随机事件和概率复习课后作业题
概率论习题
第一章 随机事件与概率一、复习提纲。
1.了解随机现象,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算。
2.了解事件频率的概念,理解概率的统计定义,了解概率的古典定义,掌握概率的基本性质,会计算简单的古典概率。
3.了解条件概率的概念,掌握概率加法加法公式和乘法公式,会应用全概率公式和贝叶斯(Bayes)公式解决比较简单的问题。
4.理解事件的独立性概念,会应用事件的独立性进行概率的计算。
5.理解独立重复实验的概率,掌握计算有关事件概率的方法。
二、习题。
1、 若A 和B 互不相容,且10,)(<<=p p A P ,则=)(A B P ____________;2、若事件A 与B 相互独立且P(A)=p, P(B)=q ,则)(B A P ⋂= ;3、若随机事件A ,B 相互独立,P(A)=0.2,P(B)=0.45,则)(B A P ⋃= 。
4、已知()0.5,()0.7,(|)0.8P A P B P B A ===,则()P A B =5、设P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,则,,A B C 全不发生的概率为6、一批灯泡有10只,其中3只是坏的,从中任取5只检查,其中恰有2只坏的概率为 ,至少有一只坏的概率为7、甲、乙两人独立射击,其命中率分别为0.6和0.5,则至少有一人击中目标的概率为 ; 8、事件A 与B 独立,且 P(A)=p ,P(B)=q ,则)B P(A ⋃=( )(A)q p -+1; (B)q p + ; (C) 1 ; (D)q pq -+1。
9、已知()0.5,()0.7,(|)0.8P A P B P B A ===,则()P A B ⋃=()(A)0.4 (B) 1.2 (C) 0.8 (D) 0.6 10、对于任意两事件A 和B ,有P (A -B )=( )(A) P(A)-P (B ) (B ) P(A)-P (B )+P (AB )(C ) P (A )-P (AB ) (D ) P (A )-P (B )-P (AB ) 11、设B A ,为两随机事件,则=-)(B A P ( )(A ))()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(B A P B P A P ++ 12、已知P(A)=0.5,P(B)=0.4,P(B|A)=0.6,则P(B A |)=()(A)0.4 (B)0.5 (C)0.35 (D)0.25 13、设()()()1/3P A P B P C ===,且,,A B C 相互独立,则,,A B C 恰好发生一个的概率为 (A)2719 (B)271 (C)94 (D)31 14、 设C B A C P B P A P ,,,31)()()(===相互独立,则C B A ,,至少有一个发生的概率为( ) (A)32 ; (B)2719; (C)2726; (D)271。
第一章 随机事件及其概率课后习题参考答案
第一章 随机事件及其概率1. 1) {}01001,,,.nn n n Ω=L2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。
写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。
,,,,,,,,,,,,,,,,,,,,,,,,.,,,,S ++--++-++++-+++++---+--++-+-+-++⎧⎫=⎨⎬-+---+-+-++--+++-------+--+---++⎩⎭++--++-++++-+++++--+-+-+-++⎧⎫Ω=⎨⎬-+---+-+-++--+++--⎩⎭4) {}22(,)1.x y x y Ω=+<2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC ,5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++.3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。
(2)当()1P A B +=时,()P AB 取到最小值0.3。
4. 解:依题意所求为()P A B C ++,所以()()()()()()()()1111000(0()()0)44485.8P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意,()()()()()()()()()()()()()()0.70.50.25.()()()0.70.60.5P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++==++=+=+---===+-+-Q6. 解:由条件概率公式得到111()1()()(),(),3412()2P AB P AB P A P B A P B P A B ==⨯=== 所以1111()()()().46123P A B P A P B P AB +=+-=+-= 7. 解:1) 2028281222101028()45C C P P A A C P ===,2) 202__________282121212210101()()(|)45C C P P A A P A P A A C P ====,3) 1122________82821212121222210101016()()()145C C P P P A A A A P A A P A A C P P =+==--=U ,4) 1120____________8228121212122101()()()5C C C C P A A A A P A A P A A C +=+==U . 8. 解:(1) 以A 表示第一次从甲袋中取得白球这一事件,B 表示后从乙袋中取 得白球这一事件,则所求为()P B ,由题意及全概率公式得1()()()()().11n N m NP B P A P B A P A P B A n m N M n m N M +=+=⨯+⨯++++++ (2) 以123,,A A A 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和两个白球,B 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知211255441232229995103(),(),(),181818C C C C P A P A P A C C C ====== 123567(|),(|),(|).111111P B A P B A P B A === 由全概率公式得31551063753()()(|).18111811181199i i i P B P A P B A ===⨯+⨯+⨯=∑ 9. 解:以A 表示随机挑选的人为色盲,B 表示随机挑选的人为男子。
人教版高中数学必修第二册10.1随机事件与概率 一课一练 同步训练(含答案)
人教版高中数学必修第二册10.1随机事件与概率一课一练同步训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.以下事件是随机事件的是()A.在标准大气压下,水加热到100℃,必会沸腾B.长和宽分别为a,b的矩形,其面积为a×bC.走到十字路口,遇到红灯D.三角形的内角和为180°2.下列事件中随机事件的个数是()①同性电荷,互相排斥;②明天天晴;③自由下落的物体做匀速直线运动;④函数y=log a x(a>0,且a≠1)在定义域上是增函数.A.0B.1C.2D.33.甲、乙两队准备进行一场足球赛,根据以往的经验知甲队获胜的概率是12,两队打平的概率是16,则这次比赛乙队不输的概率是()A.16B.13C.12D.564.从装有20个红球和30个白球的罐子里任取两个球,下列各组中的两个事件互斥而不对立的是()A.“至少有一个红球”和“至少有一个白球”B.“恰有一个红球”和“都是白球”C.“至少有一个红球”和“都是白球”D.“至多有一个红球”和“都是红球”5.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A.23B.25C.12D.136.某中学举行广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了从1到10共10个出场序号签供大家抽签,高一(1)班先抽,则他们抽到的出场序号小于4的概率为() A.710B.15C.25D.3107.在一次随机试验中,已知A,B,C三个事件发生的概率分别为0.2,0.3,0.5,则下列说法一定正确的是()A.B与C是互斥事件B.A+B与C是对立事件C.A+B+C是必然事件D.0.3≤P(A+B)≤0.58.若a,b∈{-1,0,1,2},则函数f(x)=ax2+2x+b有零点的概率为()A.1316B.78C.34D.58二、填空题(本大题共4小题,每小题5分,共20分)9.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为.(只考虑整数环数)10.记事件A=“某人射击一次中靶”,且P(A)=0.92,则事件A的对立事件是,它发生的概率是.11.按文献记载,《百家姓》成书于北宋初年,表1记录了《百家姓》开头的24大姓氏:表1赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张表2记录了2018年中国人口最多的前10大姓氏:表21:李2:王3:张4:刘5:陈6:杨7:赵8:黄9:周10:吴从《百家姓》开头的24大姓氏中随机选取1个姓氏,则这个姓氏是2018年中国人口最多的前10大姓氏之一的概率为.12.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,事件“甲分得红牌”与“乙分得红牌”是.(填序号)①对立事件;②不可能事件;③互斥但不对立事件;④对立但不互斥事件.三、解答题(本大题共3小题,共40分)13.(10分)已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.14.(15分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为12,中二等奖或三等奖的概率为512.(1)求任取一张,中一等奖的概率;(2)若中一等奖或二等奖的概率是14,求任取一张,中三等奖的概率.15.(15分)学校组织学生参加某项比赛,参赛选手必须有很好的语言表达能力和文字组织能力.学校对10位已入围的学生进行语言表达能力和文字组织能力的测试,测试成绩分为A,B,C三个等级,其统计结果如下表:语言表达能力A B C文字组织能力A220B1a1C01b由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为C的学生的概率为310.(1)求a,b的值;(2)从测试成绩均为A或B的学生中任意抽取2位,求其中至少有一位语言表达能力或文字组织能力为A的学生的概率.参考答案与解析1.C[解析]在A中,在标准大气压下,水加热到100℃,必会沸腾,该事件是必然事件;在B 中,长和宽分别为a,b的矩形,其面积为a×b,该事件是必然事件;在C中,走到十字路口,遇到红灯,该事件是随机事件;在D中,三角形的内角和为180°,该事件是必然事件.故选C.2.C[解析]由随机事件、必然事件、不可能事件的定义可知,②④是随机事件,①是必然事件,③是不可能事件.故选C.3.C[解析]由题意,“甲队获胜”与“乙队不输”是对立事件,因为甲队获胜的概率是12,所以这次比赛乙队不输的概率是1-12=12,故选C.4.B[解析]易知A选项中的两个事件可以同时发生,故不互斥;C,D选项中的两个事件为对立事件;B选项中的两个事件互斥,但事件“都是红球”也有可能发生,故不对立.故选B.5.B[解析]将大小材质完全相同的3个红球和3个黑球分别记为A1,A2,A3,a1,a2,a3,随机摸出两个小球,则试验的样本空间为Ω={A1A2,A1A3,A1a1,A1a2,A1a3,A2A3,A2a1,A2a2,A2a3,A3a1,A3a2,A3a3,a1a2,a1a3,a2a3},共包含15个样本点,其中“两个小球同色”包含的样本点有A1A2,A1A3,A2A3,a1a2,a1a3,a2a3,共6个,所以两个小球同色的概率P=615=25,故选B.6.D[解析]由题知样本空间中样本点的个数n=10,事件“高一(1)班抽到的出场序号小于4”包含的样本点的个数m=3,∴所求概率P= =310.