3 刚体力学习题详解1
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
刚体力学第3讲刚体力学小结与习题课
R R /2 B O 2v v A
练习4:一质量均匀分布的圆盘,质量为M,半径为R,放在一 粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通 过其中心O的竖直固定光滑轴转动.开始时,圆盘静止,一质 量为m的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌 在盘边上,求 (1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动. (忽略子弹重力造成的摩擦阻力矩)
C B l
O A
练习1:如图所示,设两重物的质量分别为m1和m2, 且m1>m2,定滑轮的半径为r,对转轴的转动惯量 为J,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设 开始时系统静止,试求t时刻滑轮的角速度
r
m
1
m
2
练习2:一轻绳跨过两个质量均为m、半径均为r的均 匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的 重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光 1 滑.两个定滑轮的转动惯量均为 2 mr 2 .将由两个定 滑轮以及质量为m和2m的重物组成的系统从静止释放, 求两滑轮之间绳内的张力
得
J R 2 gR B 球环 2 J0 mR
2 0 0 2
(1)量纲 检验:
对
v v v C: v C 环 地环 C 球 C 球 地 环 C 球
v 2 gR 对 (2)当 0 = 0时, B 球环
1 2 1 2 1 2 mg ( 2 R ) J m A C: J 0 0 0 C C 球环 2 2 2 C 0 又
1.确定研究对象;
2.受力分析; 3.建立坐标系或规定正向,或选择0势点; 4.确定始末两态的状态量; 5.应用定理、定律列方程求解; 6.有必要时进行讨论。
刚体力学习题答案.docx
连,m1和m2则挂在圆柱体的两侧,如3-8图所示.设R=0.20m,r=0.10m,m=4 kg,M=10
kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
2
1( J
2mr
2)
0
2
0
2
2
0
1
1
(5
2 4
0.22)
122
(5 2
4 0.82)
(2 )2
2
2
=183J
3-18如3-20图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上. 现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂
直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.
L2
m2
vr sin 30
1m1r2
2
2
v
1
2
故有
m2vr sin60 m22r sin30
2m1r
可解得:
(2 3 1)m2v
2m1r
3-16
一人站在一匀质圆板状水平转台的边缘
,转台的轴承处的摩擦可忽略不计
,人的质量
为m',转台的质量为
10m',半径为R.最初整个系统是静止的,这人把一质量为
m的石子
2
mv
6m'R
人的线速度为vR
mv
6m'
其中负号表示转台角速度转向和人的线速度方向与假设方向相反-
3-17一人站在转台上,两臂平举,两手各握一个m
第03章(刚体力学)习题答案
轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
大学物理刚体力学中难题及解析
B
5
解 设杆的质量为m, 机械能守恒:
l 1 1 2 2 2 mg sin 0 sin m(vCx vCy ) I C 2 2 2 1 2 重力势能转化成质心平动动能和刚体转动动能 I C ml y A 12 l 运动学条件: vCx sin 2 C 质心速度沿 l 水平竖直方 v cos Cy 向分解 2 mg B x
16
正确解法:隔离,分别用角动量定理。 o
R1 f r t J11 J10 J2 R2 2 O2 对轮 2 : f r fr 1 R 1 R2 fr t J2 2 0 J1 O1
对轮1:
稳定条件:
1 R1 2 R 2
联立可得稳定后的角速度
J1 R J 1 R1 R2 1 0 , 2 0 2 2 2 2 J 1 R2 J 2 R1 J1 R2 J 2 R1 17
N maCt , f maCr
2 2
B
杆无滑动地绕圆环外侧运动,要求
f aCr (l 3r )r 4l ,因 r l 则 。 N f , a 2 R N Ct 24 lR
【9】质量为M,长度为 2l 的梯子上端靠在光 滑墙面上,下端放在粗糙地面上,地面与梯子 的静摩擦系数为 μ,一质量为 m 的人攀登到距 下端 l0 的位置,求梯子不滑动的条件。
0
f
R
vC 0
摩擦力的作用: 对质心的运动 vC
对绕质心的转动
当 vC 0, 而 0 时,乒乓球返回!
