高考数学一轮复习 11-3课时作业

合集下载

2025年高考数学一轮复习课时作业-三角函数【含解析】

2025年高考数学一轮复习课时作业-三角函数【含解析】

2025年高考数学一轮复习课时作业-三角函数【原卷版】(时间:45分钟分值:80分)【基础落实练】1.(5分)下列函数中,是周期函数的为()A.y=sin|x|B.y=cos|x|C.y=tan|x|D.y=(x-1)02.(5分)函数f(x)=ln(cos x)的定义域为()A.{x|kπ-π2<x<kπ+π2,k∈Z}B.{x|kπ<x<kπ+π,k∈Z}C.{x|2kπ-π2<x<2kπ+π2,k∈Z}D.{x|2kπ<x<2kπ+π,k∈Z}3.(5分)函数f(x)=sin(2x-π4)在区间[0,π2]上的最小值为()A.-1B.-22C.22D.04.(5分)函数f(x)=sin + cos + 2在[-π,π]上的图象大致为()5.(5分)(2024·哈尔滨模拟)方程2sin(2x+π3)-1=0在区间[0,4π)上的解的个数为()A.2B.4C.6D.8【6.(5分)(多选题)(2023·长沙模拟)已知函数f(x)=4cos2x,则下列说法中正确的是()A.f(x)为奇函数B.f(x)的最小正周期为πC.f(x)的图象关于直线x=π4对称D.f(x)的值域为[0,4]7.(5分)写出一个最小正周期为3的偶函数为f(x)=.8.(5分)已知函数y=sin(ωx+φ)(ω>0)的图象与直线y=12,距离最近的两点间的距离为π3,那么此函数的最小正周期是.9.(5分)已知f(x)=sin[π3(x+1)]-3cos[π3(x+1)],则f(x)的最小正周期为, f(1)+f(2)+…+f(2025)=.10.(5分)函数f(x)=cos x-cos2x,则f(x)是()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为9811.(10分)已知函数f(x)=sin(2x-π3)+32.(1)求函数f(x)的最小正周期及其图象的对称中心;(2)若f(x0)≤3,求x0的取值范围.即x0的取值范围为[-π2+kπ,π3+kπ](k∈Z).【能力提升练】12.(5分)(多选题)对于函数f(x)=|sin x|+cos2x,下列结论正确的是()A.f(x)的值域为[0,98]B.f(x)在[0,π2]上单调递增C.f(x)的图象关于直线x=π4对称D.f(x)的最小正周期为π13.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象的相邻两条对称轴间的距离为π2,且f(π12)=2,则f(π8)=.14.(10分)(2023·北京高考)设函数f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2).(1)若f(0)=-32,求φ的值.(2)已知f(x)在区间[-π3,2π3]上单调递增,f(2π3)=1,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使函数f(x)存在,求ω,φ的值.条件①:f(π3)=2;条件②:f(-π3)=-1;条件③:f(x)在区间[-π2,-π3]上单调递减.2025年高考数学一轮复习课时作业-三角函数【解析版】(时间:45分钟分值:80分)【基础落实练】1.(5分)下列函数中,是周期函数的为()A.y=sin|x|B.y=cos|x|C.y=tan|x|D.y=(x-1)0【解析】选B.因为cos|x|=cos x,所以y=cos|x|是周期函数.其余函数均不是周期函数.2.(5分)函数f (x )=ln(cos x )的定义域为()A .{x |k π-π2<x <k π+π2,k ∈Z }B .{x |k π<x <k π+π,k ∈Z }C .{x |2k π-π2<x <2k π+π2,k ∈Z }D .{x |2k π<x <2k π+π,k ∈Z }【解析】选C .由cos x >0,解得2k π-π2<x <2k π+π2,k ∈Z .所以函数f (x )=ln(cos x )的定义域为{x |2k π-π2<x <2k π+π2,k ∈Z }.3.(5分)函数f (x )=sin(2x -π4)在区间[0,π2]上的最小值为()A .-1B .-22C .22D .0【解析】选B .由已知x ∈[0,π2],得2x -π4∈[-π4,3π4],所以sin(2x -π4)∈[-22,1],故函数f (x )=sin(2x -π4)在区间[0,π2]上的最小值为-22.4.(5分)函数f (x )=sin + cos + 2在[-π,π]上的图象大致为()【解析】选D .由f (-x )=sin (- )+(- )cos (- )+(- )2=-sin -cos + 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A;又f (π2)=1+π2(π2)2=4+2ππ2>1,f (π)=π-1+π2>0,排除B,C .5.(5分)(2024·哈尔滨模拟)方程2sin(2x +π3)-1=0在区间[0,4π)上的解的个数为()A .2B .4C .6D .8【解析】选D .由2sin(2x +π3)-1=0得sin(2x +π3)=12,x ∈[0,4π),分别画出y 1=sin(2x +π3)和y 2=12在x ∈0,4π上的图象,如图:两函数图象有8个交点,故方程2sin(2x +π3)-1=0在区间0,4π上的解的个数为8.6.(5分)(多选题)(2023·长沙模拟)已知函数f (x )=4cos 2x ,则下列说法中正确的是()A .f (x )为奇函数B .f (x )的最小正周期为πC .f (x )的图象关于直线x =π4对称D .f (x )的值域为[0,4]【解析】选BD .f (x )=4cos 2x =2cos 2x +2,该函数的定义域为R .因为f (-x )=2cos(-2x )+2=2cos 2x +2=f (x ),所以函数f (x )为偶函数,A 错误;函数f (x )的最小正周期为T =2π2=π,B 正确;因为f (π4)=2cos(2×π4)+2=2,所以f (π4)既不是函数f (x )的最大值,也不是该函数的最小值,C 错误;因为-1≤cos 2x ≤1,所以f (x )=2cos 2x +2∈[0,4],D 正确.7.(5分)写出一个最小正周期为3的偶函数为f (x )=.【解析】f (x )=cos(2π3x )为偶函数,且T =2π2π3=3.答案:cos(2π3x)(答案不唯一)8.(5分)已知函数y=sin(ωx+φ)(ω>0)的图象与直线y=12,距离最近的两点间的距离为π3,那么此函数的最小正周期是.【解析】根据正弦型函数的周期性,当sin(ωx+φ)=12时,若ωx1+φ=π6,则最近的另一个值为ωx2+φ=5π6,所以ω(x2-x1)=2π3,而x2-x1=π3,可得ω=2.故此函数的最小正周期是2π =π.答案:π9.(5分)已知f(x)=sin[π3(x+1)]-3cos[π3(x+1)],则f(x)的最小正周期为, f(1)+f(2)+…+f(2025)=.【解析】依题意可得f(x)=sin[π3(x+1)]-3cos[π3(x+1)]=2sinπ3x,其最小正周期T=6,且f(1)+f(2)+…+f(6)=0,故f(1)+f(2)+…+f(2025)=f(1)+f(2)+f(3)=3+3+0=23.答案:62310.(5分)函数f(x)=cos x-cos2x,则f(x)是()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为98【解析】选D.由题意,f(-x)=cos(-x)-cos(-2x)=cos x-cos2x=f(x),所以该函数为偶函数,又f(x)=cos x-cos2x=-2cos2x+cos x+1=-2(cos x-14)2+98,所以当cos x=14时,f(x)取最大值98.11.(10分)已知函数f(x)=sin(2x-π3)+32.(1)求函数f(x)的最小正周期及其图象的对称中心;【解析】(1)f(x)的最小正周期T=π.由2x-π3=kπ,k∈Z得x=π6+ π2,k∈Z,故f(x)图象的对称中心为(π6+ π2,32)(k∈Z).(2)若f(x0)≤3,求x0的取值范围.【解析】(2)因为f(x0)≤3,所以sin(2x0-π3)+32≤3,即sin(2x0-π3)≤32,所以-4π3+2kπ≤2x0-π3≤π3+2kπ,k∈Z,即-π2+kπ≤x0≤π3+kπ,k∈Z.即x0的取值范围为[-π2+kπ,π3+kπ](k∈Z).【能力提升练】12.(5分)(多选题)对于函数f(x)=|sin x|+cos2x,下列结论正确的是()A.f(x)的值域为[0,98]B.f(x)在[0,π2]上单调递增C.f(x)的图象关于直线x=π4对称D.f(x)的最小正周期为π【解析】选AD.f(x)=|sin x|+cos2x=-2|sin x|2+|sin x|+1=-2(|sin x|-14)2+98[0,98],故A正确;当x∈[0,π2]时,|sin x|∈[0,1],|sin x|=sin x在[0,π2]上单调递增,f(x)=-2(|sin x|-14)2+98,故f(x)在[0,π2]上先增后减,故B错误;f(0)=|sin0|+cos(2×0)=1,f(π2)=|sin π2|+cos(2×π2)=0,f(0)≠f(π2),故C错误;易知y=|sin x|和y=cos2x的最小正周期均为π,故f(x)的最小正周期为π,故D正确.13.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象的相邻两条对称轴间的距离为π2,且f(π12)=2,则f(π8)=.【解析】因为函数f(x)图象的相邻两条对称轴的距离为π2,所以 2=π2,得T=π,即2π =π,得ω=2,即f(x)=2sin(2x+φ),因为f(π12)=2,所以f(π12)=2=2sin(π6+φ),即sinπ6+φ)=1,因为0<φ<π2,所以π6+φ=π2,得φ=π2-π6=π3,则f(x)=2sin(2x+π3),则f(π8)=2sin(2×π8+π3)=2sin(π4+π3)=2(sinπ4cosπ3+cosπ4sinπ3)=2(22×12+22×32)=2+62.答案:2+6214.(10分)(2023·北京高考)设函数f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2). (1)若f(0)=-32,求φ的值.【解析】(1)因为f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2)所以f(0)=sin0cosφ+cos0sinφ=sinφ=-32,因为|φ|<π2,所以φ=-π3.(2)已知f(x)在区间[-π3,2π3]上单调递增,f(2π3)=1,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使函数f(x)存在,求ω,φ的值.条件①:f(π3)=2;条件②:f(-π3)=-1;条件③:f(x)在区间[-π2,-π3]上单调递减.【解析】(2)因为f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2)所以f(x)=sin(ωx+φ)(ω>0,|φ|<π2),所以f(x)的最大值为1,最小值为-1.若选条件①:因为f(x)=sin(ωx+φ)的最大值为1,最小值为-1,所以f(π3)=2无解,故条件①不能使函数f(x)存在;若选条件②:因为f(x)在[-π3,2π3]上单调递增,且f(2π3)=1,f(-π3)=-1,所以 2=2π3-(-π3)=π,所以T=2π,ω=2π =1,所以f(x)=sin(x+φ),又因为f(-π3)=-1,所以sin(-π3+φ)=-1,所以-π3+φ=-π2+2kπ,k∈Z,所以φ=-π6+2kπ,k∈Z,因为|φ|<π2,所以ω=1,φ=-π6;若选条件③:因为f(x)在[-π3,2π3]上单调递增,在[-π2,-π3]上单调递减,所以f(x)在x=-π3处取得最小值-1,即f(-π3)=-1.以下与条件②相同.。

