R6)
1 23 (R5)
123 (R4)
1 23 (R3)
1 23 (R2)
1 23 (R1)
RV91 0DS
代号Code M
S
O
开S关W 类ty型pe 轻Mo触me开nt关ar0y.5pmumsh 0.5 R旋ot转ar开y关 N无on开e关
操作部 Drive the device

RV901_911_921_931规格书

RV901_911_921_931规格书

接收901/911/921/931规格书version 1.0 2012.9.51、功能简介RV901/911/921/931是8代系统RV801的升级产品,与RV801完全兼容,支持RV801的所有功能,可替RV801。

与RV801相比增加如下功能.1. 支持12位的HDMI颜色输入(需九代发送卡配合).2. 采用18位信号处理器,最大支持红绿蓝各18位(26万级)灰度..3.单卡最大支持1024X256像素点,1024级单点色度校正.4.支持单卡色度空间变换.5.支持配置文件回读.6.支持程序复制.7.支持双接收卡热备份,用于要求极高的演出屏.8.支持像素点故障检测(需专用芯片支持)9.支持网线误码测试.10.支持排线故障检测.11.支持箱体门开关监控.12.两路风扇转速监控.13.三路电压监控,一路用于系统,两路外接箱体电源.14.温度监控.15.湿度监控(需另购湿度传感器).16.烟雾监控(需另购烟雾模块).17.符合欧盟CE-EMC标准.2、RV901输出接口定义控制系统有2种工作模式,每种模式的50P输出不同数据,定义如下1. 正常模式(默认的工作模式)支持全彩屏,虚拟屏和双色屏,50p接口为8组并行全彩数据或16组双色并行数据,定义如下.1 GND VCC 23 GND VCC 45 GND SR 67 G16 R16 89 G15 R15 1011 G14 R14 1213 G13 R13 1415 G12 R12 1617 G11 R11 1819 G10 R10 2021 G9 R9 2223 G8 R8 2425 G7 R7 2627 G6 R6 2829 G5 R5 3031 G4 R4 3233 G3 R3 3435 G2 R2 3637 G1 R1 3839 D C 4041 B A 4243 LAT CLK 4445 OE GND 4647 VCC GND 4849 VCC GND 502. 20组并行数据模式仅支持全彩屏,50P定义如下.1 GND VCC 23 GND VCC 45 GND SR 67 NC NC 89 B10 G10 1011 R10 B9 1213 G9 R9 1415 B8 G8 1617 R8 B7 1819 G7 R7 2021 B6 G6 2223 R6 B5 2425 G5 R5 2627 B4 G4 2829 R4 B3 3031 G3 R3 3233 B2 G2 3435 R2 B1 3637 G1 R1 3839 D C 4041 B A 4243 LAT CLK 4445 OE GND 4647 VCC GND 4849 VCC GND 503、型号对照表为了满足不同客户需求,按接口规格不同提供4种型号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接收901/911/921/931规格书
version 1.0 2012.9.5
1、功能简介
RV901/911/921/931是8代系统RV801的升级产品,与RV801完全兼容,支持RV801的所有功能,可替RV801。

与RV801相比增加如下功能.
1. 支持12位的HDMI颜色输入(需九代发送卡配合).
2. 采用18位信号处理器,最大支持红绿蓝各18位(26万级)灰度..
3.单卡最大支持1024X256像素点,1024级单点色度校正.
4.支持单卡色度空间变换.
5.支持配置文件回读.
6.支持程序复制.
7.支持双接收卡热备份,用于要求极高的演出屏.
8.支持像素点故障检测(需专用芯片支持)
9.支持网线误码测试.
10.支持排线故障检测.
11.支持箱体门开关监控.
12.两路风扇转速监控.
13.三路电压监控,一路用于系统,两路外接箱体电源.
14.温度监控.
15.湿度监控(需另购湿度传感器).
16.烟雾监控(需另购烟雾模块).
17.符合欧盟CE-EMC标准.
2、RV901输出接口定义
控制系统有2种工作模式,每种模式的50P输出不同数据,定义如下
1. 正常模式(默认的工作模式)
支持全彩屏,虚拟屏和双色屏,50p接口为8组并行全彩数据或16组双色并行数据,定义如下.
1 GND VCC 2
3 GND VCC 4
5 GND SR 6
7 G16 R16 8
9 G15 R15 10
11 G14 R14 12
13 G13 R13 14
15 G12 R12 16
17 G11 R11 18
19 G10 R10 20
21 G9 R9 22
23 G8 R8 24
25 G7 R7 26
27 G6 R6 28
29 G5 R5 30
31 G4 R4 32
33 G3 R3 34
35 G2 R2 36
37 G1 R1 38
39 D C 40
41 B A 42
43 LAT CLK 44
45 OE GND 46
47 VCC GND 48
49 VCC GND 50
2. 20组并行数据模式
仅支持全彩屏,50P定义如下.
1 GND VCC 2
3 GND VCC 4
5 GND SR 6
7 NC NC 8
9 B10 G10 10
11 R10 B9 12
13 G9 R9 14
15 B8 G8 16
17 R8 B7 18
19 G7 R7 20
21 B6 G6 22
23 R6 B5 24
25 G5 R5 26
27 B4 G4 28
29 R4 B3 30
31 G3 R3 32
33 B2 G2 34
35 R2 B1 36
37 G1 R1 38
39 D C 40
41 B A 42
43 LAT CLK 44
45 OE GND 46
47 VCC GND 48
49 VCC GND 50
3、型号对照表
为了满足不同客户需求,按接口规格不同提供4种型号。

RV901和RV921为标准产品不需
4、外形尺寸
5、工作条件。

相关文档
最新文档