SPC控制图判异准则 ppt课件
合集下载
SPC与常规控制图培训课件PPT(共 58张)
因此,发生这种情况的概率为
2×C54×0.1573054×(0.9973-0.157305) =0.00268
规则7连续15点在中心线正负1σ 之间
0.6826815 =0.00326
常用控制图的种类
常用质量控制图可分为两大类: (1)计量值控制图包括:
均值-标准差控制图,均值-极差控制图, 中位数-极差控制图,单值-移动-极差控制图。 (2)计数值控制图包括:
SPC与常规控制图
——控制图概念
又叫管理图或休图。它是判断和预报生产过程中 质量状况是否发生异常波动的一种有效的方法。
可用3σ原则确定控制图的控制线(Control Lines)
CL=μ UCL=μ+3σ LCL=μ-3σ
控制图的基本原理
控制图是把造成质量波动的六个原因(人机料法 环、测量等)分为两个大类:随机性原因(偶然 性原因)和非随机性原因(系统原因)。这样, 我们就可以通过控制图来有效地判断生产过程质 量的稳定性,及时发现生产过程中的异常现象, 查明生产设备和工艺装备的实际精度,从而为制 定工艺目标和规格界限确立可靠的基础,使得过 程的成本和质量成为可预测的,并能够以较快的 速度和准确性测量出系统误差的影响程度。
3点中2个点子在中心线同一侧的2σ ~ 3σ 范围之内,另外一 个点子落在控制界限任何处,发生这种情况的概率为
2×C32×0.02142×(0.9973-0.0214) =0.00268
控制图上的信号解释
规则6:连续5点中有4点落在中心线同一侧 的1σ 以外。
点子落在1σ ~ 3σ 之间的概率为 ( 3 ) ( 1 ) 0 . 9 9 8 6 5 0 0 . 8 4 1 3 4 5 0 . 1 5 7 3 0 5
2×C54×0.1573054×(0.9973-0.157305) =0.00268
规则7连续15点在中心线正负1σ 之间
0.6826815 =0.00326
常用控制图的种类
常用质量控制图可分为两大类: (1)计量值控制图包括:
均值-标准差控制图,均值-极差控制图, 中位数-极差控制图,单值-移动-极差控制图。 (2)计数值控制图包括:
SPC与常规控制图
——控制图概念
又叫管理图或休图。它是判断和预报生产过程中 质量状况是否发生异常波动的一种有效的方法。
可用3σ原则确定控制图的控制线(Control Lines)
CL=μ UCL=μ+3σ LCL=μ-3σ
控制图的基本原理
控制图是把造成质量波动的六个原因(人机料法 环、测量等)分为两个大类:随机性原因(偶然 性原因)和非随机性原因(系统原因)。这样, 我们就可以通过控制图来有效地判断生产过程质 量的稳定性,及时发现生产过程中的异常现象, 查明生产设备和工艺装备的实际精度,从而为制 定工艺目标和规格界限确立可靠的基础,使得过 程的成本和质量成为可预测的,并能够以较快的 速度和准确性测量出系统误差的影响程度。
3点中2个点子在中心线同一侧的2σ ~ 3σ 范围之内,另外一 个点子落在控制界限任何处,发生这种情况的概率为
2×C32×0.02142×(0.9973-0.0214) =0.00268
控制图上的信号解释
规则6:连续5点中有4点落在中心线同一侧 的1σ 以外。
点子落在1σ ~ 3σ 之间的概率为 ( 3 ) ( 1 ) 0 . 9 9 8 6 5 0 0 . 8 4 1 3 4 5 0 . 1 5 7 3 0 5
SPC_大全(PPT74页)
程
d2
c4
Sigma
计算Sigma
S
m i 1
(
xi
x)2
,
m 1
Pp,Ppk,Ppm
k个子组,每个子组容量 为n,则m k * n
Cp USL LSL (当USL、LSL都存在时)
6ˆ
Cr(或Cpr) 1(常以百分数表示) Cp
Cpu USL x(当USL存在时)
直通率分析 和 DPMO分析
直通率的含义 直通率分析方法及意义 DPMO的含义 DPMO分析方法及意义
直通率
工序一
浪费45,000ppm
TPY
通过检查,合格率95.5%
工序二的合格率97%
浪费30,000ppm
装配站 合格率94.4%
浪费56,000ppm
浪费131,000ppm
直通率(FPY)
然联系; 使用时只需把采集到的样本数据或统计量
在图上打点就行;
何时应该重新计算控制界限
1. 控制图是根据稳定状态下的条件(人员、设备、 原材料、工艺方法、测量系统、环境)来制定 的。如果上述条件变化,则必须重新制定控制 图.