2015届高考数学一轮总复习 11-3推理与证明

2015届高考数学一轮总复习 11-3推理与证明

2015届高考数学一轮总复习11-3推理与证明基础巩固强化一、选择题1.(文)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A.01B.43C.07D.49[答案] B[解析]75=16807,76=117649,又71=07,观察可见7n(n∈N*)的末二位数字呈周期出现,且周期为4,∵2011=502×4+3,∴72011与73末两位数字相同,故选B.(理)(2012·江西理,6)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199[答案] C[解析]本题考查了归纳推理能力,∵1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,…,47+76=123,故选C.[点评]解答本题时,可能因为分析不出右边数字与前两式的数字关系,从而无从下手,导致无法解题或错选,要注意训练观察分析、归纳概括能力.2.(2013·烟台质检)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误[答案] C[解析]三段论的大前提必须是全称命题,此推理过程是三段论,但大前提是特称命题.3.(文)将正整数排成下表:则在表中数字2014出现在( )A .第44行第78列B .第45行第78列C .第44行第77列D .第45行第77列 [答案] B[解析] 第n 行有2n -1个数字,前n 行的数字个数为1+3+5+…+(2n -1)=n 2.∵442=1936,452=2025,且1936<2014,2025>2014,∴2014在第45行.2014-1936=78,∴2014在第78列,选B.(理)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1) [答案] B[解析] 依题意,把“整数对”的和相同的分为一组,不难得知每组中每个“整数对”的和为n +1,且每组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10(10+1)2<60<11(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位臵,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7),选B.4.(2012·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S (x )=a x -a-x,C (x )=a x +a -x ,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③2S (x +y )=S (x )C (y )+C (x )S (y ); ④2S (x -y )=S (x )C (y )-C (x )S (y ). A .①② B .③④ C .①④ D .②③[答案] B[解析] 经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y -a-x -y),S (x )C (y )+C (x )S (y )=2(a x +y -a-x -y),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ).综上所述,选B.5.(文)n 个连续自然数按规律排成下表:根据规律,从2012到2014的箭头方向依次为()A.↓→B.→↑C.↑→D.→↓[答案] A[解析]观察图例可见,位序相同的数字都是以4为公差的等差数列,故从2012至2014,其位序应与012相同,故选A.(理)已知函数f(x)=sin x+e x+x2010,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),则f2014(x)=()A.sin x+e x B.cos x+e xC.-sin x+e x D.-cos x+e x[答案] C[解析]f1(x)=f′(x)=cos x+e x+2010x2009,f2(x)=f1′(x)=-sin x+e x+2010×2009x2008,f3(x)=f2′(x)=-cos x+e x+2010×2009×2008x2007,f4(x)=f3′(x)=sin x+e x+2010×2009×2008×2007x2006,由此可以看出,该函数前2项的和成周期性变化,周期T=4;而f2014(x)=f′2013(x),此时其最后一项的导数已变为0.故求f2014(x)的值,只需研究该函数前2项和的变化规律即可,于是,f2014(x)=f(2+4×503)(x)=-sin x +e x.6.(文)定义某种新运算“⊗”:S=a⊗b的运算原理为如图的程序框图所示,则式子5⊗4-3⊗6=()A.2 B.1C.3 D.4[答案] B[解析]由题意知5⊗4=5×(4+1)=25,3⊗6=6×(3+1)=24,所以5⊗4-3⊗6=1.(理)若定义在区间D 上的函数f (x ),对于D 上的任意n 个值x 1、x 2、…、x n ,总满足f (x 1)+f (x 2)+…+f (x n )≥nf ⎝⎛⎭⎫x 1+x 2+…+x n n ,则称f (x )为D 上的凹函数,现已知f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,则在锐角三角形ABC 中,tan A +tan B +tan C 的最小值是( )A .3 B.23C .3 3 D. 3[答案] C[解析] 根据f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,再结合凹函数定义得,tan A +tan B +tan C ≥3tan ⎝⎛⎭⎫A +B +C 3=3tan π3=3 3.故所求的最小值为3 3.二、填空题7.(文)(2013·青岛模拟)如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x nn ).若y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值是________.[答案]332[解析] 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x nn ),∴sin A +sin B +sin C ≤3sin A +B +C3=3sin π3=332.(理)设f (x )定义如表,数列{x n }满足x 1=5,x n +1=f (x n ),则x 2014的值为________.[答案] 1[解析] 由条件知x 1=5,x 2=f (x 1)=f (5)=6,x 3=f (x 2)=f (6)=3,x 4=f (x 3)=f (3)=1,x 5=f (x 4)=f (1)=4,x 6=f (x 5)=f (4)=2,x 7=f (x 6)=f (2)=5=x 1,可知{x n }是周期为6的周期数列,∴x 2014=x 4=1.8.(文)(2012·陕西文,12)观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74,……照此规律,第五个...不等式为__________________. [答案] 1+122+132+142+152+162<116[解析] 本题考查了归纳的思想方法.观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12,22,32,…,(n +1)2;右端分母为n +1,分子成等差数列,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1,所以第五个不等式为: 1+122+132+142+152+162<116. (理)(2013·龙江模拟)已知f (n )=1+12+13+…+1n (n ↔N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.则有________________.[答案] f (2n )≥n +22(n ≥2,n ↔N *)[解析] 因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n )>n +22.故填f (2n )>n +22(n ≥2,n ∈N *).9.(文)(2013·山西四校联考)已知x ↔(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +axn ≥n +1(n ↔N *),则a =________.[答案] n n[解析] 第一个式子是n =1的情况,此时a =11=1,第二个式子是n =2的情况,此时a =22=4,第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .(理)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB=________.[答案] b 2a2[解析] 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y22.将A ,B 代入双曲线x 2a 2-y 2b2=1中得,x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 两式相减得x 21-x 22a 2=y 21-y 22b2,即(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2,即(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=b 2a 2, 即k OM ·k AB =b 2a 2.三、解答题10.(文)已知:a >0,b >0,a +b =1.求证:a +12+b +12≤2. [证明] 要证a +12+b +12≤2, 只需证a +12+b +12+2(a +12)(b +12)≤4,又a +b =1,故只需证(a +12)(b +12)≤1,只需证(a +12)(b +12)≤1,只需证ab ≤14.∵a >0,b >0,1=a +b ≥2ab ,∴ab ≤14,故原不等式成立.(理)(2013·鹤岗模拟)设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么? [解析] (1)证明:假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0, 这与公比q ≠0矛盾,所以数列{S n }不是等比数列.(2)当q =1时,{S n }是等差数列;当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2),得q =0,这与公比q ≠0矛盾.能力拓展提升一、选择题11.(文)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )[答案] D[解析] 观察所给例子可看出偶函数求导后都变成了奇函数,∵f (-x )=f (x ),∴f (x )为偶函数,∵g (x )=f ′(x ),∴g (-x )=-g (x ),选D.(理)甲、乙两位同学玩游戏,对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1乘以2后再加上12;如果出现一个正面朝上,一个反面朝上,则把a 1除以2后再加上12,这样就可得到一个新的实数a 2.对实数a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的取值范围是( )A .[-12,24]B .(-12,24)C .(-∞,-12)∪(24,+∞)D .(-∞,-12]∪[24,+∞) [答案] D[解析] 因为甲、乙同时各掷一枚均匀的硬币,出现的可能情形有4种:(正,正)、(正,反)、(反,正)、(反,反),所以每次操作后,得到两种新数的概率是一样的.故由题意得即4a 1+36,a 1+18,a 1+36,14a 1+18出现的机会是均等的,由于当a 3>a 1时甲胜,且甲胜的概率为34,故在上面四个表达式中,有3个大于a 1,∵a 1+18>a 1,a 1+36>a 1,故在其余二数中有且仅有一个大于a 1,由4a 1+36>a 1得a 1>-12,由14a 1+18>a 1得,a 1<24,故当-12<a 1<24时,四个数全大于a 1,当a 1≤-12或a 1≥24时,有且仅有3个大于a 1,故选D.12.(文)已知2+23=223,3+38=338,4+415=4415,…,若7+a t=7a t,(a 、t 均为正实数),则类比以上等式,可推测a 、t 的值,a +t =( )A .48B .55C .41D .30 [答案] B[解析] 类比所给等式可知a =7,且7t +a =72·a ,即7t +7=73,∴t =48.∴a +t =55. (理)在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“⊳”.定义如下:对于任意两个复数z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1、b 1、a 2、b 2↔R ,i 为虚数单位),当且仅当“a 1>a 2”或“a 1=a 2且b 1>b 2时,z 1⊳z 2”.下列命题为假命题的是( )A .1⊳i ⊳0B .若z 1⊳z 2,z 2⊳z 3,则z 1⊳z 3C .若z 1⊳z 2,则对于任意z ↔C ,z 1+z ⊳z 2+zD .对于复数z ⊳0,若z 1 ⊳z 2,则z ·z 1⊳z ·z 2 [答案] D[解析] 对于A ,注意到1=1+0×i ,i =0+1×i,0=0+0×i,1>0,则1⊳i,0=0且1>0,则i ⊳0,因此有1⊳i ⊳0,A 正确.对于B ,由z 1⊳z 2得“a 1>a 2”或“a 1=a 2且b 1>b 2”;由z 2⊳z 3得“a 2>a 3”或“a 2=a 3且b 2>b 3”,于是有“a 1>a 3”或“a 1=a 3且b 1>b 3”,即有z 1⊳z 3,选项B 正确.对于C ,设z =a +b i ,由z 1⊳z 2得“a 1>a 2”或“a 1=a 2且b 1>b 2”,所以“a 1+a >a 2+a ”或“a 1+a =a 2+a 且b 1+b >b 2+b ”,即有z 1+z ⊳z 2+z ,因此选项C 正确.对于D ,取z =1-2i ⊳0,z 1=3,z 2=3i ,此时z ·z 1=3-6i ,z ·z 2=6+3i ,z ·z 2⊳z ·z 1,因此选项D 不正确.综上所述,选D.二、填空题13.(文)(2013·山东省实验中学一模)以下是对命题“若两个正实数a 1,a 2满足a 21+a 22=1,则a 1+a 2≤2”的证明过程:证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数a 1、a 2、…、a n 满足a 21+a 22+…+a 2n =1时,你能得到的结论为____________________(不必证明).[答案] a 1+a 2+…+a n ≤n(理)(2013·长沙模拟)已知P (x 0,y 0)是抛物线y 2=2px (p >0)上的一点,过P 点的切线方程的斜率可通过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py ,所以过P 的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.[答案] 2x -y -2=0[解析] 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0.14.(文)黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.[答案] 503503603[解析] 按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第n 个图形中有白色地砖3(2n +1)-n 块,因此第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是503603.(理)(2013·福州模拟)对一个边长为1的正方形进行如下操作:第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图①所示的几何图形,其面积S 1=59;第二步,将图①的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图②;依此类推,到第n 步,所得图形的面积S n =(59)n .若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积V n =________.[答案] (13)n[解析] 将棱长为1的正方体分割成3×3×3=27个全等的小正方体,拿去分别与中间小正方体的六个面重合的6个小正方体和分别与中间小正方体有1条棱重合的12个小正方体,则余下的9个小正方体体积V 1=13,第二步,将余下的9个小正方体作同样的操作,则余下的9×9个小正方体的体积V 2=(13)2,故到第n 步,所得几何体的体积V n =(13)n .15.(文)经过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为:经过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为________.[答案]x 0x a 2+y 0yb 2=1 [解析] 过圆上一点M (x 0,y 0)的切线方程是把圆的方程中的x 2、y 2中的一个x 和一个y 分别用x 0、y 0代替,圆和椭圆都是封闭曲线,类比圆上一点的切线方程可以得到,过椭圆上一点P (x 0,y 0)的切线方程也是把椭圆方程中的x 2、y 2中的一个x 和一个y 分别用x 0、y 0代替,即得到切线方程为x 0xa 2+y 0y b2=1. 例如过椭圆x 24+y 2=1上一点(1,32)的切线方程为x 4+32y =1,即x +23y -4=0.(理)已知命题:若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m 、n ↔N *),则a m +n =bn -amn -m ;现已知等比数列{b n }(n ↔N *),b m =a ,b n =b (m ≠n ,m 、n ↔N *),类比上述结论,得出在等比数列{b n }中,b n +m =________.[答案] n -m b na m[解析] 等差数列中的bn 和am 可以类比等比数列中的b n 和a m ,等差数列中的bn -am 可以类比等比数列中的b na m ,数列中的bn -am n -m可以类比等比数列中的n -m b n a m ,故b m +n =n -m b na m.证明如下:设b n =b 1q n -1,则b n +m =b 1q n+m -1,∵b m =a ,b n =b ,∴b n a m =b nn b m m =(b 1q n -1)n (b 1q m -1)m =b n -m 1·q n (n -1)-m (m -1)=b n -m 1·q (n -m )(n +m -1), ∴n -m b na m =b 1q n +m -1=b m +n . 三、解答题16.(文)观察①sin 210°+cos 240°+sin10°cos40°=34;②sin 26°+cos 236°+sin6°cos36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.[解析] 观察40°-10°=30°,36°-6°=30°,由此猜想:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34. 证明:sin 2α+cos 2(30°+α)+sin α·cos(30°+α) =1-cos2α2+1+cos (60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12⎣⎡⎦⎤sin (30°+2α)-12 =34-12sin(30°+2α)+12(sin30°+2α)=34. (理)(2012·福建理,17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解析] (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34. (2)推广后的三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos (60°-2α)2-sin α(cos30°cos α+sin30°sin α) =12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.5.了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.补充说明1.推理的概念根据一个或几个已知的判断得出一个新判断,这种思维方式叫推理,推理一般有两部分组成:前提和结论.2.合情推理根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理形式,它是前提为真时,结论可能为真的推理,这种推理叫做叫合情推理,数学中常见的合情推理是归纳推理和类比推理.3.假言推理假言推理的规则是:“若p⇒q,p真,则q真”.它的本质是,通过验证结论的充分条件为真,从而判断结论为真.4.关系推理推理规则是:“如果aRb,bRc,则aRc”(其中R表示具有传递性的关系),这种推理叫关系推理,如:由a∥b,b∥c,推出a∥c,若a≥b,b≥c,则a≥c,都是关系推理.5.直接证明直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理、法则等,直接推证结论的真实性.6.分析法的特点是:从“未知”看需知,逐步靠拢“已知”,其每步推理都是寻求使每一步结论成立的充分条件,直到最后把要证明的结论归纳为判定一个明显成立的条件为止.综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其每步推理都是寻找使每一步结论成立的必要条件.7.反证法一般地,由证明p⇒q,转向证明綈q⇒r⇒…⇒t,而t与已知矛盾或与某个真命题矛盾,从而判定綈q为假,推出q为真的证明方法叫做反证法.反证法是从否定命题的结论出发,通过正确、严密的逻辑推理,由此引出一个新的结论,而这个新结论与已知矛盾,从而肯定原结论是正确的一种间接证明方法.这里所谓的“与已知矛盾”主要是指:(1)与假设自相矛盾.(2)与数学公理、定理、公式、法则、定义或已被证明了的结论矛盾.(3)与公认的简单事实矛盾.(4)使用反证法证明问题时,准确地做出反设(即否定结论),是正确运用反证法的前提,常见的“结论词”与“反设词”列表如下:(5)用反证明证题时,要首先搞清证题的思路步骤;否定原命题时要准确无误;原命题的反面不只一种情形时,要逐个排除.备选习题1.(2013·临沂二模)对于大于或等于2的自然数n 的二次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…,根据上述分解规律,对任意自然数n ,当n ≥2时,有____________.[答案] n 2=1+3+5+…+(2n -1)2.(2013·温州第一次适应性测试)已知cos π3=12, cos π5cos 2π5=14, cos π7cos 2π7cos 3π7=18, ……(1)根据以上等式,可猜想出的一般结论是________;(2)若数列{a n }中,a 1=cos π3,a 2=cos π5cos 2π5,a 3=cos π7cos 2π7cos 3π7,…,前n 项和S n =10231024,则n =________.[答案] (1)cos π2n +1cos 2π2n +1·…·cos n π2n +1=12n (n ↔N *) (2)10 [解析] (1)从题中所给的几个等式可知,第n 个等式的左边应有n 个余弦相乘,且分母均为2n+1,分子分别为π,2π,…,n π,右边应为12n ,故可以猜想出结论为cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *). (2)由(1)可知a n =12n ,故S n =12[1-(12)n ]1-12=1-12n =2n -12n =10231024,解得n =10.3.(2012·温州适应性测试)若数列{a n }的各项按如下规律排列:21,31,32,41,42,43,51,52,53,54,…,n +11,n +12,…,n +1n,…,则a 2012=________. [答案] 6459[解析] 依题意得,将该数列中分子相同的项分成一组,第n 组中的数出现的规律是:第n 组中的数共有n 个,并且每个数的分子均是n +1,相应的分母依次由1增大到n .由于1953=62×(62+1)2<2012<63×(63+1)2=2016,又2012=1953+59,因此题中的数列中的第2012项应位于第63组中的第59个数,则题中的数列中的第2012项的分子等于64,相应的分母等于59,即a 2012=6459.。

2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【含解析】

2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【含解析】

2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【原卷版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为()A.78B.34C.14D.183.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.34.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.845.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.9.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A,乙小组研发芯片B,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.8411.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =1612.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________. 13.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.14.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P1=110,P2=19,P3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【解析版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立【解析】选C.因为P(A)=1-P( )=1-23=13,所以P(A)P(B)=19,所以P(AB)=P(A)P(B)≠0,所以事件A与B相互独立,事件A与B不互斥也不对立.2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为() A.78B.34C.14D.18【解析】选B.设该运动员射击一次,击中目标的概率为p,若该运动员三次射击中,至少有一次击中目标的概率为1-1- 3=6364,解得p=34.3.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.3【解析】选B.由题意,在6:30至6:50出发上班迟到的概率为0.3×0.1+0.7×0.2=0.17.4.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.84【解析】选C.设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.5.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件【解析】选BD.由题意知,A1,A2,A3是两两互斥的事件,故D正确;P(A1)=510=12,P(A2)=210=15,P(A3)=310,P(B|A1)=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C 不正确.6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )【解析】选BC.由相互独立事件的概率的乘法计算公式,可得A错误,B正确;事件 包含“视频甲未入选,图片乙入选”“视频甲入选,图片乙未入选”“视频甲、图片乙都未入选”三种情况,所以P( )=P( C)+P(B )+P( ),则P( )>P( C)+P(B ),所以C正确;由题可知,P( C)=1-·1 = -1 ,P(B )=1 ·1-= -1 ,因为a,b∈N*,a>b>1,所以 -1 > -1 ,即P( C)>P(B ),故D错误.7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.【解析】设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 61C 72=27,P (AB )=1C 72=121,故P (B |A )= ( ) ( )=16.答案:168.(5分)某射击运动员每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.【解析】(1)设第一次击中为事件A ,第二次击中为事件B ,则P (A )=45,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是45.(2)设仅击中一次为事件C ,则仅击中一次的概率为P (C )=C 21×45×15=825,在仅击中一次的条件下,第二次击中的概率是P (B |C )=15×45825=12.答案:(1)45(2)129.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A ,乙小组研发芯片B ,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【解析】(1)甲小组研发芯片A 成功的概率为p 1=15×12=110,乙小组研发芯片B 成功的概率为p 2=35×23=25,由于甲、乙两个小组的研发相互独立,所以A ,B 两种芯片都研发成功的概率P=p1·p2=110×25=125.(2)该公司获得政府奖励则需有芯片研发成功,根据对立事件可知获奖的概率: P=1-(1-p1)(1-p2)=1-(1-110)(1-25)=1-910×35=2350.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.84【解析】选C.依题意,在这段时间内,甲乙都不去参观博物馆的概率为P1=1-0.6×1-0.5=0.2,所以在这段时间内,甲乙两人至少有一个去参观博物馆的概率是P=1-P1=1-0.2=0.8.11.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =16【解析】选D.将4名志愿者分配到三座体育馆,每座体育馆至少派1名志愿者,共有C42C21A22·A33=36种安排方案;志愿者甲派往黄龙体育中心、志愿者乙派往黄龙体育中心、志愿者乙派往杭州奥体中心,各有C32A22+A33=12种方案,所以P =P =P(C)=1236=13;志愿者甲、乙均派往黄龙体育中心,有A22=2种方案,所以P =236=118;志愿者甲派往黄龙体育中心且志愿者乙派往杭州奥体中心,有1+C21C21=5种方案,所以P =536;对于A,因为P ≠P P ,所以事件A与B不相互独立,A错误;对于B,因为P =536≠0,所以事件A与C不是互斥事件,B错误;对于C,P =53613=512,C错误;对于D,P =11813=16,D正确.12.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________.【解析】设进行检测的4个汉字中至少有一个是最后一天学习的为事件A,恰有3个是后两天学习过的汉字为事件B,则事件A所包含的基本事件有n(A)=C21×C63+C62×C22=55,事件B所包含的基本事件有n(B)=C41×C43=16,所以P | = ( ) ( )= ( ) ( )=1655.答案:165513.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.【解析】由题知,P (A )=13,P (B )=34,P (A + )=P +P -P =12,即13+14-P =12,则P (A )=112.因为P +P P ,所以P =13-112=14,则P (B |A =1413=34.答案:1123414.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】(1)该款芯片生产在进入第四道工序前的次品率P =1-(1-110)(1-19)(1-18)=310.(2)设“该款芯片智能自动检测合格”为事件A ,“人工抽检合格”为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )= ( )( )=710910=79.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.【解析】设A i表示“第i台车床加工的零件(i=1,2)”,B表示“出现废品”,C表示“出现合格品”.(1)P(C)=P(A1C∪A2C)=P(A1C)+P(A2C)=P(A1)P(C|A1)+P(A2)P(C|A2)=23×(1-0.03)+13×(1-0.02)≈0.973. (2)P(A2|B)= ( 2 ) ( )= ( 2) ( | 2)( 1) ( | 1)+ ( 2) ( | 2)=13×0.0223×0.03+13×0.02=0.25.。

