35kv线路继电保护设计
35KV变电所继电保护的设计2
1 绪论1.1变电站继电保护的发展变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置,继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
继电保护发展现状,电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。
国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。
2 设计概述:2.1设计依据:(1)继电保护设计任务书。
(2)国标GB50062-92《电力装置的继电保护和自动装置设计规范》。
(3)《电力系统继电保护》(山东工业大学)。
2.2设计规模:本设计为35KV降压变电所。
主变容量为6300KVA,电压等级为35/10KV。
2.3设计原始资料:2.3.1 35KV供电系统图,如图1所示。
2.3.2系统参数:电源I短路容量:SIDmax=200MVA;电源Ⅱ短路容量:SⅡDmax =250MVA;供电线路:L1=L2=15km,L3=L4=10km,线路阻抗:XL=0.4Ω/km。
图1 35KV系统原理接线图2.3.3 35KV变电所主接线图,如图2所示S Ⅱ SIDL8图2 35KV变电所主接线图2.3.4 10KV母线负荷情况,见下表:3 主接线方案的选择3.1 主接线设计要求电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的,表明高压电气设备之间互相连接关系的传送电能的电路。
电路中的高压电气设备包括发电机、变电器、母线、断路器、隔离刀闸、线路等。
继电保护35kv课程设计
继电保护35kv课程设计一、课程目标知识目标:1. 理解35kV继电保护的基本原理,掌握主要设备的构造与功能;2. 掌握35kV继电保护系统的配置要求,能够正确解读相关技术参数;3. 了解35kV继电保护装置的操作流程,掌握常见故障的判断和处理方法。
技能目标:1. 能够独立完成35kV继电保护装置的选型,并进行参数设置;2. 能够运用所学知识,对35kV继电保护系统进行故障分析和处理;3. 能够熟练操作35kV继电保护设备,提高实际操作能力。
情感态度价值观目标:1. 培养学生对电力系统继电保护工作的兴趣,激发学习热情;2. 增强学生的安全意识,树立正确的操作观念,严格遵守操作规程;3. 培养学生的团队合作精神,提高沟通与协作能力。
本课程针对高年级学生,结合学科特点,注重理论与实践相结合。
通过本课程的学习,使学生掌握35kV继电保护的相关知识,具备一定的故障分析和处理能力,同时培养他们的安全意识、团队合作精神和职业素养。
课程目标明确,便于教学设计和评估,有助于提高学生的专业素养和实际操作能力。
二、教学内容1. 继电保护基本原理:讲解继电保护的作用、分类及其工作原理,重点阐述35kV系统常用的保护原理,如过电流保护、差动保护等。
参考教材章节:第三章 继电保护的基本原理与分类。
2. 35kV继电保护设备:介绍35kV系统中主要继电保护设备的构造、性能参数及功能,如电流互感器、电压互感器、继电器等。
参考教材章节:第四章 继电保护设备。
3. 35kV继电保护系统配置:分析35kV继电保护系统的配置要求,包括保护装置的选择、参数设置、系统调试等。
参考教材章节:第五章 继电保护系统的配置与调试。
4. 35kV继电保护装置操作与故障处理:详细讲解35kV继电保护装置的操作流程,分析常见故障现象及处理方法。
参考教材章节:第六章 继电保护装置的操作与故障处理。
5. 实践操作:安排学生进行35kV继电保护装置的选型、参数设置、故障处理等实际操作,提高学生的动手能力。
35KV线路继电保护
2.4.2.1近后备保护:
被保护设备的主保护拒动时,由该设备的另一种保护动作切除故障,称为近保护。例如:变压器过流保护是瓦斯、差动保护的近后备保护。输电线距离保护是高频保护的近后备保护。
2.4.2.2远后备保护:相邻元件的保护,作为本元件的后备,称之为远后备保护
2.4.2.3对于新建220KV变电站35KV出现应采用数字式距离保护。对于短线路的35KV线路保护也应采用微机距离保护。如采用距离保护不能满足选择性灵敏性和速动性要求时,宜采用光纤电流差动保护作为主保护,以距离保护作为后备保护。
(1)一般反时限:
(2)非常反时限:
(3)极端反时限:
上式中, 为电流基准值,取过流Ⅲ段定值I3zd; 为时间常数,取过流Ⅲ段时间定值T3zd,范围为0~1S。其中反时限特性可由控制字FSXTX选择(1为一般反时限,2为非常反时限,3为极端反时限)。
3.2.3.2PT断线检查
装置具有PT断线检查功能,可通过控制字投退。装置检测母线电压异常时报PT断线,待电压恢复正常后保护也自动恢复正常。
3.1.2.1额定数据
直流电源:220V,110V允许偏差+15%,-20%
交流电压:100/ V,100V
交流电流:5A,1A
频率:50Hz
3.1.2.2功耗:
交流电压:< 0.5VA/相
交流电流:< 1VA/相(In =5A)