3
(2)前进一段后会自动返回的条件:
0
R
•质心运动定理: f maC
vc 0
大学物理习题答案03刚体运动学
⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
刚体的简单运动习题及答案
刚体的简单运动习题及答案刚体的简单运动习题及答案刚体是物理学中的一个基本概念,它指的是在运动过程中形状和大小不发生改变的物体。
在学习刚体的运动时,我们可以通过一些简单的习题来加深对刚体运动的理解。
下面,我将为大家提供一些常见的刚体运动习题及答案。
习题一:平抛运动小明站在一个高处,手中拿着一个小球,以一定的初速度将球水平抛出。
假设空气阻力可以忽略不计,请问球的运动轨迹是什么形状?答案:球的运动轨迹是一个抛物线。
在平抛运动中,刚体在水平方向上做匀速直线运动,在竖直方向上受到重力的作用,所以球的轨迹是一个抛物线。
习题二:滚动运动一个圆柱体沿着水平面滚动,它的质心速度和边缘速度哪个更大?答案:质心速度和边缘速度相等。
在滚动运动中,刚体的质心沿着运动方向做匀速直线运动,而刚体的边缘点则具有线速度和角速度的叠加效果。
由于圆柱体的每个点都有相同的角速度,所以质心速度和边缘速度相等。
习题三:转动惯量一个均匀的圆盘和一个均匀的长方体,它们的质量和半径(或边长)相同,哪个的转动惯量更大?答案:圆盘的转动惯量更大。
转动惯量是刚体旋转时惯性的量度,它与刚体的质量分布有关。
由于圆盘的质量分布更加均匀,所以它的转动惯量更大。
习题四:平衡条件一个悬挂在绳子上的物体处于平衡状态,绳子与竖直方向的夹角是多少?答案:绳子与竖直方向的夹角等于物体所受的重力与绳子张力的夹角。
在平衡状态下,物体所受的重力与绳子张力必须保持平衡,即两者的合力为零。
因此,绳子与竖直方向的夹角取决于物体所受的重力与绳子张力的大小关系。
习题五:平移运动和转动运动一个刚体在平面上做平移运动时,它的转动惯量是多少?答案:在平移运动时,刚体的转动惯量为零。
平移运动是指刚体的质心沿直线运动,此时刚体没有绕任何轴心旋转,所以转动惯量为零。
通过以上习题的解答,我们可以更好地理解刚体的运动特性。
刚体的运动涉及到平抛运动、滚动运动、转动惯量和平衡条件等方面的知识,通过解答这些习题,我们可以加深对刚体运动的理解,提高解题能力。
3 刚体力学习题详解
恒定,匀变速,所以有 ,,
3.一个转动惯量为J的圆盘绕一固定轴转动,初角速度为。设它所受阻 力矩与转动角速度成正比 (k为正常数)。
(1)它的角速度从变为所需时间是 [ ] (A); (B); (C); (D)。 (2)在上述过程中阻力矩所做的功为 [ ] (A); (B); (C); (D) 。 答案:C;B。 解:已知 ,, (1),, ,,所以 (2)
答案:
解: ,,
又,,所以 ,,两边积分得:,
所以
3. 在自由旋转的水平圆盘上,站一质量为m的人。圆盘半径为R,转动
惯量为J,角速度为。如果这人由盘边走到盘心,则角速度的变化
=
;系统动能的变化Ek =
。
答案:;。
解:应用角动量守恒定律
解得 ,角速度的变化
系统动能的变化 ,即
4. 如图所示,转台绕中心竖直轴以角速度作匀速转动,转台对该轴的
滑轮之间绳的张力为
。
2m
R
m 答案: 解:列出方程组 其中,, 由(1)、(2)两式得: 可先求出a,解得
将, 代入,得:
, ,,