2023届高考数学一轮复习验收卷11

2023届高考数学一轮复习验收卷11

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(考点:复数,★)设i 为虚数单位,复数z 满足z i =(1-2i)2,则z 的共轭复数z −在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限2.(考点:集合,★)设集合A={x|x=y 2},则R A=( ). A .{x|x<0} B .{x|x ≤0} C .{x|x>0} D .{x|x ≥0}3.(考点:命题的否定,★)命题“∀x<y ,sin x>cos y ”的否定是( ). A .∀x ≥y ,sin x>cos y B .∃x<y ,sin x ≤cos y C .∀x<y ,sin x ≤cos y D .∃x ≥y ,sin x>cos y4.(考点:等差数列,★)记S n 为等差数列{a n }的前n 项和.已知S 5=5,a 4=3,则a 6=( ). A .5 B .7 C .9 D .115.(考点:独立性检验,★★)通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )得K 2=50×(20×15-10×5)230×20×25×25≈8.333,参照附表,得到的正确结论是( ).爱好 不爱好 合计 男生 20 5 25 女生 10 15 25 合计302050附:P (K 2≥k ) 0.010 0.005 0.001 k6.6357.87910.828A .有99.5%以上的把握认为“是否爱好该项运动与性别有关”B .有99.5%以上的把握认为“是否爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“是否爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“是否爱好该项运动与性别无关” 6.(考点:双曲线,★★)经过点(2√2,4),(3√3,-2√23)的双曲线的标准方程为( ). A .x 24-y 216=1 B .x 2-y24=1C.x22-y23=1 D.x2-y26=17.(考点:函数图象的判断,★★)函数f(x)=xe x-e-x的图象大致是().8.(考点:三角恒等变换,★★)已知α,β为锐角,cos α=35,tan(α+β)=-2,则tan(α-β)的值为().A.9 11B.211C.-911D.-211二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:等比数列,★★)设数列{a n}是一个各项均为正数的等比数列,已知a1=1,a n2-9a n-12=0,则下列说法正确的是().A.数列{a n}的公比为8B.数列{a n}的通项公式a n=3n-1C.数列{log3a n}是等差数列D.数列{a n}的前n项和S n=-1+3n210.(考点:点、线、面的位置关系,★★★)设α,β,γ为三个不同的平面,m,n是两条不同的直线,则下列说法正确的是().A.若n⊥β,n⊂α,则α⊥βB.若α∩β=m,n⊂γ,n∥β,m⊂γ,则m∥nC.若α⊥γ,β⊥γ,α∩β=m,n⊂γ,则m⊥nD.若m⊥α,α⊥β,α∩β=n,则m∥n11.(考点:椭圆,★★★)已知椭圆M:x2a2+y25=1(a>0)的长轴长为2√6,曲线N:5x2+10x+5y2+4=0,若点A在椭圆M上,点B在曲线N上,则下列说法正确的是().A.椭圆M的焦点坐标为(-1,0)和(1,0)B .椭圆M 的离心率为√56C .曲线N 在椭圆M 的内部D .|AB|的最小值为√6-1-√5512.(考点:函数与导数的综合运用,★★★)已知函数f (x )=ln x-12ax 2-2x (a ≠0),则下列说法正确的是( ). A .若函数f (x )在[1,4]上单调递减,则a 的取值范围为[-716,0) B .若函数f (x )在[1,4]上单调递增,则a 的取值范围为(-∞,-1]C .若函数f (x )在[1,4]上存在单调递减区间,则a 的取值范围为(-1,0)∪(0,+∞)D .若函数f (x )在[1,4]上不单调,则a 的取值范围为(-1,-716)三、填空题:本题共4小题,每小题5分,共20分.13.(考点:二项式定理,★)(x √x)5的展开式中x 2的系数为 . 14.(考点:平面向量,★★)已知三个单位向量e 1,e 2,e 3满足e 1⊥e 2,e 1·e 2+e 32≤(e 1+e 2)·e 3,则|e 1+e 2-e 3|的最大值为 .15.(考点:函数零点与方程的根,★★)已知方程3x =k-2x 的解在[1,2)内,则实数k 的取值范围为 . 16.(考点:实际应用型,★★★)已知某海滨浴场海浪的高度y (单位:m)是关于时间t (0≤t ≤24,单位:h)的函数,记作y=f (t ).经长期观测,y=f (t )的曲线可近似地看成是函数f (t )=1.1-√3cos π12t-sin π12t ,t ∈[0,24)的图象,则f (8)的值为 ;这一天的4 h 到12 h 海滨浴场海浪高度的最大差值为 m .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知等差数列{a n },其前n 项和为S n ,若a 1+a 3=10,S 5=35.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:a 1b 1+a 2b 2+a 3b 3+···+a n b n =1+(2n -1)2n,求数列()2241log n n a b +⎧⎫⎪⎪⎨⎬⋅⎪⎪⎩⎭的前n 项和T n .18.某学校田径运动会跳远比赛规定:比赛设立及格线,每个运动员均有3次跳远机会,若在比赛过程中连续两次跳不过及格线,则该运动员比赛结束.已知运动员甲跳过及格线的概率为23,且该运动员不放弃任何一次跳远机会.(1)求该运动员跳完两次就结束比赛的概率;(2)设该运动员比赛过程中跳过及格线的总次数为ξ,求ξ的概率分布.19.在①ABC 的周长为6,②sin 2a B =,③4ab =这三个条件中任选一个,补充在下画问题中.若问题中的三角形存在,判断ABC 的形状;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且,,a c b成等差数列,ABCS,___________注:如果选择多个条件分别解答,按第一个解答计分.20.如图,在四棱锥S −ABCD 中,底面ABCD 为矩形,SAD 为等腰直角三角形,SA =SD=AB =2,F 是BC 的中点,二面角S −AD −B 的大小等于120°.(1)在AD 上是否存在点E ,使得平面SEF ⊥平面ABCD ,若存在,求出点E 的位置;若不存在,请说明理由.(2)求直线SA 与平面SBC 所成角的正弦值.21.已知双曲线)(2222:10,0x y C a b a b -=>>的渐近线方程为:y =,且过点⎛ ⎭⎝(1)求双曲线C 的标准方程(2)过右焦点F 且斜率不为0的直线l 与C 交于A ,B 两点,点M 坐标为3,02⎛⎫⎪ ⎭⎝,求AM BM k k +22.已知函数2()(2)(3)x f x a x e x =+-+(a R ∈,e 为自然对数的底数). (1)讨论函数()f x 的单调性.(2)当1a e>时,证明:2(2)ln 3f x x x x ->---.。

高考数学一轮复习(北师大版文科)课时作业11

高考数学一轮复习(北师大版文科)课时作业11

课时作业(十一) 函数与方程A 级1.(2012·长沙模拟)已知函数f (x )的图像是连续不断的,有如下的x ,f (x )的对应表A .区间[1,2]和[2,3]B .区间[2,3]和[3,4]C .区间[2,3]、[3,4]和[4,5]D .区间[3,4]、[4,5]和[5,6]2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .03.(2012·天津模拟)函数f (x )=-1x +log 2x 的一个零点落在下列哪个区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈[1,2]上近似解的过程中,计算得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的解所在的区间为( )A .[1,1.25]B .[1.25,1.5]C .[1.5,2]D .不能确定5.已知a 是函数f (x )=ln x -log 12x 的零点,若0<x 0<a ,则( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定6.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0可得其中一个零点x 0∈________,第二次应计算________.7.若函数f (x )=log 2(x +1)-1的零点是抛物线y 2=ax 的焦点的横坐标,则a =________. 8.下列是函数f (x )在区间[1,2]上一些点的函数值.有效数字)9.若函数y =f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[-1,1]时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧lg x (x >0),-1x(x <0),则函数h (x )=f (x )-g (x )在区间[-5,5]内的零点为______个. 10.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝⎛⎭⎫0,12,使f (x 0)=x 0.11.若A ={a,0,-1},B =⎩⎨⎧⎭⎬⎫c +b ,1b +a ,1,且A =B ,f (x )=ax 2+bx +c .(1)求f (x )零点的个数;(2)当x ∈[-1,2]时,求f (x )的值域;(3)若x ∈[1,m ]时,f (x )∈[1,m ],求m 的值.B 级1.(2012·山东潍坊高考模拟)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图像上;②P ,Q 关于原点对称.则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( )A .0对B .1对C .2对D .3对2.若函数f (x )=ax 2-x -1仅有一个零点,则实数a 的取值范围是________. 3.已知二次函数f (x )=x 2+(2a -1)x +1-2a(1)判断命题“对于任意的a ∈R (R 为实数集),方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点,求实数a 的范围. 答案课时作业(十一)A 级1.C 因为f (2)>0,f (3)<0,f (4)>0,f (5)<0,所以在区间[2,3],[3,4],[4,5]内有零点. 2.D 当x ≤1时,由f (x )=2x -1=0,解得x =0; 当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上函数f (x )的零点只有0,故选D.3.B ∵f (1)=-1+log 21=-1<0,f (2)=-12+log 22=12>0,∴f (1)·f (2)<0,故选B.4.B 由于f (1)<0,f (1.5)>0,则第一步计算中点值f (1.25)<0, 又f (1.5)>0,则确定区间为[1.25,1.5],故选B.5.C 易知f (a )=0,函数f (x )=ln x -log 12x 在(0,+∞)上单调递增,因为0<x 0<a ,所以f (x 0)<f (a )=0.6.解析: ∵f (x )=x 3+3x -1是R 上的连续函数,且f (0)<0,f (0.5)>0,则f (x )在x ∈(0,0.5)上存在零点,且第二次验证时需验证f (0.25)的符号.答案: (0,0.5) f (0.25)7.解析: 令f (x )=log 2(x +1)-1=0,得函数f (x )的零点为x =1,于是抛物线y 2=ax 的焦点的坐标是(1,0),即⎩⎪⎨⎪⎧a >014a =1,解得a =4.答案: 48.解析: ∵f (1.438)·f (1.406 5)<0,且|1.438-1.406 5| =0.031 5<0.1,∴f (x )=0的一个近似解为1.4. 答案: 1.49.解析: 如图所示,因为函数h (x )=f (x )-g (x )在区间[-5,5]内的零点的个数为方程f (x )-g (x )=0根的个数,即函数f (x )和g (x )图像交点的个数,所以画出图像可知有8个交点.答案: 810.证明: 令g (x )=f (x )-x . ∵g (0)=14,g ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12-12=-18,∴g (0)·g ⎝⎛⎭⎫12<0.又函数g (x )在⎣⎡⎦⎤0,12上连续, ∴存在x 0∈⎝⎛⎭⎫0,12,使g (x 0)=0.即f (x 0)=x 0. 11.解析: (1)∵A =B ,∴⎩⎪⎨⎪⎧a =10=c +b-1=1b +a ,∴⎩⎪⎨⎪⎧a =1b =-2,c =2∴f (x )=x 2-2x +2.又Δ=4-4×2=-4<0,所以f (x )没有零点. (或因为f (x )=(x -1)2+1>0,所以f (x )没有零点.) (2)∵f (x )的对称轴x =1,∴当x ∈[-1,2]时,f (x )min =f (1)=1,f (x )max =f (-1)=5, ∴f (x )∈[1,5].(3)∵f (x )在x ∈[1,m ]上为增函数,∴⎩⎪⎨⎪⎧ f (1)=1f (m )=m ⇒⎩⎪⎨⎪⎧1=1m 2-2m +2=m, ∴m =1或m =2,m =1不成立,则m =2.B 级1.C 函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0的图像及函数f (x )=-x 2-4x (x ≤0)的图像关于原点对称的图像如图所示,则A ,B 两点关于原点的对称点一定在函数f (x )=-x 2-4x (x ≤0)的图像上,故函数f (x )的“友好点对”有2对,选C.2.解析: 当a =0时,则f (x )=-x -1,易知函数只有一个零点.当a ≠0时,则函数为二次函数,仅有一个零点,即Δ=1+4a =0,∴a =-14,综上,当a =0或a =-14时,函数只有一个零点.答案: ⎩⎨⎧⎭⎬⎫a | a =0或-143.解析: (1)“对于任意的a ∈R (R 为实数集),方程f (x )=1必有实数根”是真命题. 依题意:f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,∵Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R (R 为实数集)恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意:要使y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点, 只需⎩⎪⎨⎪⎧ f (-1)>0f (0)<0f ⎝⎛⎭⎫12>0即⎩⎪⎨⎪⎧3-4a >01-2a <034-a >0,解得12<a <34.。