< 0.5VA/相(In =1A)
直流回路:正常< 15W
跳闸< 25W
△t时限级差:≥0.5
k1 k2 k3
t
△t
△t
L
2.3.2灵敏性
在保护装置保护范围内发生故障,保护反映的灵敏程度叫灵敏性,又叫灵敏度。灵敏度用灵敏系数衡量,用km表示。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计继电保护是电力系统中的重要组成部分,它起到监测、检测和保护电力设备和输、变电线路的作用,在电力系统的安全稳定运行中起着至关重要的作用。
而35kV线路作为输电网中的重要组成部分,电流保护是其常见的一种保护方式。
本文将针对35kV线路的三段式电流保护进行课程设计,并给出相关参考内容。
一、课程名称:35kV线路三段式电流保护二、课程目标:1. 了解35kV线路的电流保护原理和工作机制;2. 学习35kV线路电流保护的主要技术参数;3. 掌握35kV线路三段式电流保护的组成和工作原理;4. 能够分析35kV线路电流保护的故障判据和动作特性;5. 掌握35kV线路三段式电流保护的调试与运维方法。
三、课程大纲:1. 35kV线路电流保护的基本原理1.1 电流保护的作用和要求1.2 电流保护的分类和选择原则1.3 35kV线路电流保护的基本工作原理2. 35kV线路电流保护的技术参数2.1 勾画特性及其参数2.2 判据电流和动作时间的选择2.3 调整装置的线路电流参数3. 三段式电流保护的组成和原理3.1 三段式电流保护的组成和结构3.2 第一段保护和第二段保护的原理及调整方法3.3 第三段保护的原理及其应用4. 故障判据和动作特性分析4.1 电流故障判据的分析4.2 动作特性的研究4.3 保护固有特性的影响因素5. 三段式电流保护的调试与运维方法5.1 保护调试的基本流程5.2 保护测试与评估方法5.3 运维中的常见问题及处理方法四、参考内容:1. 尹世文. 电力系统继电保护与自动装置[M]. 中国电力出版社,2019.2. 向伟,等. 电力系统继电保护与自动装置技术[M]. 中国电力出版社,2018.3. 顾大珩. 交流电气保护技术[M]. 中国电力出版社,2019.4. 《电力系统继电保护与自动化装置设计与分析》教材5. 《电力系统保护与自动化装置工程设计与应用》教材以上提供的参考内容是一些建议性的,可以根据需要进行合理调整,确保教材覆盖了所需的基本理论和实践知识,并满足学生的学习需求。
35KV变电站继电保护初步设计
目录第一章本课程设计的重要任务 (1)第二章课程设计任务书 (2)第三章课程设计内容及过程 (4)1 变电所继电保护和自动装置规划 (4)1.1系统分析及继电保护规定: (4)1.2本系统故障分析: (4)1.3 10kv线路继电保护装置: (4)1.4主变压器继电保护装置设立: (4)1.5变电所的自动装置: (5)1.6本设计继电保护装置原理概述: (5)2 短路电流计算 (6)2.1系统等效电路图: (6)2.2基准参数选定: (7)2.3阻抗计算(均为标幺值): (7)2.4短路电流计算: (7)3 主变继电保护整定计算及继电器选择 (8)3.1瓦斯保护: (8)3.2纵联差动保护: (8)3.3过电流保护: (10)3.4过负荷保护:.................................................................... 错误!未定义书签。
3.5冷却风扇自起动: ............................................................ 错误!未定义书签。
第四章课程设计总结............................................................................ 错误!未定义书签。
参考文献 ................................................................................................ 错误!未定义书签。
第一章本课程设计的重要任务(1)本设计为35KV降压变电所。
主变容量为6300KVA,电压等级为35/10KV;(2)搜集原始资料;(3)完毕对本系统的故障分析;(4)对10kv线路继电保护装置、主变压器继电保护装置设立、变电所的自动装置的设计;(5)对短路电流的整定与计算;(6)主变继电保护整定计算及继电器选择;(7)完毕设计报告。
35kv线路继电保护
35KV输电线路继电保护前言目录1.概述1.1设计依据1.2设计规模1.3设计原始资料1.概述1.1设计依据1.1.1继电保护设计任务书。
1.1.2国标GB50062-92《电力装置的继电保护和自动装置设计规范》。
1.1.3《电力系统继电保护》(山东工业大学)。