故选D.7.D[解析]在A中,B与C有可能同时发生,不一定是互斥事件,故A错误;在B中,A+B和C 有可能同时发生,不一定是对立事件,故B错误;在C中,A,B,C不一定是互斥事件,故A+B+C 不一定是必然事件,故C错误;在D中,A,B,C不一定是互斥事件,∴P(A+B)≤0.5,∴0.3≤P(A+B)≤0.5,故D正确.故选D.8.A[解析]方法一:易知该试验共有16个样本点,当a=0时,f(x)=2x+b,无论b取{-1,0,1,2}中的何值,函数f(x)必有零点,所以满足条件的取法有4种,故有4个样本点符合要求;当a≠0时,函数f(x)=ax2+2x+b为二次函数,要使f(x)有零点,须有Δ≥0,即4-4ab≥0,即ab≤1,所以a,b取值组成的数对可以为(-1,0),(1,0),(2,0),(-1,1),(-1,-1),(1,1),(1,-1),(-1,2),(2,-1),故满足条件的样本点有9个.综上,符合条件的样本点的个数为13,故所求概率为1316,故选A.方法二(排除法):易知该试验共有16个样本点,要使函数f(x)无零点,须有a≠0且Δ<0,即ab>1,所以a,b取值组成的数对可以为(1,2),(2,1),(2,2),故有3个样本点符合条件.所以所求概率为1-316=1316,故选A.9.0.2[解析]因为“中靶环数大于5”与“中靶环数大于0且小于6”是互斥事件,且两个事件的和事件为“射击一次中靶”,因此中靶环数大于0且小于6的概率为0.95-0.75=0.2.10.“某人射击一次未中靶”0.08[解析]事件A=“某人射击一次中靶”,则事件A的对立事件为“某人射击一次未中靶”,它发生的概率P( )=1-P(A)=1-0.92=0.08.11.13[解析]由题意得《百家姓》开头的24大姓氏中,是2018年中国人口最多的前10大姓氏的有8个,∴从《百家姓》开头的24大姓氏中随机选取1个姓氏,则这个姓氏是2018年中国人口最多的前10大姓氏之一的概率P=824=13.12.③[解析]根据题意,把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张纸牌,事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件;又事件“丙分得红牌”与事件“丁分得红牌”也是有可能发生的,故事件“甲分得红牌”与事件“乙分得红牌”不是对立事件.故两事件之间的关系是互斥但不对立.13.解:记“甲射击一次,命中7环(不含7环)以下”为事件A,则P(A)=1-0.56-0.22-0.12=0.1;记“甲射击一次,命中7环”为事件B,则P(B)=0.12.由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.(1)事件“甲射击一次,命中不足8环”即为A+B,由互斥事件的概率加法公式,知P(A+B)=P(A)+P(B)=0.1+0.12=0.22,故甲射击一次,命中不足8环的概率是0.22.(2)方法一:记“甲射击一次,命中8环”为事件C,“甲射击一次,命中9环(含9环)以上”为事件D,则事件“甲射击一次,至少命中7环”为B+C+D,则P(B+C+D)=P(B)+P(C)+P(D)=0.12+0.22+0.56=0.9,故甲射击一次,至少命中7环的概率为0.9.方法二:因为“甲射击一次,至少命中7环”为事件 ,所以P( )=1-P(A)=1-0.1=0.9,故甲射击一次,至少命中7环的概率为0.9.14.解:(1)设任取一张,中一等奖、中二等奖、中三等奖、不中奖分别为事件A,B,C,D,则A,B,C,D是互斥事件,由题意得P(D)=12,P(B+C)=P(B)+P(C)=512,由对立事件的概率公式得P(A)=1-P(B+C+D)=1-P(B+C)-P(D)=1-512-12=112,∴任取一张,中一等奖的概率为112.(2)∵P(A+B)=14,又P(A+B)=P(A)+P(B),∴P(B)=14-112=16,又P(B+C)=P(B)+P(C)=512,∴P(C)=14,∴任取一张,中三等奖的概率为14.15.解:(1)依题意可知语言表达能力或文字组织能力为C的学生共有(b+2)人,所以 +210=310,解得b=1,因为2+2+1+a+1+1+b=10,所以a=2.(2)测试成绩均为A或B的学生共有7人,其中语言表达能力和文字组织能力均为B的有2人,设为b1,b2,其余5人设为a1,a2,a3,a4,a5.从这7人中任取2人,则该试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a 2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},样本点的个数为21,“选出的2人的语言表达能力和文字组织能力均为B”包含的样本点有(b1,b2),共1个,所以至少有一位语言表达能力或文字组织能力为A的学生的概率P=1-121=2021.。
高中数学必修三《事件与概率》课后练习(含答案)
事件与概率课后练习题一:袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是(球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球.摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球.摸出的三个球中至少有两个球是白球题二:下列事件中,必然事件是题二:下列事件中,必然事件是 ,不可能事件是,不可能事件是 ,随机事件是,随机事件是 .(1)某射击运动员射击1次,命中靶心;次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;张体育彩票会中奖;(5)天上下雨,马路潮湿;)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;页;(7)你能长高到4m ;(8)抛掷1枚骰子得到的点数小于8.题三:一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是(的对立事件是( )A .命中环数为7、8、9、10环B .命中环数为1、2、3、4、5、6环C .命中环数至少为6环D .命中环数至多为6环题四:某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为(次,那么下列各组事件中是互斥且不对立的事件的组数为( ) (1)事件A :至少有一个命中,事件B :都命中;:都命中;(2)事件A :至少有一次命中,事件B :至多有一次命中;:至多有一次命中;(3)事件A :恰有一次命中,事件B :恰有2次命中;次命中;(4)事件A :至少有一次命中,事件B :都没命中.:都没命中.A .0 B .1 C .2 D .3 题五:为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是人组成,则甲一定抽调到防控小组的概率是 .题六:小明将1枚质地均匀的硬币连续抛掷3次.次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,③正面朝上、反面朝上、正面朝上,其中出现的概率(其中出现的概率( )A .①最小.①最小B .②最小.②最小C .③最小.③最小D .①②③均相同.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少多少题七:掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A 所有基本事件个数为(有基本事件个数为( )A .2个B .3个C .4个D .5个题八:从1,2,3,5中任取2个数字作为直线Ax +By =0中的A 、B .(1)求这个试验的基本事件总数;)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.这一事件所包含的基本事件.题九:袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是( )A .至少一个白球;都是白球.至少一个白球;都是白球B .至少一个白球;至少一个黑球.至少一个白球;至少一个黑球C .至少一个白球;一个白球一个黑球.至少一个白球;一个白球一个黑球D .至少一个白球;红球、黑球各一个.至少一个白球;红球、黑球各一个题十:掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是(那么互斥而不对立的两个事件是( )A .“至少有一个奇数”与“都是奇数”B .“至少有一个奇数”与“至少有一个偶数”C .“至少有一个奇数”与“都是偶数”D .“恰好有一个奇数”与“恰好有两个奇数”题十一:下列说法中正确的是题十一:下列说法中正确的是 ..(1)事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大;中恰有一个发生的概率大; (2)事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小;中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.)互斥事件不一定是对立事件,对立事件一定是互斥事件.题十二:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;件次品;(2)至少有1件次品和全是次品;件次品和全是次品;(3)至少有1件正品和至少有1件次品.件次品.题十三:经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是余为无效.则某人患该病使用此药后无效的概率是 .题十四:我国西部一个地区的年降水量(题十四:我国西部一个地区的年降水量( 单位:mm )在下列区间内的概率如下表:)在下列区间内的概率如下表:年降水量水量[600,800) [800,1000) [1000,1200) [1200,1400) [1400,1600) 概率 0.12 0.26 0.38 0.16 0.08 (1)求年降水量在)求年降水量在事件与概率课后练习参考答案题一:题一: A .详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .题二:题二: (3)、(5)、(8);(2)、(7);(1)、(4)、(6). 详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m ;(不可能事件)(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).题三:题三: C .详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C .题四:题四: B .详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A 与事件B 不可能同时发生,强调的是“不同时发生”.对立事件:事件A 、B 中必定而且只有一个发生。
随机事件及其概率习题
第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A Y 13{|0}{|2}42x x x x =≤<≤≤U , B A 113{|}{|1}422x x x x =≤≤<<U . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -L L L ;;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 . 7.已知P (A )=, P(B )=,(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 .(2) 当B A 时, P(A+B )= ; P (AB )= ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则= . 10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 . 13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ). ()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