小题专练11-2023届高考数学一轮复习新高考版

小题专练11-2023届高考数学一轮复习新高考版

小题专练11计数原理、概率与统计(A)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1..(考点:古典概型的应用,★)有编号分别为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为().A.1 3B.56C.23D.8272.(考点:随机数表的应用,★)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为().A.21B.09C.02D.173(考点:二项分布的期望与方差,★)已知随机变量ξ~B(n,p),且E(ξ)=6,D(ξ)=3,则n的值为().A.10B.8C.16D.124.(考点:组合和计数原理的应用,★★)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有().A.60种B.64种C.65种D.66种5.(考点:二项式定理的应用,★★)设(1-2x)n=a0+a1x+a2x2+…+a n x n,若a3+a4=0,则a5=().A.256B.-128C.64D.-326.(考点:排列组合的应用,★★)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买4袋该食品,能获奖的概率为().A.4 27B.827C.49D.897.(考点:条件概率的应用,★★)若全体Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(B|A)的值为().A.2 3B.13C.12D.358.(考点:线性回归方程,★★)具有相关关系的两个量x 、y 的一组数据如下表,回归方程是y ^=0.67x+54.9,则m=( ).x 10 20 30 40 50 y62m758189A.65B.67C.68D.70二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:正态分布与线性回归,★★)下列说法中正确的是( ).A .已知随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,则P (2<ξ<4)=0.16B .以模型y=c e kx去拟合一组数据时,为了求出回归方程,设z=ln y ,将其变换后得到线性回归方程z ^=0.3x+4,则c ,k 的值分别是e 4和0.3C .已知两个变量具有线性相关关系,其回归直线方程为y ^=a+bx ,若b=2,x −=1,y −=3,则a=1 D .若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为1610.(考点:扇形统计图,★★)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ). A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半11.(考点:独立性检验的应用,★★)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”做了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数的35,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有( )人. 附:P (K 2≥k 0) 0.050 0.010 k 03.8416.635K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ). A .25 B .45C .60D .7512.(考点:概率的求解公式,★★)下列对各事件发生的概率判断正确的是( ).A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该学生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29三、填空题:本题共4小题,每小题5分,共20分.13.(考点:分层抽样的应用,★★)某公司的老年人、中年人、青年人的比例为2∶6∶4,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则n= . 14.(考点:二项式定理的应用,★★)若二项式(√x +m x 2)n 的展开式的二项式系数之和为32,常数项为10,则实数n 的值为 ,实数m 的值为 .15.(考点:正态分布的应用,★★)已知在某市的高二期末考试中,该市学生的数学成绩X~N (90,σ2),若P (70≤X≤90)=0.4,则从该市学生中任选一名学生,该学生的数学成绩小于110分的概率为 .16.(考点:离散型随机变量的数学期望,★★★)某袋中装有5个除编号外完全相同的小球,编号为1,2,3,4,5.现从该袋内随机取出3个小球,记被取出的小球的最大号码数为ξ,则E (ξ)= .答案解析:1.(考点:二项分布的期望与方差,★)已知随机变量ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则n 的值为( ). A .10 B .8 C .16 D .12【解析】依题意,由二项分布的期望和方差公式得{E (ξ)=np =6,D (ξ)=np (1-p )=3,解得{n =12,p =12. 【答案】D2.(考点:随机数表的应用,★)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( ).A .21B .09C .02D .17【解析】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33的数字以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02. 【答案】C3.(考点:古典概型的应用,★)有编号分别为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为( ). A .13 B .56 C .23 D .827【解析】以(a ,b ,c )表示编号为1,2,3的盒子分别放编号为a ,b ,c 的小球,则所有的基本事件有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),共6种,其中,事件“小球的编号与盒子编号全不相同”所包含的基本事件有(2,3,1),(3,1,2),共2个,因此“小球的编号与盒子编号全不相同”的概率为26=13. 【答案】A4.(考点:组合和计数原理的应用,★★)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .64种C .65种D .66种【解析】从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,有3种情况:4个偶数,2个偶数2个奇数,4个奇数.所以不同的取法共有C 44+C 42C 52+C 54=66(种).【答案】D5.(考点:二项式定理的应用,★★)设(1-2x )n =a 0+a 1x+a 2x 2+…+a n x n ,若a 3+a 4=0,则a 5=( ). A .256B .-128C .64D .-32【解析】∵a 3+a 4=C n 3·(-2)3+C n 4·(-2)4=0,∴n=5,则a 5=C 55·(-2)5=-32.【答案】D6.(考点:排列组合的应用,★★)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买4袋该食品,能获奖的概率为( ). A .427 B .827 C .49 D .89【解析】由分步乘法计数原理可知,3种不同的精美卡片随机放进4袋食品中共有34=81种不同放法,4袋食品中有3种不同的卡片的放法有C 42·A 33=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C . 【答案】C7.(考点:条件概率的应用,★★)若全体Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P (B|A )的值为( ). A .23 B .13 C .12 D .35【解析】由题意可得P (A )=36=12,事件AB={2,5},则P (AB )=26=13,由条件概率公式得P (B|A )=1312=23. 【答案】A8.(考点:线性回归方程,★★)具有相关关系的两个量x 、y 的一组数据如下表,回归方程是y ^=0.67x+54.9,则m=( ).A.65B.67C.68D.70 【解析】∵x −=10+20+30+40+505=30,y −=62+m+75+81+895=307+m5,将点(30,307+m 5)代入回归直线方程得0.67×30+54.9=307+m 5,解得m=68.故选C. 【答案】C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:正态分布与线性回归,★★)下列说法中正确的是( ).A .已知随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,则P (2<ξ<4)=0.16B .以模型y=c e kx去拟合一组数据时,为了求出回归方程,设z=ln y ,将其变换后得到线性回归方程z ^=0.3x+4,则c ,k 的值分别是e 4和0.3C .已知两个变量具有线性相关关系,其回归直线方程为y ^=a+bx ,若b=2,x −=1,y −=3,则a=1 D .若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为16 【解析】∵随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,∴P (2<ξ<4)=P (ξ<4)-0.5=0.84-0.5=0.34,故A 错误; ∵y=c e kx ,∴ln y=ln(c e kx )=kx+ln c ,∵z ^=0.3x+4,∴ln y=0.3x+4,从而k=0.3,ln c=4,∴k=0.3,c=e 4,故B 正确; ∵直线y ^=a+bx 过点(x −,y −),∴3=a+b ,∵b=2,∴a=1,故C 正确;∵样本数据x 1,x 2,…,x 10的方差为2,∴数据2x 1-1,2x 2-1,…,2x 10-1的方差为2×22=8,故D 错误.【答案】BC10.(考点:扇形统计图,★★)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ). A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解析】设新农村建设前,农村的经济收入为a ,则新农村建设后,农村经济收入为2a.新农村建设前后,各项收入的对比如下表:故选BCD.【答案】BCD11.(考点:独立性检验的应用,★★)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”做,女生喜欢抖音的人数占了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有()人.女生人数的35附:K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ). A .25 B .45 C .60 D .75【解析】设男生的人数为5n (n ∈N *),根据题意列出2×2列联表如下:则K 2的观测值k=10n×(4n×2n -3n×n )25n×5n×7n×3n=10n 21,由于有95%的把握认为是否喜欢抖音和性别有关,则3.841≤k<6.635,即3.841≤10n21<6.635,解得8.0661≤n<13.9335.因为n ∈N *,则n 的可能取值有9,10,11,12,13,所以调查人数中男生人数的可能值为45,50,55,60,65,故选BC . 【答案】BC12.(考点:概率的求解公式,★★)下列对各事件发生的概率判断正确的是( ).A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该学生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29【解析】对于A 选项,该学生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为(1-13)2×13=427,故A 正确;对于B 选项,用A ,B ,C 分別表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35,故B 错误;对于C 选项,设“从甲袋中取到白球”为事件A ,则P (A )=812=23,设“从乙袋中取到白球”为事件B ,则P (B )=612=12,故取到同色球的概率为23×12+13×12=12,故C 正确;对于D 选项,易得P (A ∩B −)=P (B ∩A −),即P (A )·P (B −)=P (B )·P (A −),即P (A )[1-P (B )]=P (B )·[1-P (A )],所以P (A )=P (B ).又P (A −∩B −)=19,所以P (A −)=P (B −)=13,所以P (A )=23,故D 错误.【答案】AC三、填空题:本题共4小题,每小题5分,共20分.13.(考点:分层抽样的应用,★★)某公司的老年人、中年人、青年人的比例为2∶6∶4,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则n= .【解析】用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则100n=42+6+4,解得n=300. 【答案】30014.(考点:二项式定理的应用,★★)若二项式(√x +m x 2)n的展开式的二项式系数之和为32,常数项为10,则实数n 的值为 ,实数m 的值为 . 【解析】由题意得2n =32,即n=5, 则(√x +m x 2)n 的展开式的通项公式为T r+1=C 5r ·(√x )5-r ·(m x2)r =m r ·C 5r ·x 5-5r2. 令5-5r 2=0,可得r=1,则(√x +m x 2)n展开式中的常数项为T 2=m ·C 51=5m ,故5m=10,解得m=2. 【答案】5 215.(考点:正态分布的应用,★★)已知在某市的高二期末考试中,该市学生的数学成绩X~N (90,σ2),若P (70≤X≤90)=0.4,则从该市学生中任选一名学生,该学生的数学成绩小于110分的概率为 . 【解析】∵X~N (90,σ2),∴μ=90,又P (70≤X ≤90)=0.4,∴P (90≤x ≤110)=0.4,∴P (X ≥110)=1-0.4×22=0.1,则P (X<110)=1-0.1=0.9.∴该学生的数学成绩小于110分的概率为0.9.【答案】0.916.(考点:离散型随机变量的数学期望,★★★)某袋中装有5个除编号外完全相同的小球,编号为1,2,3,4,5.现从该袋内随机取出3个小球,记被取出的小球的最大号码数为ξ,则E (ξ)= . 【解析】由题意可知ξ的可能取值为3,4,5, 则P (ξ=3)=C 33C 53=0.1,P (ξ=4)=C 32C 53=0.3,P (ξ=5)=C 42C 53=0.6,所以E (ξ)=0.1×3+0.3×4+0.6×5=4.5. 【答案】4.5。

高考数学一轮复习第一章集合与常用逻辑用语课时作业3简单的逻辑联结词全称量词与存在量词课件理新人教A版

高考数学一轮复习第一章集合与常用逻辑用语课时作业3简单的逻辑联结词全称量词与存在量词课件理新人教A版

A.p∧q B.p∨(綈q) C.p∧(綈q)
D.(綈p)∧q
解析 对于命题p,若α∥β,m∥α,则还需m⊄β才能推出m∥β,所以
命题p为假命题,命题綈p为真命题;对于命题q,若m∥α,m∥β,α∩β=
n,则由线面平行的性质可推出m∥n,所以命题q为真命题,命题綈q为假
命题。所以(綈p)∧q为真命题。故选D。 答案 D
A.∀x∈R,f(-x)≠f(x) B.∀x∈R,f(-x)=-f(x) C.∃x0∈R,f(-x0)≠f(x0) D.∃x0∈R,f(-x0)=-f(x0)
解析 由题意知∀x∈R,f(-x)=f(x)是假命题,则其否定为真命题, ∃x0∈R,f(-x0)≠f(x0)是真命题。故选C。
答案 C
5.已知命题p:∃x0∈R,cosx0=54;命题q:∀x∈R,x2-x+1>0。则 下列结论正确的是( )
课时作业(三) 简单的逻辑联结词、全称量词与存在量词
基础过关组 一、选择题 1.下列语句是“p且q”形式的命题的是( ) A.老师和学生 B.9的平方根是3 C.矩形的对角线互相平分且相等 D.对角线互相平分的四边形是矩形
解析 根据逻辑联结词“且”的含义,可知C符合。A不是命题,B, D不是“p且q”形式。故选C。
答案 D
二、填空题 9.命题p的否定是“对所有正数x, ____。
x >x+1”,则命题p可写为
解析 因为p是綈p的否定,所以只需将全称量词变为特称量词,再对
结论否定即可。 答案 ∃x0∈(0,+∞), x0≤x0+1
10.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“綈q”同时 为假命题,则x=________。
C.0,14
D.0,41