2. 一定时间后检验控制图还是否适用; 3. 过程能力值有大的变化时。
分析阶段 控制阶段
分析阶段
在控制图的设计阶段使用,主要用以确定 合理的控制界限;
每一张控制图上的控制界限都是由该图上 的数据计算出来;
从分析阶段转入控制阶段
在什么条件下分析阶段确定的控制限可以 转入控制阶段使用:
控制图是受控的 过程能力能够满足生产要求
控制阶段
控制图的控制界限由分析阶段确定; 控制图上的控制界限与该图中的数据无必
SPC与控制图.pptx
样本均值
x1, ..., x5 的 Xbar 控制图
5 UCL=4.636
4
3
2
1
__ X =0.691
0
-1
-2
-3
LCL=-3.254
-4 1 3 5 7 9 11 13 15 17 19 21 23 样本
2020/8/20
24
利用上面的控制图做20天的控制(控制数据.xls)
2020/8/20
选择容易测定的变量原则
2020/8/20
8
5 控 制 图 原 理 与 结 构(1)
• 假定质量特性值服从正态分布 控制图是根据正态分布的“3σ”原理绘制
• 用统计技术判定过程是否发生异常变异
2020/8/20
9
5 控 制 图 原 理 与 结 构(2)
• 以样本统计量均值为控制中心线
• 以中心线±3σ为控制图的上下控制限
SPC与控制图
1 SPC的发展 2 控制图的作用和特点 3 预防原则的实施 4 选择控制变量 5 控制图的原理和结构 6 诊断准则 7 过程受控与过程稳定 8 用Minitab软件制作控制图 小组讨论与练习
2020/8/20
1
本章目标
• 了解SPC概念 • 树立过程控制的预防观念 • 明确使用控制图的重要意义 • 学会正确绘制控制图
• 以抽样的时间顺序为控制图横轴坐标
• 以质量特性值单位为控制图纵轴坐标
样本
单位
3 UCL
CL
3
LCL
2020/8/20
控制图结构
样本
10
6 诊 断 准 则 (1)
准则1: 一个点在A区之外(判 异唯一准则) x
UCL A
SPCTraining2.pptx
准则1
一点落在A区以外。 点出界就判异
准则 Criteria 1
UCL A
B
C X
C B A LCL
准则2
连续9点落中心 线同一侧
准则 Criteria 2
UCL A B
C X
C B A LCL
准则3
连续6点递增或递减
UCL A
B
C X
C B
A LCL
准则 Criteria 3
准则4
连续14点相邻点上 下交替
• 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。下午2时54分27秒下午2时54分14:54:2720.8.6
谢谢观看
第二:控制图上点子突然出界,显示异 常。这时必须查出异因,采取措施,加 以消除。
控制图的作用:及时告警。必须强调现 场第一线的生产管理人员来推行SPC,把 它作为日常工作的一部分。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。20. 8.620.8.6Thursday, August 06, 2020
• 13、志不立,天下无可成之事。20.8.620.8.614:54:2714:54:27August 6, 2020
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
SPC(管制图)-精品课件
兩種錯誤與管理界限之關係
如果欲完全消除或減少第一種錯誤必須把 管理界限放寬以致引起第二種錯誤變大, 相反地減少第二種錯誤則會增加第一種 錯誤之機會.第一種錯誤使吾人神經過敏 做些徒勞無益之冤枉工作,而第二種錯誤 卻會使吾人錯過改正之機會而引起嚴重 之後果.故需設法使兩種錯誤減少,可用經 濟平衡點方法求得.
• 原材料之品質在其規格 範圍內,容許之變化.
• 機器之震動所引起之變 動,作業員的變動,屬於工 廠無法避免之變動.