随机事件与概率练习题及答案
第7章 随机事件与概率一、填空题⒈ 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为 .⒉ 若事件A B ,满足A B U AB +==∅,,且P A ().=03,则P B ()= . ⒊ 已知85)(=+B A P ,83)(=AB P ,83)(=B P ,则=)(A P . ⒋ 设A 与B 互不相容的两个事件,0)(>B P ,则有P A B ()= .5. 若事件A B ,满足A B ⊃,则P A B ()-= .二、单项选择题⒈ 设A ,B 为两事件,则下列等式成立的是( ).A .B A B A +=+ B . B A AB ⋅=C . B A B B A +=+D . B A B B A +=+2. 对任意二事件A B ,,等式( )成立。
A .P AB P A P B ()()()= B .P A B P A P B ()()()+=+C .P A B P A P B ()()(())=≠0D .P AB P A P B A P A ()()()(())=≠03. 袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球.则两次都是红球的概率是( )A . 259B . 103C . 256D . 203 4. 若事件A B ,满足1)()(>+B P A P ,则A 与B 一定( ).A . 不相互独立B . 相互独立C . 互不相容D . 不互不相容5. 甲、乙两人各自考上大学的概率分别为70%,80%,则甲、乙两人同时考上大学的概率为( ).A . 56%B . 50%C . 75%D . 94%三、解答题⒈ 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().⒉ 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.⒊ 设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到的黑球概率.⒋ 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证A 与B 是相容的. 5.已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.6. 已知事件A 与B 相互独立,证明A 与B 相互独立.答案及解答:一、填空题⒈)(C B A + ⒉0.7 ⒊375.0 ⒋ 0 5.)()(B P A P -二、单项选择题⒈ C ⒉ D 3.B 4. D 5. A三、解答题⒈ 解 因为B A AB B +=,)()()(B A P AB P B P +=,即)()()(B A P B P AB P -=所以,P B A ())()(A P AB P =434.05.08.0)()()(=-=-=A P B A P B P ⒉ 解 因为A 与B 只有一个发生的事件为:B A B A +,且事件A 与B 相互独立,则事件A 与B ,A 与B 也相互独立. 故)(B A P +=)()(B P A P +=)()()()(B P P P A P +=0.6⨯(1-0.8)+ (1-0.6)⨯0.8 = 0.44⒊ 解 设事件A ={从有3个白球2个黑球的箱中取出一球是白球},B ={从有2个白球2个黑球的箱中取出一球是白球},C ={从有1个白球2个黑球的箱中取出一球是黑球},D ={从有3个白球2个黑球的箱中依次不放回地取出3球,第3次才取到的黑球};则53)(=A P ,42)(=B P ,32)(=C P 且事件A ,B ,C 相互独立,所以 )()()()()(C P B P A P ABC P D P ==324253⨯⨯== 0.2 ⒋ 证 由概率性质和加法公式知 )(3221)()()()(1AB P AB P B P A P B A P -+=-+=+> 6113221)(=-+>AB P ,即0)(≠AB P 所以,由互不相容定义知,事件A 与B 是相容的.5.证 因为事件A ,B ,C 相互独立, 即)()()(C P A P AC P =,)()()(C P B P BC P =, 且 )()()(])[(ABC P BC P AC P C B A P -+=+=)()()()()()()(C P B P A P C P B P C P A P -+=)()]()()()([C P B P A P B P A P -+=)()(C P B A P +所以)(B A +与C 相互独立.6.证 因为事件A 与B 相互独立,即)()()(B P A P AB P =,且 )(1)(B A P B A P +-=)()()(1AB P B P A P +--=)())(1()(1B P A P A P ---=))(1))((1(B P A P --= )()(B P A P = 所以,A 与B 相互独立.4.05.02.0)()()(===A P AB P A B P。
第一章_随机事件及其概率习题
第一章随机事件及其概率习题一一、填空题1.设样本空间,事件,则, 、2、连续射击一目标,表示第次射中,直到射中为止得试验样本空间,则=、3.一部四卷得文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为、4.一批(个)产品中有个次品、从这批产品中任取个,其中恰有个个次品得概率就是、5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站得时刻就是任意得,则乘客侯车时间不超过3分钟得概率为0、6 、6.在区间(0, 1)中随机地取两个数,则事件“两数之与小于”得概率为0、68 、7.已知P(A)=0、4, P(B)=0、3,(1)当A,B互不相容时, P(A∪B)= 0、7; P(AB)= 0 、(2)当B A时, P(A+B)= 0、4 ; P(AB)= 0、3 ;8、若,;;=、9、事件两两独立, 满足,且P(A+B+C )=,=0、25??、10.已知随机事件得概率,随机事件得概率,及条件概率,则与事件得概率0、7 、12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不就是三等品,则取到一等品得概率为、13、已知、14、一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品得概率、15、甲、乙、丙三人入学考试合格得概率分别就是,三人中恰好有两人合格得概率为2/5 、16、一次试验中事件发生得概率为p, 现进行次独立试验, 则至少发生一次得概率为;至多发生一次得概率为、17、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0、6与0、5,现已知目标被击中,则它就是甲中得概率为 0、75 、二、选择题1.以表示事件“甲种产品畅销,乙种产品滞销”则其对立事件为(D)、(A)“甲种产品畅销,乙种产品滞销”; (B)“甲、乙两种产品均畅销”;(C)“甲种产品滞销”; (D)“甲种产品滞销或乙种产品畅销”、2、 对于任意二事件(D)、() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3、 如果事件A,B 有B ⊂A,则下述结论正确得就是(C)、(A ) A 与B 同时发生; (B)A 发生,B 必发生;(C) A 不发生B 必不发生; (D)B 不发生A 必不发生、4、 A 表示“五个产品全就是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全就是合格品”,则下述结论正确得就是(B)、() ; () ; () ; .A AB B AC C B CD A B C ====-() 5、 若二事件与同时出现得概率P()=0则(C)、(A)与不相容; (B)就是不可能事件;(C)未必就是不可能事件; (D)P()=0或P()=0、6、 对于任意二事件与有 (C )、(A) ; (B);(C); (D)、8、 设A , B 就是任意两个概率不为0得不相容得事件,则下列事件肯定正确得(D)、(A) 不相容; (B)相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A )、9、 当事件A 、B 同时发生时,事件C 必发生则(B)、(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10、 设为两随机事件,且 ,则下列式子正确得就是 (A )、(A); (B) ;(C) ; (D) 、11、 设( B )、() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12、 设就是任意两事件, 且, 则下列选项必然成立得就是(B)、()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设就是任意二事件,且,,则必有( C )、(A) ; (B) ;(C) ; (D) .14、 袋中有5个球,其中2个白球与3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球得概率为(D )、1212() ; () ; () ; () .4455A B C D15、 设(D)、(A) 事件互不相容; (B) 事件互相对立;(C) 事件互不独立; (D) 事件相互独立、16、 某人向同一目标重复射击,每次射击命中目标得概率为,则此人第4次射击恰好第2次命中目标得概率为(C)、三、解答题1、写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之与;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取得次数;(3) 对某工厂出厂得产品进行检查,合格得盖上“正品”,不合格得盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查得结果。
作业题 第一章 随机事件及其概率
2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过 两次而接通所需电话的概率. 若已知最后一个数字是奇数,那么此概率是多少?
3、两台车床加工同样的零件,第一台出现废品的概率是 0.03,第二台出现废品 的概率是 0.02. 加工出来的零件放在一起,并且已知第一台加工的零件比第二台 加工的零件多一倍. (1)求任意取出的零件是合格品的概率; (2)如果任意取出的零件是废品,求它是第二台车床加工的概率.
概率论与数理统计作业纸
班级:
学号:
姓名:
第一章 随机事件及其概率 一、 随机事件及其概率·样本空间·事件的关系及运算
1、任意抛掷一颗骰子,观察出现的点数。设事件 A 表示“出现偶数点” ,事件 B 表示“出现的点数能被 3 整除” . (1)写出试验的样本点及样本空间; (2)把事件 A 及 B 分别表示为样本点的集合; (3)事件 A , B , A B , AB , A B 分别表示什么事件?并把它们表示为样本 点的集合.
概率论与数理统计作业纸
~5~
班级:
学号:
姓名:
4、 甲、 乙、 丙三人同时对飞机进行射击, 三人的命中概率分别为 0.4 , 0.5 , 0.7 . 飞 机被一人击中而被击落的概率为 0.2 ,被两人击中而被击落的概率为 0.6 ,若三 人都击中,则飞机必被击落.求飞机被击落的概率.
5、 某机构有一个 9 人组成的顾问小组, 若每个顾问贡献正确意见的概率都是 0.7, 现在该机构内就某事可行与否个别征求每个顾问的意见, 并按多数人意见作出决 策,求作出正确决策的概率.