2025年高考数学一轮复习课时作业-用样本估计总体【含解析】

2025年高考数学一轮复习课时作业-用样本估计总体【含解析】

2025年高考数学一轮复习课时作业-用样本估计总体【原卷版】(时间:45分钟分值:70分)【基础落实练】1.(5分)为加强学校体育工作,推动青少年文化学习和体育锻炼协调发展.某学校对高一年级6名学生某日在校体育锻炼时长(单位:分钟)进行了统计,记录如下:45,62,51,70,66,59,则该组数据的80%分位数为()A.51B.62C.66D.642.(5分)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.183.(5分)已知一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,则另一组数据3x1-2, 3x2-2,3x3-2,3x4-2,3x5-2的平均数、方差分别为()A.2,12B.2,1C.4,32D.4,924.(5分)某地为践行“绿水青山就是金山银山”的人与自然和谐共生的发展理念,对该地企业已处理的废水进行实时监测.下表是对A,B两家企业10天内已处理的废水的某项指标值的检测结果.下列说法正确的是()A43727398638665758178B82687137616558687794A.A企业该指标值的极差较大B.A企业该指标值的中位数较小C.B企业该指标值的平均数较大D.B企业该指标值的众数与中位数相等5.(5分)(多选题)(2024·湛江模拟)某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列说法正确的有()A.乙同学体温的极差为0.4B.乙同学的体温比甲同学的体温更稳定C.乙同学体温的众数为36.4,中位数与平均数相等D.甲同学体温的第70百分位数为36.56.(5分)某汽车研究院现有300名研究员,他们的学历情况如图所示,该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科生的比例下降到15%,硕士生的比例不变,则该研究院今年计划招聘的硕士生人数为________.7.(5分)(2023·厦门模拟)已知样本数据2,4,8,m的极差为10,其中m>0,则该组数据的方差为__________.8.(10分)甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【能力提升练】9.(5分)某校排球社的同学为训练动作组织了垫排球比赛,以下为根据排球社50位同学的垫球个数画的频率分布直方图,所有同学垫球数都在5至40之间.估计垫球数的样本数据的第75百分位数是()A.17.5B.18.75C.27D.2810.(5分)(多选题)(2023·新高考Ⅰ卷)有一组样本数据x1,x2,x3,x4,x5,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,x3,x4,x5,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,x3,x4,x5,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,x3,x4,x5,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,x3,x4,x5,x6的极差11.(5分)(2024·重庆模拟)某学校为了更好地关注青少年的心理健康,对某年级的全体同学进行了一次心理健康测试,测试成绩满分为100分,其中1600名同学的测试成绩的频率分布直方图如图所示,则这1600名同学测试成绩的第65百分位数为__________.12.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的成绩(成绩均为整数,满分为100分)进行统计,所有学生的成绩都不低于60分,将这50名学生的成绩(单位:分)进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100],得到如图所示的频率分布直方图.(1)求图中m的值,并估计此次竞赛活动学生成绩的中位数;(2)根据频率分布直方图,估计此次竞赛活动成绩的平均数.若对成绩不低于平均数的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.2025年高考数学一轮复习课时作业-用样本估计总体【解析版】(时间:45分钟分值:70分)【基础落实练】1.(5分)为加强学校体育工作,推动青少年文化学习和体育锻炼协调发展.某学校对高一年级6名学生某日在校体育锻炼时长(单位:分钟)进行了统计,记录如下:45,62,51,70,66,59,则该组数据的80%分位数为()A.51B.62C.66D.64【解析】选C.将6名学生该日在校体育锻炼时长记录从小到大排列为45,51,59,62,66,70,因为80%×6=4.8,所以该组数据的80%分位数为66.2.(5分)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.18【解析】选B.志愿者的总人数为20=50,所以第三组的人数为50×0.36=18,(0.24+0.16)×1有疗效的人数为18-6=12.3.(5分)已知一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,则另一组数据3x1-2, 3x2-2,3x3-2,3x4-2,3x5-2的平均数、方差分别为()A.2,12B.2,1C.4,32D.4,92【解析】选D.因为一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,所以另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数为3×2-2=4,方差为32×12=92.4.(5分)某地为践行“绿水青山就是金山银山”的人与自然和谐共生的发展理念,对该地企业已处理的废水进行实时监测.下表是对A,B两家企业10天内已处理的废水的某项指标值的检测结果.下列说法正确的是()A43727398638665758178B82687137616558687794A.A企业该指标值的极差较大B.A企业该指标值的中位数较小C.B企业该指标值的平均数较大D.B企业该指标值的众数与中位数相等【解析】选D.将A,B两家企业10天内已处理的废水的某项指标值的检测结果从小到大排列:A企业:43,63,65,72,73,75,78,81,86,98.B企业:37,58,61,65,68,68,71,77,82,94.A企业该指标值的极差为98-43=55,B企业该指标值的极差为94-37=57,A错误;A企业该指标值的中位数为73+752=74,B企业该指标值的中位数为68+682=68,B错误;A企业该指标值的平均数为43+63+65+72+73+75+78+81+86+9810=73.4,B企业该指标值的平均数为37+58+61+65+68+68+71+77+82+9410=68.1,C错误;由上可知,B企业该指标值的众数与中位数都为68,D正确.5.(5分)(多选题)(2024·湛江模拟)某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列说法正确的有()A.乙同学体温的极差为0.4B.乙同学的体温比甲同学的体温更稳定C.乙同学体温的众数为36.4,中位数与平均数相等D.甲同学体温的第70百分位数为36.5【解析】选BCD.选项A,乙同学体温的极差为36.5-36.3=0.2,故A错误;选项B,从题中折线图上可以看出,乙同学的体温比甲同学的体温更稳定,故B正确;选项C,乙同学的体温从低到高依次为36.3℃,36.3℃,36.4℃,36.4℃,36.4℃, 36.5℃,36.5℃,故众数为36.4,而中位数和平均数都是36.4,故C正确;选项D,甲同学的体温从低到高依次为36.2℃,36.2℃,36.4℃,36.4℃,36.5℃, 36.5℃,36.6℃,由70%×7=4.9,可知数据的第70百分位数为第5项数据36.5,故D 正确.6.(5分)某汽车研究院现有300名研究员,他们的学历情况如图所示,该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科生的比例下降到15%,硕士生的比例不变,则该研究院今年计划招聘的硕士生人数为________.【解析】根据题意,设今年计划招聘的硕士生为x人,博士生为y人,又由现有研究员300人,其中本科生有300×20%=60(人),硕士生有300×40%=120(人),=0.15,=0.4,解得 =40, =60.答案:407.(5分)(2023·厦门模拟)已知样本数据2,4,8,m的极差为10,其中m>0,则该组数据的方差为__________.【解析】由题意得m-2=10,所以m=12,所以该组数据的平均数为 =2+4+8+124=132,由方差的计算公式可知:s2=14 2-+(4-132)2+(8-132)2+12- =594.答案:5948.(10分)甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【解析】(1)甲=18×(82+81+79+78+95+88+93+84)=85,乙=18×(92+95+80+75+83+80+90+85)=85,甲2=18×[(82-85)2+(81-85)2+(79-85)2+(78-85)2+(95-85)2+(88-85)2+(93-85)2+(84-85)2] =35.5,乙2=18×[(92-85)2+(95-85)2+(80-85)2+(75-85)2+(83-85)2+(80-85)2+(90-85)2+(85-85)2] =41.(2)由(1)知甲=乙,甲2< 乙2,甲的成绩较稳定,所以派甲参赛比较合适.【能力提升练】9.(5分)某校排球社的同学为训练动作组织了垫排球比赛,以下为根据排球社50位同学的垫球个数画的频率分布直方图,所有同学垫球数都在5至40之间.估计垫球数的样本数据的第75百分位数是()A.17.5B.18.75C.27D.28【解析】选D.垫球数在区间[5,25)内的人数占总人数的(0.01+0.01+0.04+0.06)×5×100%=60%,垫球数在区间[5,30)内的人数占总人数的(0.01+0.01+0.04+0.06+0.05)×5×100%=85%,所以第75百分位数位于区间[25,30)内,且25+5×0.75-0.60.85-0.6=28,所以估计垫球数的样本数据的第75百分位数是28.10.(5分)(多选题)(2023·新高考Ⅰ卷)有一组样本数据x1,x2,x3,x4,x5,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,x3,x4,x5,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,x3,x4,x5,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,x3,x4,x5,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,x3,x4,x5,x6的极差【解析】选BD.对于A,如1,2,2,2,3,5的平均数为2.5,而2,2,2,3的平均数为2.25,不相等,故A错误;对于B,不妨设x1≤x2≤x3≤x4≤x5≤x6,其中位数为 3+ 42,x2,x3,x4,x5的中位数为 3+ 42,所以B正确;对于C,x1,x2,x3,x4,x5,x6的波动更大,所以C错误;对于D,不妨设x1≤x2≤x3≤x4≤x5≤x6,则x5-x2≤x6-x1,故D正确.11.(5分)(2024·重庆模拟)某学校为了更好地关注青少年的心理健康,对某年级的全体同学进行了一次心理健康测试,测试成绩满分为100分,其中1600名同学的测试成绩的频率分布直方图如图所示,则这1600名同学测试成绩的第65百分位数为__________.【解析】因为(0.01+0.01+m+0.02+0.02)×10=1,所以m=0.04,又0.1+0.1+0.4=0.6, 0.1+0.1+0.4+0.2=0.8,所以第65百分位数位于第4组中,设第65百分位数为a,则0.1+0.1+0.4+(a-80)×0.02=0.65,解得a=82.5.答案:82.512.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的成绩(成绩均为整数,满分为100分)进行统计,所有学生的成绩都不低于60分,将这50名学生的成绩(单位:分)进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100],得到如图所示的频率分布直方图.(1)求图中m的值,并估计此次竞赛活动学生成绩的中位数;(2)根据频率分布直方图,估计此次竞赛活动成绩的平均数.若对成绩不低于平均数的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.【解析】(1)由题中频率分布直方图知(0.01+m+0.04+0.02)×10=1,解得m=0.03;设此次竞赛活动学生成绩的中位数为x0,因为数据落在[60,80)内的频率为0.4,落在[60,90)内的频率为0.8,从而可得80<x0<90,由(x0-80)×0.04=0.5-0.4,得x0=82.5,所以估计此次竞赛活动学生成绩的中位数为82.5.(2)由题中频率分布直方图及(1)知, =65×0.1+75×0.3+85×0.4+95×0.2=82,此次竞赛活动学生成绩不低于82的频率为0.2+90-8210×0.4=0.52,则获奖的学生有500×0.52=260(名),所以估计此次竞赛活动成绩的平均数为82,在参赛的500名学生中有260名学生获奖.。

浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析

浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析

§11。

4 抽样方法与总体分布的估计基础篇固本夯基【基础集训】考点一随机抽样1.在简单随机抽样中,某一个个体被抽到的可能性()A。

与第几次有关,第一次可能性最大 B。

与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案D2.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是1,则该单位员工总数为45()A。

110B。

100 C.900D。

800答案B3.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示。

若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手"称号的人数为()A.2B.4C.5D。

6答案B4.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案10考点二用样本估计总体5.甲、乙两组数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A。

极差 B.方差C。

平均数 D.中位数答案C6。

为比较甲、乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月5天11时的平均气温比乙地该月5天11时的平均气温高1 ℃,则甲地该月5天11时的气温数据的标准差为()甲乙9 82 6 892 m 03 1 1 A 。

2 B 。

√2 C 。

10 D 。

√10答案 B7.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100的产品为优质产品。

2022届高考数学一轮复习课时作业: 直线的倾斜角与斜率、直线的方程

2022届高考数学一轮复习课时作业:  直线的倾斜角与斜率、直线的方程

直线的倾斜角与斜率、直线的方程1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A .33 B . 3 C .- 3D .-332.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 23. 若A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m 三点在同一条直线上,则m 的值为( )A .-2B .2C .-12D .124.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( )A .-13B .-3C .13D .35.(多选)(2020·青岛期中)若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=06.(多选)下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点(0,2)关于直线y =x +1的对称点为(1,1)C .过(x 1,y 1),(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上截距相等的直线方程为x +y -2=07.直线kx +y +2=-k ,当k 变化时,所有的直线都过定点________. 8.(2021·全国统一考试模拟演练)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为________.9.若直线l 过点P (-3,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.11.过点P (4,1)作直线l 分别交x 轴、y 轴正半轴于A ,B 两点,O 为坐标原点.(1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程.能力提高1.直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3 B .⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2 D .⎣⎢⎡⎦⎥⎤π4,2π32.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________.3.(1)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎢⎡⎦⎥⎤0,π4,求点P 的横坐标的取值范围; (2)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),求|P A |·|PB |的最大值.直线的倾斜角与斜率、直线的方程1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A .33 B . 3 C .- 3D .-33A [设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.] 2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2D [直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.]3. 若A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m 三点在同一条直线上,则m 的值为( )A .-2B .2C .-12D .12D [因为A ,B ,C 三点在同一条直线上,所以k AB =k AC ,所以-2-33-(-2)=m -312-(-2),解得m =12.故选D.]4.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( )A .-13B .-3C .13D .3[答案] A5.(多选)(2020·青岛期中)若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 的方程可能为( )A .x -y +1=0B .x +y-3=0C .2x -y =0D .x -y -1=0ABC [当直线经过原点时,斜率为k 0=2-01-0=2,所求的直线方程为y =2x ,即2x -y =0;当直线不过原点时,设所求的直线方程为x ±y =k ,把点A (1,2)代入可得1-2=k ,或1+2=k ,求得k =-1,或k =3,故所求的直线方程为x -y +1=0,或x +y -3=0.综上可知,所求的直线方程为2x -y =0,x -y +1=0或x +y -3=0.]6.(多选)下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点(0,2)关于直线y =x +1的对称点为(1,1)C .过(x 1,y 1),(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上截距相等的直线方程为x +y -2=0 AB [选项A 中,直线在x 轴和y 轴上的截距分别为2,-2,所以围成三角形的面积是2,所以A 正确;选项B 中,点⎝ ⎛⎭⎪⎫0+12,2+12在直线y =x +1上,且点(0,2),(1,1)连线的斜率为-1,所以B 正确;选项C ,需要条件y 2≠y 1,x 2≠x 1,故C 错误;选项D ,还有一条横、纵截距都为0的直线y =x 满足条件,故D 错误.]7.直线kx +y +2=-k ,当k 变化时,所有的直线都过定点________. (-1,-2) [kx +y +2=-k 可化为y +2=-k (x +1),根据直线方程的点斜式可知,此类直线恒过定点(-1,-2).]8.(2021·全国统一考试模拟演练)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为________.13,-3 [设正方形的对角线倾斜角为α,则tan α=2,所以正方形的两个邻边的倾斜角为α+π4,α-π4,tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=-3,tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tan π41+tan αtan π4=2-11+2=13,则正方形的两个邻边的斜率为-3,13.]9.若直线l 过点P (-3,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.⎣⎢⎡⎦⎥⎤-5,-13 [因为P (-3,2),A (-2,-3),B (3,0), 则k P A =-3-2-2-(-3)=-5,k PB =0-23-(-3)=-13.如图所示,当直线l 与线段AB 相交时,直线l 的斜率的取值范围为⎣⎢⎡⎦⎥⎤-5,-13.] 10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.[解] (1)由题意知,直线l 存在斜率. 设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝ ⎛⎭⎪⎫4k +3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b |·|b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.11.过点P (4,1)作直线l 分别交x 轴、y 轴正半轴于A ,B 两点,O 为坐标原点.(1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. [解] 设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b =1. (1)4a +1b =1≥24a ·1b =4ab,所以ab ≥16, 当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,△AOB 的面积最小, 此时直线l 的方程为x 8+y2=1,即x +4y -8=0. (2)因为4a +1b =1,a >0,b >0, 所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫4a +1b=5+a b +4ba ≥5+2a b ·4ba =9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.能力提高1.直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3 B .⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2 D .⎣⎢⎡⎦⎥⎤π4,2π3B [由题意知,直线的斜率k =2cos α,又π6≤α≤π3,所以12≤cos α≤32,即1≤k ≤3,设直线的倾斜角为θ,则1≤tan θ≤3,故θ∈⎣⎢⎡⎦⎥⎤π4,π3.]2.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________.4x -3y -4=0 [由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0.]3.(1)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎢⎡⎦⎥⎤0,π4,求点P 的横坐标的取值范围;(2)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),求|P A |·|PB |的最大值.[解] (1)由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1. 所以-1≤x 0≤-12.(2)由动直线x +my =0求得定点A (0,0),动直线mx -y -m +3=0,即y -3=m (x -1),所以得定点B (1,3).当m =0时,两条动直线垂直,当m ≠0时,因为⎝ ⎛⎭⎪⎫-1m ·m =-1,所以两条动直线也垂直,因为P 为直线x +my =0与mx -y -m +3=0的交点,所以|P A |2+|PB |2=|AB |2=10,所以|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时,等号成立),所以|P A |·|PB |的最大值是5.。