• 由很多微小的原因所引 起,在製程管制時,想要將 此種變動減少或去除是 非常不經濟的.
• 其它如:氣後及環境之變 化所造成之變異.
非機遇原因 ( Assignable Causes )
管制圖的定義
管制圖係用統計方法,將搜集的資料計算 出兩管制界限,隨時將樣本記錄計算點入 管制圖內,以提醒製程人員之注意,如發現 有超出界限外之點或異常現象時,立即設 法改善工作, 以免發生問題.
Definition of control chart?
管制界線是不可歸因變異的最大容許界線,超出管制界 線是因為有外在變異加入
•
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021 年7月下 午5时3 7分21. 7.2117:37July 21, 2021
•
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021 年7月21 日星期 三5时3 7分25 秒17:37:2521 July 2021
•
17、儿童是中心,教育的措施便围绕 他们而 组织起 来。下 午5时37 分25秒 下午5 时37分1 7:37:25 21.7.21
SPC课件
你们6月份提供的产品,6月17日,某项特性均值6.8,6月18日,相 同特性均值在4.7。请贵公司注意一下。”
Vitia收到这个投诉后,把这一信息反馈给他主管的时候,他 的主管很疑惑的说
“很好啊,他们要求是2,我们达到最差都到了4.7,简直无理 取闹嘛。”
另外一个工程师M也发表了他的看法:“如果SPEC是2,而实际达 到4.7~6.8,那么有必要进行SPC控制吗?我认为控制的意义不大, 除非提高SPEC。另外也要考虑一下控制的成本。”
UCL CL LCL
2.4控制图的基本图形
控制图分为上控制限(UCL)、下控制限(LCL)和
中心线(CL)三条线。
和趋势图的对比?
2.5控制图的作用
•过程诊断:可以用诊断生产过程的稳定性,即 生产过程是否处于稳定状态。
•过程控制:可以用来确定生产过程何时需要加以调 整,何时应保持生产过程的稳定状态。
计数型数据
计数型数据是指按个数数得的非连续性取值的质量特性值,如铸件的疵点数, 统计抽样中的不合格判定数、审核中的不合格项数等可以用0、1、2、3、等 阿拉伯数字数下去的数据。其中计数型数据又可分为计件值与计点值,其中 计件值是指是按件、按个、按项计数的数据。例如:不合格品件数、温控器 个数、质量检验项目等;计点值是指是指按缺陷点计数,例如:铸件的沙眼 数、布匹上的疵点数、电路板上的焊接不良数等离散性数据。
控制图原理是基于正态分布的重要特性。质量特性值 在区间(μ-3δ,μ+3δ)内的概率为99.73%,1927年美 国人休哈特就是根据这一结论,把正态分布图形转化为控 制图.
-4 -3 -2 -1 0 1 2 3 4
68.26% 95.45% 99.73% 99.99%
3δ μ -3δ
Vitia收到这个投诉后,把这一信息反馈给他主管的时候,他 的主管很疑惑的说
“很好啊,他们要求是2,我们达到最差都到了4.7,简直无理 取闹嘛。”
另外一个工程师M也发表了他的看法:“如果SPEC是2,而实际达 到4.7~6.8,那么有必要进行SPC控制吗?我认为控制的意义不大, 除非提高SPEC。另外也要考虑一下控制的成本。”
UCL CL LCL
2.4控制图的基本图形
控制图分为上控制限(UCL)、下控制限(LCL)和
中心线(CL)三条线。
和趋势图的对比?
2.5控制图的作用
•过程诊断:可以用诊断生产过程的稳定性,即 生产过程是否处于稳定状态。
•过程控制:可以用来确定生产过程何时需要加以调 整,何时应保持生产过程的稳定状态。
计数型数据
计数型数据是指按个数数得的非连续性取值的质量特性值,如铸件的疵点数, 统计抽样中的不合格判定数、审核中的不合格项数等可以用0、1、2、3、等 阿拉伯数字数下去的数据。其中计数型数据又可分为计件值与计点值,其中 计件值是指是按件、按个、按项计数的数据。例如:不合格品件数、温控器 个数、质量检验项目等;计点值是指是指按缺陷点计数,例如:铸件的沙眼 数、布匹上的疵点数、电路板上的焊接不良数等离散性数据。
控制图原理是基于正态分布的重要特性。质量特性值 在区间(μ-3δ,μ+3δ)内的概率为99.73%,1927年美 国人休哈特就是根据这一结论,把正态分布图形转化为控 制图.