随机事件及概率复习题与答案
随机事件及概率复习题一、选择题1.某厂的产品合格率为90%,某人购买了该厂的10件产品,则下列说法正确的是( ) (A)合格品不少于9件 (B)合格品不多于9件 (C)合格品正好是9件(D)合格品可能是9件2.将一枚骰子连续抛掷两次,则向上点数之差的绝对值不大于3的概率是( ) (A)23(B)56(C)2936(D)343.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) (A)恰有1个白球与恰有2个白球 (B)至少有1个白球与都是白球 (C)至少有1个白球与至少有1个红球 (D)至少有1个白球与都是红球4.从1,2,3,…,9这9个数中任取两数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( ) (A)①(B)②④ (C)③(D)①③6.四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) (A)4π (B)1-4π (C)8π (D)1-8π7.如图,四边形ABCD 为矩形,BC=1,以A 为圆心,1为半径作四分之一圆弧DE ,在∠DAB 内任作射线AP ,射线AP 与线段BC 有公共点的概率为( )(A)13(B)14(C)25(D)238.现有分别写有数字1,2,3,4,5的5张白色卡片、5张黄色卡片、5张红色卡片.每次试验抽一张卡片,并定义随机变量x ,y 如下:若是白色,则x =0;若是黄色,则x =1;若是红色,则x =2.若卡片数字是n(n =1,2,3,4,5),则y =n ,则P(x +y =3)的概率是( ) (A)115(B)15 (C)215(D)4159.(能力挑战题)在区间[0,π]上随机取一个数x,则事件“sin x≤1”发生的概率为( )(A)14(B)13(C)12(D)2310.正四面体各面分别标有数字1,2,3,4,正六面体各面分别标有数字1,2,3,4,5,6,同时掷这两个正多面体,并将它们朝下面上的数字相加.则两个正多面体朝下面上的数字之和是3的倍数的概率为( )(A)12(B)13(C)14(D)15二、填空题11.(2013·南充模拟)从集合{(x,y)|x2+y2≤4,x∈R,y∈R}内任选一个元素(x,y),则(x,y)满足x+y≥2的概率为________.12.用三种不同的颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,则(1)3个矩形颜色都相同的概率为_______.(2)3个矩形颜色都不同的概率为_______.13.(2013·武汉模拟) 两个袋中各装有编号为1,2,3,4,5的5个小球,分别从每个袋中摸出一个小球,所得两球编号数之和小于5的概率为________.15.图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.三、解答题16.现有编号分别为1,2,3的三道不同的政治基本题,另有编号分别为4,5的两道不同的历史基本题和一道历史附加题.甲同学从这五道基本题中一次随机抽取两道题,每题做对、做错及每题被抽到的概率是相等的.(1)用符号(x,y)表示事件“抽到的两题的编号分别为x,y,且x<y”,则该事件共有多少个基本事件?请列举出来.(2)求甲同学所抽取的两道基本题的编号之和小于8但不小于4的概率.(3)甲同学在做完两道基本题之后又做了历史附加题,做对基本题每题加5分,做对历史附加题加15分,求甲同学得分不低于20分的概率.17.(12分)从含有两件正品和一件次品的3件产品中每次任取一件.(1)每次取出后不放回,连续取两次.(2)每次取出后放回,连续取两次.试分别求取出的两件产品中恰有一件次品的概率.18.(12分)某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率.(2)该队员最多属于两支球队的概率.19.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.20.(13分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲胜,否则算乙胜.记基本事件为(x,y),其中x,y 分别为甲、乙摸到的球的编号.(1)列举出所有的基本事件,并求甲胜且编号的和为5的事件发生的概率.(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平.(3)如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性最大?说明理由.21.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值.(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)答案解析1.【解析】选D.由于产品合格率为90%,因此10件产品中可能有9件合格品,是随机的,故选D.2.【解析】选B.抛掷骰子两次,有36种等可能的结果,如表:所求概率P =36=6. 3.【解析】选A.由互斥、对立事件的概念可知,B ,C 中两事件不互斥,D 中两事件互斥且对立.4.【解析】选C.③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~9中任取两数共有三个事件:“两个奇数”“一奇一偶”“两个偶数”,故“至少有一个是奇数”与“两个偶数”是对立事件.6.【解析】选B.长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2π,因此取到的点到O 的距离小于1的概率为2π÷2=4π,取到的点到O 的距离大于1的概率为1-4π.7.【解析】选A.因为在∠DAB 内任作射线AP ,则等可能基本事件为“在∠DAB 内作射线AP ”,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,所以射线AP 与线段BC 有公共点的概率为CAB 301DAB 903∠︒==∠︒.8.【解析】选B.满足x +y =3的数对(x ,y)有三种(0,3),(1,2),(2,1).而(0,3)表示取到一张写有数字3的白色卡片,此时概率P 1=115.同理,数对(1,2)对应的概率为P 2=115,数对(2,1)对应的概率为P 3=115.∴P(x +y =3)=P 1+P 2+P 3=115+115+115=315=15.9.【解析】选C.由题意知,此概率符合几何概型,所有基本事件包含的区域长度为π,设A 表示取出的x 满足sin x ≤1这样的事件,对条件变形为sin(x+3π)≤12,A 包含的区域长度为2π.∴P(A)=2ππ=12. 10.【解析】选B.根据题意,用树状图列举出所有情况,可得共有24种情况,其中,和为3的倍数的情况有8种,所以P(和为3的倍数)=824=13.故选B.11. 【解析】如图所示,点(x,y)满足条件x+y ≥2的概率为P=AOB1S S S 4S S -=圆阴圆圆2211222242.24π-π-==ππ答案:24π-π 12.【解析】设3个矩形从左到右依次为矩形1、矩形2、矩形3,用三种不同颜色给图中3个矩形随机涂色,可能的结果共有27个.(1)记“3个矩形都涂同一颜色”为事件A ,事件A 的基本事件有3个,故P(A)=327=19. (2)记“3个矩形颜色都不同”为事件B ,事件B 的基本事件有6个,故P(B)=627=29.答案:(1) 19 (2) 2913.【解析】总的取球结果有n =5×5=25个,满足两球编号之和小于5的试验结果有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个,故所求概率为P =625. 15.【解析】设长方体的高为h ,则图(2)中虚线围成的矩形长为2+2h ,宽为1+2h ,面积为(2+2h)(1+2h),展开图的面积为2+4h ;由几何概型的概率公式知24h 1(22h)(12h)4+=++,得h =3,所以长方体的体积是V=1×3=3.答案:316.【解析】(1)共有10个等可能的基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).(2)记事件“甲同学所抽取的两题的编号之和小于8但不小于4”为事件A ,则事件A 共含有7个基本事件,列举如下:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),∴P(A)=710. (3)记事件“做对历史附加题且同时至少做对一道基本题”为事件B , 则P(B)=12×[1-(12)2]=38.所以甲同学得分不低于20分的概率为38. 17.【解析】(1) 用a 1,a 2和b 1表示两件正品和一件次品,则不放回地抽取两次,其一切可能的结果为:(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2). 其中小括号内左边的字母表示第一次取出的产品,右边的字母表示第二次取出的产品,用A 表示“取出的两件产品中,恰好有一件次品”这一事件,则A 所含的结果为(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即基本事件的总数n =6,事件A 包含的事件总数m =4.故P(A)=46=23. (2)若为有放回地抽取,其基本事件包含的结果共有(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1),用B 表示“恰有一件产品为次品”这一事件,则B 包含的结果为(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即基本事件的总数n =9,事件B 包含的事件总数m =4.故P(B)=49. 18.【解析】从图中可以看出,3个球队共有20名队员. (1)记“随机抽取一名队员,该队员只属于一支球队”为事件A.所以()3543P A 205++==.故随机抽取一名队员,只属于一支球队的概率为35.(2)记“随机抽取一名队员,该队员最多属于两支球队”为事件B.则P(B)=1-P (B)=1-220=910. 故抽取一名队员,该队员最多属于两支球队的概率为910. 19.【解析】(1)当日需求量n ≥17时,利润y =85. 当日需求量n<17时,利润y =10n-85. 所以y 关于n 的函数解析式为 y =10n 85n 1785n 17<⎧⎨≥⎩-,,, (n ∈N).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P =0.16+0.16+0.15+0.13+0.1=0.7.20.【解析】(1)共有16个等可能事件,列举如下:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 设“甲胜且两数字之和为5”为事件A ,则事件A 包含(1,4),(2,3),(3,2),(4,1)共4个基本事件. ∴P(A)=416=14. (2)这种游戏规则公平.设甲胜为事件B ,乙胜为事件C ,则甲胜包含(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)共8个基本事件,∴甲胜的概率P(B)=816=12. 从而乙胜的概率P(C)=1-P(B)=12, ∴P(B)=P(C),故这种游戏规则公平.(3)记“所摸出的两球号码之和为i ”为事件A i (i=2,3,4,5,6,7,8).由(1)中可知事件A 2的基本结果为1种,事件A 3的基本结果为2种,事件A 4的基本结果为3种,事件A 5的基本结果为4种,事件A 6的基本结果为3种,事件A 7的基本结果为2种,事件A 8的基本结果为1种,所以摸出的两球号码之和为5的概率最大.所以,猜5获奖的可能性最大.21.【解析】(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1151.530225 2.520310100⨯⨯⨯⨯⨯++++=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P(A 1)=15100=320,P(A 2)=30100=310,P(A 3)=25100=14. 因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P(A)=P(A 1∪A 2∪A 3)=P(A 1)+P(A 2)+P(A 3)=320+310+14=710. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.。