高考数学一轮复习全套课时作业3-3-1导数的应用--极值与最值

高考数学一轮复习全套课时作业3-3-1导数的应用--极值与最值

题组层级快练3.3.1导数的应用--极值与最值一、单项选择题1.(2021·辽宁沈阳一模)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点2.(2021·河北邯郸一中月考)若函数f(x)=ae x-sinx在x=0处有极值,则a的值为() A.-1B.0C.1D.e3.函数f(x)=12x-sinx在0,π2上的最小值和最大值分别是()A.π6-32,0 B.π4-1,0 C.π6-32,π4-1D.-12,124.(2021·杭州学军中学模拟)函数f(x)=xe-x,x∈[0,4]的最小值为()A.0 B.1e C.4e4D.2e25.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-∞,-1)D.(1,+∞)6.若函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则()A.a-2b=0B.2a-b=0C.2a+b=0D.a+2b=07.设二次函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()二、多项选择题8.已知函数f(x)=x3-ax-1,以下结论正确的是()A.当a=0时,函数f(x)的图象的对称中心为(0,-1)B.当a≥3时,函数f(x)在(-1,1)上为单调递减函数C.若函数f(x)在(-1,1)上不单调,则0<a<3D.当a=12时,f(x)在[-4,5]上的最大值为159.(2021·山东临沂期末)已知函数f(x)=x+sinx-xcosx的定义域为[-2π,2π),则()A.f(x)为奇函数B.f(x)在[0,π)上单调递增C.f(x)恰有4个极大值点D.f(x)有且仅有4个极值点三、填空题与解答题10.已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则f(2)的值为________.11.(2021·内蒙古兴安盟模拟)已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.12.(2018·江苏)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.13.(2021·广东省高二期末)已知函数f(x)=13x3-4x+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[-3,5]上的最大值与最小值.14.已知函数f(x)=(x2-2x)e x(x∈R,e为自然对数的底数).(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[0,m]上的最大值和最小值.15.(2021·天水一中诊断)若函数f(x)=ax22-(1+2a)·x+2lnx(a>0)a的取值范围是()B.(1,+∞)C.(1,2)D.(2,+∞)16.(2016·北京)设函数f(x)3-3x,x≤a,2x,x>a.(1)若a=0,则f(x)的最大值为________;(2)若f(x)无最大值,则实数a的取值范围是________.17.(2020·衡水中学调研卷)已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).3.3.1导数的应用--极值与最值参考答案1.答案D解析由f(x)=xe x +1,可得f ′(x)=(x +1)e x ,令f ′(x)>0可得x>-1,即函数f(x)在(-1,+∞)上单调递增;令f ′(x)<0可得x<-1,即函数f(x)在(-∞,-1)上单调递减,所以x =-1为f(x)的极小值点.故选D.2.答案C解析f ′(x)=ae x -cosx ,若函数f(x)=ae x -sinx 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意.故选C.3.答案A解析函数f(x)=12x -sinx ,f ′(x)=12-cosx ,令f ′(x)>0,解得π3<x ≤π2,令f ′(x)<0,解得0≤x<π3,所以f(x)在0,π2上单调递增,所以f(x)min ==π6-32,而f(0)=0,=π4-1<0,故f(x)在区间0,π2上的最小值和最大值分别是π6-32,0.故选A.4.答案A解析f ′(x)=1-xe x,当x ∈[0,1)时,f ′(x)>0,f(x)单调递增,当x ∈(1,4]时,f ′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e 4>0,所以当x =0时,f(x)有最小值,且最小值为0.故选A.5.答案A解析f ′(x)=3x 2-3,令f ′(x)=0,得x =±1.三次方程f(x)=0有3个根⇔f(x)极大值>0且f(x)极小值<0.∵x =-1为极大值点,x =1为极小值点,(-1)=2+a>0,(1)=a -2<0,∴-2<a<2.故选A.6.答案D解析y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.故选D.7.答案C解析由f(x)在x =-2处取得极小值可知,当x<-2时,f ′(x)<0,则xf ′(x)>0;当-2<x<0时,f ′(x)>0,则xf ′(x)<0;当x >0时,f ′(x)>0,则xf ′(x)>0.故选C.8.答案ABC解析本题考查利用导数研究函数的单调性、极值、最值.y =x 3为R 上的奇函数,其图象的对称中心为原点,当a =0时,根据平移知识,函数f(x)的图象的对称中心为(0,-1),A 正确;由题意知f ′(x)=3x 2-a ,因为当-1<x<1时,3x 2<3,又a ≥3,所以f ′(x)<0在(-1,1)上恒成立,所以函数f(x)在(-1,1)上为单调递减函数,B 正确;f ′(x)=3x 2-a ,当a ≤0时,f ′(x)≥0,f ′(x)不恒等于0,此时f(x)在(-∞,+∞)上单调递增,不符合题意,故a>0.令f ′(x)=0,解得x =±3a3.因为f(x)在(-1,1)上不单调,所以f ′(x)=0在(-1,1)上有解,所以0<3a3<1,解得0<a<3,C 正确;令f ′(x)=3x 2-12=0,得x =±2.根据函数的单调性,f(x)在[-4,5]上的最大值只可能为f(-2)或f(5).因为f(-2)=15,f(5)=64,所以最大值为64,D 错误.故选ABC.9.答案ABD解析A 显然正确;∵f(x)=x +sinx -xcosx ,∴f ′(x)=1+cosx -(cosx -xsinx)=1+xsinx.当x ∈[0,π)时,f ′(x)>0,则f(x)在[0,π)上单调递增.显然f ′(0)≠0,令f ′(x)=0,得sinx =-1x ,分别作出函数y=sinx ,y =-1x的图象如图.由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f(x)在区间[-2π,2π)上有4个极值点,且只有2个极大值点.10.答案18解析f ′(x)=3x 2+2ax +b 1)=10,1)=0,2+a +b +1=10,+b +3=0,=4,=-11=-3,=3.当a =-3,b =3时,f ′(x)=3(x -1)2≥0,f(x)无极值,故舍去.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113.当x 变化时,f ′(x),f(x)的变化情况如下表:∴f(x)=x 3+4x 2-11x +16,f(2)=18.11.答案-37解析由已知可得,f ′(x)=6x 2-12x ,由6x 2-12x ≥0得x ≥2或x ≤0,因此当x ∈[2,+∞),(-∞,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,又因为x ∈[-2,2],所以当x ∈[-2,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,所以f(x)max =f(0)=m =3,故有f(x)=2x 3-6x 2+3,所以f(-2)=-37,f(2)=-5.因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37.12.答案-3解析令f(x)=2x 3-ax 2+1=0⇒a =2x +1x2.令g(x)=2x +1x 2(x>0),g ′(x)=2-2x 3>0⇒x>1⇒g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵有唯一零点,∴a =g(1)=2+1=3⇒f(x)=2x 3-3x 2+1.求导可知在[-1,1]上,f(x)min =f(-1)=-4,f(x)max =f(0)=1,∴f(x)min +f(x)max =-3.13.答案(1)函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2)(2)函数f(x)在区间[-3,5]上的最大值为743,最小值为-73思路(1)求导后,利用导数的符号可得函数的单调区间;(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在[-2,2]上单调递减,在(2,5]上单调递增,根据单调性可得最大最小值.解析(1)f ′(x)=x 2-4,由f ′(x)>0,得x>2或x<-2;由f ′(x)<0,得-2<x<2,所以函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在(-2,2)上单调递减,在(2,5]上单调递增,因为f(-3)=13×(-3)3-4×(-3)+3=6,f(2)=13×23-4×2+3=-73,f(-2)=13×(-2)3-4×(-2)+3=253,f(5)=13×53-4×5+3=743,所以函数f(x)在区间[-3,5]上的最大值为743,最小值为-73.14.答案略解析(1)f(x)=(x 2-2x)e x ,求导得f ′(x)=e x (x 2-2).因为e x >0,令f ′(x)=e x (x 2-2)>0,即x 2-2>0,解得x<-2或x> 2.令f ′(x)=e x (x 2-2)<0,即x 2-2<0,解得-2<x< 2.所以函数f(x)在(-∞,-2)和(2,+∞)上单调递增,在(-2,2)上单调递减.即函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)①当0<m ≤2时,因为f(x)在(-2,2)上单调递减,所以f(x)在区间[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(m)=(m 2-2m)e m .②当2<m ≤2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(0)=f(2)=0,所以f(x)在[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.③当m>2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(m)>0=f(0),所以f(x)在[0,m]上的最大值为f(m)=(m 2-2m)·e m ,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.15.思路把函数f(x)题,然后再通过分离参数的方法求出参数a 的取值范围.答案C 解析由f(x)=ax 22-(1+2a)x +2lnx(a>0,x >0),得导数f ′(x)=ax -(1+2a)+2x(x >0),∵函数f(x)=ax 22-(1+2a)x +2lnx(a>0)∴方程ax -(1+2a)+2x=0∴a =1x 在区间故a =1x∈(1,2),则a 的取值范围是(1,2).故选C.评说涉及函数的极值问题,往往要使用导数这个解题的工具,在解题时要注意运用等价转化的解题思想.16.答案(1)2(2)(-∞,-1)解析(1)若a =0,则f(x)3-3x ,x ≤0,2x ,x>0,当x>0时,-2x<0;当x ≤0时,f ′(x)=3x 2-3=3(x +1)·(x-1),令f ′(x)>0,得x<-1,令f ′(x)<0,得-1<x ≤0,所以函数f(x)在(-∞,-1)上单调递增,在(-1,0]上单调递减,所以函数f(x)在(-∞,0]上的最大值为f(-1)=2.综上可得,函数f(x)的最大值为2.(2)函数y =x 3-3x 与y =-2x 的大致图象如图所示,由图可知当f(x)无最大值时,a ∈(-∞,-1).17.答案(1)极小值点为x =1e,无极大值点(2)当a ≤1时,g(x)min =0,当1<a<2时,g(x)min =a -e a -1,当a ≥2时,g(x)min =a +e -ae 解析(1)f ′(x)=lnx +1,x>0,由f ′(x)=0,得x =1e .所以f(x)所以x =1e 是函数f(x)的极小值点,极大值点不存在.(2)g(x)=xlnx -a(x -1),则g ′(x)=lnx +1-a ,由g ′(x)=0,得x =e a -1.所以在区间(0,e a -1)上,g(x)单调递减,在区间(e a -1,+∞)上,g(x)单调递增.当e a -1≤1,即a ≤1时,在区间[1,e]上,g(x)单调递增,所以g(x)的最小值为g(1)=0.当1<e a-1<e,即1<a<2时,g(x)的最小值为g(e a-1)=a-e a-1.当e a-1≥e,即a≥2时,在区间[1,e]上,g(x)单调递减,所以g(x)的最小值为g(e)=a+e-ae.综上,当a≤1时,g(x)的最小值为0;当1<a<2时,g(x)的最小值为a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.。

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学(理)一轮复习单元测试第十一章算法框图s 及推理与证明一、选择题(本大题共12小题,每小题5分,共60分.) 1、, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .612.(2013年高考某某卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )A .2*2S i =-B .2*1S i =-C .2*S i =D .2*4S i =+3.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n 与(x +y )n 类比,则有(x +y )n =x n +y nD .把(a +b )+c 与(xy )z 类比,则有(xy )z =x (yz ) 4、(2013高考某某理)设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈5、古希腊人常用小石子在沙滩上摆成各种形状来研究数。

比如:输入xIf x ≤50 Then y =0.5 * x Elsey =25+0.6*(x -50) End If 输出y他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

(旧教材适用)2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第3讲二项式定理课件

(旧教材适用)2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第3讲二项式定理课件

A.-10
B.-5
C.5
D.10
答案 B
解析 (x+y)5 的展开式的通项为 Tr+1=C5rx5-ryr,令 5-r=1,得 r=4, 令 5-r=2,得 r=3,∴(x-y)(x+y)5 的展开式中 x2y4 的系数为 C45×1+(- 1)×C35=-5.故选 B.
4.设(5x- x)n 的展开式的各项系数之和为 M,二项式系数之和为 N,
M-N=240,则展开式中 x3 的系数为( )
A.500
B.-500
C.150
D.-150
答案 C
解析 由题意可得 N=2n,令 x=1,则 M=(5-1)n=4n=(2n)2.∴(2n)2- 2n=240,2n=16(负值舍去),n=4.展开式中第 r+1 项为 Tr+1=Cr4(5x)4-r(-
6.在(1-3
x)7+
x+ ax6的展开式中,若 x2 的系数为 19,则 a=
____2____.
解析
(1-3
x)7+
x+ ax6的展开式中 x2 的系数为 C67(-1)6+C16a1=C67
+aC16,则 aC16+C67=19,解得 a=2.
2
PART TWO
核心考向突破
考向一 求展开式中的特定项或特定项系数
2.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则 a0+a2+a4 的值为( )
A.9
B.8
C.7
D.6
答案 B
解析 令 x=1,则 a0+a1+a2+a3+a4=0,令 x=-1,则 a0-a1+a2 -a3+a4=16,两式相加,得 a0+a2+a4=8.
3.(x-y)(x+y)5 的展开式中 x2y4 的系数为( )

【精品一轮 详解特训】2022届高考数学一轮复习 11 空间点

【精品一轮 详解特训】2022届高考数学一轮复习 11 空间点

一、选择题1.已知三个命题:①若点P不在平面α内,A、B、C三点都在平面α内,则P、A、B、C四点不在同一平面内;②两两相交的三条直线在同一平面内;③两组对边分别相等的四边形是平行四边形.其中正确命题的个数是 ( )A.0 B.1C.2 D.3解析:当A、B、C三点都在平面α内,且三点共线时,P、A、B、C四点在同一个平面内,故①错误;三棱锥的三条侧棱所在的直线两两相交,但三条直线不在同一平面内,故②错误;两组对边分别相等的四边形也可能是空间四边形,故③错误.答案:A2.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A、B、C三点的平面记作γ,则γ与β的交线必通过 ( )A.点A B.点BC.点C但不过点M D.点C和点M解析:∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.答案:D3.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为 ( )A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°解析:依题意得MN∥PQ,MN∥平面ABC,又MN⊂平面ACD,且平面ACD∩平面ABC=AC,因此有MN∥AC,AC∥平面MNPQ.同理,BD∥PN.又截面MNPQ是正方形,因此有AC⊥BD,直线PM与BD所成的角是45°.答案:C4.在正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1、EF、CD 都相交的直线 ( )A.不存在 B.有且只有两条C.有且只有三条 D.有无数条解析:在EF上任取一点M.直线CD与点M确定的平面与直线A1D1交于点N,则直线MN与三条直线都相交,由点M的任意性可知这样的直线有无数条.答案:D5.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB, B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是 ( )A.②③④ B.①③④C.①②④ D.①②③解析:由于两相交直线可确定一个平面,设l过M点,与AB、B1C1均相交,则l与AB可确定平面α,l与B1C1可确定平面β,又AB与B1C1为异面直线,∴l为平面α与平面β的交线,如图所示.GE即为l,故①正确.由于DD1过点M,DD1⊥AB, DD1⊥B1C1,BB1为AB、B1C1的公垂线,DD1∥BB1,故②正确.显然④正确.过M点有无数个平面与AB 、B1C1都相交,故③错误.答案:C6.正四棱锥S-ABCD 的侧棱长为2,底面边长为3,E为SA的中点,则异面直线BE 和SC所成的角为 ( )A.30° B.45°C.60°D.90°解析:设AC中点为O,则OE∥SC,连接BO,则∠BEO(或补角)即为异面直线BE和SC所成的角,EO=12SC=22,BO=12BD=62,△SAB中,cos A=12ABSA=322=64=AB2+AE2-BE22AB·AE,∴BE= 2.△BEO中,cos∠BEO=12,∴∠BEO=60°.答案:C二、填空题7.如图,G、H、M、N分别是三棱柱的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.解析:①③中, GM∥HN,所以G、M、N、H四点共面,从而GH与MN共面;②④中,根据异面直线的判定定理,易知GH与MN异面.答案:②④8.下列命题中正确的是________.①若△ABC在平面α外,它的三条边所在的直线分别交平面α于P、Q、R,则P、Q、R三点共线;②若三条直线a、b、c互相平行且分别交直线l于A、B、C三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面;④若a不平行于平面α,且a⊄α,则α内的所有直线与a异面.解析:在①中,因为P、Q、R三点既在平面ABC上,又在平面α上,所以这三点必在平面ABC与平面α的交线上,即P、Q、R三点共线,所以①正确;在②中,因为a∥b,所以a与b确定一个平面α,而l上有A、B两点在该平面上,所以l⊂α,即a、b、l三线共面于α;同理a、c、l三线也共面,不妨设为β,而α、β有两条公共的直线a、l,所以α与β重合,即这些直线共面,所以②正确;在③中,不妨设其中有四点共面,则它们最多只能确定7个平面,所以③错;在④中,由题设知,a和α相交,设a∩α=P,如图,在α内过点P的直线l与a 共面,所以④错.答案:①②9.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于________.解析:延长CA至点M,使AM=CA,则A1M∥C1A,∠MA1B或其补角为异面直线BA1与AC1所成的角,连接BM,易知△BMA1为等边三角形,因此,异面直线BA1与AC1所成的角为60°.答案:60°三、解答题10.如图所示,已知E、F分别是正方体ABCD-A1B1C1D1的棱AA1和棱CC1的中点.试判断四边形EBFD1的形状.解:如图,取BB1的中点M,连接A1M、MF.∵M、F分别是BB1、CC1的中点,∴MF綊B1C1.在正方体ABCD-A1B1C1D1中,有A1D1綊B1C1,∴MF綊A1D1.∴四边形A1MFD1是平行四边形,∴A 1M 綊D 1F .又E 、M 分别是AA 1、BB 1的中点, ∴A 1E 綊BM ,∴四边形A 1EBM 为平行四边形.∴EB 綊A 1M . ∴EB 綊D 1F .∴四边形EBFD 1是平行四边形. 又Rt △EAB ≌Rt △FCB ,∴BE =BF ,∴四边形EBFD 1为菱形.11.如图,已知:E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、CC 1、C 1D 1的中点,证明:FE 、HG 、DC 三线共点.证明:连结C 1B ,HE ,FG ,由题意知HC 1綊EB ,∴四边形HC 1BE 是平行四边形.∴HE ∥C 1B .又C 1G =GC =CF =BF , 故GF 綊12C 1B ,∴GF ∥HE ,且GF ≠HE , ∴HG 与EF 相交. 设交点为K , 则K ∈HG ,HG ⊂平面D 1C 1CD ,∴K ∈平面D 1C 1CD .∵K ∈EF ,EF ⊂平面ABCD ,∴K ∈平面ABCD . ∵平面D 1C 1CD ∩平面ABCD =DC , ∴K ∈DC ,∴FE 、HG 、DC 三线共点.12.如图,在长方体AB CD -A 1B 1C 1D 1中,AB =3,BC =AA 1=4,点O 是AC 的中点. (1)求证:AD 1∥平面DOC 1;(2)求异面直线AD 1和DC 1所成角的余弦值.解:(1)证明:如图,连接D 1C 交DC 1于点O 1,连接OO 1. ∵O 、O 1分别是AC 和D 1C 的中点, ∴OO 1∥AD 1.又OO 1⊂平面DOC 1,AD 1⊄平面DOC 1, ∴AD 1∥平面DOC 1.(2)由OO 1∥AD 1知AD 1和DC 1所成的角等于OO 1和DC 1所成的角.在△OO 1D 中,由题设可得OD =52,O 1D =52,OO 1=2 2.由余弦定理得cos ∠OO 1D =522+222-5222×52×22=225,故异面直线AD 1和DC 1所成角的余弦值为225。