三.计算题 1.在半径为R1、质量为M的静止水平圆盘上,站一静止的质量为m的 人。圆盘可无摩擦地绕过盘中心的竖直轴转动。当这人沿着与圆盘同 心,半径为R2(< R1)的圆周相对于圆盘走一周时,问圆盘和人相对于 地面转动的角度各为多少? 答案:(1);(2)。 解:设人相对圆盘的角速度为,圆盘相对地面的角速度为。 则人相对地面的角速度为 应用角动量守恒定律 得, 解得 圆盘相对地面转过的角度为 人相对地面转过的角度为
大学物理第三章刚体力学基础习题答案 ppt课件
12
3
联立可得: v M 3mu
M 3m
6mu
M 3m
l
3-18 MkJJd
dt
t
0
k J
dt
0
2
0
d
t J ln 2 k
3-19 设子弹射入后圆盘的角速度为ω,由角动量守恒得
mv0R(mR2大1 2学m 物理0R 第三2)章刚体力学基础习题
2mv0 2mRm0R
6
答案
质点运动与刚体定轴转动对照表
转速,此时相应的角速度为 0。当关闭电源后,经
过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。
解: 设电机的电磁力矩为M,摩擦力矩为Mf
MMf J1 Mf J2
1
0 t1
2
0 t2
MJ(12)
J0
(1 t1
1 t2
)
大学物理第三章刚体力学基础习题
(1)物体自静止下落,5s内下降的距离; (2)绳中的张力。
解:
mgTma
TRJ 1 MR2 a
2R a 2mg5.0m 6s2
M2m
T 1 Ma 2
h1at2 63.2m 2
Tm (ga)3.9 7 N
大学物理第三章刚体力学基础习题
14
答案
3-8 长为l,质量为M的匀质杆可绕通过杆一端O的 水平光滑固定轴转动,转动惯量为 1 M l 2 ,开始时杆
16
答案
质点运动
刚体定轴转动
质量
m
力 第二定律
F
Fma
F dp
转动惯量 J r2dm m
大学物理-刚体力学习题解答
1大学物理-刚体力学习题解答一、选择题1、 B,r v⨯=ω 2、 C, 3 、B, 4 、C, 5、 B, 平轴的力矩和为零,θθsin 2cos lmgNl =,所以2)tan (θmg N =。
6 、B, 7、 A, 32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰ 8、 B ,在碰撞过程中,小球和摆对O 轴的角动量守恒,所以有1011sin 100mlv l v m=θ,220v v = 二、填空题1.t 108-==θω ,10-==θβ ,所以s rad s t 62.0==ω;22.010s rad s t -==β; s m R v m R s t 35.0,2.0====ω;()25.0,2.05s m R a m R s t -====βτ;()225.0,2.018s m R a m R s t n ====ω 2s m 18-⋅。
2.刚体对转轴转动惯性大小的量度;2I r dm =⎰;质量、质量分布、转轴的位置。
3.mLv 。
4.()()k t mgv j gt v i v j gt t v i t v v r L αααααcos 21sin cos 21sin cos 200020000-=-+⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=⨯=;k t mgv dt L d αcos 00-=;k t mgv dtL d Mαcos 00-==。
5.角动量;04ω 。
6.同时到达。
7.32g。
8.20012I ω。
