2017北京昌平区初一(下)期末数学
北京市昌平区七年级(下)期末数学试卷
北京市昌平区七年级(下)期末数学试卷一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.5×10﹣5B.5×10﹣4C.0.5×10﹣4D.50×10﹣3 2.(2分)若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>3.(2分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3 4.(2分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵5.(2分)如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.70°C.80°D.100°6.(2分)若方程mx﹣2y=3x+4是关于x,y的二元一次方程,则m满足()A.m≠﹣2B.m≠0C.m≠3D.m≠47.(2分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.3 8.(2分)观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)因式分解:x2﹣1=.10.(2分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.(2分)写出不等式组的整数解为.12.(2分)在①②③中,①和②是方程2x﹣3y=5的解;是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为.13.(2分)程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为.14.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15.(2分)已知a+b=3,则a2﹣b2+6b的值为.16.(2分)数学课上,老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小华的画法:①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b∥a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢同学的画法,画图的依据是.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题5分,第27、28题,每小题5分,共68分)17.(5分)因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).18.(5分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.19.(5分)解不等式组:20.(5分)解方程组:21.(5分)已知关于x,y的二元一次方程组的解为,求a+2b 的值.22.(5分)已知:如图,OA⊥OB,点C在射线OB上,经过C点的直线DF∥OE,∠BCF=60°.求∠AOE的度数.23.(6分)已知x2+8x﹣7=0,求(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2的值.24.(6分)某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表(单位:万元)月份1月2月3月4月5月品牌月销售额1809011595(1)该品牌5月份的销售额是万元;(2)手机部5月份的销售额是万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图.则5月份机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是.25.(6分)如图,已知BD平分∠ABC.请补全图形后,依条件完成解答.(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;(2)在射线BE上任取一点F,过点F画直线FG∥BD交BC于点G;(3)判断∠BFG与∠BGF的数量关系,并说明理由.26.(6分)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?27.(7分)在三角形ABC中,点D在线段AB上,DE∥BC交AC于点E,点F 在直线BC上,作直线EF,过点D作直线DH∥AC交直线EF于点H.(1)在如图1所示的情况下,求证:∠HDE=∠C;(2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系;②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28.(7分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以,称方程2x﹣6=0为不等式组的关联方程.(1)在方程①5x﹣2=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)(3)若方程2x﹣1=x+2,3+x=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.北京市昌平区七年级(下)期末数学试卷参考答案一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.A;2.C;3.B;4.A;5.C;6.C;7.D;8.D;二、填空题(本题共8道小题,每小题2分,共16分)9.(x+1)(x﹣1);10.;11.﹣1、0;12.②和③;②;13.;14.x<﹣6;15.9;16.苗苗;苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行;三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题5分,第27、28题,每小题5分,共68分)17.;18.;19.;20.;21.;22.;23.;24.120;120;36;B;28%;25.;26.;27.;28.③;x﹣1=0;。
2017-2018学年北京市昌平区七年级(下)期末数学试卷(J)
2017-2018学年北京市昌平区七年级(下)期末数学试卷(J)副标题一、选择题(本大题共8小题,共8.0分)1.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约米其中,用科学记数法表示为A. B. C. D.【答案】A【解析】解:,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若,则下列各式中一定成立的是A. B. C. D.【答案】C【解析】解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.根据不等式两边加或减同一个数或式子,不等号的方向不变,不等式两边乘或除以同一个正数,不等号的方向不变,不等式两边乘或除以同一个负数,不等号的方向改变,可得答案.主要考查了不等式的基本性质“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变,不等式两边乘或除以同一个正数,不等号的方向不变,不等式两边乘或除以同一个负数,不等号的方向改变.3.下列计算正确的是A. B. C. D.【答案】B【解析】解:A、,无法计算,故此选项错误;B、,正确;C、,故此选项错误;D、,故此选项错误;故选:B.直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.下列调查中,不适合用抽样调查方式的是A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵【答案】A【解析】解:A、调查“神舟十一号”飞船重要零部件的产品质量适合全面调查,不适合抽样调查,符合题意;B、调查某电视剧的收视率适合抽样调查,不符合题意;C、调查一批炮弹的杀伤力适合抽样调查,不符合题意;D、调查一片森林的树木有多少棵适合抽样调查,不符合题意;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,已知直线,,则等于A.B.C.D.【答案】C【解析】解:,,,,故选:C.根据平行线的性质,即可得到的度数,进而得出的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.若方程是关于x,y的二元一次方程,则m满足A. B. C. D.【答案】C【解析】解:由方程可得,方程是关于x,y的二元一次方程,,,故选:C.根据二元一次方程未知数x的系数不为0判断即可.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:只含有2个未知数,且含有未知数的项的次数是1的整式方程.7.某健步走运动的爱好者用手机软件记录了某个月天每天健步走的步数单位:万步,将记录结果绘制成了如图所示的统计图在每天所走的步数这组数据中,众数和中位数分别是A. ,B. ,C. ,D. ,【答案】D【解析】解:这组数据中出现的次数最多,在每天所走的步数这组数据中,众数是;每天所走的步数的中位数是:在每天所走的步数这组数据中,众数和中位数分别是、.故选:D.中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,众数是一组数据中出现次数最多的数据,据此判断即可.此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.8.观察下列等式:那么第为正整数个等式为A. B.C. D.【答案】D【解析】解:第为正整数个等式为,故选:D.,,根据以上规律得出即可.本题考查了幂的乘方与积的乘方、完全平方公式等知识点,能根据已知算式得出规律是解此题的关键.二、填空题(本大题共8小题,共8.0分)9.因式分解:______.【答案】【解析】解:原式.故答案为:.方程利用平方差公式分解即可.此题考查了因式分解运用公式法,熟练掌握平方差公式是解本题的关键.10.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是______.【答案】【解析】解:白球2只,红球6只,黑球4只,共有只,取出黑球的概率是;故答案为:.先求出总球的个数,再根据概率公式即可得出答案.此题考查了概率公式,用到的知识点为:概率所求情况数与总情况数之比.11.写出不等式组的整数解为______.【答案】、0【解析】解:不等式组的解集为,不等式组的整数解为、0,故答案为:、0.先根据“大小小大中间找”确定出不等式组的解集,继而可得不等式组的整数解.本题考查的是一元一次不等式组的整数解,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.在中,和是方程的解;______是方程的解;不解方程组,可写出方程组的解为______.【答案】和;【解析】解:在中,和是方程的解;和是方程的解;不解方程组,可写出方程组的解为,故答案为:和;利用二元一次方程的解的定义判断即可.