-4 -3 -2 -1 0 1 2 3 4
68.26% 95.45% 99.73% 99.99%
3δ μ -3δ
SPC控制图的种类及判异方法48页课件
计数值:由计数而得的数据或将之转换成百分率,例如不良数、由不良数转换而成的不良率、 缺点数、由缺点转换而成的单位缺点数或百万件缺点数,为一可分割之量值。 计量值:不可分割之量值。实际量测产品或过程质量特性所得的尺度量值,这类量测的量测不 是真值而只是近似值而已,例如长度、直径、压力、强度等,为连续数据。
步骤7:确定控制限是否能经济地满足要求; 步骤8:运用控制限进行控制;
SPC统计过程控制
四、计量型数据控制图
均值-极差控制图( x R控制图 )
最常用;最基本; 控制对象为计量值; 适用于n ≤9的情况; 均值图用于观察和分析分布的均值的变化,即
过程的集中趋势; 极差图观察和分析分布的分散情况,即过程的
LCL x 3 x 2.66MR d2
相当于n=2时的均值控制图
各常数值如下:
MR控制图
CL MR
UCL D4MR 3.267 MR LCL D3MR 0
相当于n=2时的极差控制图; n=2时,D4=3.267,D3=0
n
2
3
4
5
6
7
8
9 10
D4 3.27 2.57 2.28 2.11 2.00 1.92 1.86 1.82 1.78
离散程度。
SPC统计过程控制
四、计量型数据控制图
均值-极差控制图 -控制限
均值控制图
CL x UCL x A2R LCL x A2R
极差控制图
CL R UCL D4R LCL D3R
SPC统计过程控制
4、X bar-s图
计算各样组的平均数
四、计量型数据控制图
计算这些组平均数的平均数
频数分布在进行调整期间已经完成,分析结果表明进 行一段时期加工生产的开端是可以令人满意的。
SPC-完整版ppt课件
第六步:实施数据采集计划
根据“合理子组”原则采集数据。将采集到 的所有数据填入事先准备好的数据表或控制图。
第七步:整理核对数据
检查核对数据是否符合要求,准备制作控制 图。
注意:控制图数据是一组动态的 时间序列。
SHIRO原则”
“合理子组”原则含义
使得每个子组内的变差尽量小(组内差异只由普通 原因造成);
SHIRONGWEI
21
§5.2 数据收集计划
数据必须“真实-可信-可用”,方能到成质量改进的目 的,为了实现此目标,制定数据采集计划是必要的(当 然不一定是书面的)。 计划应考虑以下内容和因素: 任务及目的(你打算收集什么数据) 在哪里?由谁? 采用什么方式:全数检查?还是抽样? 采集多少数据? 时间:何时期的数据?采集频率?何时开始和结束? 分层因素如何确定? 数据表格的准备
控制图结构 控制图的作用 两类错误 休哈特“3σ原则” 统计控制状态 统计过程控制原则 漏斗实验 控制图解析——模式 控制图 8条判异准则 分析用控制图和监控用控制图 常规控制图的分类 如何选择控制图
SHIRONGWEI
16
§4.2 控制图的作用
控制图是SPC用于改进品质的工具,其作用:
展示过程
即时记录过程,反映过程状况和变化,可谓一部“生产史”。
控制过程
透过控制图结构和规则,指引人员识别并消除特殊原因, 达成维护控制之目的。
评估决策
控制图作为统计工具,展示提供的过程信息是客观可信 的,借助控制图信息作出的品质决策是科学可靠的。
预防改进
控制图具有预警性质,且借由以上三项,就达到预防改 进之目的。
SHIRONGWEI
19
质量管理的基本原则
一切用数据说话!