第一章《 随机事件及其概率》作业
第一章 《 随机事件及其概率》作业班级 学号 姓名一、单项选择题1.若C B A ,,为三个随机事件,则C B A ,,至少有一个发生可表示为( ) )(A ABC ; )(B C B A ;)(C ABC ABC ABC ; )(D C AB C B A BC A .2. 袋中有大小形状相同的3只黑球和7只白球,从中任取2只球,则取 得球恰好是一黑一白的概率是( )(A) 157 , (B) 151 , (C) 153 , (D) 103. 3. 设B A ,为随机事件,且4.0)(,3.0)(,2.0)(===B A P B P A P ,则=)(B A P ( )).(A 5.0; ).(B 7.0;).(C 6.0; ).(D 38.0.4. 把6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A).!10!6!4 (B). 0.7 (C).!10!7!4 (D). 0.4 5. 三人独立地去破译一份密码,已知每个人能译出的概率分别为51,31,41; 问三人中至少有一人能将此密码破译的概率是( ) .(A) 0.2, (B) 0.4, (C) 0.6, (D) 0.8.6. 设A,B 为两事件,则P(A-B)=( )。
(A).P(A)-P(B) (B). P(A)-P(B)+P(AB)(C).P(A)-P(AB) (D).P(A)+P(B)-P(AB)二 .填空题1.设A,B 是两相互独立的事件,4.0)(,6.0)(==+A P B A P ,则=)(B P .2.设P(A)=21, P (AB )=52,则P(B|A)=____________。
3.袋中有大小形状相同的3只黑球和5只白球,从中取2只球,则取出两个球都是白球的概率是 ,两个球中一黑一白的概率是 。
4.加工某一零件共需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05和0.03.假设各工序是互不影响的,求加工出来的零件的次品率 .5.加工一件产品需要经过三道工序,第一、二、三道工序不出废品的概率分为0.95,0.85,0.9。
随机事件与概率练习题
随机事件与概率一、选择题1. 下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2. (2015•徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球3.下列说法正确的是( )A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.(2016•开平区二模)一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个5.下列说法正确的是( )A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面.6. 下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A.1个B.2个C.3个D.4个二. 填空题7. 夏雪同学每次数学测试成绩都是优秀,则在这次中考中他的数学成绩____________(填“可能”,“不可能”,“必然”)是优秀.8. 判断下列事件的类型:(必然事件,随机事件,不可能事件)(1)掷骰子试验,出现的点数不大于6._____________(2)抽签试验中,抽到的序号大于0._____________(3)抽签试验中,抽到的序号是0.____________(4)掷骰子试验,出现的点数是7._____________(5)任意抛掷一枚硬币,“正面向上”._____________(6)在上午八点拨打查号台114,“线路能接通”.__________(7)度量五边形外角和,结果是720度.________________9. (2015•潍坊模拟)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.10.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).11. 掷一枚均匀的骰子,2点向上的概率是_______,7点向上的概率是_______.12. 下面4个说法中,正确的个数为_______.(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大.(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.三.综合题13. 下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率(1)由这张频数和频率表可知,机器人抛掷完5次时,得到一次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______.(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到_____次正面,正面出现的频率是_____;那么,也就是说机器人抛掷完9999次时,得到_____次反面,反面出现的频率是______(3)请你估计一下,抛这枚硬币,正面出现的概率是_______.14.(2015春•雅安期末)如图是小明和小颖共同设计的自由转动的十等分转盘,上面写有10个有理数.(1)求转得正数的概率.(2)求转得偶数的概率.(3)求转得绝对值小于6的数的概率.15.(2016春•苏州期末)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 251摸到黑球的频率0.23 0.21 0.30 0.26 0.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.【答案与解析】一、选择题1.【答案】D.2.【答案】A.【解析】一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.3.【答案】C.4.【答案】C.【解析】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,∴白球与红球的数量之比为1:4,∵白球有10个,∴红球有4×10=40(个).故选C.5.【答案】B.6.【答案】A.【解析】只有丙是正确的,指针停在奇数号扇形的概率与停在偶数号扇形的概率都是50%.二、填空题7. 【答案】可能.【解析】夏雪同学每次数学测试成绩都是优秀,则在这次中考中他的数学成绩不能确定,是随机事件.8.【答案】必然事件;必然事件;不可能事件;不可能事件;随机事件;随机事件;不可能事件. 9.【答案】12.【解析】设白球个数为:x 个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.10.【答案】0.8;【解析】随着试验次数的增加,频率逐渐稳定在概率附近. 11.【答案】;0. 12.【答案】0.【解析】(1)中即使概率是99%,很大了,但是仍然有不是红球的可能,所以错误; (2) 因为有三个球,机会相等,所以概率应该是; (3) 概率的取值范围是.(4) 应该是取出一只红球的可能性不存在. 三、 解答题13.【解析】① 4;80%;② 5006;50.1%;4993;49.9%; ③ . 14. 【解析】161312解:(1)P(转得正数)==;(2)P(转得偶数)==;(3)P(转得绝对值小于6的数)==.15.【解析】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.。
第一章 随机事件和概率
第一章 随机事件和概率练习一一、选择题1.设,,A B C 是任意三个随机事件,则以下命题中正确的是( ) A.()A B B A B -=- B. ()A B B A -=C. ()()AB C A B C -=- D. A B AB BA =2.设,A B 为两个事件,则()()A B A B ++表示( ) A.必然事件 B.不可能事件C. A 与B 恰有一个发生D. A 与B 不同时发生二、判断题1.()A B B A -= ( ) 2.A B AB B = ( )3.()()AB C A B C -=- ( ) 4.A B C ABC = ( )5.()()AB AB φ= ( ) 6.若A B ⊂,则A AB = ( ) 7.若AB φ=,且C A ⊂,则BC φ= ( ) 8.若A B ⊂,则B A ⊂ ( ) 9.若B A ⊂,则AB A = ( ) 10.若AC B C =,则A B = ( )三、写出下列随机试验的样本空间 1. 将一骰子掷两次,记录所出现的点数。
2. 将一骰子掷两次,记录所出现的点数和。
3.黑、红、白3个外形相同的球,从中同时取2个球,观察有黑球的取法。
4.在单位圆任意取一点,记录它的坐标。
四、记,,A B C 为三事件,用,,A B C 的运算关系表示些列各事件1.A 发生,B 与C 不发生 2.A 与B 都发生,而C 不发生 3.,,A B C 中至少有一个发生 4.,,A B C 都发生5.,,A B C 都不发生 6.,,A B C 中不多于一个发生 7.,,A B C 中不多于两个发生 8.,,A B C 中至少有两个发生五、用步枪射击目标5次,设i A 为“第i 次击中目标”,(1,2,3,4,5i =),B 为“5次击中次数大于2”,用文字叙述下列事件:1.51i i A A ==2.A3.B 4.23A A - 5.12345A A A A A六、化简下列各式1.()()AB A B 2.()()A B A B3.()()AB BC 4.()()()A B A B A B5.()()()()AB AB AB AB七、设311242{02},{1},{}Sx x A x x B x x =≤≤=<≤=≤<,具体写出下列事件 1.AB 2.AB 3.AB 4.AB练习二一、判断题设B A ,是两个事件,则(1)()()()P A B P A P B =+ ( )(2))()()(B P A P B A P -=- ( ) (3))(1)(AB P B A P -= ( ) (4)若B A ⊂,则)()(A P AB P = ( )二、1.设随机事件B A ,及其和事件B A ⋃的概率分别是0.4,0.3和0.6,若B 表示B 事件的对立事件,求积事件B A 的概率。
随机事件与概率习题
(2)恰好有m个空盒的概率;
C C m ( N m N n1 Cn N 1n
)1
(3)某指定的m个盒子中恰好有j 个球的概率.
C C j
n j
m1 j ( N m)1(n 练习: (P49第23题)
甲乙两人轮流掷一颗骰子,甲先掷. 每当某人 掷出1点时,则交给对方掷,否则此人继续掷. 试求第n次由甲掷的概率.