此题考查了解二元一次方程组,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》简称《算法统宗》在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为______.【答案】【解析】解:设大和尚有x人,小和尚有y人,根据题意得:.故答案是:.根据100个和尚分100个馒头,正好分完大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数小和尚的人数,大和尚分得的馒头数小和尚分得的馒头数,依此列出方程即可.本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程.14.在实数范围内定义一种新运算“”,其运算规则为:如:则不等式的解集为______.【答案】【解析】解:根据题意得:,解得:.故答案是:.首先转化成一般的不等式,然后解不等式即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.已知,则的值为______.【答案】9【解析】解:.故答案是:9.把前两项分解因式,然后把代入,化简,然后再利用表示,代入求值即可.本题考查了平方差公式,正确对所求的式子进行变形是关键.16.数学课上,老师要求同学们利用三角板画两条平行线老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:将含角的三角尺的最长边与直线a重合,另一块三角尺最长边与含角的三角尺的最短边紧贴;将含角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则.小华的画法:将含角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;再次将含角三角尺的最短边与虚线重合,画出最长边所在直线b,则.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢______同学的画法,画图的依据是______.【答案】苗苗;苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行【解析】解:我喜欢苗苗同学的画法,画图的依据是:苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.故答案为:苗苗,苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.直接利用平移的性质结合平行线的性质得出画图依据.此题主要考查了平行线的性质以及平移变换,正确应用平行线的性质是解题关键.三、计算题(本大题共5小题,共5.0分)17.因式分解:;.【答案】解:原式.原式.【解析】直接运用完全平方公式进行因式分解即可;先运用平方差公式,再运用提公因式法进行因式分解.本题主要考查了因式分解,解决问题的关键是掌握公式法以及提公因式法.18.解不等式:,并把它的解集在数轴上表示出来.【答案】解:移项,得:,合并同类项,得:,系数化为1,得:,解集在数轴上表示如下:【解析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.解不等式组:【答案】解:,由,得:,.,由,得:,.,所以不等式组的解集为.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.解方程组:【答案】解:,由,得,解这个方程,得,把代入,得,解得:,所以这个方程组的解为.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.已知,求的值.【答案】解:原式,由,得:,原式.【解析】首先利用整式的乘法和完全平方公式计算,化简后,再把变化得出整体代入求得数值即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.四、解答题(本大题共7小题,共7.0分)22.已知关于x,y的二元一次方程组的解为,求的值.【答案】解:把代入得:得:.【解析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.23.已知:如图,,点C在射线OB上,经过C点的直线,求的度数.【答案】解:如图所示:,.,.,...【解析】直接利用垂直的定义结合平行线的性质得出度数,进而得出答案.此题主要考查了平行线的性质以及垂直的定义,正确得出的度数是解题关键.24.某电子品牌商下设台式电脑部、平板电脑部、手机部等年的前五个月该品牌全部商品销售额共计600万元下表表示该品牌商2018年前五个月的月销售额统计信息不全图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表单位:万元该品牌5月份的销售额是______万元;手机部5月份的销售额是______万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图则5月份______机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是______.【答案】120;120;36;B;【解析】解:该品牌5月份的销售额是万元,故答案为:120;不同意小明的看法,手机部4月份销售额为:万元.手机部5月份销售额为:万元.因为36万元万元,故小明说法错误,故答案为:36.由扇形统计图知,5月份B机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是,故答案为:B、.销售总额减去前4个月的销售额即可得;月份销售额乘以手机所占百分比可得,计算出手机部4月份销售额,比较大小即可得;由扇形统计图各手机销售额所占百分比即可得.本题考查了扇形统计图和折线统计图的应用,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.25.如图,已知BD平分请补全图形后,依条件完成解答.在直线BC下方画,使与互补;在射线BE上任取一点F,过点F画直线交BC于点G;判断与的数量关系,并说明理由.【答案】解:、如图所示:,理由如下:,,平分,.即.【解析】延长AB,作射线BE,则为所求;在在射线BE上任取一点F,作,交BC于点G,则直线FG为所求;,利用平行线的性质证明即可.本题考查了作图复杂作图以及平行线的判断和性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.26.某小区准备新建50个停车位,用以解决小区停车难的问题已知新建1个地上停车位和1个地下停车位共需万元;新建3个地上停车位和2个地下停车位共需万元.该小区新建1个地上停车位和1个地下停车位需多少万元?该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【答案】解:设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要万元,新建1个地下停车位需万元.设建为整数个地上停车位,则建个地下停车位,根据题意,得:,解得:.为整数,,31,32,共有3种建造方案.建30个地上停车位,20个地下停车位;建31个地上停车位,19个地下停车位;建32个地上停车位,18个地下停车位.【解析】设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;设建m个地上停车位,则建个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法在解答中要注意实际问题中未知数的取值范围的运用.27.在三角形ABC中,点D在线段AB上,交AC于点E,点F在直线BC上,作直线EF,过点D作直线交直线EF于点H.在如图1所示的情况下,求证:;若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.当点H在三角形ABC内部时,直接写出与的数量关系;当点H在三角形ABC外部时,中结论是否依然成立?请在图2中画图探究,并说明理由.【答案】解:证明:,,,,,即;,理由如下:,,,;当点H在三角形ABC外部时,中结论不成立.理由如下:如图,当点H在直线DE上方时,,,如图,当点H在直线DE下方时,,,综上所述,当点H在三角形ABC外部时,.【解析】利用平行线的性质即可证明;,由平行线的性质可得,由此得证;中结论不成立,分两种情况讨论即可.本题考查了作图复杂作图和平行线的性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.28.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程的解为,不等式组的解集为,因为,所以,称方程为不等式组的关联方程.在方程,,中,不等式组的关联方程是______;填序号若不等式组的一个关联方程的根是整数,则这个关联方程可以是______;写出一个即可若方程,都是关于x的不等式组的关联方程,求m的取值范围.【答案】;【解析】解:解不等式组,得:,方程的解为;方程的解为;方程的解为,不等式组的关联方程是,故答案为:;解不等式组得:,所以不等式组的整数解为,则该不等式组的关联方程为,故答案为:;解不等式,得:,解不等式,得:,所以不等式组的解集为.方程的解为,方程的解为,所以m的取值范围是.分别解不等式组和各一元一次方程,再根据“关联方程”的定义即可判断;解不等式组得出其整数解,再写出以此整数解为解得一元一次方程即可得;解不等式组得出,再解一元一次方程得出方程的解,根据不等式组整数解的确定可得答案.本题主要考查解一元一次不等式和一元一次方程,解题的关键是理解并掌握“关联方程”的定义和解一元一次不等式、一元一次方程的能力.。
北京昌平区16-17学年七年级下期末考试--数学
2.下列计算正确的是
A. B. C. D.
3.若a<b,则下列各式中不正确的是
A. B. C. D.
4.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的可能性大小为
本届北京农业嘉年华共打造了180余个创意景观,汇集了680余个农业优新特品种、130余项先进农业技术,开展了210余项娱乐游艺和互动体验活动. 在去年“三馆两园一带一谷”的基础上,增设了“一线”,即京北旅游黄金线,并在草莓博览园作为主会场的同时,首设乐多港、延寿两大分会场.
据统计,本届嘉年华期间共有600余家展商参展,设置了1700处科普展板,近6万人参与“草莓票香”体验活动,周边各草莓采摘园接待游客达267万人次,销售草莓265.6万公斤,实现收入1.659亿元.同时,还有效带动延寿、兴寿、小汤山、崔村、百善、南邵6个镇的民俗旅游,实现收入1.09亿元,较上届增长14.84%.
根据以上材料回答下列问题:
(1)举办农业嘉年华以来单日游客人数的最高纪录是;
(2)如右图,用扇形统计图表示民俗旅游、销售草莓及其它方面收入
的分布情况,则m=;
(3)选择统计表或统计图,将本届嘉年华的创意景观、农业优新特品种、展商参展、科普展板的数量表示出来.
26.(3分)如图所示,已知前两个天平两端保持平衡.要使第三个天平两端保持平衡,天平的右边应放几个圆形?请写出你的思路.
边长为b的小正方形,并沿图中的虚线剪开,
拼接后得到图14-2,这种变化可以用含字母
a,b的等式表示为.
15.在一个六面体模型的六个面上,分别标了“观察、实验、归纳、类比、猜想、证明”六个词,下图是从三个不同的方向看到的几个词,观察它们的特点,推出“类比”相对面上的词是.