根据“合理子组”原则采集数据。将采集到 的所有数据填入事先准备好的数据表或控制图。
第七步:整理核对数据
检查核对数据是否符合要求,准备制作控制 图。
注意:控制图数据是一组动态的 时间序列。
SHIRO原则”
“合理子组”原则含义
使得每个子组内的变差尽量小(组内差异只由普通 原因造成);
SHIRONGWEI
21
§5.2 数据收集计划
数据必须“真实-可信-可用”,方能到成质量改进的目 的,为了实现此目标,制定数据采集计划是必要的(当 然不一定是书面的)。 计划应考虑以下内容和因素: 任务及目的(你打算收集什么数据) 在哪里?由谁? 采用什么方式:全数检查?还是抽样? 采集多少数据? 时间:何时期的数据?采集频率?何时开始和结束? 分层因素如何确定? 数据表格的准备
控制图结构 控制图的作用 两类错误 休哈特“3σ原则” 统计控制状态 统计过程控制原则 漏斗实验 控制图解析——模式 控制图 8条判异准则 分析用控制图和监控用控制图 常规控制图的分类 如何选择控制图
SHIRONGWEI
16
§4.2 控制图的作用
控制图是SPC用于改进品质的工具,其作用:
展示过程
即时记录过程,反映过程状况和变化,可谓一部“生产史”。
控制过程
透过控制图结构和规则,指引人员识别并消除特殊原因, 达成维护控制之目的。
评估决策
控制图作为统计工具,展示提供的过程信息是客观可信 的,借助控制图信息作出的品质决策是科学可靠的。
预防改进
控制图具有预警性质,且借由以上三项,就达到预防改 进之目的。
SHIRONGWEI
19
质量管理的基本原则
一切用数据说话!
质量管理-第三章spc-控制图
②解决方法是:根据两种错误所造成的总损失最小来确定最优间距, 经验证明休哈特所提出的3σ方式较好。
注:80年代,出现了经济质量控制EQC学派(学术带头人:德国 乌尔茨堡大学冯·考拉尼教授)以使两种错误所造成的总损失最 小为出发点来设计控制图与抽样方案。
七、3σ方式
3σ方式的公式: UCL=μ+3σ CL=μ LCL=μ-3σ
3 0.500 0.497 0.501 0.500 0.502 0.502 0.500 0.499 0.504 0.502 0.503 0.501
4 0.500 0.501 0.502 0.502 0.500 0.500 0.501 5 0.501 0.499 0.500 0.500 0.501 0.500 0.502 X bar 0.5008 0.4998 0.501 0.4996 0.5004 0.5006 0.5026
准则1: 一个点在A区之外 x
UCL A
B C CL C
B LCL A
x 准则3:连续6个点递增或递减
UCL A
x
B C CL C
B
LCL A
x
准则2:连续 9个点在中心线同一侧
UCL A
B
x
C CL
C
B LCL A
准则4:连续14个点上下交替
UCL A
B
C
CL
C
x
B LCL A
判 异 准 则(续1)
六、控制图的两种错误
从数理统计的观点,存在可能的两能错误: (1) 第一种错误(type I error):虚发警报(false alarm)。
(2)第二种错误(type II error):漏发警报(alarm missing)。
注:80年代,出现了经济质量控制EQC学派(学术带头人:德国 乌尔茨堡大学冯·考拉尼教授)以使两种错误所造成的总损失最 小为出发点来设计控制图与抽样方案。
七、3σ方式
3σ方式的公式: UCL=μ+3σ CL=μ LCL=μ-3σ
3 0.500 0.497 0.501 0.500 0.502 0.502 0.500 0.499 0.504 0.502 0.503 0.501
4 0.500 0.501 0.502 0.502 0.500 0.500 0.501 5 0.501 0.499 0.500 0.500 0.501 0.500 0.502 X bar 0.5008 0.4998 0.501 0.4996 0.5004 0.5006 0.5026
准则1: 一个点在A区之外 x
UCL A
B C CL C
B LCL A
x 准则3:连续6个点递增或递减
UCL A
x
B C CL C
B
LCL A
x
准则2:连续 9个点在中心线同一侧
UCL A
B
x
C CL
C
B LCL A
准则4:连续14个点上下交替
UCL A
B
C
CL
C
x
B LCL A
判 异 准 则(续1)
六、控制图的两种错误