Cn2r 22r C2r
2n
(3)C
={
2r只鞋中至少有两只配对}
1
Cn2r 22r C2r
2n
练习3:(球不可辨的放球问题)(P29第22题)
将n个完全相同的球随机地放入N 个盒子中(每盒
容球数量不限), 试求:
C nk ( N 1)1(nk )
(1)某个指定的盒子中恰好有k 个球的概率C;Nn 1n
练习:一质点从直线上原点开始等可能
地向左、向右两个方向游动,每次游动的 距离为1,求经过n次游动质点位于k的概 率.(k>0)
第一章 习题课
练习1:
从1,2,…,n中有放回地抽取k 个数,求
其中最大数为m的概率.(m≤n) mk (m 1)k
练习2:
nk
从n双不同的鞋子中任取2r只(0<2r<n),
求下列事件的概率:
C C 2 k 2r2k 2r2k n nk
(1)A={ 2r只鞋中恰有k 双配对}
C2r 2n
(2)B ={ 2r只鞋中没有一 双配对}
随机事件与概率作业题
第一章 随机事件与概率作业习题1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 ,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1 ,2 ,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则 {1 ,2 ,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) A {1 ,2 } (ⅱ) B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC 成立? (3)什么时候关系式B C 是正确的? (4) 什么时候B A 成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC 等价于AB C ,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i 1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1) n i i A 1; (2) n i i n i i A A 11 ; (3) n i nij j j i A A 11)]([ ;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i j i A A 1,。
(完整版)概率统计章节作业答案
第一章 随机事件与概率一、单项选择题1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是( B ).A. AB ={出现奇数点}B. AB ={出现5点}C. B ={出现5点}D. A B =ΩU2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ).A. ()A B B A +-=B. ()A B B A B A AB +-=-=-C. ()A B B A B -+=+D.AB AB A +=3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为( D ).A.1212A A A A UB.12A AC.12A AD.12A A U4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为( A ).A.123A A AB.123A A A ++C.123A A AD.123A A A5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是( A).A.(|)0P A B =B. (|)0P B A =C. ()0P AB =D. ()1P A B =U6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B =( D ).A. 0.2B. 0.4C. 0.6D. 0.87.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则( C ).A.()1P A B =UB.()()()P AB P A P B =C. ()0P AB =D.()0P AB >8.设P (A )=0, B 为任一事件, 则 ( C ).A.A =ΦB.A B ⊂C.A 与B 相互独立D. A 与B 互不相容9.已知P (A )=0.4, P (B )=0.5, 且A B ⊂,则P (A |B )= ( C ).A. 0B. 0.4C. 0.8D. 110.设A 与B 为两事件, 则AB = ( B ).A.A BB. A B UC. A B ID. A B I11.设事件A B ⊂, P (A )=0.2, P (B )=0.3,则()P A B =U ( A ).A. 0.3B. 0.2C. 0.5D. 0.4412.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )=( D ).A. 0.08B. 0.4C. 0.2D. 013.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ).A.()()P A B P A =UB.A B ⊂C. P (A )=P (B )D. P (AB )=P (A )14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ).A. 0.4B. 0.2C. 0.25D. 0.7515.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为( A ).A.37B.0.4C. 0.25D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ).A. 0.48B. 0.75C. 0.6D. 0.817.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为( A ).A. 0.125B. 0.25C. 0.5D. 0.418.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为( A ).A. 0.72B. 0.75C. 0.96D. 0.7819.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为( C ).A. 710B. 44710C. 47410C C D. 4710⨯ 20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为( C ).A. 810B. 38310C C C. 33810 D. 38310C 21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为( C ).A. 20.4B. 30.6C. 22350.40.6CD. 23250.40.6C22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为( D ).A.15615()66CB.156151()66C - C.15651()66C D.651()6- 23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A ).A. 19B. 12C. 23D. 13 24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为( A ).A.518B.4!6!C.4446AAD.44!625.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为( D ).A. p2B. (1-p)2C. 1-2pD. p(1-p)二、填空题1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35 .2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为1/16 .3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25 .4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486 .5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94 .6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12 .7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则()P A BU= 0.5 .8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.2, 则P(B)= 0.5 .9.设()0.3,(|)0.6P A P B A==,则P(AB)= 0.42 .10.设11()()(),()(),()046P A P B P C P AB P AC P BC======,则P(A+B+C)=5/12 .11.已知P (A )=0.7, P (A -B )=0.3, 则()P AB = 0.6 .12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为 0.25 .13.已知P (A )=0.4, P (B )=0.8, P (B|A )=0.25, 则P (A|B )= 0.125 .14.设111(),(|),(|)432P A P B A P A B ===,则()P A B U = 1/3 . 15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为 0.576 .16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为 0.7 .三、计算题1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ).解:由(|)0.3P B A =得:()0.3,()P AB P A =即()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从而, ()0.02(|)0.1()0.2P AB P A B P B ===.2.已知,()0.2,()0.3,A B P A P B ⊂==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B U ;(5)P (B -A ).(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=;(2)因为A B ⊂,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0;(4) 因为A B ⊂,所以A B B =U , ()P A B U =P (B )=0.3;或者,()P A B U =P (A )+P (B )-P (AB )=0.2+0.3-0.2=0.3;3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1;(2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从而 (|)P A B =()()()0.661()0.77()P AB P A P AB P B P B -===-; (3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.4.已知事件A 与B 相互独立,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2) ()P AB ;(3)P (A|B ).解:(1)因为事件A 与B 相互独立,所以P (AB )=P (A )P (B ),()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+-0.6=0.4+P (B )-0.4P (B ),解得:P (B )=13; (2) 因为事件A 与B 相互独立,所以A 与B 也相互独立,故()P AB =4()()15P A P B =; (3) 因为事件A 与B 相互独立,所以P (A|B )=P (A )=0.4.四、应用题 1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.解:设A “3个产品中至少有2个产品等级相同”,A “3个产品等级都不同”,由古典概率定义,得111406435012()0.049245C C C P A C ==≈,从而 ()10.0490.951P A =-=.2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.解:A “取出2把钥匙能打开门”,由古典概率知:1123732108()15C C C P A C +==.3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.解:A “4只鞋子中至少能配成一双”,则A “4只鞋子都不同”.由古典概率得:41111522224108()21C C C C C P A C ==,故13()1()21P A P A =-=. 4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.