2017-2018北京昌平初一(下)数学期末考试题及答案
昌平区2017 - 2018学年第二学期初一年级期末质量抽测数 学 试 卷2018.7一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个....是符合题意的.1. 叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为 A .5510-⨯ B .4510-⨯C .40.510-⨯D .35010-⨯2. 若a<b ,则下列各式正确的是A .22+>+b aB .22->-b aC .b a 22->-D .22b a > 3. 下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=4. 下列调查中,不适合用抽样调查方式的是A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵5. 如图,已知直线a //b ,∠1=100°,则∠2等于A .60°B .70°C .80°D .100°6. 若方程234mx y=x+- 是关于x y ,的二元一次方程,则m 满足 A .2m -≠ B. 0m ≠ C. 3m ≠ D. 4m ≠ 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步ba 21天数走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.38.观察下列等式:①32- 12 = 2 × 4②52- 32 = 2 × 8③72 - 52 = 2 × 12......那么第n(n为正整数)个等式为A.n2- (n-2)2 = 2 × (2n-2)B.(n+1)2- (n-1)2 = 2 × 2nC.(2n)2- (2n-2)2 = 2 ×(4n -2) D.(2n+1)2- (2n-1)2 = 2 × 4n二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:21x-=.10.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.写出不等式组11xx-⎧⎨<⎩≥,的整数解为.12.在①11x=y=-⎧⎨⎩,,②23x=y=⎧⎨⎩,,--③3x=y=⎧⎨⎩,-中,①和②是方程235x y=-的解;是方程39x+y=-的解;不解方程组,可写出方程组23539x y=x+y=--⎧⎨⎩,的解为.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人, 小和尚有y人,那么根据题意可列方程组为.14. 在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15. 若3a b +=,则226a b b -+的值为 .16. 数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下: 苗苗的画法:baa①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b //a. 小华的画法:baa①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线; ②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b //a . 请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据. 答:我喜欢 同学的画法,画图的依据是 .三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 因式分解:(1)269x x -+; (2)()22m n m n -+-.18. 解不等式:12+x ≥13-x ,并把它的解集在数轴上表示出来.19. 解不等式组:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,.–1–2–3–4123420. 解方程组:13 5.x+y=x+y=⎧⎨⎩,21. 已知关于x ,y 的二元一次方程组231ax+by=ax by=-⎧⎨⎩,的解为11x=y=⎧⎨⎩,. 求2a+b 的值.22.已知:如图,OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.FOED CBA23. 已知2870x x +-=,求2)12()1(4)2)(2(++---+x x x x x 的值.24. 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图. 品牌月销售额统计表(单位:万元)D 5%E 25% C 17%B 28%A 25%5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图(1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A 、B 、C 、D 、E 五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .25. 如图,已知BD 平分∠ABC . 请补全图形后,依条件完成解答. (1)在直线BC 下方画∠CBE ,使∠CBE 与∠ABC 互补;(2)在射线BE 上任取一点F ,过点F 画直线FG ∥BD 交BC 于点G ; (3)判断∠BFG 与∠BGF 的数量关系,并说明理由.26. 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?D CBA27. 在三角形ABC 中,点D 在线段AB 上,DE ∥BC 交AC 于点E ,点F 在直线BC 上,作直线EF ,过点D 作直线DH ∥AC 交直线EF 于点H .(1)在如图1所示的情况下,求证:∠HDE =∠C ;(2)若三角形ABC 不变,D ,E 两点的位置也不变,点F 在直线BC 上运动.①当点H 在三角形ABC 内部时,直接写出∠DHF 与∠FEC 的数量关系;②当点H 在三角形ABC 外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程260x =- 的解为3x= ,不等式组205x x ->⎧⎨<⎩,的解集为25x << ,因为235<< ,所以,称方程260x =-为不等式组205x x ->⎧⎨<⎩,的关联方程.(1) 在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号)(2)若不等式组1144275x x x ⎧-⎪⎨⎪++⎩<,>-的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)昌平区2017-2018学年第二学期初一年级期末质量抽测 数学试卷参考答案及评分标准 2018.7一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= (x-3) 2.…………………………2分(2)原式= (m+n) (m-n)+ (m-n) …………………………3分= (m-n) (m+n+1) .…………………………5分18. 解:移项,得2x-3x≥-1-1.…………………………2分合并同类项,得-x≥-2.…………………………3分系数化为1,得x≤2. …………………………4分解集在数轴上表示如下:–41234–1–3–2………………5分19.解:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,①.②由①,得3x-3≤5x + 1.…………………………1分-2 x≤4.x≥-2.…………………………2分由②,得8x<9 -x .…………………………3分9x<9 .x<1.…………………………4分所以不等式组的解集为-2≤x<1.…………………………5分20.解:13 5.x+y=x+y=⎧⎨⎩,①②由②-①,得2x=4. …………………………1分解这个方程,得x=2. …………………………2分把x=2代入①,得2+ y = 1. …………………………3分y = -1.…………………………4分所以这个方程组的解为21.x=y=-⎧⎨⎩,…………………………5分21.解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分①-②,得 a + 2b = 2. …………………………5分4321FO E DCBA法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,- 得 231.a+b=a b=-⎧⎨⎩, ①② …………………… 2分 解得 431.3a=b=⎧⎪⎪⎨⎪⎪⎩,………………………………………………………… 4分所以a + 2b = 2 . ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90°. …………………………1分 ∵∠2=60°,∴∠3=∠2=60°. …………………………2分 ∵DF ∥OE ,∴∠3+∠4=180°. …………………………3分 ∴∠4=120°. …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150°. ………………5分23.解:原式= x 2 - 4 - 4x 2 + 4x + 4x 2 + 4x + 1………………………… 3分= x 2 + 8x - 3.………………………… 4分由x 2 + 8x – 7 = 0,得 x 2 + 8x = 7. ………………………… 5分 所以,原式= 7 – 3 = 4.………………………… 6分24. 解:(1)120. ………………………… 1分 (2)36. ………………………… 2分 不同意小明的看法. ………………………… 3分4321GFEDCBA手机部4月份销售额为:95×32%=30.4(万元). …………………… 4分 手机部5月份销售额为:120×30%=36(万元). 因为36万元>30.4万元, 故小明说法错误.(3)B. ………………………… 5分 8.4%. ………………………… 6分 25.解:(1)如图. ………………………… 1分(2)如图. ………………………… 2分 (3)∠BFG =∠BGF . ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4. …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4. …………………………6分 ∴∠1=∠2.即∠BFG =∠BGF .26. 解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元. …………… 1分根据题意,得0.632 1.3.x+y=x+y=⎧⎨⎩,……………2分 解得:0.10.5.x y =⎧⎨=⎩,……………3分答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元. (2)设建m (m 为整数)个地上停车位,则建(50-m )个地下停车位.图2-2HF ED CB A根据题意,得12<0.1m +0.5(50-m )≤13. ……………4分 解得:30≤m <32.5. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位; ②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(1)证明:如图.∵DE ∥BC ,∴∠1=∠C . ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2. ………………………… 2分 ∴∠2=∠C . ………………………… 3分即∠HDE =∠C .(2)解:①∠DHF +∠FEC =180°. ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立.理由如下:ⅰ.如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC ,∴∠DHF =∠FEC . ………………… 6分ⅱ.如图2-2,当点H 在直线DE 下方时,54321AB CDE F HAB C D EFH图2-1∵DH ∥AC ,∴∠DHF =∠FEC . …………………… 7分综上所述,当点H 在三角形ABC 外部时,∠DHF =∠FEC . (注(2)②中对应一图一理由正确得2分,完全正确得3分)28. 解:(1)③. ………………………… 1分 (2)答案不唯一,只要解为x = 1即可. ………………………… 2分 (3)22.x x m x m -⎧⎨-⎩<, ①≤ ②解不等式①,得x >m . ………………………… 3分解不等式②,得x ≤m +2. ………………………… 4分所以不等式组的解集为m <x ≤m +2.方程2x -1= x +2的解为x =3. ………………………… 5分方程1322x x +=+⎛⎫ ⎪⎝⎭的解为x =2. ………………………… 6分所以,m 的取值范围是1≤m <2. ………………………… 7分。