三、计算题,1、设1m 向下运动,2m 向上运动,对两物体应用牛顿定律列方程有:1111m g T m a -=,2222T m g m a -=,对鼓轮应用转动定律有:11220T r T r -= ,(因为鼓轮的质量忽略不计) 设鼓轮的角加速度为β,则有:11a r β= ,22a r β= 。
联立求解以上各式得:21122221122m r m r g m r m r β-=+ ;若1m 向上运动,2m 向下运动,则 2211221122m r m r g m r m r β-=+ 。
大学物理第3章刚体力学习题解答
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
刚体力学试卷答案详解
J Aω A + J BωB = ( J A + J B )ω
J Aω A + J BωB = ( J A + J B )ω J Aω A ∵ ωB = 0 ⇒ ω = = 20.9 rad / s (J A + JB )
转速为
n = 200 转/分
(2). A轮受到的冲量矩为 轮受到的冲量矩为
L = ∫ M Adt = J A (ω − ω A0 ) = −4.19 × 102 N ⋅ m ⋅ s
பைடு நூலகம்
mg − T = ma mg ⇒a= TR = J α m+M /2 a = Rα (加速度为常数 加速度为常数) 加速度为常数
R
T T m
∴
∴
v = v0 + at
mgt v = at = m+M /2
而 v0 = 0
mg
12. 解:设棒质量为m,当棒与水平面成 600 角 设棒质量为 , 并开始下落时, 并开始下落时,由转动定律
第四套
一、选择题: 选择题: 1. C
刚体转动
引力为有心力,故角动量守恒 引力为有心力,故角动量守恒; 引力对卫星作功,可改变卫星动能。 引力对卫星作功,可改变卫星动能。
2. C
T M
A T'
B F
T ' = T < Mg = F
T ' R = J α A < FR = J α B
α A < αB
Mg
9. 10.
J = 4m(3l ) 2 + 3m(2l ) 2 + 2ml 2 = 50ml 2
J ω − mvR = ( J + mR 2 )ω ' J ω − mvR ω' = ( J + mR 2 )
大学物理刚体力学习题讲解
m m O
Jw+mvr-mvr=(J+2mr2)w` w`=J/(J+2mr2)w
M
3. 两个滑冰运动员的质量各为70 kg,均以6.5 m/s
的速率沿相反的方向滑行,滑行路线间的垂直距 r=5m 离为10 m,当彼此交错时,各抓住一10 m长的绳 索的一端,然后相对旋转,则抓住绳索之后各自 对绳中心的角动量L=2275
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
4. 一作定轴转动的物体,对转轴的转动惯量J= 3.0 kg· m2,角速度0=6.0 rad/s.现对物体加一 恒定的制动力矩M =-12 N· m,当物体的角速度 减慢到=2.0 rad/s时,物体已转过了角度 =
4.0rad
M=Jβ
2as=v`2-v2 2βθ= 2 -02
5. 质量为m1, m2 ( m1 > m2) 的两物体,通过一定滑轮用绳 相连,已知绳与滑轮间无相对 滑动,且定滑轮是半径为 R 、 质量为 m3 的均质圆盘,忽略 轴的摩擦。求:滑轮的角加速 度。(绳轻且不可伸长)
刚体习题及答案知识讲解
轮的角速度是多少?