解:A “排成的数是三位数且是偶数”,A 0“排成的三位数末位是0”,A 2“排成的三位数末位是2”,则A =A 0+A 2,且A 0与A 2互不相容,因为230342!1(),3!4C P A C ==11222341(),3!6C C P A C == 所以,015()()()12P A P A P A =+=. 5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:(1)第三次才取得合格品;(2)如果取得一个合格品后就不再取零件,在三次内取得合格品.解:设A i “第i 次取到合格品”(i =1,2,3),则(1)第三次才取到合格品的概率为:12312131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⨯⨯≈. (2)A “三次内取得合格品”,则112123A A A A A A A =++,所求概率为: 112123()()()()P A P A P A A P A A A =++1121121312()()(|)()(|)(|)P A P A P A A P A P A A P A A A =++90109010990100100991009998=+⨯+⨯⨯0.9993.≈ 6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.解:A 1“第一次取出的是红球”,A 2“第二次取出的是红球”,则(1)由乘法公式得,两次取出的都是红球的概率为:121218714()()(|)121133P A A P A P A A ==⨯=; (2)在第一次取出白球的条件下,第二次取出红球的概率为:218(|)11P A A =; (3)由全概率公式得,第二次取到红球的概率为:2121121()()(|)()(|)P A P A P A A P A P A A =+7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.解:设A i “第i 台设备生产的零件”(i =1,2),B “产品是废品”,由题意知:P (A 1)=25%,P (A 2)=35%,P (A 3)=40%,P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02,由全概率公式得,产品是废品的概率为:112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++25%0.0535%0.0440%0.020.0345=⨯+⨯+⨯=.8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的是废品,求它是由第二台车床加工的概率.解:设B “零件是合格品”,A “第一台车床加工的零件”,则A “第二台车床加工的零件”,由题意知:21(),()33P A P A ==. (1)由全概率公式得:()()(|)()(|)P B P A P B A P A P B A =+21(10.03)(10.02)0.97333=⨯-+⨯-≈; (2)由贝叶斯公式得,如果取出的是废品,求它是由第二台车床加工的概率为:10.02()()(|)3(|)0.252.921()()13P A B P A P B A P A B P B P B ⨯====--9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:(1)此人恰是色盲的概率是多少?(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大?解:设B “色盲患者”,A “随机挑选一人是男人”,由题设知:11(),(),(|)5%,(|)0.25%22P A P A P B A P B A ====,则 (1)由全概率公式得,随机挑选一人是色盲的概率为:()()(|)()(|)P B P A P B A P A P B A =+115%0.25%0.0262522=⨯+⨯=; (2)由贝叶斯公式得,随机选一人是色盲,他是男人的概率为:15%()()(|)2(|)0.952()()0.02625P AB P A P B A P A B P B P B ⨯===≈; (3)由贝叶斯公式得,随机选一人不是色盲,他是男人的概率为:195%()()(|)2(|)0.48781()0.97375()P AB P A P B A P A B P B P B ⨯===≈-. 10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:(1)甲乙都抽到难签;(2)甲没有抽到难签,而乙抽到难签;(3)甲乙丙都抽到难签;(4)证明:甲乙丙抽到难签的机会均等.解:设A ,B ,C 分别表示“甲、乙、丙抽到难签”,则(1)甲乙都抽到难签的概率为:432()()(|)10915P AB P A P B A ==⨯=; (2)甲没有抽到难签,而乙抽到难签的概率为:644()()(|)10915P AB P A P B A ==⨯=; (3)甲乙丙都抽到难签的概率为:4321()()(|)(|)109830P ABC P A P B A P C AB ==⨯⨯=; (4)由古典概率知,甲抽到难签的概率为:4()0.410P A ==. 由全概率公式得,乙抽到难签的概率为:()()(|)()(|)P B P A P B A P A P B A =+43640.4109109=⨯+⨯=. 丙抽到难签的概率为:()()(|)()(|)()(|)()(|)P C P AB P C AB P AB P C AB P AB P C AB P AB P C AB =+++ 4326434636541098109810981098=⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.4. 得,P (A )=P (B )=P (C )=0.4,所以,甲乙丙抽到难签的机会均等,各占40%.11.三个人向同一敌机射击,设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且0()(10.4)(10.5)(10.7)0.09P A =-⨯--=,1()0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P A =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 2()0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.41P A =⨯⨯-+⨯-⨯+-⨯⨯=, 3()0.40.50.70.14P A =⨯⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====.故,由全概率公式得,飞机被击落的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++ 0.0900.360.20.410.60.1410.458=⨯+⨯+⨯+⨯=.12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且由贝努里公式得:00303()0.60.40.064P A C =⨯⨯=,1213()0.60.40.288P A C =⨯⨯=, 2223()0.60.40.432P A C =⨯⨯=,3333()0.60.216P A C =⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故由全概率公式得,飞机被击落的概率为:30()()(|)i i i P B P A P B A ==∑0.06400.2880.20.4320.60.21610.5328=⨯+⨯+⨯+⨯=13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品,它确实是合格品的概率.解:设A “产品是合格品”,B “经检查产品被判为合格品”,且由题意知:P (A )=95%, ()195%5%,(|)10.020.98,(|)0.03P A P B A P B A =-==-==.则(1)由全概率公式得,任意抽查一个产品,它被判为合格品的概率为: ()()(|)()(|)P B P A P B A P A P B A =+ 95%0.985%0.030.9325=⨯+⨯=;(2)由贝叶斯公式得,一个经检查被判为合格的产品,它确实是合格品的概率为:()0.950.98(|)0.9984()0.9325P AB P A B P B ⨯==≈. 14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.解:设A i “第i 台机床需要看管”,i =1,2,3. “三台机床中最多有一台需要工人看管”表示为123123123123A A A A A A A A A A A A +++,且这4个事件两两互不相容,由加法与独立性知,所求的概率为: 123123123123()P A A A A A A A A A A A A +++ 123123123123()()()()P A A A P A A A P A A A P A A A =+++123123123123()()()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A P A P A =+++0.10.80.70.90.20.70.90.80.30.90.80.70.902=⨯⨯+⨯⨯+⨯⨯+⨯⨯=15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?解:设A i “第i 道工序加工出次品”,i =1,2,3.则加工出来的零件是次品表示为A 1+A 2+A 3,且A 1,A 2,A 3相互独立,从而123,,A A A 也相互独立. 所求概率为:123123123(++)1()1()()()P A A A P A A A P A P A P A =-=- 1(12%)(13%)(15%)0.09693=----=.16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.解:设A ,B ,C 分别表示“甲、乙、丙破译出密码”,则A+B+C 表示“密码被破译”,且A ,B ,C 相互独立,从而,,A B C 也相互独立,故所求概率为:(++)1()1()()()P A B C P A B C P A P B P C =-=- 1(10.4)(10.6)(10.7)0.928=----=.17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求: (1)两粒种子都能发芽的概率; (2)至多有一粒种子能发芽的概率; (3)至少有一粒种子能发芽的概率.解:设A ,B 分别表示“甲、乙种子发芽”,由题设知:()0.8,()0.7,()10.80.2,()10.70.3P A P B P A P B ===-==-=. (1)两粒种子都能发芽的概率为:()()()0.80.70.56P AB P A P B ==⨯=; (2)至多有一粒种子能发芽的概率为:()()()()P AB AB A B P AB P AB P A B ++=++ ()()()()()()P A P B P A P B P A P B =++ 0.80.30.20.70.20.30.44=⨯+⨯+⨯=; (3)至少有一粒种子能发芽的概率为:()()()()()()()()P A B P A P B P AB P A P B P A P B =+-=+-U0.80.70.80.70.94=+-⨯=.18.一批产品有70%的一级品,进行重复抽样检查,共抽取5件样品,求: (1)取出5件样品中恰有2件一级品的概率p 1; (2)取出5件样品中至少有2件一级品的概率p 2; (3)取出5件样品中至少有一件一级品的概率p 3.解:该问题是参数p =0.7的5重贝努里试验,由贝努里公式得: (1)取出5件样品中恰有2件一级品的概率p 1=22350.70.30.1323C ⨯⨯=; (2)取出5件样品中至少有2件一级品的概率为:p 2=55520.70.3k k k k C -=⨯⨯∑=005145510.70.30.70.30.96922C C -⨯⨯-⨯⨯=; (3)取出5件样品中至少有一件一级品的概率为: p 3=55510.70.3k k k k C -=⨯⨯∑=005510.70.30.99757C -⨯⨯=.19.一射手对一目标独立地射击4次,若至少命中一次的概率为8081, 求射手射击一次命中目标的概率..解:设射手射击一次命中目标的概率为p ,由贝努里定理知,4次射击中至少有一次命中目标的概率为:41(1)p --,由题设知:4801(1)81p --=,解得:23p =.20.一射手对一目标独立地射击, 每次射击命中率为p , 求射击到第4次时恰好两次命中的概率.解:射手射击到第4次恰好有两次命中目标,即第四次命中,而前三次中恰有一次命中,由贝努里定理知,所求概率为:12223(1)3(1)P pC p p p p =-=-. 五、证明题1.设0<P (B )<1,证明事件A 与B 相互独立的充分必要条件是(|)(|)P A B P A B =. 证:必要性 设事件A 与B 相互独立,则P (AB )=P (A )P (B ),P (A|B )=P (A ), 又()()()()()(|)()1()1()()P AB P A AB P A P A P B P A B P A P B P B P B --====--, 所以,(|)(|)P A B P A B =.