2017-2018年北京市昌平区七年级(下)期末数学试卷(解析版)
2017-2018学年北京市昌平区七年级(下)期末数学试卷一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.5×10﹣5B.5×10﹣4C.0.5×10﹣4D.50×10﹣3 2.(2分)若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>3.(2分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3 4.(2分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵5.(2分)如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.70°C.80°D.100°6.(2分)若方程mx﹣2y=3x+4是关于x,y的二元一次方程,则m满足()A.m≠﹣2B.m≠0C.m≠3D.m≠47.(2分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.38.(2分)观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)因式分解:x2﹣1=.10.(2分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.(2分)写出不等式组的整数解为.12.(2分)在①②③中,①和②是方程2x﹣3y=5的解;是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为.13.(2分)程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为.14.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15.(2分)已知a+b=3,则a2﹣b2+6b的值为.16.(2分)数学课上,老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小华的画法:①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b∥a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢同学的画法,画图的依据是.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题5分,第27、28题,每小题5分,共68分)17.(5分)因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).18.(5分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.19.(5分)解不等式组:20.(5分)解方程组:21.(5分)已知关于x,y的二元一次方程组的解为,求a+2b的值.22.(5分)已知:如图,OA⊥OB,点C在射线OB上,经过C点的直线DF∥OE,∠BCF =60°.求∠AOE的度数.23.(6分)已知x2+8x﹣7=0,求(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2的值.24.(6分)某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表(单位:万元)(1)该品牌5月份的销售额是万元;(2)手机部5月份的销售额是万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图.则5月份机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是.25.(6分)如图,已知BD平分∠ABC.请补全图形后,依条件完成解答.(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;(2)在射线BE上任取一点F,过点F画直线FG∥BD交BC于点G;(3)判断∠BFG与∠BGF的数量关系,并说明理由.26.(6分)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?27.(7分)在三角形ABC中,点D在线段AB上,DE∥BC交AC于点E,点F在直线BC 上,作直线EF,过点D作直线DH∥AC交直线EF于点H.(1)在如图1所示的情况下,求证:∠HDE=∠C;(2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系;②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28.(7分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以,称方程2x﹣6=0为不等式组的关联方程.(1)在方程①5x﹣2=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)(3)若方程2x﹣1=x+2,3+x=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.2017-2018学年北京市昌平区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.5×10﹣5B.5×10﹣4C.0.5×10﹣4D.50×10﹣3【解答】解:0.00005=5×10﹣5,故选:A.2.(2分)若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>【解答】解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.3.(2分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(2分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵【解答】解:A、调查“神舟十一号”飞船重要零部件的产品质量适合全面调查,不适合抽样调查,符合题意;B、调查某电视剧的收视率适合抽样调查,不符合题意;C、调查一批炮弹的杀伤力适合抽样调查,不符合题意;D、调查一片森林的树木有多少棵适合抽样调查,不符合题意;故选:A.5.(2分)如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.70°C.80°D.100°【解答】解:∵a∥b,∠1=100°,∴∠3=100°,∴∠2=80°,故选:C.6.(2分)若方程mx﹣2y=3x+4是关于x,y的二元一次方程,则m满足()A.m≠﹣2B.m≠0C.m≠3D.m≠4【解答】解:由方程mx﹣2y=3x+4可得(m﹣3)x﹣2y=4,∵方程是关于x,y的二元一次方程,∴m﹣3≠0,∴m≠3,故选:C.7.(2分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.3【解答】解:∵这组数据中1.4出现的次数最多,∴在每天所走的步数这组数据中,众数是1.4;每天所走的步数的中位数是:(1.3+1.3)÷2=1.3∴在每天所走的步数这组数据中,众数和中位数分别是1.4、1.3.故选:D.8.(2分)观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n【解答】解:第n(n为正整数)个等式为(2n+1)2﹣(2n﹣1)2=2×4n,故选:D.二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)因式分解:x2﹣1=(x+1)(x﹣1).【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).10.(2分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.【解答】解:∵白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴取出黑球的概率是=;故答案为:.11.(2分)写出不等式组的整数解为﹣1、0.【解答】解:∵不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0,故答案为:﹣1、0.12.(2分)在①②③中,①和②是方程2x﹣3y=5的解;②和③是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为②.【解答】解:在①②③中,①和②是方程2x﹣3y=5的解;②和③是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为②,故答案为:②和③;②13.(2分)程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为.【解答】解:设大和尚有x人,小和尚有y人,根据题意得:.故答案是:.14.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为x<﹣6.【解答】解:根据题意得:2x+12<0,解得:x<﹣6.故答案是:x<﹣6.15.(2分)已知a+b=3,则a2﹣b2+6b的值为9.【解答】解:a2﹣b2+6b=(a+b)(a﹣b)+6b=3(a﹣b)+6b=3a+3b=3(a+b)=9.故答案是:9.16.(2分)数学课上,老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小华的画法:①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b∥a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢苗苗同学的画法,画图的依据是苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.【解答】解:我喜欢苗苗同学的画法,画图的依据是:苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.故答案为:苗苗,苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题5分,第27、28题,每小题5分,共68分)17.(5分)因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).【解答】解:(1)原式=(x﹣3)2.(2)原式=(m+n)(m﹣n)+(m﹣n)=(m﹣n)(m+n+1).18.(5分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.【解答】解:移项,得:2x﹣3x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,解集在数轴上表示如下:19.(5分)解不等式组:【解答】解:,由①,得:3x﹣3≤5x+1,﹣2x≤4.x≥﹣2,由②,得:8x<9﹣x,9x<9.x<1,所以不等式组的解集为﹣2≤x<1.20.(5分)解方程组:【解答】解:,由②﹣①,得2x=4,解这个方程,得x=2,把x=2代入①,得2+y=1,解得:y=﹣1,所以这个方程组的解为.21.(5分)已知关于x,y的二元一次方程组的解为,求a+2b的值.【解答】解:把代入得:①﹣②得:a+2b=2.22.(5分)已知:如图,OA⊥OB,点C在射线OB上,经过C点的直线DF∥OE,∠BCF =60°.求∠AOE的度数.【解答】解:如图所示:∵OA⊥OB,∴∠1=90°.∵∠2=60°,∴∠3=∠2=60°.∵DF∥OE,∴∠3+∠4=180°.∴∠4=120°.∴∠AOE=360°﹣∠1﹣∠4=360°﹣90°﹣120°=150°.23.(6分)已知x2+8x﹣7=0,求(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2的值.【解答】解:原式=x2﹣4﹣4x2+4x+4x2+4x+1=x2+8x﹣3,由x2+8x﹣7=0,得:x2+8x=7,原式=7﹣3=4.24.(6分)某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表(单位:万元)(1)该品牌5月份的销售额是120万元;(2)手机部5月份的销售额是36万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图.则5月份B机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是28%.