从数理统计的观点,存在可能的两能错误: (1) 第一种错误(type I error):虚发警报(false alarm)。
(2)第二种错误(type II error):漏发警报(alarm missing)。
SPC与控制图培训课件(共31张PPT)
x
CL
CL
x
B LCL A
x
B LCL A
2019/2/1
11
6 诊 断 准 则 (2)
准则5: 3个点中有2点在A区中连成一串
UCL
A B C C
准则6: 5点中有4点在B区中连成一串
UCL
A B C C
CL
x
x
CL
x
B LCL A
x
B LCL A
x
准则7:在C区中15个点于中心上下侧 连成一串
16.60 16.55 16.50 16.45 16.40
2019/2/1
29
9 预先控制图(4)
• 预控图误发警报的概率与过程能力有关
• 过程能力高误发警报概率就偏小
• 非正态质量特性误发警报的概率增大
• 过程存在偏移时误发警报的概率增大
• 过程能力高时应该减小控制限和警戒限
2019/2/1 30
5 4 3 2
样本均值
1
UCL=4.395
1 0 -1 -2
5
_ _ X =0.544
-3 -4 1 3 5 7 9 11 13 样本 15 17
1
LCL=-3.307 19 21 23 25
2019/2/1
19
去掉第6、第19、 第17个异常组 后的控制图
x1, ..., x5 的 Xbar 控制图
2019/2/1
25
例2.1
x1, ..., x5 的 Xbar 控制图
5 4 3 2
样本均值
UCL=4.636
7
1 0 -1 -2 -3 -4 1 5 9 13 17 21 样本 25 29 33 37 41
SPC控制图的绘制方法及判断方法(精编课件).ppt
j=1,2…n;
max(xij)——第i样本中最大值;
min(xij)——第i样本中最大值。
x
i
n
1
——n为奇数时,第i样本中按大
2
小顺序排列起的数据列中间位置的数据
1 2
x i
n
2
x i
n1
2
——n为偶数时,第I样 本 中按大小顺序排列起的
数据列中中间位置的两个数据的平均值
(pn)i——第i样本的不合格品数 (各样本样本容量皆为n)
13.463 11.597
15
注:表5在第16页
3 L—S控制图(两极控制图)
原理:它是通过极大值,极小值的变化掌握工序分布变化的状态。其适用
场合与 X R 控制图相同。但因只用一张图进行控制,因此具有现场
使用简便的优点。
例3:若对例1,采用L—S控制图进行控制,试作出分析用控制图。
• 由表3的计算公式首先找出表6中每个样本的极大值Li和极小值Si并记入表6
4
R图 3
UCL=2.86
2 1
0
5
10
15
20
25
CL=1.35 样本号
图5 铸件质量分析用控制图(x—R图)
(5) 根据本节“控制图的观察与判断”标准,工序处于稳定状 态。
由表6给出的数据,精进品而课件可,下计载算后可出编辑工序能力指数。
13
工序能力指数计算
S ˆ
1 k
k n 1 i1
33.80
1.35
25
25
25
(3)查表5,当n=5时,得A2 0.577, D4 2.115,得X R图的控制线为:
X图:CL x 12.94
《SPC判定准则》课件
PC判定准则
1
常见的SPC判准则
包括Western Electric准则、Nelson准则、Montgomery准则等。
2
判定准则的意义和作用
SPC判定准则可帮助确定正常过程状态和异常情况,从而促进及时制定和实施纠正和预防措施。
3
判定准则的适用范围
应根据生产过程的类型和特点,合理选择判定准则。
SPC的改进和优化
SPC可通过收集和分析质量数据来帮助企业确定生产 过程中的变化,并帮助制定质量管理策略,最终提 高产品质量。
SPC基础知识
1 什么是控制图?
2 控制图的分类
3 常用的控制图
控制图是显示过程变化的 图表,可帮助确定过程的 一般状态并揭示异常情况。
控制图可分类为变量控制 图和属性控制图。
包括Xbar-R图、Xbar-S图、 np图、p图等。
参考资料
书籍推荐
• 《SPC实战手册》 • 《SPC质量管理》
网站资料
• Quality Digest • ASI DataMyte
实用工具推荐
• Minitab • SAS
SPC判定准则PPT课件
SPC判定准则在品质管理中起着重要作用。本课件将详细介绍SPC判定准则的 定义、应用、基础知识、常用控制图以及SPC判定准则的意义和适用范围等内 容。
SPC的定义与应用
什么是SPC?