数学一轮复习第十一章11.2数系的扩充与复数的引入课时作业理含解析

数学一轮复习第十一章11.2数系的扩充与复数的引入课时作业理含解析

课时作业67 数系的扩充与复数的引入[基础达标]一、选择题1.[2021·黄冈中学,华师附中等八校联考]设i是虚数单位,若复数a+5i1+2i(a∈R)是纯虚数,则a=()A.-1B.1C.-2D.22.[2021·湖南省长沙市高三调研试题]复数错误!=() A.错误!-iB。

错误!-错误!iC.-1D.-i3.[2021·大同市高三学情调研测试试题]设z=错误!2,则z 的共轭复数为()A.-1B.1C.iD.-i4.[2021·南昌市高三年级摸底测试卷]复数z满足错误!=1-i,则|z|=()A.2iB.2C.iD.15.[2021·合肥市高三调研性检测]已知i是虚数单位,复数z=错误!在复平面内对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限6.[2021·安徽省示范高中名校高三联考]已知i为虚数单位,z=错误!,则z的虚部为()A.1B.-3C.iD.-3i7.[2021·惠州市高三调研考试试题]已知复数z满足(1-i)z=2+i(其中i为虚数单位),则z的共轭复数是()A.-错误!-错误!iB.错误!+错误!iC.-错误!+错误!iD.错误!-错误!i8.[2021·长沙市四校高三年级模拟考试]已知复数z=错误!,则下列结论正确的是()A.z的虚部为iB.|z|=2C.z的共轭复数错误!=-1+iD.z2为纯虚数9.[2021·广东省七校联合体高三第一次联考试题]已知复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1-2i,则错误!=()A.35-错误!iB.-错误!+错误!iC.-错误!-错误!iD.错误!+错误!i10.[2021·唐山市高三年级摸底考试]已知p,q∈R,1+i是关于x的方程x2+px+q=0的一个根,其中i为虚数单位,则p·q=()A.-4B.0C.2D.4二、填空题11.[2020·江苏卷]已知i是虚数单位,则复数z=(1+i)·(2-i)的实部是________.12.[2021·重庆学业质量抽测]已知复数z1=1+2i,z1+z2=2+i,则z1·z2=________。

2025年高考数学一轮复习课时作业-充要条件与量词【含解析】

2025年高考数学一轮复习课时作业-充要条件与量词【含解析】

2025年高考数学一轮复习课时作业-充要条件与量词【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)(2024·沈阳模拟)数学符号的使用对数学的发展影响深远,“=”作为等号使用首次出现在《砺智石》一书中,表达等式关系,英国数学家首次使用“>”和“<”,便于不等式的表示,则命题p:∀x,y∈R,(x+y)3>x3+y3的否定为()A.∀x,y∈R,(x+y)3<x3+y3B.∃x,y∈R,(x+y)3>x3+y3C.∃x,y∈R,(x+y)3<x3+y3D.∃x,y∈R,(x+y)3≤x3+y32.(5分)荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.(5分)(2023·江西九校联考)已知p:∀x∈[3,4),x2-a≥0,则p成立的一个充分不必要条件可以是()A.a<9B.a>9C.a<16D.a>164.(5分)(2024·信阳模拟)已知条件p:log2(x+1)<2,条件q:x2-(2a+1)x+a2+a≤0,若p是q的必要不充分条件,则实数a的取值范围为()A.(-∞,2)B.(-1,+∞)C.(-1,2)D.[2,8]【5.(5分)(多选题)对任意实数a,b,c,给出下列命题,其中是真命题的有()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件6.(5分)(多选题)(2024·黔西模拟)下列命题不正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1>0B.不等式x2-4x+5<0的解集为⌀C.x<1是(x-1)(x+2)<0的充分不必要条件D.∀x∈R, 2=x7.(5分)(2024·西安模拟)若命题p:“∀x∈R,x2-2x-2≥0”,则“¬p”为.8.(5分)已知命题p:∀x∈[0,1],a≥e x;命题q:∃x∈R,使得x2+4x+a=0.若命题p为真命题,则实数a的取值范围为;若命题p,q都为真命题,则实数a的取值范围是.9.(5分)命题“∃x∈R,(a2-4)x2+(a+2)x-1≥0”为假命题,则实数a的取值范围为.10.(10分)(2024·石家庄模拟)已知集合A={x|-3≤x≤4},B={x|1-m≤x≤3m-2,m>1},是否存在实数m,使得x∈A是x∈B成立的?(1)是否存在实数m,使得x∈A是x∈B成立的充要条件?若存在,求出实数m的值;若不存在,请说明理由;(2)请在①充分不必要条件,②必要不充分条件这两个条件中任选一个补充在上面的问题中横线部分.若问题中的实数m存在,求出m的取值范围;若问题中的m不存在,请说明理由.11.(10分)(2024·徐州模拟)已知命题p:∃x∈R,ax2+2x-1=0为假命题.设实数a的取值集合为A,设集合B={x|3m<x<m+2},若,求实数m的取值范围.在①“x∈A”是“x∈B”的必要不充分条件;②“x∈B”是“x∈∁R A”的充分条件;③B∩∁R A=∅这三个条件中任选一个,补充到本题的横线处,并按照你的选择求解问题.【能力提升练】12.(5分)(多选题)“关于x的不等式ax2-2ax+1>0对∀x∈R恒成立”的必要不充分条件有()A.0≤a<1B.0<a<1C.-1≤a<1D.-1<a<213.(5分)(2024·杭州模拟)已知集合A={x|y=ln(2x2-x-6)},B={x|9x+m-27>0},若“x∈A”是“x∈B”的必要不充分条件,则实数m的取值范围为.14.(10分)已知函数f(x)= 2- +1 -1(x≥2),g(x)=a x(a>1,x≥2).(1)若∃x∈[2,+∞),使f(x)=m成立,求实数m的取值范围;(2)若∀x1∈[2,+∞),∃x2∈[2,+∞),使得f(x1)=g(x2),求实数a的取值范围.2025年高考数学一轮复习课时作业-充要条件与量词【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)(2024·沈阳模拟)数学符号的使用对数学的发展影响深远,“=”作为等号使用首次出现在《砺智石》一书中,表达等式关系,英国数学家首次使用“>”和“<”,便于不等式的表示,则命题p:∀x,y∈R,(x+y)3>x3+y3的否定为()A.∀x,y∈R,(x+y)3<x3+y3B.∃x,y∈R,(x+y)3>x3+y3C.∃x,y∈R,(x+y)3<x3+y3D.∃x,y∈R,(x+y)3≤x3+y3【解析】选D.因为全称量词命题的否定为存在量词命题,所以命题p:∀x,y∈R,(x+y)3>x3+y3的否定为∃x,y∈R,(x+y)3≤x3+y3.2.(5分)荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】选C.“不积跬步,无以至千里”说明能“至千里”必须“积跬步”,而“积跬步”不一定能“至千里”.故“积跬步”是“至千里”的必要不充分条件.3.(5分)(2023·江西九校联考)已知p:∀x∈[3,4),x2-a≥0,则p成立的一个充分不必要条件可以是()A.a<9B.a>9C.a<16D.a>16【解析】选A.a≤x2在区间[3,4)上恒成立,所以a≤9,所以结合选项可知p成立的一个充分不必要条件可以是a<9.4.(5分)(2024·信阳模拟)已知条件p:log2(x+1)<2,条件q:x2-(2a+1)x+a2+a≤0,若p是q的必要不充分条件,则实数a的取值范围为()A.(-∞,2)B.(-1,+∞)C.(-1,2)D.[2,8]【解析】选C.由log2(x+1)<2,得-1<x<3,所以p:-1<x<3,由x2-(2a+1)x+a2+a≤0,得a≤x≤a+1,所以q:a≤x≤a+1,因为p是q的必要不充分条件,所以{x|a≤x≤a+1}能推出{x|-1<x<3},则 >-1 +1<3,解得-1<a<2.5.(5分)(多选题)对任意实数a,b,c,给出下列命题,其中是真命题的有()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件【解析】选CD.对于A,当a=b时,ac=bc成立,当ac=bc,c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A不是真命题.对于B,当a=-1,b=-2时,a>b,a2<b2,当a=-2,b=1时,a2>b2,a<b,所以“a>b”是“a2>b2”的既不充分也不必要条件,故B不是真命题.对于C,当a<3时,一定有a<5成立,当a<5时,a<3不一定成立,所以“a<5”是“a<3”的必要条件,故C是真命题.对于D,易知“a+5是无理数”是“a是无理数”的充要条件,故D是真命题.6.(5分)(多选题)(2024·黔西模拟)下列命题不正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1>0B.不等式x2-4x+5<0的解集为⌀C.x<1是(x-1)(x+2)<0的充分不必要条件D.∀x∈R, 2=x【解析】选ACD.对A,若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0,故A不正确;对B,因为x2-4x+5<0,令y=x2-4x+5,则Δ=42-4×5=-4<0,又因为y=x2-4x+5的图象开口向上,所以不等式x2-4x+5<0的解集为⌀,故B正确;对C,由(x-1)(x+2)<0,解得-2<x<1,设A=(-∞,1),B=(-2,1),则B⫋A,故x<1是(x-1)(x+2)<0的必要不充分条件,故C不正确;对D,当x=-1时,(-1)2=1≠-1,故D不正确.7.(5分)(2024·西安模拟)若命题p:“∀x∈R,x2-2x-2≥0”,则“¬p”为.【解析】全称量词命题的否定步骤为“改量词,否结论”,所以命题p:“∀x∈R,x2-2x-2≥0”的否定为¬p:∃x∈R,x2-2x-2<0.答案:∃x∈R,x2-2x-2<08.(5分)已知命题p:∀x∈[0,1],a≥e x;命题q:∃x∈R,使得x2+4x+a=0.若命题p为真命题,则实数a的取值范围为;若命题p,q都为真命题,则实数a的取值范围是.【解析】由已知命题p,q都是真命题.由∀x∈[0,1],a≥e x,得a≥e;由∃x∈R,使得x2+4x+a=0,知Δ=16-4a≥0,得a≤4,因此e≤a≤4.答案:[e,+∞)[e,4]9.(5分)命题“∃x∈R,(a2-4)x2+(a+2)x-1≥0”为假命题,则实数a的取值范围为.【解析】由题意可知,命题“∀x∈R,(a2-4)x2+(a+2)x-1<0”为真命题.①当a2-4=0时,可得a=±2.若a=-2,则有-1<0,符合题意;若a=2,则有4x-1<0,解得x<14,不符合题意;②若a2-4≠0,则 2-4<0,=( +2)2+4( 2-4)<0,解得-2<a<65.综上所述,实数a的取值范围是 -2≤ <答案: -2≤ <10.(10分)(2024·石家庄模拟)已知集合A={x|-3≤x≤4},B={x|1-m≤x≤3m-2,m>1},是否存在实数m,使得x∈A是x∈B成立的?(1)是否存在实数m,使得x∈A是x∈B成立的充要条件?若存在,求出实数m的值;若不存在,请说明理由;【解析】(1)若存在实数m,使得x∈A是x∈B成立的充要条件,则A=B.故1- =-33 -2=4,无解,故不存在实数m,使得x∈A是x∈B成立的充要条件.(2)请在①充分不必要条件,②必要不充分条件这两个条件中任选一个补充在上面的问题中横线部分.若问题中的实数m存在,求出m的取值范围;若问题中的m不存在,请说明理由.【解析】(2)因为m>1,故3m-2>1>1-m,故B≠⌀.选①:充分不必要条件.由题意A⫋B,故-3≥1-4≤3 -2,解得 ≥4 ≥2,故m≥4,即m的取值范围为[4,+∞);选②:必要不充分条件.由题意B⫋A,故-3≤1-4≥3 -2,解得 ≤4 ≤2,故m≤2,又m>1,故m的取值范围为(1,2].11.(10分)(2024·徐州模拟)已知命题p:∃x∈R,ax2+2x-1=0为假命题.设实数a的取值集合为A,设集合B={x|3m<x<m+2},若,求实数m的取值范围.在①“x∈A”是“x∈B”的必要不充分条件;②“x∈B”是“x∈∁R A”的充分条件;③B∩∁R A=∅这三个条件中任选一个,补充到本题的横线处,并按照你的选择求解问题.【解析】由已知命题为假,则¬p:∀x∈R,ax2+2x-1≠0为真,若a=0,∀x∈R,2x-1≠0显然不成立;若a≠0,只需Δ=4+4a<0⇒a<-1;所以A={a|a<-1},选①:“x∈A”是“x∈B”的必要不充分条件,则B⫋A,若B=∅,则3m≥m+2⇒m≥1满足要求;若B≠∅,则3m<m+2⇒m<1,且m+2≤-1⇒m≤-3,此时m≤-3;所以m∈(-∞,-3]∪[1,+∞);选②:“x∈B”是“x∈∁R A”的充分条件,则B⊆∁R A,而∁R A={a|a≥-1},若B=∅,则3m≥m+2⇒m≥1满足要求;若B≠∅,则3m<m+2⇒m<1,且3m≥-1⇒m≥-13,此时-13≤m<1;所以m∈[-13,+∞);选③:由B∩∁R A=∅,若B=∅,则3m≥m+2⇒m≥1满足要求;若B≠∅,则3m<m+2⇒m<1,且m+2≤-1⇒m≤-3,此时m≤-3;所以m∈(-∞,-3]∪[1,+∞).【能力提升练】12.(5分)(多选题)“关于x的不等式ax2-2ax+1>0对∀x∈R恒成立”的必要不充分条件有()A.0≤a<1B.0<a<1C.-1≤a<1D.-1<a<2【解析】选CD.若关于x的不等式ax2-2ax+1>0对∀x∈R恒成立,当a=0时,不等式为1>0,满足题意;a≠0时,则必有a>0且Δ=(-2a)2-4a×1<0,解得0<a<1,故a的范围为{a|0≤a<1},故“关于x的不等式ax2-2ax+1>0对∀x∈R恒成立”的必要不充分条件的集合必真包含集合{a|0≤a<1},结合选项知C,D满足条件.13.(5分)(2024·杭州模拟)已知集合A={x|y=ln(2x2-x-6)},B={x|9x+m-27>0},若“x∈A”是“x∈B”的必要不充分条件,则实数m的取值范围为.【解析】因为集合A={x|y=ln(2x2-x-6)}={x|2x2-x-6>0}={x|x>2或x<-32},B={x|9x+m-27>0}={x|32x+2m>33}={x|x>12(3-2m)},又“x∈A”是“x∈B”的必要不充分条件,所以12(3-2m)≥2,解得m≤-12,实数m的取值范围为{m|m≤-12}.答案:{m|m≤-12}14.(10分)已知函数f(x)= 2- +1 -1(x≥2),g(x)=a x(a>1,x≥2).(1)若∃x∈[2,+∞),使f(x)=m成立,求实数m的取值范围;【解析】(1)f(x)= 2- +1 -1=x+1 -1=x-1+1 -1+1≥2+1=3,当且仅当x=2时等号成立.所以,若∃x∈[2,+∞),使f(x)=m成立,则实数m的取值范围为[3,+∞).(2)若∀x1∈[2,+∞),∃x2∈[2,+∞),使得f(x1)=g(x2),求实数a的取值范围.【解析】(2)当x≥2时,f(x)≥3,g(x)≥a2.若∀x1∈[2,+∞),∃x2∈[2,+∞),使得f(x1)=g(x2),则 2≤3, >1,解得1<a≤3.所以a的取值范围为(1,3].。