【解答】解:(1)该品牌5月份的销售额是600﹣(180+90+115+95)=120(万元),故答案为:120;(2)不同意小明的看法,手机部4月份销售额为:95×32%=30.4(万元).手机部5月份销售额为:120×30%=36(万元).因为36万元>30.4万元,故小明说法错误,故答案为:36.(3)由扇形统计图知,5月份B机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是28%,故答案为:B、28%.25.(6分)如图,已知BD平分∠ABC.请补全图形后,依条件完成解答.(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;(2)在射线BE上任取一点F,过点F画直线FG∥BD交BC于点G;(3)判断∠BFG与∠BGF的数量关系,并说明理由.【解答】解:(1)、(2)如图所示:(3)∠BFG=∠BGF,理由如下:∵BD∥FG,∴∠1=∠3,∠2=∠4∵BD平分∠ABC,∴∠3=∠4∴∠1=∠2.即∠BFG=∠BGF.26.(6分)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【解答】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50﹣m)个地下停车位,根据题意,得:12<0.1m+0.5(50﹣m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(7分)在三角形ABC中,点D在线段AB上,DE∥BC交AC于点E,点F在直线BC 上,作直线EF,过点D作直线DH∥AC交直线EF于点H.(1)在如图1所示的情况下,求证:∠HDE=∠C;(2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系;②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.【解答】解:(1)证明:∵DE∥BC,∴∠1=∠C,∵DH∥AC,∴∠1=∠2,∴∠2=∠C,即∠HDE=∠C;(2)①∠DHF+∠FEC=180°,理由如下:∵DH∥AC,∴∠DHE=∠FEC,∵∠DHF+∠DHE=180°,∴∠DHF+∠FEC=180°;②当点H在三角形ABC外部时,①中结论不成立.理由如下:①′如图2﹣1,当点H在直线DE上方时,∵DH∥AC,∴∠DHF=∠FEC,②′如图2﹣2,当点H在直线DE下方时,∵DH∥AC,∴∠DHF=∠FEC,综上所述,当点H在三角形ABC外部时,∠DHF=∠FEC.28.(7分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以,称方程2x﹣6=0为不等式组的关联方程.(1)在方程①5x﹣2=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是x ﹣1=0;(写出一个即可)(3)若方程2x﹣1=x+2,3+x=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.【解答】解:(1)解不等式组,得:<x<3,∵方程①5x﹣2=0的解为x=;方程②x+1=0的解为x=﹣;方程③x﹣(3x+1)=﹣5的解为x=2,∴不等式组的关联方程是③,故答案为:③;(2)解不等式组得:≤x<,所以不等式组的整数解为x=1,则该不等式组的关联方程为x﹣1=0,故答案为:x﹣1=0;(3)解不等式①,得:x>m,解不等式②,得:x≤m+2,所以不等式组的解集为m<x≤m+2.方程2x﹣1=x+2的解为x=3,方程3+x=2(x+)的解为x=2,所以m的取值范围是1≤m<2.。
北京市2017-2018学年度七年级下册期末数学试卷及答案
学生人数/人 19 17 9 252015 10 2017-2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
昌平区2017-2018学年第二学期初一年级期末质量抽测
昌平区2017-2018学年第二学期初一年级期末质量抽测数 学 试 卷 120分钟100分一、选择题(共10道小题,每小题2分,共20分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.如图,数轴上有A ,B ,C ,D 四个点,其中表示-1的相反数的点是( )A .点AB .点BC .点CD .点D2.若a 是有理数,则下列叙述正确的是( )A .a 一定是正数B .a 一定是负数C .a 可能是正数、负数、0D .-a 一定是负数3.已知1纳米=9110,那么9110用科学记数法表示为( ) A .91.010 B .9 1.010 C .91.010 D .91.0104.不等式组 4,3.x x <⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .5.以下问题,不适合用全面调查的是( )A .了解全班同学视力B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解全市中学生每天的零花钱 6.下列计算正确的是( )A .623)(a a =B .C .D .()22ab ab =7.下列因式分解正确的是( ) A .()()2933b b b -=-+ B .()()211+1x x x -=- C .()222211a a a -+=-+ D .()248224a a a a -=-842a a a ÷=632a a a =⋅A 12345-1-2-3-468.如图,能判定AB ∥CD 的条件是( ) A .∠1=∠2 B .∠3=∠4 C .∠1=∠3 D .∠2=∠49.某公司有如下几种手机4G 套餐:(1G=1024M )套餐类型月费(元/月)套餐内包含内容 套餐外资费 国内数据流量 国内电话(分钟) 流量国内 电话套餐1 76400M 2000M-200M 时,0.3元/M201M-1G 时,60元0.15元/分钟套餐2 106 800M 300 套餐3 136 1G 500 套餐41662G500李老师每月大约使用国内数据流量约800M ,国内电话约400分钟,若想使每月付费最少,则应选择的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐410.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案( )A .4B .3C .2D .1二、填空题:(共6道小题,每小题3分,共18分) 11.分解因式:2363m m -+= .12.右边的框图表示解不等式3542x x ->-移项合并同类项 系数化为13421BCAD的流程,其中“系数化为1”这一步骤的依据 是 .13.写出一个解是=1,=1.x y ⎧⎨⎩的二元一次方程组 .14.为了测量一座古塔外墙底部的底角∠AOB 的度数,李潇同学设计了如下测量方案: 作AO ,BO 的延长线OD ,OC ,量出∠COD 的度数,从而得到∠AOB 的度数. 这个测量方案的依据是 .15.如图,边长为m ,n 的长方形,它的周长为10,面积为6,则22m n mn +的值为 .nmAOBCD16.居民身份证是国家法定的证明公民个人身份的有效证件.身份证号码由十七位数字本体码和一位数字校验码组成.第1-6位是地址码,第7-14位是出生日期码,第15-17位是顺序码,即是县、区级政府所辖派出所的分配码.第18位也就是最后一位是数字校验码,是根据前面十七位数字码,按一定规则计算出来的校验码.算法如下:规定第1-17位对应的系数分别为:7,9,10,5,8,4,2,1,6,3,7,9,,10,5,8,4,2.将身份证号码的前17位数字分别乘以对应的系数,再把积相加.相加的结果除以11,求出余数.余数只可能有0,1,2,3,4,5,6,7,8,9,10这11种情况.其分别对应身份证号码的第18位数字如下表所示.的第18位号码就是x .若某人的身份证号码的前17位依次是11010219600302011,则他身份证号码的第18位数字是 .三、解答题(本题共6道小题,第17-19小题各3分;第20-22小题各4分,共21分) 17.计算:1020162)3()1(-+---π18.如图,已知∠1=∠2,∠3=70°,求∠4的度数.19.解不等式:7)1(3<--x x .4321CDBA20.解方程组:21327x y x y -=⎧⎨+=⎩,.21.已知,求代数式222))(()(b b a b a b a --+-+的值.22.已知关于x ,y 的二元一次方程组2322x y kx y k +=-⎧⎨+=⎩的解满足,求k 的取值范围.四、解答题(本题共4道小题,每小题4分,共16分) 23.列方程(组)解应用题在一年一度的农业“嘉年华”活动中,小丹的妈妈用175元买了 “章姬”、“红颜”两种草莓盆栽.“章姬”每盆20元,“红颜”每盆25元,且“章姬”比“红颜”多买了2盆.求两种草莓盆栽各买了多少盆?24. 已知:如图,△ABC 中,AD ⊥BC 于点D ,点E 在AB 上,EF ⊥BC 于点F ,∠1=∠2,求证:DE ∥AC .1=2ab xy 21F EDCB A25. 为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养。
北京市昌平区2017-2018学年七年级数学下学期期末试题新人教版
北京市昌平区2017-2018学年七年级数学下学期期末试题(时间:120分钟,分值:100分)要求:(1 )认真作答,字迹清晰工整;(2)禁止用涂改带,涂改液等涂改工具;(3)正确涂卡,作图题用铅笔,尺规规范作答;一、选择题(每小题2分,共24分)1. 下列运算正确的是()。
5 5 106 4 24 0.」 4 4 0A a a aB 、a a aC 、a - a aD 、a-a a2. 计算(-8m4n+12mn2-4m2n3)*(-4m2n)的结果等于()2 2 2 2 2A. 2mn-3mn+n B . 2n-3mn+n2 2 2C. 2m-3mn+n D . 2m-3mn+n3. 一个三角形的三条边长分别为1、2、x,贝U x的取值范围是()A. K x< 3, B . 1 v x< 3, C . K x v 3, D . 1v x v 34 .如图,AB// CD DBL BC, / 2=50°,则/ 1 的度数是()A. 40° , B . 50° , C . 60° , D . 140°5. 下列图形中,不一定.是轴对称图形的是()A.等腰三角形B.线段C. 钝角D. 直角三角形6. 如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性 B .两点之间线段最短C.两点确定一条直线 D .垂线段最短7. 下列乘法中,不能运用平方差公式进行运算的是()A. (x+a)(x-a) B . (a+b)(- a- b) C. (- x- b)( x- b) D . (b+n)( mb)11. 如图,在△ ABC W^ DEF 中,给出以下六个条件:(1) AB= DE (2) BC= EF , (3) AC = DF , ( 4)/ A =Z D, (5)Z B =Z E , (6)Z C =Z F ,以其中三个作为已知条件,不能 判断△ ABC 与厶DEF全等的是( )&以下事件中,必然发生的是( )A. 打开电视机,正在播放体育节目B. 正五边形的外角和为180°C.通常情况下,水加热到100 C 沸腾9.如图表示某加工厂今年前 5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( A. 1月至3月每月产量逐月增加, B. 1月至3月每月产量逐月增加, C.1月至3月每月产量逐月增加,4、5两月产量逐月减小4、5两月产量与3月持平 4、5两月产量均停止生产D. 1月至3月每月产量不变,4、5两月均停止生产10、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(15 1512.下列关于作图的语句中正确的是( )A .画直线AB = 10厘米;(1) (2) ( 3) C . (2) ( 3) (4) D . (4) ( 6) (1)BB.画射线0B= 10厘米;C .已知A. B . C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线 AB 平行 、填空题(每小题 2分,共24 分)0.0000002 cm .这个数量用科学记数法可表示为 _____________ c m . 14.计算:5 54 ^-0-25)=。