1.2设计规模:35KV输电线路继电保护二、预习与思考1、三段式电流保护为什么要使各段的保护范围和时限特性相配合?2、由指导教师提供有关技术参数,你能对三段式电流保护进行计算与整定吗?3、为什么在实验中,采用单相接线三段式保护能满足教学要求?你能将图22-2正确改绘成单相式接线图吗?4、为什么可取消电流互感器,直接将各段电流继电器的电流线圈串入一次侧的模拟接线中?5、三段式保护模拟动作操作前,是否必须对每个继电器进行参数整定?为什么?6、在辐射式输电线故障模拟接线中,“R、R1、R2、Rf、Rf’”各代表什么?S1的设置可分别模拟什么性质的短路故障?7、断路器QF是用什么元件模拟的?写出控制回路合闸时及保护动作后跳闸时的电路工作原理?三、原理说明:1、阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
图22-1 三段式电流保护各段的保护范围及时限配合输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图22-1。
35KV电网继电保护配置及整定计算
1.2电力系统继电保护技术与继电保护装置
(1)起动失灵的保护为线路、过电压和远方跳闸、母线、短引线、变压器(高抗)的电气量保护。
(2)断路器失灵保护的动作原则为:瞬时分相重跳本断路器的两个跳闸线圈;经延时三相跳相邻断路器的两个跳闸线圈和相关断路器(起动两套远方跳闸或母差、变压器保护),并闭锁重合闸。
(6)断路器重合闸装置起动后应能延时自动复归,在此时间内断路器保护应沟通本断路器的三跳回路,不应增加任何外回路。
(7)闭锁重合闸的保护为变压器、失灵、母线、远方跳闸、高抗、短引线保护。
-力系统继电保护的任务
电力系统的运行要求安全可靠、电能质量高、经济性好。
发电——输电——配电——用电构成了一个电力系统。
电力系统在运行中,各电气设备可能出现故障和不正常工作状态。不正常的工作状态是指电力系统中电气元件的正常工作遭到破坏,但未发生故障的运行状态。如过负荷,过电压,频率降低,系统震荡等。故障主要是各种状态的短路和断线,如三相短路,两相短路,单相接地短路,两相接地短路,发电机和电动机以及变压器绕组间的匝间短路,单相断线,两相断线等。
(3)失灵保护应采用分相和三相起动回路,起动回路为瞬时复归的保护出口接点(包括与本断路器有关的所有电气量保护接点)。
(4)断路器失灵保护应经电流元件控制实现单相和三相跳闸,判别元件的动作时间和返回时间均不应大于20ms。
(5)重合闸仅装于与线路相联的两台断路器保护屏(柜)内,且能方便地整定为一台断路器先重合,另一台断路器待第一台断路器重合成功后再重合。
35KV双回线路继电保护原理图及安装图设计
摘要电力系统是电能生产,变换,输送,分配和使用的各种电器设备按照一定的技术与经济要求组合成的一个联合系统。
随着自动化技术的发展,电力系统的正常运行,故障期间以及故障后的恢复过程中,许多控制操作日趋高度自动化。
这些操作的技术与装备大致可分为两大类:其一是为了保证电力系统正常运行的经济性和电能质量的自动化技术与装备,主要进行电能生产过程中的连续自动调节,动作速度相对迟缓,调节稳定性高,把整个电力系统或其中的一部分作为调节对象,这就是通常理解的“电力系统自动化”。
其二是当电网或电气设备发生故障,或出现影响安全运行的异常情况时,自动切除故障设备和消除异常情况的技术和设备,其特点是动作速度快,其性质是非调节性的,这就是通常理解的“电力系统继电保护与安全自动装置”。
本课程设计的任务是给35KV单电源双回线电网进行继电保护设计,首先选择电流互感器的变比,接着根据题目中给定参数进行双回线路继电保护的配置及继电保护整定计算,然后选择电网的保护装置与自动装置并设计一套电压二次回路断线闭锁装置,最后绘制出继电保护原理图,展开图和屏面布置图。
关键词:双回线路电流互感器继电保护电压闭锁保护35KV双回线路继电保护原理图及安装图设计1.绪论电力系统运行状态是指电力系统在不同运行条件下的系统与设备的工作状况。
根据不同的运行条件,可以将电力系统的运行状态分为正常状态,不正常状态和故障状态。
电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种类型的短路。
在发生短路时可能产生以下的后果:1.通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏;2.短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命;3.电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量;4.破坏电力系统并列运行的稳定性,引起系统振动,甚至使整个系统瓦解。
电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。
35Kv输电线路的继电保护设计
35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。
然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。
为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。
本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。
首先,我们需要了解什么是继电保护。