θ A v0 cos
v0 sin
R
例6.一块质量为M=1kg 的木板,高L=0.6m,可以其一边为轴自 由转动。最初板自由下垂.今有一质量m=10g的子弹,垂直击中 木板A点,l=0.36m,子弹击中前速度为500m/s,穿出后的速度 为200m/s, 求: (1) 子弹给予木板的冲量
解法一: 用转动定律求解
在恒力矩和摩擦力矩作用下,0—10s内有:
M M r J1
1 1t1
M
Mr
J
ω1 t1
移去恒力矩后,0—90s内有:
Mr J2
0 1 2t2
Mr
J
2
t2
J Mt1t2
1(t1 t2 )
54kg m2
解题过程尽可能用文字式,最后再带入数字。
解法二:
0-10s: 0-90s:
m 的匀质圆盘,此圆盘具有光滑水平轴,然后在下端系一质量也 为 m的物体,如图。求当物体由静止下落h 时的速度v。
例11.如图所示,一均匀细杆长为 l ,质量为 m,平放在摩擦系数
为μ的水平桌面上,设开始时杆以角速度 ω0 绕过中心 o 且垂直于
桌面的轴转动,试求:
0
(1)作用在杆上的摩擦力矩;
(2)经过多长时间杆才会停止转动。
人 : Mg T 2 Ma
物:
1
1
T1 - 2 Mg = 2 Ma
轮: (T2 T1)R J
a R
2 a 7g
o
T2
T1
A Ba
Mg 1
大学物理第3章-刚体力学习题解答
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
参考解答01 刚体力学 (1)(1)
=
r被 r主
被
=
0.40 0.20
8π=16π
s1
主 =
主
t
=4π
s2
= 1 t 2 =32π rad
2
n= 32π 16 2π
J2 J1 J3 从大到小
大学物理习题参考解答
从小到大,
大学物理习题参考解答
提示
W
1 J2
2
1 2
mr
2
(22
12 )
对O轴的角动量 对该轴的合外力矩为零
机械能
大学物理习题参考解答
1
提示 J11 J22
2
平衡杠杆
速度杠杆
省力杠杆
9.0103 m3 K p V0 ΔV
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
解:(1) 角动量守恒
O v
O'
大学物理习题参考解答
C
提示 卫星受地球引力,动量不守恒; 卫星对地球为轴的力矩为零, 角动量守恒.
大学物理习题参考解答
D
大学物理习题参考解答
C
大学物理习题参考解答
B
二.ห้องสมุดไป่ตู้空题 直线
曲线
大学物理习题参考解答
M J
匀加速转动
大学物理习题参考解答
提示
v主 =v被 r主主 =r被被
主
0 (J盘 J人) 盘地J盘 - 人地J人 - 人地 -人盘 盘地 0 (J盘 J人) 盘地J盘 - 人盘J人 盘地J人
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 对滑轮,应用转动定律
,并利用关系 , 由以上各式, 解得
;; (2)时
;;
3.一匀质细杆,质量为0.5Kg,长为0.4m,可绕杆一端的水平轴旋转。 若将此杆放在水平位置,然后从静止释放,试求杆转动到铅直位置时的 动能和角速度。 答案:(1);(2)。 解:根据机械能守恒定律,有:。杆转动到铅直位置时的动能和角速度 分别为: ;
谢谢分享~~~~~~~
习题三
一、选择题 1平轴 上。现有一质量为m的子弹以水平速度v0射向棒的中心,并以v0/2的水平 速度穿出棒,此后棒的最大偏转角恰为,则v0的大小为 [ ]
(A); (B); (C); (D)。 答案:A 解:
,, ,, ,,,所以
2.圆柱体以80rad/s的角速度绕其轴线转动,它对该轴的转动惯量为。 在恒力矩作用下,10s内其角速度降为40rad/s。圆柱体损失的动能和所 受力矩的大小为 [ ]
(A)80J,80; (B)800J,40;(C)4000J,32;(D)9600J, 16。 答案:D 解:,,,
恒定,匀变速,所以有 ,,
3.一个转动惯量为J的圆盘绕一固定轴转动,初角速度为。设它所受阻 力矩与转动角速度成正比 (k为正常数)。