2025年高考数学一轮复习-课时作业18 函数的表示法【含解析】

2025年高考数学一轮复习-课时作业18 函数的表示法【含解析】

课时作业18函数的表示法【原卷版】时间:45分钟一、选择题1.已知2x+3,则f(6)的值为()A.15B.7C.31D.172.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表:x123f(x)231x123g(x)321则方程g(f(x))=x的解集为()A.{1}B.{2}C.{3}D.∅3.已知f(x+2)=x2-x+1,则f(x)等于()A.x2-x+3B.x2+4x+1C.x2-x-1D.x2-5x+74.若f(x)对于任意实数x恒有3f(x)-2f(-x)=5x+1,则f(x)=()A.x+1B.x-1C.2x+1D.3x+35.已知f(x)是一次函数,且满足3f(x+1)=2x+17,则f(x)等于()A.23x +5B.23x +1C .2x -3D .2x +16.将函数y =2(x +1)2-3的图象向右平移1个单位长度,再向上平移3个单位长度,所得的图象对应的函数解析式为()A .y =2(x +2)2-6B .y =2x 2-6C .y =2x 2D .y =2(x +2)27.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图象的纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的图象是()8.小明在如图1所示的跑道上匀速跑步,他从点A 出发,沿箭头方向经过点B 跑到点C ,共用时30s ,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t (s),他与教练间的距离为y (m),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A .点MB .点NC .点PD .点Q二、填空题9.对于定义域为R的函数y=f(x),部分x与y的对应关系如下表:x-2-1012345y02320-102则f(f(f(0)))=.10.已知函数f(x)对任意实数x,y均有f(xy)=f(x)+f(y),且f(2)=1,则f(1)=,=.三、解答题11.(1)已知f=x1-x2,求f(x);(2)已知函数f(x)=x2,g(x)为一次函数,且一次项系数大于零,若f[g(x)]=4x2-20x+25,求g(x)的表达式.12.如图所示,在矩形ABCD中,BA=3,CB=4,点P在AD 上移动,CQ⊥BP,Q为垂足.设BP=x,CQ=y,试求y关于x的函数表达式,并画出函数的图象.13.(多选题)函数y=x1+x的大致图象不可能是()14.(多选题)已知f(2x+1)=4x2,则下列结论正确的是()A.f(3)=36B.f(-3)=16C.f(x)=4x2D.f(x)=x2-2x+115.定义两种运算:a⊕b=a2-b2,a⊗b=(a-b)2,则函数f(x)=2⊕x(x⊗2)-2的解析式为.16.已知函数f(x)=xax+b(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,求函数f(x)的解析式,并求f(f(-3))的值.课时作业18函数的表示法【解析版】时间:45分钟一、选择题1.已知2x+3,则f(6)的值为(C) A.15B.7C.31D.17解析:令x2-1=6,则x=14,则f(6)=2×14+3=31.2.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表:x123f(x)231x123g(x)321则方程g(f(x))=x的解集为(C)A.{1}B.{2}C.{3}D.∅解析:f(1)=2,g(f(1))=g(2)=2,f(2)=3,g(f(2))=g(3)=1,f(3)=1,g(f(3))=g(1)=3,∴g(f(x))=x的解集为{3}.选C.3.已知f(x+2)=x2-x+1,则f(x)等于(D)A.x2-x+3B.x2+4x+1C.x2-x-1D.x2-5x+7解析:令x+2=t,则x=t-2.将x =t -2代入f (x +2)=x 2-x +1.得f (t )=(t -2)2-(t -2)+1=t 2-5t +7.∴f (x )=x 2-5x +7.4.若f (x )对于任意实数x 恒有3f (x )-2f (-x )=5x +1,则f (x )=(A )A .x +1B .x -1C .2x +1D .3x +3解析:因为3f (x )-2f (-x )=5x +1,所以3f (-x )-2f (x )=-5x +1,联立解得f (x )=x +1.5.已知f (x )是一次函数,且满足3f (x +1)=2x +17,则f (x )等于(A )A.23x +5 B.23x +1C .2x -3D .2x +1解析:∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0),由3f (x +1)=2x +17,得3[a (x +1)+b ]=2x +17,整理得:3ax +3(a +b )=2x +17,a =2,(a +b )=17,=23,=5,∴f (x )=23x +5.故选A.6.将函数y =2(x +1)2-3的图象向右平移1个单位长度,再向上平移3个单位长度,所得的图象对应的函数解析式为(C )A .y =2(x +2)2-6B .y =2x 2-6C .y =2x 2D .y =2(x +2)2解析:根据函数图象的平移原则——“左加右减,上加下减”,可知平移后的图象对应的函数解析式为y =2[(x -1)+1]2-3+3=2x 2.7.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图象的纵轴表示该同学与学校的距离s,横轴表示该同学出发后的时间t,则比较符合该同学行进实际的图象是(D)解析:依题意可知,纵轴表示离校的距离,所以最终应为零,故排除A,B两个选项.由于车的速度快,在图象上距离下降比较快,而步行较慢,距离下降比较慢.根据以上两点,可以判断出D选项符合题意.故选D.8.小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的(D)A.点M B.点NC.点P D.点Q解析:由题图知固定位置到点A距离大于到点C距离,所以舍去N,M点,不选A,B;若是P点,则从最高点到C点依次递减,与图2矛盾,因此取Q,即选D.二、填空题9.对于定义域为R 的函数y =f (x ),部分x 与y 的对应关系如下表:x -2-1012345y232-12则f (f (f (0)))=2.解析:由列表表示的函数可得f (0)=3,则f (f (0))=f (3)=-1,f (f (f (0)))=f (-1)=2.10.已知函数f (x )对任意实数x ,y 均有f (xy )=f (x )+f (y ),且f (2)=1,则f (1)=0,=-1.解析:∵f (2)=f (2×1)=f (2)+f (1),∴f (1)=0.又f (1)=f (2)+0,∴ 1.三、解答题11.(1)已知f =x1-x2,求f (x );(2)已知函数f (x )=x 2,g (x )为一次函数,且一次项系数大于零,若f [g (x )]=4x 2-20x +25,求g (x )的表达式.解:(1)设t =1x ,则x =1t (t ≠0),代入=x1-x2,得f (t )=1t 1=t t 2-1(t ≠0),故f (x )=xx 2-1(x ≠0).(2)由g (x )为一次函数,设g (x )=ax +b (a >0),∵f [g (x )]=4x 2-20x +25,∴(ax +b )2=4x 2-20x +25,即a 2x 2+2abx +b 2=4x 2-20x +25,从而a 2=4,2ab =-20,b 2=25,解得a =2,b =-5,故g (x )=2x -5(x ∈R ).12.如图所示,在矩形ABCD 中,BA =3,CB =4,点P 在AD 上移动,CQ ⊥BP ,Q 为垂足.设BP =x ,CQ =y ,试求y 关于x 的函数表达式,并画出函数的图象.解:由题意,得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x .所以y =12x.因为BA ≤BP ≤BD ,而BA =3,CB =AD =4,所以BD =32+42=5,所以3≤x ≤5,故所求的函数表达式为y =12x (3≤x ≤5).如图所示,曲线MN 就是所求的函数图象.13.(多选题)函数y =x1+x的大致图象不可能是(BCD )解析:y =x1+x 的定义域为{x |x ≠-1},所以C ,D 不可能是函数的大致图象,当x =0时,y =0,所以B 不可能是函数的大致图象.14.(多选题)已知f (2x +1)=4x 2,则下列结论正确的是(BD )A .f (3)=36B .f (-3)=16C .f (x )=4x 2D .f (x )=x 2-2x +1解析:当2x +1=3时,x =1,因此f (3)=4×12=4,所以A 不符合题意;当2x +1=-3时,x =-2,因此f (-3)=4×(-2)2=16,所以B 符合题意;令t =2x +1,则x =t -12,因此f (t )=4×t -12=t 2-2t +1,所以C 不符合题意,D 符合题意.故选BD.15.定义两种运算:a ⊕b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )=2⊕x (x ⊗2)-2的解析式为f (x )=-4-x 2x ,x ∈[-2,0)∪(0,2].解析:∵2⊕x =4-x 2,x ⊗2=(x -2)2=|x -2|,∴f (x )=4-x 2|x -2|-2.易知函数的定义域为{x |-2≤x <0,或0<x ≤2}.∴f (x )=-4-x 2x,x ∈[-2,0)∪(0,2].16.已知函数f (x )=xax +b (a ,b 为常数,且a ≠0)满足f (2)=1,方程f (x )=x 有唯一解,求函数f (x )的解析式,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x ,即ax 2+(b -1)x =0.∵方程f (x )=x 有唯一解,且a ≠0,∴Δ=(b -1)2=0,即b =1.∵f (2)=1,∴22a +1=1.∴a =12.∴f (x )=x 12x +1=2x x +2.∴f (f (-3))=f (6)=128=32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(六十二)
一、选择题
1.在(ax -1)7
展开式中含x 4
项的系数为-35,则a 为( ) A .±1 B .-1 C .-12
D .±1
2
答案 A
解析 由通项公式可得C 73
(ax )4
(-1)3
=-35x 4
,∴C 73a 4
(-1)3
=-35,∴a 4
=1,∴a =±1. 2.在(1+x )5
+(1+x )6
+(1+x )7
的展开式中,x 4
的系数是通项公式为a n =3n -5的数列的( )
A .第20项
B .第18项
C .第11项
D .第3项
答案 A
解析 ∵x 4
的系数是
C 54
+C 64
+C 74
=C 51
+C 62
+C 73
=5+15+35=55, 则由a n =55,即3n -5=55,解得n =20.
3.在(x +1)(2x +1)……(nx +1)(n ∈N *
)的展开式中一次项系数为( ) A .C n 2
B .
C n +12
C .C n
n -1
D.12
C n +13 答案 B
解析 1+2+3+…+n =
n ·n +1
2
=C n +12
4.设(5x -x )n
的展开式的各项系数之和为M ,二项式系数之和为N ,M -N =240,则展开式中x 3
项的系数为( )
A .500
B .-500
C .150
D .-150
答案 C
解析 N =2n ,令x =1,则M =(5-1)n =4n =(2n )2
, ∴(2n )2-2n =240,2n
=16,n =4. 展开式中第r +1项T r +1=C 4r ·(5x )4-r
·(-x )r
=(-1)r
·C 4r
·5
4-r
·x 4-r
2
.
令4-r
2
=3,即r =2,此时C 42
·52
·(-1)2
=150.
5.如果(x 2
-12x )n 的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系
数之和是( )
A .0
B .256
C .64 D.1
64
答案 D
解析 解法一 由已知得⎩⎪⎨⎪⎧
C n 3
>C n
4
C n 3>C n
2

∴5<n <7,∵n ∈N *
,∴n =6. 令x =1,则原式=(1-12)6=1
64
.
解法二 由题意知,只有第4项的二项式系数最大,∴n =6, 令x =1,则原式=(1-12)6=1
64
.
6.(2011·广东珠海)二项展开式(2x -1)10
中x 的奇次幂项的系数之和为( ) A.1+3
10
2
B.1-310
2
C.310
-12
D .-1+310
2
答案 B
解析 设(2x -1)10
=a 0+a 1x +a 2x 2
+…+a 10x 10
,令x =1,得1=a 0+a 1+a 2+…+a 10,再令x =-1,得310
=a 0-a 1+a 2-a 3+…-a 9+a 10,两式相减可得a 1+a 3+…+a 9=1-3
10
2
,故选B.
7.已知(1-2)10=a +2b (a ,b 为有理数),则a 2-2b 2
=( ) A .(1-2)20
B .0
C .-1
D .1
答案 D
解析 在二项式(a +b )n 与(a -b )n
的展开式中,奇数项是完全相同的,偶数项互为相反数,根据这个特点,当(1-2)10
=a +2b 时,必有(1+2)10
=a -2b ,故a 2
-2b 2
=(a +2b )(a -2b )=(1-2)10
(1+2)10=1.
二、填空题
8.(x +2)10
(x 2
-1)的展开式中x 10
的系数为________. 答案 179
解析 (x +2)10
(x 2
-1)=x 2
(x +2)10
-(x +2)10
本题求x 10
的系数,只要求(x +2)10
展开式中x 8
及x 10
的系数T r +1=C 10r x
10-r
· 2r
取r =2,r =0得x 8的系数为C 102×22
=180;
x 10的系数为C 100=1,
∴所求系数为180-1=179.
9.设a n (n =2,3,4,…)是(3-x )n
的展开式中x 的一次项的系数,则32
a 2+33
a 3+…+3
18
a 18

值为____________.
答案 17 解析 由通项C n r 3n -r
(-1)r
x r
2
知,展开式中x 的一次项的系数为a n =C n 23
n -2
,所以32a 2+33
a 3
+…
+318
a 18
=32
(21×2+22×3+23×4+…+217×18
)=17. 10.(2010·湖北卷,理)在(x +43y )20
的展开式中,系数为有理数的项共有________项. 答案 6
解析 注意到二项式(x +
4
3y )20
的展开式的通项是T r +1=c 20r ·x
20-r
·(
4
3y )r

C 20r ·3r 4
·x 20-r ·y r .当r =0,4,8,12,16,20时,相应的项的系数是有理数.因此(x +4
3y )20的
展开式中,系数是有理数的项共有6项.
11.(2011·安徽江南十校)a 4(x +1)4
+a 3(x +1)3
+a 2(x +1)2
+a 1(x +1)+a 0=x 4
,则a 3-
a 2+a 1=________.
答案 -14
解析 [(x +1)-1]4
=a 4(x +1)4
+a 3(x +1)3
+a 2(x +1)2
+a 1(x +1)+a 0,∴a 3-a 2+a 1=(-C 41
)-C 42
+(-C 43
)=-14.
12.(1-3a +2b )5
展开式中不含b 项的系数之和是________. 答案 -32
解析 令a =1,b =0,即得不含b 项的系数和(1-3)5
=-32. 三、解答题
13.二项式(1+sin x )n
的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为5
2
,求x 在[0,2π]内的值. 答案
π6或5π
6
解析 二项式(1+sin x )n
的展开式中,末尾两项的系数之和C n
n -1
+C n n
=1+n =7,∴n =6,
系数最大的项为第4项,T 4=C 63(sin x )3=52,∴(sin x )3
=18

∴sin x =12,又x ∈[0,2π],∴x =π6或5
6
π.
14.设(2-3x )100
=a 0+a 1x +a 2x 2
+…+a 100x 100
求下列各式的值: (1)a 0;
(2)a 1+a 2+…+a 100; (3)a 1+a 3+a 5+…+a 99;
(4)(a 0+a 2+…+a 100)2
-(a 1+a 3+…+a 99)2
. 解析 (1)(2-3x )100展开式中的常数项为 C 1000
·2100
,即a 0=2100,或令x =0, 则展开式可化为a 0=2100
.
(2)令x =1,可得a 0+a 1+a 2+…+a 100=(2-3)100
① ∴a 1+a 2+…+a 100=(2-3)100
-2100
. (3)令x =-1,
可得a 0-a 1+a 2-a 3+…+a 100=(2+3)100
② 与x =1所得到的①联立相减可得
a 1+a 3+…+a 99=
2-3
100
-2+3
100
2
.
(4)原式=[(a 0+a 2+…+a 100)+(a 1+a 3+…a 99)]·[(a 0+a 2+…+a 100)-(a 1+a 3+…+
a 99)]
=(a 0+a 1+a 2+…+a 100)(a 0-a 1+a 2-a 3+…+a 98-a 99+a 100) =(2-3)100
(2+3)100
=1.。

相关文档
最新文档