昌平初一下期末数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √4D. π2. 下列等式中,正确的是()A. 3x + 2 = 5x - 1B. 2(x + 3) = 2x + 6C. (x - 2) / (x + 2) = 1D. x² - 4 = (x + 2)(x - 2)3. 若a、b、c是等差数列的三项,且a + b + c = 12,a - c = 4,则b的值为()A. 4B. 6C. 8D. 104. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形5. 已知函数y = kx + b(k ≠ 0),若该函数的图象经过点(2,3)和点(-1,-1),则k的值为()A. 2B. 1C. -1D. -26. 下列各数中,绝对值最大的是()A. -3B. -2C. 0D. 17. 若∠A、∠B、∠C是三角形ABC的内角,且∠A + ∠B = 2∠C,则∠A的度数为()A. 30°B. 45°C. 60°D. 90°8. 下列关于一元二次方程x² - 5x + 6 = 0的解法中,正确的是()A. 分解因式法B. 平方法C. 求根公式法D. 换元法9. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 长方形D. 椭圆10. 已知一元二次方程x² - 2x - 3 = 0的两根分别为x₁和x₂,则x₁ + x₂的值为()A. 2B. -2C. 3D. -3二、填空题(每题5分,共50分)11. 3的平方根是______,-5的立方根是______。
12. 若a、b、c是等差数列的三项,且a + b + c = 12,a - c = 4,则b =______。
13. 已知函数y = 2x - 1的图象与x轴交于点(______,0),与y轴交于点(0,______)。
2017-2018北京昌平初一下数学期末考试题及答案-含答案
昌平区2017 - 2018学年第二学期初一年级期末质量抽测数 学 试 卷2018.7一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个....是符合题意的.1. 叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为 A .5510-⨯ B .4510-⨯C .40.510-⨯D .35010-⨯2. 若a<b ,则下列各式正确的是A .22+>+b aB .22->-b aC .b a 22->-D .22b a > 3. 下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=4. 下列调查中,不适合用抽样调查方式的是A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵5. 如图,已知直线a //b ,∠1=100°,则∠2等于A .60°B .70°C .80°D .100°6. 若方程234mx y=x+- 是关于x y ,的二元一次方程,则m 满足 A .2m -≠ B. 0m ≠ C. 3m ≠ D. 4m ≠ 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步 ba 21天数走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.38.观察下列等式:①32- 12 = 2 × 4②52- 32 = 2 × 8③72 - 52 = 2 × 12......那么第n(n为正整数)个等式为A.n2- (n-2)2 = 2 × (2n-2)B.(n+1)2- (n-1)2 = 2 × 2nC.(2n)2- (2n-2)2 = 2 ×(4n -2) D.(2n+1)2- (2n-1)2 = 2 × 4n二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:21x-=.10.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.写出不等式组11xx-⎧⎨<⎩≥,的整数解为.12.在①11x=y=-⎧⎨⎩,,②23x=y=⎧⎨⎩,,--③3x=y=⎧⎨⎩,-中,①和②是方程235x y=-的解;是方程39x+y=-的解;不解方程组,可写出方程组23539x y=x+y=--⎧⎨⎩,的解为.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人, 小和尚有y人,那么根据题意可列方程组为.14. 在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15. 若3a b +=,则226a b b -+的值为 .16. 数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下: 苗苗的画法:baa①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b //a. 小华的画法:baa①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线; ②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b //a . 请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据. 答:我喜欢 同学的画法,画图的依据是 .三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 因式分解:(1)269x x -+; (2)()22m n m n -+-.18. 解不等式:12+x ≥13-x ,并把它的解集在数轴上表示出来.19. 解不等式组:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,.–1–2–3–4123420. 解方程组:13 5.x+y=x+y=⎧⎨⎩,21. 已知关于x ,y 的二元一次方程组231ax+by=ax by=-⎧⎨⎩,的解为11x=y=⎧⎨⎩,. 求2a+b 的值.22.已知:如图,OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.FOED CBA23. 已知2870xx +-=,求2)12()1(4)2)(2(++---+x x x x x 的值.24. 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图. 品牌月销售额统计表(单位:万元)月份1月 2月 3月 4月 5月品牌月销售额1809011595D 5%E 25% C 17%B 28%A 25%5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图32%46%30%28%24%10%20%0%30%40%50%百分比(1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A 、B 、C 、D 、E 五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .25. 如图,已知BD 平分∠ABC . 请补全图形后,依条件完成解答. (1)在直线BC 下方画∠CBE ,使∠CBE 与∠ABC 互补;(2)在射线BE 上任取一点F ,过点F 画直线FG ∥BD 交BC 于点G ; (3)判断∠BFG 与∠BGF 的数量关系,并说明理由.26. 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?D CBA27. 在三角形ABC 中,点D 在线段AB 上,DE ∥BC 交AC 于点E ,点F 在直线BC 上,作直线EF ,过点D作直线DH ∥AC 交直线EF 于点H .(1)在如图1所示的情况下,求证:∠HDE =∠C ;(2)若三角形ABC 不变,D ,E 两点的位置也不变,点F 在直线BC 上运动.①当点H 在三角形ABC内部时,直接写出∠DHF 与∠FEC 的数量关系;②当点H 在三角形ABC 外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程260x =- 的解为3x= ,不等式组205x x ->⎧⎨<⎩,的解集为25x << ,因为235<< ,所以,称方程260x =-为不等式组205x x ->⎧⎨<⎩,的关联方程.(1) 在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号)(2)若不等式组1144275xx x⎧-⎪⎨⎪++⎩<,>-的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)昌平区2017-2018学年第二学期初一年级期末质量抽测数学试卷参考答案及评分标准2018.7一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= (x-3) 2.…………………………2分(2)原式= (m+n) (m-n)+ (m-n) …………………………3分= (m-n) (m+n+1) .…………………………5分18. 解:移项,得2x-3x≥-1-1.…………………………2分合并同类项,得-x≥-2.…………………………3分系数化为1,得x≤2. …………………………4分解集在数轴上表示如下:–1–2–3–41234………………5分19.解:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,①.②由①,得3x-3≤5x + 1.…………………………1分-2 x≤4.x≥-2.…………………………2分由②,得8x<9 -x .…………………………3分9x<9 .x<1.…………………………4分所以不等式组的解集为-2≤x<1.…………………………5分20.解:13 5.x+y=x+y=⎧⎨⎩,①②由②-①,得2x=4. …………………………1分解这个方程,得x=2. …………………………2分把x=2代入①,得2+ y = 1. …………………………3分y = -1.…………………………4分所以这个方程组的解为21.x=y=-⎧⎨⎩,…………………………5分21.解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分①-②,得 a + 2b = 2. …………………………5分法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分4321FO E DC BA解得 431.3a=b=⎧⎪⎪⎨⎪⎪⎩,………………………………………………………… 4分所以a + 2b = 2 . ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90°. …………………………1分 ∵∠2=60°,∴∠3=∠2=60°. …………………………2分 ∵DF ∥OE ,∴∠3+∠4=180°. …………………………3分 ∴∠4=120°. …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150°. ………………5分23.解:原式= x 2 - 4 - 4x 2 + 4x + 4x 2 + 4x + 1………………………… 3分= x 2 + 8x - 3.………………………… 4分由x 2 + 8x – 7 = 0,得 x 2 + 8x = 7. ………………………… 5分 所以,原式= 7 – 3 = 4.………………………… 6分24. 解:(1)120. ………………………… 1分 (2)36. ………………………… 2分 不同意小明的看法. ………………………… 3分 手机部4月份销售额为:95×32%=30.4(万元). …………………… 4分4321GFEDCBA手机部5月份销售额为:120×30%=36(万元). 因为36万元>30.4万元, 故小明说法错误.(3)B. ………………………… 5分 8.4%. ………………………… 6分 25.解:(1)如图. ………………………… 1分(2)如图. ………………………… 2分 (3)∠BFG =∠BGF . ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4. …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4. …………………………6分 ∴∠1=∠2.即∠BFG =∠BGF .26. 解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元. …………… 1分根据题意,得0.632 1.3.x+y=x+y=⎧⎨⎩,……………2分 解得:0.10.5.x y =⎧⎨=⎩, ……………3分答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元. (2)设建m (m 为整数)个地上停车位,则建(50-m )个地下停车位. 根据题意,得F ED CB A12<0.1m +0.5(50-m )≤13. ……………4分 解得:30≤m <32.5. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位; ②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(1)证明:如图.∵DE ∥BC ,∴∠1=∠C . ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2. ………………………… 2分 ∴∠2=∠C . ………………………… 3分即∠HDE =∠C .(2)解:①∠DHF +∠FEC =180°. ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立.理由如下:ⅰ.如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC ,∴∠DHF =∠FEC . ………………… 6分ⅱ.如图2-2,当点H 在直线DE 下方时,∵DH ∥AC ,54321AB DE HAB D EH图2-1∴∠DHF=∠FEC. ……………………7分综上所述,当点H在三角形ABC外部时,∠DHF=∠FEC.(注(2)②中对应一图一理由正确得2分,完全正确得3分)28. 解:(1)③. …………………………1分(2)答案不唯一,只要解为x = 1即可. …………………………2分(3)22.x x mx m-⎧⎨-⎩<,①≤②解不等式①,得x>m.…………………………3分解不等式②,得x≤m+2.…………………………4分所以不等式组的解集为m<x≤m+2.方程2x-1= x+2的解为x=3. …………………………5分方程1322x x+=+⎛⎫⎪⎝⎭的解为x=2. …………………………6分所以,m的取值范围是1≤m<2. …………………………7分。