继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。
一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。
在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。
2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。
3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。
4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。
在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。
这些方法各自有其特点和适用场景。
1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。
当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。
当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。
当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。
当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
35Kv输电线路的继电保护设计
35Kv输电线路的继电保护设计
35kV输电线路的继电保护设计需要考虑以下几个方面:
1. 选择合适的继电保护装置:根据35kV输电线路的特点和要求,
选择适合的继电保护装置,例如差动保护装置、过电流保护装置、
跳闸保护装置等。
2. 确定保护区域:根据线路的拓扑结构和电气参数,确定继电保护
的保护区域,即需要保护的线路段和设备。
3. 设置保护动作条件:根据线路的额定电流、短路容量和故障类型,设置继电保护的动作条件,例如过电流保护的动作电流、时间等。
4. 确定保护动作时间:根据线路的长度和传输速度,计算继电保护
的动作时间,以确保故障发生时能够及时切除故障区域。
5. 设置保护动作逻辑:根据线路的拓扑结构和故障类型,确定继电
保护的动作逻辑,即保护装置的动作顺序和动作方式。
6. 考虑通信和互锁功能:根据线路的通信需求和操作要求,设计继
电保护的通信和互锁功能,以实现线路的自动化控制和远程监控。
7. 进行保护设备的参数设置和校验:根据线路的实际运行情况,设
置继电保护装置的参数,并进行校验和测试,以确保保护装置的可
靠性和准确性。
8. 编制继电保护接线图和操作手册:根据继电保护设计的结果,编
制继电保护接线图和操作手册,以供操作人员参考和使用。
需要注意的是,35kV输电线路的继电保护设计需要根据具体的工程
要求和标准进行,以上仅为一般性的设计步骤,具体设计还需根据
实际情况进行细化和调整。
35kv输电线路继电保护设计
35kv输电线路继电保护设计一、继电保护系统介绍继电保护系统是电力系统中必不可少的一种保护方式,其主要作用是对电力设备的异常电气状态进行检测,并对检测结果进行处理,判断是否需要执行保护操作。
继电保护系统包括主保护、备用保护和辅助保护三个部分,其中主保护是最重要的一部分,主要负责检测系统中出现的故障,在故障出现时能够及时地切断故障电路,以保证系统的安全可靠运行。
二、35kv输电线路特点35kv输电线路是电力系统中的一种电力输送方式,其主要特点包括输送距离较长、输电线路具有较高的电压和电流等。
35kv输电线路的保护设计需要考虑到以下几个方面的因素:•信号传输时间:由于35kv输电线路的长度较长,信号传输时间需要考虑,不能超过电路本身的保护时间。
•保护等级:35kv输电线路属于中压线路,保护等级要求较高,能够检测到多种故障类型并对其进行快速处理。
•大电流防护:由于35kv输电线路的电流比较大,保护设计的时候需要考虑到电流对继电保护元件的影响。
•兼容性:35kv输电线路需要兼容各类继电保护装置,以便于之后的维护操作。
三、35kv输电线路继电保护设计要点35kv输电线路的继电保护设计需要依据上述特点,具体要点包括:3.1 继电保护装置选型在设计35kv输电线路的继电保护装置时,需要考虑信号传输时间、保护等级和兼容性等方面因素。
选用符合要求的保护装置,以保证保护的准确性、灵敏度和可靠性。
3.2 装置接线方式装置的接线方式是保护系统中的重要环节,需要考虑到电流对继电保护元件的影响,以保证继电保护装置能够准确地检测异常的电气状态。
3.3 保护投入时间35kv输电线路的长度比较长,保护投入的时间需要考虑信号传输的时间、距离等因素,保护投入时间一般要小于电路保护时间。
3.4 设备故障检测35kv输电线路的保护设计需要考虑到多种故障类型的检测,包括短路、接地、相间故障等,继电保护装置能够快速准确地判读故障类型,并采取相应措施进行处理。
(完整word版)35KV线路继电保护课程设计