SPC是一种统计学方法,用于监督和控制生产过程中 的变化,从而实现质量控制。
应用在品质管理中的作用
存在的问题和挑战
SPC存在着数据收集难度大、 人员技能要求高、数据分析 结果解释不明确等问题和挑 战。
改进和优化方案
包括持续改进、培训和教育、 技术升级和方法创新等方案。
SPC_8种判异准则ppt课件
对判异的处置原则:查明原因,采取措施,加以消除,不再 出现,纳入标准
UCL A
+3σ
+2σ
B
C
+σ
X
C
-σ
B
- 2σ
LCL A
- 3σ
1
判异准则1
任何 1个点落在A区以外
x
UCL A
B C
C B A
LCL
x
Test 1. One Point Beyond Zone A
异常原因一般为: • 新操作人员,方法不对,机器故障,原料不合格 • 检验方法或标准变化 • 计算错误,测量误差
异常原因一般为:
• 数据有假,计算错误;分层不够
6
判异准则8
连续8个点落在中心线两侧且无一在C区内
Test 8. 8 Points in a Row on Both Sides of CL with None in Zone C
UCL
A
B
x
C
异常原因一般为:
C B A
LCL
• 数据分层不够
7
2
判异准则2,5, 6:
Test 2. Nine Points in a Row on One Side of the Center Line
2: 连续9个点落在中心线的同一侧;
UCL
A
5: 连续3个点中有2个点落在中心线同一侧的B 区以外;
B
6: 连续5个点中有4个点落在中心线同一侧的C
C
区以外
C
B
x
Test 5. 2 Out of 3 Points in a Row in
Zone A or Beyond
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPC20字原则: 查明原因,采取措施,加以消除,不再出现,纳入标准
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
异常原因: 工具逐渐磨损,维护水平逐则
异常原因: 白夜班交替,交替使用两不同机 台,两个不同供应商的材料交替 使用
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
本人将国标中的控制图的8条判异准则,每条总结成2到5个字,总共二十多个 字,可以像背诗一样,很容易记住: 一外、九同、六递、十四交 三二同B外、五四同C外、十五C内、八C外 详细解读及图表可参考下文,图表均摘自国标。
SPC控制图判异准则
➢一外:1个点落在A区以外 ➢九同:连续9点落在中心线同一侧 ➢六递:连续6点递增或递减 ➢十四交:连续14点中相邻点交替上下 ➢三二同B外:连续3点中有2点落在中心线同一侧的B区外 ➢五四同C外:连续5点中有4点落在中心线同一侧的C区外 ➢十五C内:连续15点落在中心线两侧的C区以内 ➢八C外: 连续8点落在中心线两侧且无一在C区以内(即在C区以外)
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
异常原因: ➢ 数据不真实 ➢ 计算错误 ➢ 数据分层不够
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
异常原因: 工具逐渐磨损,维护水平逐则
异常原因: 白夜班交替,交替使用两不同机 台,两个不同供应商的材料交替 使用
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
本人将国标中的控制图的8条判异准则,每条总结成2到5个字,总共二十多个 字,可以像背诗一样,很容易记住: 一外、九同、六递、十四交 三二同B外、五四同C外、十五C内、八C外 详细解读及图表可参考下文,图表均摘自国标。
SPC控制图判异准则
➢一外:1个点落在A区以外 ➢九同:连续9点落在中心线同一侧 ➢六递:连续6点递增或递减 ➢十四交:连续14点中相邻点交替上下 ➢三二同B外:连续3点中有2点落在中心线同一侧的B区外 ➢五四同C外:连续5点中有4点落在中心线同一侧的C区外 ➢十五C内:连续15点落在中心线两侧的C区以内 ➢八C外: 连续8点落在中心线两侧且无一在C区以内(即在C区以外)
SPC控制图判异准则
异常原因: ➢ 新操作人员,方法不对,机器
故障,原料不合格 ➢ 检验方法或标准变化 ➢ 计算错误,测量误差
SPC控制图判异准则
异常原因: ➢ 数据不真实 ➢ 计算错误 ➢ 数据分层不够