精品解析:[中学联盟]北京昌平临川育人学校2016-2017学年七年级下学期期末考试数学试题(解析版)
北京临川学校2016-2017学年下学期期末考试初一数学试卷一、选择题(每题2分,共24分)1. 下列图形是轴对称图形的是()A. B. C. D.【答案】B【解析】A不是轴对称图形,错误;B是轴对称图形,正确;C不是轴对称图形,错误;D不是轴对称图形,错误,故选:B2. 下列计算正确的是()A. 2x2+3x2=5x4B. ﹣5x2+(3x)2=4x2C. 2x2•3x3=6x6D. 2x2•x3=4x5【答案】B【解析】A. 2x2+3x2=5x2,错误;B. ﹣5x2+(3x)2=4x2,正确;C. 2x2•3x3=6x5,错误;D. 2x2•x3=2x5,错误;故选:B3. 截至目前,广东省今年共报告13例寨卡病毒病例,寨卡病毒是一种通过蚊虫叮咬进行传播的虫蝶病毒,典型的症状包括急性起病的地热、斑丘疹、关节疼痛(主要累及手、足小关节)、结膜炎,其他症状包括肌痛、头痛、眼眶痛及无力,易导致新生儿小头症,其直径为0.00000002米,用科学记数法表示为()A. 2×107米 B. 2×108米 C. 2×10﹣7米 D. 2×10﹣8米【答案】D【解析】由科学计数法表示方法知:0.00000002米= 2×10﹣8米,故选:D4. 下列事件中,是确定事件的是()A. 打开电视,它正在播广告B. 抛掷一枚硬币,正面朝上C. 367人中有两人的生日相同D. 打雷后会下雨【答案】C【解析】试题分析:确定事件的概念:生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。
有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。
必然事件与不可能事件统称为确定事件。
A. 打开电视,它正在播广告,B.抛掷一枚硬币,正面朝上,D.打雷后会下雨,均为不确定事件;C. 367人中有两人的生日相同,属于确定事件,本选项正确.考点:随机事件点评:本题属于基础应用题,只需学生熟练掌握确定事件的概念,即可完成.5. 以下各组线段为边不能组成三角形的是()A. 1,5,6B. 4,3,3C. 2,5,4D. 5,8,4【答案】A学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...B. ∵3+3>4,∴能组成三角形,故本选项错误;C. ∵2+4>5,∴能组成三角形,故本选项错误;D. ∵4+5>8,∴能组成三角形,故本选项错误。
2017-2018第2学期初1期末数学考试题答案-昌平
昌平区2017-2018学年第二学期初一年级期末质量抽测数学试卷参考答案及评分标准2018.7一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= (x-3) 2.…………………………2分(2)原式= (m+n) (m-n)+ (m-n) …………………………3分= (m-n) (m+n+1) .…………………………5分18. 解:移项,得2x-3x≥-1-1.…………………………2分合并同类项,得-x≥-2.…………………………3分系数化为1,得x≤2. …………………………4分解集在数轴上表示如下:………………5分19.解:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,①.②由①,得3x-3≤5x + 1.…………………………1分-2 x≤4.x≥-2.…………………………2分由②,得8x<9 -x .…………………………3分9x<9 .4321FOE DCBAx <1. ………………………… 4分所以不等式组的解集为-2≤x <1. ………………………… 5分 20.解:13 5.x+y=x+y=⎧⎨⎩, ① ②由②-①,得2x =4. ………………………… 1分解这个方程,得x =2. ………………………… 2分把x =2代入①,得2+ y = 1. ………………………… 3分 y = -1. ………………………… 4分 所以这个方程组的解为21.x=y=-⎧⎨⎩,………………………… 5分21.解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,- 得 231.a+b=a b=-⎧⎨⎩, ①② …………………… 2分 ①-②,得 a + 2b = 2. ………………………… 5分法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,- 得 231.a+b=a b=-⎧⎨⎩, ①② …………………… 2分 解得 431.3a=b=⎧⎪⎪⎨⎪⎪⎩,………………………………………………………… 4分所以a + 2b = 2 . ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90°. …………………………1分 ∵∠2=60°,∴∠3=∠2=60°. …………………………2分 ∵DF ∥OE ,∴∠3+∠4=180°. …………………………3分 ∴∠4=120°. …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150°. ………………5分4321G FE D CBA23.解:原式= x 2 - 4 - 4x 2 + 4x + 4x 2 + 4x + 1………………………… 3分= x 2 + 8x - 3.………………………… 4分由x 2 + 8x – 7 = 0,得 x 2 + 8x = 7. ………………………… 5分 所以,原式= 7 – 3 = 4. ………………………… 6分24. 解:(1)120. ………………………… 1分 (2)36. ………………………… 2分 不同意小明的看法. ………………………… 3分 手机部4月份销售额为:95×32%=30.4(万元). …………………… 4分 手机部5月份销售额为:120×30%=36(万元). 因为36万元>30.4万元, 故小明说法错误.(3)B. ………………………… 5分8.4%. ………………………… 6分 25.解:(1)如图. ………………………… 1分 (2)如图. ………………………… 2分 (3)∠BFG =∠BGF . ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4. …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4. …………………………6分 ∴∠1=∠2.即∠BFG =∠BGF .26. 解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元. …………… 1分根据题意,得0.632 1.3.x+y=x+y=⎧⎨⎩,……………2分 解得:0.10.5.x y =⎧⎨=⎩,……………3分答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元. (2)设建m (m 为整数)个地上停车位,则建(50-m )个地下停车位. 根据题意,得12<0.1m +0.5(50-m )≤13. ……………4分 解得:30≤m <32.5. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位;图2-2HF ED C B A②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(1)证明:如图.∵DE ∥BC ,∴∠1=∠C . ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2. ………………………… 2分 ∴∠2=∠C . ………………………… 3分即∠HDE =∠C .(2)解:①∠DHF +∠FEC =180°. ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立.理由如下:ⅰ.如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC , ∴∠DHF =∠FEC . ………………… 6分ⅱ.如图2-2,当点H 在直线DE 下方时,∵DH ∥AC , ∴∠DHF =∠FEC . …………………… 7分综上所述,当点H 在三角形ABC 外部时,∠DHF =∠FEC . (注(2)②中对应一图一理由正确得2分,完全正确得3分)28. 解:(1)③. ………………………… 1分 (2)答案不唯一,只要解为x = 1即可. ………………………… 2分(3)22.x x m x m -⎧⎨-⎩<, ①≤ ②解不等式①,得x >m . ………………………… 3分解不等式②,得x ≤m +2. ………………………… 4分 所以不等式组的解集为m <x ≤m +2.方程2x -1= x +2的解为x =3. ………………………… 5分 方程1322x x +=+⎛⎫⎪⎝⎭的解为x =2. ………………………… 6分 所以,m 的取值范围是1≤m <2. ………………………… 7分54321A BDE HAB CDEFH 图2-1。
北京市昌平区七年级下册期末数学试卷-1
,
所以买彩色铅笔省钱.
28. (1)
,
,
,
.
.
(2)
,
,
,
,
.
,
. 29. (1) 补全的图形如图 所示:
,因此当购买同一种奖品的数量少于 件时, ,因此当购买同一种奖品的数量为 件时,两 ,因此当购买同一种奖品的数量大于 件时,
,
.
.
证明:如图 ,过点 作
.
, . . ,
第 10 页(共 11 页)
.
第 2 页(共 11 页)
15. 在一个六面体模型的六个面上,分别标了“观察、实验、归纳、类比、猜想、证明”六个词,如图
所示是从三个不同的方向看到的几个词,观察它们的特点,推出“类比”相对面上的词
是
.
16. 阅读下面材料:
在数学课上,老师提出如下问题:
作图:过直线外一点作已知直线的平行线.
已知:直线 及其外一点 .
解得:
所以每个笔袋原价 元,每筒彩色铅笔原价 元.
(2)
.
当不超过 筒时:
;
当超过 筒时:
.
(3) 方法 :
因为
,
所以将
分别代入
和
中,得
.
所以买彩色铅笔省钱.
第 9 页(共 11 页)
【解析】方法 :
当
时,有
,解得
买笔袋省钱.
当
时,有
,解得
者费用一样.
当
时,有
,解得
买彩色铅笔省钱.
因为奖品的数量为 件,
和
是关于 , 的二元一次方程
23. 已知:如图,
,
.求证:
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l21ba2017北京昌平区初一(下)期末数学2017.7一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的.1.每年四月北京很多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰. 据测定,杨絮纤维的直径约为0.000 010 5米,将0.000 010 5用科学记数法可表示为A. 1.05×105B. 1.05×10-5C. 0.105×10-4D. 10.5×10-62.下列计算正确的是A. 23x x x+= B. 236·x x x= C. 933x x x÷= D. ()236x x=3.若a<b,则下列各式中不正确的是A. 33a b+<+ B. 33a b-<- C. 33a b-<- D.33a b<4. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的可能性大小为A.32B.21C.31D.615.如图,直线l与直线a,b相交,且a∥b,∠1=110º,则∠2的度数是A.20° B.70° C.90° D.110°6.下列事件是必然事件的是A. 经过不断的努力,每个人都能获得“星光大道”年度总冠军B. 小冉打开电视,正在播放“奔跑吧,兄弟”C. 火车开到月球上D. 在十三名中国学生中,必有属相相同的7.鸡兔同笼问题是我国古代著名趣题之一. 大约在1500年前,《孙子算经》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得A. 鸡23只,兔12只B. 鸡12只,兔23只C. 鸡15只,兔20只D. 鸡20只,兔15只8成绩(分) 6 7 8 9 10人数A.14 B.9 C.8.5 D.8鸡兔同笼9.已知23m n x x ==,,则m nx+的值是A .5B .6C .8D . 910. 将三角形、菱形、正方形、圆四种图形(大小不计)组合如下图,观察并思考最后一图对应的数为A .13B .24C .31D .42二、填空题(共6道小题,每小题3分,共18分) 11.分解因式:29m -= .12.北京市今年5月份最后六天的最高气温分别为31,34,36,27,25,33(单位:℃). 这组数据的中位数是 . 13.计算:(x -1)(x +2)= .14.如图14-1,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开, 拼接后得到图14-2,这种变化可以用含字母 a ,b 的等式表示为 . 15.在一个六面体模型的六个面上,分别标了“观察、实验、归纳、类比、猜想、证明”六个词,下图是从三个不同的方向看到的几个词,观察它们的特点,推出“类比”相对面上的词是 .16. 阅读下面材料:在数学课上,老师提出如下问题:小凡利用两块形状相同的三角尺进行如下操作:老师说:“小凡的作法正确.”请回答:小凡的作图依据是 .三、解答题(共13个小题,共52分)17.(3分)分解因式:ax 2-2ax +a .ba 14-2 14-1 作图:过直线外一点作已知直线的平行线. 已知:直线l 及其外一点A . 求作:l 的平行线,使它经过点A . 如图所示: (1)用第一块三角尺的一条边贴住直线l ,第二块三角尺的一条边紧靠第一块三角尺; (2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A ,沿这边作出直线AB . 所以,直线AB 即为所求. B l A A l-44321-1-2-30销售草莓 m %其它19.3%民俗旅游32%18.(3分)计算: 3a •(-2b )2÷6ab .19.(4分)解不等式组 523433 1.x x x x -<+⎧⎨+-⎩≥,①②解:解不等式①得: ;解不等式②得: ;把不等式①和②的解集在数轴上表示出来: 所以,这个不等式组的解集是 .20.(3分)解不等式5x -12≤2(4x -3),并求出负整数解.21.(5分)先化简,再求值: 2()(2)+()a b a a b a b a b ---+-(),其中a =-3,b =1.22.(4分)已知28x y =-⎧⎨=-⎩,和37x y =⎧⎨=⎩,是关于x ,y 的二元一次方程y = kx +b 的解,求k ,b 的值.23.(4分)已知:如图,BE //CD ,∠A =∠1.求证:∠C =∠E .24.(4分)请你根据右框内所给的内容,完成下列各小题. (1)若m ⊕n =1,m ⊕2n =-2,分别求出m 和n 的值; (2)若m 满足m ⊕2≤0,且3m ⊕(-8)>0,求m 的取值范围. 25.(4分)阅读下列材料:新京报讯 (记者沙璐摄影彭子洋)5月7日,第五届北京农业嘉年华圆满闭幕.历时58天的会期,共接待游客136.9万人次,累计实现总收入3.41亿元.其中4月3日的接待量为10.6万人次,创下了五届农业嘉年华以来单日游客人数的最高纪录.本届北京农业嘉年华共打造了180余个创意景观,汇集了680余个农业优新特品种、130余项先进农业技术,开展了210余项娱乐游艺和互动体验活动. 在去年“三馆两园一带一谷”的基础上,增设了“一线”,即京北旅游黄金线,并在草莓博览园作为主会场的同时,首设乐多港、延寿两大分会场.据统计,本届嘉年华期间共有600余家展商参展,设置了1700处科普展板,近6万人参与“草莓票香”体验活动,周边各草莓采摘园接待游客达267万人次,销售草莓265.6万公斤,实现收入1.659亿元.同时,还有效带动延寿、兴寿、小汤山、崔村、百善、南邵6个镇的民俗旅游,实现收入1.09亿元,较上届增长14.84%.根据以上材料回答下列问题:(1)举办农业嘉年华以来单日游客人数的最高纪录是 ; (2)如右图,用扇形统计图表示民俗旅游、销售草莓及其它方面收入的分布情况,则m = ;(3)选择统计表或.统计图,将本届嘉年华的创意景观、农业优新特品种、展商参展、科普展板的数量表示出来.我们定义一个关于有理数a ,b的新运算,规定:a ⊕b =4a -3b . 例如:5⊕6=4×5-3×6=2.M F E DC B A 32126.(3分)如图所示,已知前两个天平两端保持平衡.要使第三个天平两端保持平衡,天平的右边应放几个圆形?请写出你的思路.27. (5分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元. (1)每个笔袋、每筒彩色铅笔原价各多少元? (2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.28. (5分)如图,在三角形ABC 中, D ,E ,F 三点分别在AB ,AC ,BC 上,过点D 的直线与线段EF 的交点为点M ,已知2∠1-∠2=150°,2∠ 2-∠1=30°. (1)求证:DM ∥AC ;(2)若DE ∥BC ,∠C =50°,求∠3的度数.29.(5分) 已知:如下图, AB ∥CD ,点E ,F 分别为AB ,CD 上一点.(1) 在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,试探究∠AEM ,∠EMF ,∠MFC 之间有怎样的数量关系. 请补全图形,并在图形下面写出相应的数量关系,选其中一个..进行证明. (2)如下图,在AB ,CD 之间有两点M ,N ,连接ME ,MN ,NF ,请选择一个..图形写出∠AEM , ∠EMN ,∠MNF ,∠NFC 存在的数量关系(不需证明).ED1数学试题答案一、选择题(共10个小题,每小题3分,共30分)三、解答题(共13个小题,共52分)17.解:原式= a (x 2-2x +1) ………………………………………………………… 1分= a (x -1)2. ……………………………………………………………… 3分18.解:原式= 3a •4b 2÷6ab ……………………………………………………………1分= 12ab 2÷6ab …………………………………………………………2分= 2b . ………………………………………………………………………… 3分 19.解:x <3 ………………………………………………………………………………… 1分x ≥-2. …………………………………………………………………………… 2分……………………………… 3分4分 20.解:5x -12≤2(4x -3)5x -12≤8x -6 ……………………………………………………………………1分 5x -8x ≤12-6-3x ≤6x ≥-2. …………………………………………………………………………2分所以负整数解为-2,-1. …………………………………………………………3分21.解:(a -b )2-a (2a -b )+(a +b )(a +b )= a 2-2ab +b 2- 2a 2+ ab +a 2-b 2…………………………………………………3分 =-ab . ………………………………………………………………………………4分 当a =-3,b =1时原式=-(-3)×1=3. …………………………………………………………………5分 22.解:根据题意,得28,37.k b k b -+=-⎧⎨+=⎩ ………………………………………………………………………2分解得: 3,2.k b =⎧⎨=-⎩………………………………………………………………………4分23.证明:∵∠A =∠1,∴DE //AC . ……………………………………1分 ∴∠E =∠EBA .∵BE //CD , ……………………………………2分∴∠EBA =∠C . …………………………………3分∴∠C =∠E . ……………………………………………………………………4分24.解:(1)根据题意,得431,432 2.m n m n -=⎧⎨-⨯=-⎩……………………………………………………………… 1分 解得: 1,1.m n =⎧⎨=⎩ …………………………………………………………………… 2分(2)根据题意,得()4320,43380.m m -⨯≤⎧⎨⨯-⨯->⎩…………………………………………………………… 3分 解得:232≤<-m .……………………………………………………………… 4分 25.(1)10.6万人次. ……………………………………………………………………………… 1分 (2)m =48.7. ……………………………………………………………………………2分 (32分26.(1)由第一个天平可得3○=□+3▲ ①;……………………………………………… 1分(2)由第二个天平可得2□=○+4▲ ②; ………………………………………… 2分(3)3×②-4×①可消去▲,从而等到□与○的等量关系,进而求出第三个天平右边应放圆形的个数为3个 . …………………………………………………………………… 3分27.解:(1)设每个笔袋原价x 元,每筒彩色铅笔原价y 元,根据题意,得:2442373.x y x y +=⎧⎨+=⎩,…………………………………………………………… 1分解得:1415.x y =⎧⎨=⎩,………………………………………………… 2分所以每个笔袋原价14元,每筒彩色铅笔原价15元.(2)y 1=14×0.9x =12.6x . ……………………………………………………… 3分当不超过10筒时:y 2=15x ;当超过10筒时:y 2=12x +30. …………………………………………… 4分 (3)方法1: ∵95>10,∴将95分别代入y 1=12.6x 和y 2=12x +30中,得y 1> y 2.∴买彩色铅笔省钱. ………………………………………………………………… 5分方法2:当y 1<y 2时,有12.6x <12x +30,解得x <50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.当y 1=y 2时,有12.6x =12x +30,解得x =50,因此当购买同一种奖品的数量为50件时,两者费用一样.当y 1>y 2时,有12.6x >12x +30,解得x >50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.∵奖品的数量为95件,95>50,∴买彩色铅笔省钱. ………………………………………………………………… 5分 28.(1)证明:∵ 2∠1-∠2=150°,2∠2-∠1=30°,∴ ∠1+∠2=180°. ………………………………………………………… 1分 ∵ ∠1+∠DME =180°, ∴ ∠2=∠DME .∴ DM ∥AC . …………………………………………………………… 2分(2)解:∵ DM ∥AC ,∴ ∠3=∠AED . …………………………………………………………… 3分 ∵ DE ∥BC ,∴ ∠AED =∠C . …………………………………………………………… 4分 ∴ ∠3=∠C . ∵ ∠C =50°,∴ ∠3=50°. ……………………………………………………………… 5分 29.解:(1)124321Q MPM FEDCB A FEDCB A∠EMF =∠AEM +∠MFC. ∠AEM +∠EMF +∠MFC =360°.注:画图及数量关系对两个1分,共2分. ……………………………………………… 2分 证明:过点M 作MP ∥AB . 证明:过点M 作MQ ∥AB .∵AB ∥CD , ∵AB ∥CD , ∴MP ∥CD . ∴MQ ∥CD .∴∠4=∠3. ∴∠CFM +∠1=180°. ………… 3分 ∵MP ∥AB , ∵MQ ∥AB ,∴∠1=∠2. ∴∠AEM +∠2=180°.∵∠EMF =∠2+∠3, ∴∠CFM +∠1+∠AEM +∠2=360°. ∴∠EMF =∠1+∠4. ∵∠EMF =∠1+∠2,∴∠EMF =∠AEM +∠MFC . ∴∠AEM +∠EMF +∠MFC =360°. …4分(2)第一图数量关系:∠EMN +∠MNF -∠AEM -∠NFC =180°.第二图数量关系:∠EMN -∠MNF +∠AEM +∠NFC =180°. ………………………5分。