XXXXXXXXXXXXXXXXXXXX学院《35KV线路继电保护》课程设计姓名:系别:专业:班级:学号:指导老师:起止时间XXXX年X月XX日至XXXX年X月X摘要本次继电保护设计是35KV线路继电保护的配置及整定计算设计.本文首先介绍了此次设计要点,根据给定35KV线路网络的接线图及参数,进行短路电流进行整定计算,制定出反应其输电线路上相间短路、接地短路故障的继电保护配置方案。
通过对所配置的继电保护进行整定计算和校验,论证继电保护配置的正确性,并对部分输电线路继电保护回路进行了设计。
【关键词】短路电流整定计算输电线路继电保护目录摘要1第一章概述1.1 课程设计的目的1 1.2 课程设计的要求1 1。
3 课程设计的内容1 1。
4 设计步骤2第二章短路电流和电流保护的整定的计算2.1 设计的基本资料 3 2.2 短路电流的计算4 2.2。
1 电线路的阻抗计算4 2。
2.2AB三段式电流保护的整定值计算及灵敏度的校验5 2.2.3AD段三段式保护整定计算及灵敏度的校验6 2.3 三段式电流保护的交直流的展开图8 2。
4 单向接地故障零序电压保护9第三章继电器和互感器的选择3.1 继电器设备选择10 3。
2 互感器的变比10总结11参考文献12第一章概述1.1课程设计的目的:通过设计,是学生掌握和应用电力系统继电保护的设计、整定计算、资料整理查询和电气绘图等使用方法。
在此过程中培养学生对各门专业课程整体观念综合能力,通过较为完整的工程实践基本训练,为全面提高学生的综合素质及增强工作适应能力打下一定的基础.1.2课程设计的的要求:设计说明书在撰写时,文句要力求精炼简明,深入浅出,通顺易读。
计算过程的撰写要求:计算方法正确、参数取值合理,严格执行国家和行业现行的技术规范和标准;数据真实、可靠,公式选用合适,计算结果正确、可信,书写规范、工整。
对于图纸,要求按工程图标准绘制,图面要求排列整齐、布置合理、清洁美观。
35kV输电线路继电保护系统设计
35 kV 输电线路继电保护系统设计摘要:在现在的电网中,输电线路显得尤其重要,输电线路和电网系统的安全有着紧密的联系,一个出问题,另一个也就会出故障。
所以,如何快速而有准确的去解决问题,这便给输电线路的保护提了很高的一个要求。
本文35kV输电线路继电保护系统的设计主要是利用距离保护原理,还得加上微机保护装置,在许多的高压电网中设计的一套保护系统。
距离保护可以很好的对所设计的输电线路进行保护,它可以看出来线路中是不是有故障,或者说是可以鉴定它有没有在保护区之内,然后来观察动作的大小,距离保护克服了很大的影响,因为电流和电压保护的缺点由系统运行模式去决定,还有很好的保护性能。
关键词:继电保护;继电保护;距离一、绪论由于在露天环境下,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些故障。
在过去的很多时间里,因为要杜绝这类不安全事故(短路故障)的发生,但同时还得保证输电线路得保持运行状态,那么就有必要对线路进行检测,保护和修缮。
在高压输电线路保护的现实运用中,常常会发生故障,这就影响了继电保护装置的积极功能,在工作过程中,可能运行的设备就会特别多,保障电气设备的安全运行才可以提高输配电的服务质量水平。
对于35kV输电线路的运行而言,加强继电保护的应用是重中之重,而当高电压电力系统出现故障时,如果有继电保护的话,就会对它发出报警信号,从这一点就看出来了电气系统继电保护的必要性[1]。
二、输电线路故障分析与保护配置在外边的环境里,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些突发性的意外。
(一)、引起故障的原因1. 雷击故障当输电线路正常工作的时候,突然来一声爆雷,很有可能会发生故障,而它可以分为好几种类型,导线和金属可能会对横担构件放电,而且第一片绝缘子也可能会对导线放电,复合绝缘子之间会相互放电等等很多类型,而且雷击状况的出现会让低零值绝缘子钢帽发生爆裂,可能会导致发生断电[2]。
35kV电网继电保护(共40张)
(三)可能(kěnéng)出现过负荷的电缆线路或电缆与架空混合线 路,应装设过负荷保护,保护宜带时限动作于信号,必要时可 动作于跳闸。
瓦斯保护优缺点:
瓦斯保护的主要优点是结构简单,灵敏性高,能反应变压器油箱内的各种 故障(gùzhàng)。特别是能反应轻微匝间短路。它也是油箱漏油或绕组、铁芯烧损 的唯一保护。
瓦斯保护不能反应变压器套管和引出线的故障,需与纵差动保护一起作 为变压器的主保护。
第25页,共40页。
电力变压器保护
2、电流速断保护
3、电流Ⅲ段的保护(bǎohù)范围:能保护(bǎohù)本线路和相邻线路全长。 电流Ⅲ段一般做后备保护。
Ⅲ段的后备作用: 1)近后备——同一地点电流I、Ⅱ段拒动的后备 2)远后备——下一个变电站的保护和断路器拒动的后备(防止短路点不切除
)
第12页,共40页。
35kV电网线路保护
4、评价
简单可靠,灵敏性好。
变压器的故障类型:
油箱内部故障:绕组匝间,绕组相间,中性点接地侧的接地短路。 油箱外部故障:套管和引出线上发生的相间短路和接地短路。
变压器的不正常工作状态:
外部短路引起的过电流;外部短路引起的中性点过压;过负荷; 油面降低;油温升高;过励磁。
第19页,共40页。
电力变压器保护