(1)它的角速度从变为所需时间是 [ ] (A); (B); (C); (D)。 (2)在上述过程中阻力矩所做的功为 [ ] (A); (B); (C); (D) 。 答案:C;B。 解:已知 ,, (1),, ,,所以
(2)
4.如图所示,对完全相同的两定滑轮(半径R,转动惯量J均相同), 若分别用F(N)的力和加重物重力(N) 时,所产生的角加速度分别为 和,则 [ ]
(A) ; (B) ; (C) ; (D)不能确定 。 答案:A 解:根据转动定律,有, 依受力图,有, 所以,。
5. 对一绕固定水平轴O匀速转动的转盘,沿图示的同一水平直线从相 反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子 弹射入后转盘的角速度应 [ ] (A)增大; (B)减小; (C)不变; (D)无法确定。
答案: 解:
,, 又,,所以
,,两边积分得:, 所以
3. 在自由旋转的水平圆盘上,站一质量为m的人。圆盘半径为R,转动
惯量为J,角速度为。如果这人由盘边走到盘心,则角速度的变化
=
;系统动能的变化Ek =
。
答案:;。
解:应用角动量守恒定律
解得 ,角速度的变化
系统动能的变化 ,即
4. 如图所示,转台绕中心竖直轴以角速度作匀速转动,转台对该轴的
滑轮之间绳的张力为
。
2m
R
m 答案: 解:列出方程组 其中,, 由(1)、(2)两式得:
可先求出a,解得 将, 代入,得:
, ,,
三.计算题 1.在半径为R1、质量为M的静止水平圆盘上,站一静止的质量为m的 人。圆盘可无摩擦地绕过盘中心的竖直轴转动。当这人沿着与圆盘同 心,半径为R2(< R1)的圆周相对于圆盘走一周时,问圆盘和人相对于 地面转动的角度各为多少? 答案:(1);(2)。 解:设人相对圆盘的角速度为,圆盘相对地面的角速度为。 则人相对地面的角速度为 应用角动量守恒定律 得, 解得 圆盘相对地面转过的角度为 人相对地面转过的角度为
转动惯量 。现有砂粒以的流量落到转台,并粘在台面形成一半径的
圆。则使转台角速度变为所花的时间为
。
答案:5s 解:由角动量守恒定律
得 , 由于
所以
5. 如图所示,一轻绳跨过两个质量均为m、半径均为R的匀质圆盘状定
滑轮。绳的两端分别系着质量分别为m和2m的重物,不计滑轮转轴
的摩擦。将系统由静止释放,且绳与两滑轮间均无相对滑动,则两
2. 如图所示,物体1和2的质量分别为m1与m2,滑轮的转动惯量为J, 半径为。
(1)如物体2与桌面间的摩擦系数为,求系统的加速度a 及绳中的张力 T1和T2; (2)如物体2与桌面间为光滑接触,求系统的加速度a及绳中的张力T1 和T2。(设绳子与滑轮间无相对滑动,滑轮与转轴无摩擦)。 答案:太长,略。 解:(1)用隔离体法,分别画出三个物体的受力图。 对物体1,在竖直方向应用牛顿运动定律 对物体2,在水平方向和竖直方向分别应用牛顿运动定律
5.长、质量的匀质木棒,可绕水平轴O在竖直平面内转动,开始时棒 自然竖直悬垂,现有质量的子弹以的速率从A点射入棒中,A、O点的距 离为,如图所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏 转角。 答案:(1);(2)。 解:(1)应用角动量守恒定律 A O 得 (2)应用机械能守恒定律 得,
4.如图所示,滑轮的转动惯量J =0.5kgm2,半径r =30cm,弹簧的劲度 系数k =2.0N/m,重物的质量m =2.0kg。当此滑轮——重物系统从静止开 始启动,开始时弹簧没有伸长。滑轮与绳子间无相对滑动,其它部分摩 擦忽略不计。问物体能沿斜面下滑多远?当物体沿斜面下滑1.00m时, 它的速率有多大? k J 答案:(1);(2)。 解:以启动前的位置为各势能的零点,启动前后应用机械能守恒定律 (1)时,得或 (2)时
答案:B 解:
, 所以
二、填空题
1.半径为的飞轮,初角速度,角加速度,若初始时刻角位移为零,则
在
时角位移再次为零,而此时边缘上点的线速度为
。
答案:;。
解:已知 ,,,。
因,为匀变速,所以有 。
令 ,即 得,由此得
,所以
2. 一根质量为 m、长度为 L的匀质细直棒,平放在水平桌面上。若它 与桌面间的滑动摩擦系数为,在时,使该棒绕过其一端的竖直轴在 水平桌面上旋转,其初始角速度为0,则棒停止转动所需时间为 。