变压器主保护(bǎohù)配置
变压器安装时, 应使顶盖与水平 面之间夹角应有1 %~1.5%的坡 度,连接管有2 %~4%的升高坡 度。
电力变压器保护
瓦斯保护分为: 重瓦斯和轻瓦斯
35KV电网继电保护的设计
35KV电网继电保护的设计1.保护原则:35KV电网的继电保护设计需要遵循以下原则:-安全性:保证电网运行的安全,避免事故发生;-稳定性:维持电网的稳定运行,防止电力故障蔓延;-快速性:保证继电保护的响应速度,快速切除故障;-灵敏性:对故障信号做出快速反应,减少事故影响范围。
2.继电保护装置的选用:根据35KV电网的特点,选择合适的继电保护装置。
常用的继电保护装置包括:-欠压保护装置:用于检测电网电压低于额定值时的状态,并及时切除电源,防止设备过压损坏;-过流保护装置:用于检测电网中的过流情况,并切除故障电流,以避免电气设备损坏;-压差保护装置:用于监测电网中的压差,并在超过设定值时切除故障电流;-隔离保护装置:用于监测电网中的隔离开关状态,当发生故障时切除电源,以防止电压出现偏差。
3.继电保护装置的配置:35KV电网的继电保护装置需要合理配置,以实现全覆盖和互备。
一般会采用多个保护回路配置,以确保电网的可靠性。
每个保护回路通常包括电流变压器、电压变压器、继电器等组件,以实现对电网的全面监测。
4.继电保护装置的参数设置:继电保护装置的参数设置需要根据35KV电网的运行情况进行调整。
包括调整保护装置的动作参数,确定保护装置的保护原则和动作条件。
此外,还需要设置保护装置的故障录波器、通信接口和事件记录器等功能,以实现对电网故障的分析和记录。
5.继电保护系统的通信:35KV电网的继电保护系统需要与其他系统进行通信,以实现对电网的远程控制和监测。
通常会采用继电保护系统和SCADA系统进行通信,以实现对电网的实时监测和故障处理。
综上所述,35KV电网继电保护的设计需要考虑电网的特点和需要,并配置合适的继电保护装置和系统。
通过合理的选用、配置和参数设置,可以保证电网的安全和稳定运行。
35KV线路保护
35KV输电线路继电保护设计作者:鄢凯指导教师:陕春玲教学单位:三峡大学葛洲坝集团电力有限责任公司摘要:35KV输电线路继电保护主要是阶段式电流保护,即第Ⅰ段为电流速断保护,第Ⅱ段为限时电流速断保护,第Ⅲ段为过电流保护。
它以第Ⅰ段和第Ⅱ段作为主保护,以第Ⅲ段作为辅助保护。
当第Ⅰ、Ⅱ段灵敏系数不够时,可采用电流、电压联锁速段保护。
第Ⅰ段保护动作时间短,速动性好,但其动作电流较大,不能保护线路全长,保护范围最小;第Ⅱ段保护有较短的动作时限,而且能保护线路全长,却不能作为相邻元件的后备保护;第Ⅲ段保护的动作电流较前两段小,保护范围大,既能保护本线路的全长又能作为相邻线路的后备保护,灵敏性最好,但其动作时限较长,速动性差。
使用Ⅰ段、Ⅱ段、Ⅲ段组成的阶段式电流保护的主要优点是简单、可靠,并且在一般情况下能够满足快速切除故障的要求。
阶段式电流保护,在灵敏系数能满足要求时,用于35KV中性点非直接接地电网的线路上,作为相间短路的保护。
在35KV线路继电保护的设计中,还用到了单相接地保护,一般采用无选择性的绝缘监视信号装置。
关键词:35KV线路阶段式电流保护单相接地保护整定计算原理接线图评价及应用前言电力系统继电保护技术,是随电力系统的发展而发展起来的一门专业技术。
电力系统的发展,使发电设备容量和供电范围不断扩大,电压等级不断提高,电力系统的网络也越来越复杂。
这对于保证电力系统安全、可靠、稳定运动必不可少的继电保护技术,便提出了越来越高的要求,从而也就有了电力系统继电保护原理和装置从简单到复杂的发展过程。
再次我们所介绍的继电保护原理及装置主要用于35KV输电线路中。
35KV电力系统属中性点非直接接地系统,其中性点或经消弧线圈接地或不接地;对于相间短路和单相接地,由于接地电流小,三相电压仍能保持平衡,对用户没有很大的影响。
因此,单相接地保护一般动作于信号,但单相接地对人身和设备的安全产生危害时,就应动作于断路器跳闸,故均应装设相应的继电保护装置,一般由具有阶梯时限特性的多段式保护构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继电保护课程设计1、系统的等值电路图1.1 两台变压器的等值阻抗计算 电压百分数的计算:()()1(13)(12)(23)11%%%%17.510.5 6.510.7522k k k k U U U U ---=+-=+-=()()2(12)(23)(13)11%%%%10.5 6.517.50.2522k k k k U U U U ---=+-=+-=-()()3(13)(23)(12)11%%%%17.5 6.510.5 6.7522k k k k U U U U ---=+-=+-=变压器的等值阻抗计算:11%10.751000.1710010063k B T TN U S X S =•=•= 22%0.251000.00410010063k B T TN U S X S -=•=•=- 33% 6.751000.1110010063k B T TN U S X S =•=•= 1.2 系统的等值电路图系统的等值电路图如图1-1所示:图1-1 系统的等值电路图2、线路短路计算分别进行最大运行方式和最小运行方式下各条线路发生对称三相短路,单相接地短路,两相接地短路和两相短路。
2.1 各线路阻抗参数及计算公式经过查手册得:LGJ-400型线路=0x 0.396Ω/km ,LGJ-300型线路=0x 0.404Ω/km ,LGJ-150型线路=0x 0.425Ω/km ,LGJ-120型线路=0x 0.435Ω/km 。
利用计算公式:0x x l =• 2.2 各线路阻抗参数计算数值 2.2.1各线路阻抗参数计算数值各线路阻抗参数计算数值如下表2.1所示:2.2.2各线路阻抗参数标幺值计算数值标幺值计算为:2*BBU S x x ⋅= 计算数值如下表 2.2所示:(其中110 1.05115.5B U =⨯=Kv )表2.2 各线路阻抗标幺值计算数值L-3 L-4 L-5 L-6110KV0.18 0.15 0.23 0.102.3 三相短路计算2.3.1最大运行方式下短路电流计算 如图2-1所示发生(3)d 点短路时113B d L BS I X X U ε=•+。
图2-1 发生(3)d点短路时的电路图其中11231//()0.0192//(0.2880.085)0.01832X X X X ε=+=+=,那么: L-3:11002.520.01830.183115.5d I KA =⨯=+⨯L-4: 11002.970.01830.153115.5d I KA =⨯=+⨯线 路电压L-5: 11002.010.01830.233115.5d I KA =⨯=+⨯L-6: 11004.230.01830.13115.5d I KA =⨯=+⨯不考虑主变上的阻抗时123110.2880.170.37322X X X ε=+=+⨯=则有: (3)11001.340.3733115.5d I KA =⨯=⨯ 2.3.2最小运行方式下短路电流计算 如图2-2所示发生(3)d 点短路时113B d L BS I X X U ε=•+。
图2-2 发生(3)d点短路时的电路图其中1123//()0.0192//(0.2880.17)0.0184X X X X ε=+=+=,则有最小运行方式下各线路短路电流与最大运行方式下各线路短路电流近似。
不考虑主变阻抗的情况下:1230.2880.170.458X X X ε=+=+=(3)11001.090.4583115.5d I KA =⨯=⨯ 2.4 单相接地短路零序电网图如图2-3所示:图2-3零序电网图2.4.1最大运行方式下正序、负序、零序电抗的计算由于中性点接地系统中两变压器并联运行时,一般只有一台变压器中性点接地,零序阻抗不变,但正序、负序阻抗要变,那么:1210.373X X X ε∑∑===01343//()0.0576//0.280.047X X X X ∑=+== (1)1d 点发生单相接地短路时:短路电流为01033130.5 1.9220.3730.0473B f B E I X X U ⨯==⨯=+⨯+KA (其中1151110E ==为发电机电压的标幺值)主变上流过的电流:030.321I KA =(根据分流公式计算)各线路的短路电流分别为:(此时应考虑主变的阻抗,故10113;x x x x x L =+=ε∥)(43x x ++3L x ;BB f U S x x EI 3233010⋅+=,10.183X ε=)L-3: 198.018.00183.01=+=x587.054.0047.00=+=xKA I f 53.11153100594.0330=⨯⨯=L-4: =1x 0.0183+0.15=0.16587.054.0047.00=+=x =03f I 162.13=⨯⨯1153100 1.27KA L-5: =1x 0.018+0.23=0.248587.054.0047.00=+=x =03f I 724.13=⨯⨯11531000.87KA L-6: 10.01830.100.118x =+=587.054.0047.00=+=x=03f I 78.03=⨯⨯1153100 1.92KA 2.4.2最小运行方式下正序、负序、零序电抗的计算(1)1d 点发生单相接地短路时:1210.458X X X ε∑∑===01343//()0.0576//0.280.047X X X X ∑=+== (1)1d 点发生单相接地短路时:短路电流为01033130.5 1.6220.4580.047f E I X X ⨯==⨯=+⨯+KA主变上流过的电流:030.265I KA =(根据分流公式计算)最小运行方式下线路的短路电流与最大运行方式下短路电流近似相等。
2.5 发生两相短路时的短路计算2.5.1最大运行方式下正序、负序、零序电抗的计算 发生(1.1)d 短路时1210.373X X X ε∑∑===01343//()0.0576//0.280.047X X X X ∑=+==0100.5 3.2320.3730.0472f I KA X X ==⨯=++⨯主变上流过的电流:030.545I KA =(根据分流公式计算)各线路的短路电流分别为:(此时应考虑主变的阻抗,故10113;x x x x x L =+=ε∥)(43x x +;BB f U S x x EI 3233010⋅+=,10.183X ε=)L-3: 198.018.00183.01=+=x587.054.0047.00=+=x =03f I 372.13=⨯⨯1153100 1.1KA L-4: =1x 0.0183+0.153=0.17=0x 0.047+0.459=0.506 =03f I 54.03=⨯⨯1153100 1.78KA L-5: =1x 0.018+0.23=0.248=0x 0.047+0.69=0.737 =03f I 233.13=⨯⨯1153100 1.22KA L-6: 10.01830.100.118x =+==0x 0.047+0.228=0.335=03f I 563.03=⨯⨯1153100 2.68KA 2.5.1最小运行方式下正序、负序、零序电抗的计算 发生(1.1)d 短路时1210.458X X X ε∑∑===01343//()0.0576//0.280.047X X X X ∑=+==01030.5 2.7220.4580.0472f I KA X X ==⨯=++⨯主变上流过的电流:030.462I KA =(根据分流公式计算)最小运行方式下线路的短路电流与最大运行方式下短路电流近似相等。
2.6 发生两相短路时的短路计算 110kv 线路短路电流值如表2.3所示:表2.3 110kv 线路短路电流值3、 CT 、PT 变比的确定CT 一次电流应使正常负荷下仪表指示在刻度的2/3以上并有适当的过负荷裕度。
主变按E I I 5.11≥考虑,出线按E I I 25.11≥考虑。
保护和仪表共用一组时,只能选用相同的一次电流,当单独用于保护时对变压器差动,Y 侧应增大3倍。
测量用0.5级,保护用3级,差动保护用D 级。
主变变比:CT 变比 e e e ee e U SI I I U S I =⇒≥=113,3高压侧:I 1=63000/110=572.73(A ) 选600/5 中压侧:I 1=63000/35=1800(A ) 选2000/5 低压侧:I 1=63000/10=6300(A ) 选8000/5 PT 变比高压侧:110/3/0.1/3/0.1/3 (KV ) 中压侧:35/3/0.1/3/0.1/3 (KV ) 低压侧:10/3/0.1/3/0.1/3 (KV ) 线路CT 变比选择:ϕcos 325.1max⋅⋅=e U P I 如表3.1所示:表3.1 线路CT 变比选择4、 线路的整定计算4.1 关于110KV 线路保护配置110KV 线路属于长距离重负荷线路,不适合用电压,电流保护,因此采用距离保护,由于距离保护只与故障点距离有关,受系统运行方式影响较小,所以能有效,可靠速动保护线路。
即选取距离保护与接地距离保护构成的高频闭锁距离保护做主保护。
4.2相间距离及接地距离Ⅰ段保护 l rel op Z k Z ⋅='s t 01= 85.0=rel kⅡ段与下级线路Ⅰ段配合,因下级线路不明,按满足灵敏度要求整定。
时间较配合段保护大一个△t=0.5。
sen Lopk Z Z ≥" 3.1=sen kL L sen op Z Z k Z 3.1"=⋅= s t 5.0"=Ⅲ段按躲过最小负荷阻抗来整定,时间较配合段保护大一个t ∆。
nfh N fh U SI U Z 31109.09.0maxmin ⨯==φ ,t t t ∆+=5.0"'"φN U 为额定电压(相)"t 为配合段保护时间m ax fh I 为线路最大负荷电流zqre rel fh opk k k Z Z⋅⋅=min .'"rel k 为可靠系数取1.15 re k 为返回系数取1.15 zq k 为自起动系数取2其中Ⅰ、Ⅱ段为经切换的方向阻抗.Ⅲ段为全阻抗 4.2.1 接地及相间距离保护的计算 Ⅰ段保护:L rel op Z k Z ⋅=' 0.85rel k =计算数值如下:L-3:'0.8523.820.23op Z =⨯=Ω L-4 :'0.8520.217.17op Z =⨯=Ω L-5 :'0.8530.325.76op Z =⨯=Ω L-6 :'0.8512.810.88op Z =⨯=Ω将阻抗值转化成二次值YHLHop opn n Z Z ⋅='如表4.1所示: 表4.1 阻抗值转化成二次值灵敏度校验:(不进行灵敏度校验) Ⅱ段保护:L sen op Z k Z ⋅=" 3.1=sen k 计算数值如下:L-3:'' 1.323.830.94op Z =⨯=Ω L-4 :'' 1.320.226.26op Z =⨯=Ω L-5 :'' 1.330.339.39op Z =⨯=Ω L-6 :'' 1.312.816.64op Z =⨯=Ω 整定时间:''0.5t s =将阻抗值转换为二次值YHLHop opn n Z Z ⋅='如表4.2所示: 表4.2 阻抗值转化成二次值灵敏度校验sen L opk Z Z ≥": L-3:''30.941.323.8op L Z Z == L-4 :''26.261.320.2op LZ Z ==L-5 :1.330.3op L Z == L-6 :''16.641.312.8op LZ Z == 以上线路均满足灵敏度系数要求范围。