充分性 若(|)(|)P A B P A B =,则()()()()()()1()1()()P AB P AB P A AB P A P AB P B P B P B P B --===--, 对上式两端化简,得:()()()P AB P A P B =,所以A 与B 相互独立2.证明条件概率的下列性质:(1)若P (B )>0,则0(|)1,(|)1,(|)0P A B P B P B ≤≤Ω=Φ=;(2)若A 与B 互不相容,()0P C >,则(|)(|)(|)P A B C P A C P B C =+U ; (3)(|)1(|)P A B P A B =-. 证:(1)因为()(|)()P AB P A B P B =,而0()()P AB P B ≤≤,所以,0(|)1P A B ≤≤,且()()(|)1()()P B P B P B P B P B ΩΩ===,()()(|)0()()P B P P B P B P B ΦΦΦ===; (2)若A 与B 互不相容,则AC 与BC 也互不相容,从而 ()()()(|)(|)(|)()()P AC BC P AC P BC P A B C P A C P B C P C P C +===+U U ;(3)由性质(2)得:(|)(|)(|)P A A B P A B P A B =+U ,又A A =ΩU ,由性质(1)知,(|)1P B Ω=,所以,(|)(|)1P A B P A B +=,即(|)1(|)P A B P A B =-第二章 随机变量及其概率分布 一、单项选择题1.设随机变量X 的分布律为则P {X <1}=( C ).A. 0B. 0.2C. 0.3D. 0.5 2.设随机变量X 的概率分布为 则a =( D ).A. 0.2B. 0.3C. 0.1D. 0.43.设随机变量X 的概率密度为2,1(),0,1cx f x x x ⎧>⎪=⎨⎪≤⎩则常数c =( D ).A. 1-B.12 C. -12D. 1 4.设随机变量X 的概率密度为3,01(),0,ax x f x ⎧≤≤⎪=⎨⎪⎩其它则常数a =( D ).A.14 B. 12C. 3D. 4 5.下列函数中可作为某随机变量的概率密度函数的是 (A ).A.2100,1000,100x x x ⎧>⎪⎨⎪≤⎩ B.10,00,0x xx ⎧>⎪⎨⎪≤⎩ C. 1,020,x -≤≤⎧⎨⎩其它D.113,2220,x ⎧≤≤⎪⎨⎪⎩其它6.设函数()f x 在区间[,]a b 上等于sin x ,而在此区间外等于0;若()f x 可以作为某连续型随机变量的概率密度函数,则区间[,]a b 为 ( A ).A. [0,]2πB. [0,]πC. [,0]2π-D. 3[0,]2π7.下列函数中,可以作为某随机变量X 的分布函数的是 ( C ).A. 0,00.3,01()0.2,121,2x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩B. 0.5,0()0.8,011,1x x F x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,00.1,05()0.6,561,6x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ D. 0,2()sin ,021,0x F x x x x ππ⎧<-⎪⎪⎪=-≤<⎨⎪≥⎪⎪⎩8.设()F x 是随机变量X 的分布函数,则 ( B ). A. ()F x 一定连续 B. ()F x 一定右连续 C. ()F x 是不增的 D. ()F x 一定左连续9.设()()F x P X x =≤是随机变量X 的分布函数,则下列结论错误的是(D ).A.()F x 是定义在(,)-∞+∞上的函数B.lim ()lim ()1x x F x F x →+∞→-∞-=C.()()()P a X b F b F a <≤=-D.对一切实数x ,都有0<()F x <110.设随机变量的概率分布为2()(),(1,2,3...)3k P X k a k ===,则常数a =( B ).A. 1B. 12C. 2D. 12-11.已知随机变量X 的分布律为()F x 是X 的分布函数,则F (2.5)=( B ). A. 0.7 B. 0.8 C. 0.1 D. 112.随机变量X 的概率密度2,01()0,x x f x <<⎧=⎨⎩其它,则11{}22P X -≤≤=( A ).A.14B.13C.12D.3413.已知随机变量X 的分布律为 若随机变量Y =X 2,则P {Y =1}=( C ).A. 0.1B. 0.3C. 0.4D. 0.2 14.设随机变量X ~B (4, 0.2),则P {X >3}=( A ).A. 0.0016B. 0.0272C. 0.4096D. 0.819215.设随机变量X ~N (1,4),Y =2X +1,Y ~ ( C). A. N (1, 4) B. N (0, 1) C. N (3, 16) D. N (3, 9) 16.设2~(,)X N μσ,()x Φ是N (0, 1)的分布函数,则()P a X b ≤≤= ( D ). A.()()b a Φ-Φ B.()()b a Φ+ΦC.22()()b a μμσσ--Φ-Φ D.()()b a μμσσ--Φ-Φ17.设X ~N (-1,4),()x Φ是N (0, 1)的分布函数,则P (-2<X <0)= ( A ).A.12()12Φ- B.(0)(2)Φ-Φ- C.1(2)2Φ- D.(2)(0)Φ-Φ18.设X ~N (0,1),()x ϕ是X 的概率密度函数,则(0)ϕ= (C ). A. 0 B. 0.5C.D. 1 19.设X 服从均匀分布U[0,5],Y =3X +2,则Y 服从 ( B ). A. U[0, 5] B. U[2, 17] C. U[2, 15] D. U[0, 17] 20.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X 表示中奖的件数,则X 的分布为 ( D ).A.正态分布B.指数分布C.泊松分布D.二项分布 21.设X 服从参数2λ=的泊松分布,()F x 是X 的分布函数,则下列正确的选项是 ( B ).A.2(1)F e -=B.2(0)F e -=C.P (X =0)=P (X =1)D.2(1)2P X e -≤= 22.设X 服从参数λ的泊松分布,且2(1)(3)3P X P X ===,则λ= ( C ). A. 1 B. 2 C. 3 D. 4二、填空题1.若2()1P X x β≤=-,1()1P X x α≥=-,其中x 1<x 2, 则12()P x X x ≤≤= 1 .2.设随机变量X 的概率分布为记Y =X 2, 则P (Y =4)= 0.5 .3.若X 是连续型随机变量, 则P (X =1)= 0 .4.设随机变量X 的分布函数为F (x ), 已知F (2)=0.5, F (-3)=0.1, 则(32)P X -<≤= 0.4 .5.设随机变量X的分布函数为212()xt F x edt --∞=⎰,则其密度函数为 .6.设连续型随机变量X 的分布函数为0,0()sin ,021,2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩, 其密度函数为()f x ,则()6f π= 1/2 .7.设随机变量X 的分布函数为1,0()0,x e x F x x -⎧-≥=⎨<⎩, 则当x >0时, X 的概率密度()f x = 1 . .8.设随机变量X 的分布律为则(01)P X ≤≤= 0.6 .9.设随机变量X ~N (3, 4), 则(45)P X <<= 0.148 . (其中(1)0.8413,(0.5)0.6915Φ=Φ=)10.设随机变量X 服从参数为6的泊松分布, 写出其概率分布律 P(X=K)=6K/K! K=0,1,2,3 .11.若随机变量X ~B (4, 0.5), 则(1)P X ≥= 15/16 .12.若随机变量X ~U (0, 5),且Y =2X ,则当010y ≤≤时, Y 的概率密度()Y f y = 1/10 .13.设随机变量X ~N (0, 4),则(0)P X ≥= 0.5 .14.设随机变量X ~U (-1, 1),则1(||)2P X ≤= 0.5 .15.设随机变量X 在[2, 4]上服从均匀分布,则(23)P X <<= 0.5 .16.设随机变量X ~N (-1, 4),则1~2X Y +=N(0,1) . 17.设随机变量X 的分布律为(),0,1,2, (3)k aP X k k ===,则a = 2/3 .18.设连续型随机变量X 的概率密度为1,02()0,kx x f x +<<⎧=⎨⎩其它,则k =-1/2 .19.若随机变量X ~N (1, 16),Y =2X -1,则Y ~ N(1,64) . 20.若随机变量X ~U (1, 6),Y =3X +2,则Y ~ U(5,20) . 三、计算题1.设连续型随机变量X 的分布函数为20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,求X 的概率密度函数.解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0<x <1时, 2()()2f x x x '==,当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其它.2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5). 解:X 的分布律为当0x <时,()()F x P X x =≤=0;当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.所以,X 的分布函数为0,0()0.8,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩;而P (X <0.5)= P (X =0)=0.8.3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.解:X 的密度函数为1,()0,a xb f x b a ⎧<<⎪=-⎨⎪⎩其它;分布函数()()x F x f t dt -∞=⎰,当x a <时,()()xF x f t dt -∞=⎰00xdt -∞==⎰;当a x b ≤<时,()()x F x f t dt -∞=⎰10a xax adt dt b a b a-∞-=+=--⎰⎰; 当x b ≥时,()()x F x f t dt -∞=⎰1001abx ab dt dt dt b a-∞=++=-⎰⎰⎰.所以,X 的分布函数为0,(),1,x a x a F x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.4.设随机变量X ~N (3, 4),求:(1)P (2<X <3);(2) P (-4<X <10);(3) P (|X|>2);(4)P (X >3).解:(1)P (2<X <3)=3323(3)(2)()()22F F ---=Φ-Φ(0)(0.5)=Φ-Φ- (0)[1(0.5)]=Φ--Φ=0.1915;(2) P (-4<X <10)=10343(10)(4)()()22F F -----=Φ-Φ=(3.5)( 3.5)2(3.5)1Φ-Φ-=Φ-=0.9996; (3) P (|X|>2)=1(||2)P X -≤=1(22)1[(2)(2)]P X F F --≤≤=---=23231[()()]22----Φ-Φ=(0.5)(2.5)1Φ-Φ+=0.6977; (4)P (X >3)=1(3)P X -≤=331(3)1()1(0)2F --=-Φ=-Φ=0.5.5.已知随机变量X 的密度函数为2,01()0,kx x f x ⎧<<=⎨⎩其它,求:(1)常数k ;(2)分布函数;(3)(10.5)P X -<<..解:(1)因为()1f x dx +∞-∞=⎰,所以123100|133k kkx dx x ===⎰,故k =3. 即随机变量X 的概率密度为23,01()0,x x f x ⎧<<=⎨⎩其它;(2)当0x <时,()()xF x f t dt -∞=⎰=0,当01x ≤<时,()()xF x f t dt -∞=⎰=023003xdt t dt x -∞+=⎰⎰,当1x ≥时,()()x F x f t dt -∞=⎰=012010301xdt t dt dt -∞++=⎰⎰⎰所以,随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(3)(10.5)P X -<<3(0.5)(1)0.500.125F F =--=-=;6.设随机变量X 的概率密度为,011(),1220,x x f x x <<⎧⎪⎪=≤<⎨⎪⎪⎩其它,求X 的分布函数.解:当0x <时,()()xF x f t dt -∞=⎰=0;当01x ≤<时,()()xF x f t dt -∞=⎰=020102xdt tdt x -∞+=⎰⎰;当12x ≤<时,()()x F x f t dt -∞=⎰=010111022x dt tdt dt x -∞++=⎰⎰⎰;当2x ≥时,()()x F x f t dt -∞=⎰=01201210012xdt tdt dt dt -∞+++=⎰⎰⎰⎰.所以,随机变量X 的分布函数为20,01,012()1,1221,2x x x F x x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.7.设随机变量X~,01()2,120,x x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其它,求:(1)1()2P X ≥;(2)13()22P X <<.解:(1)1()2P X ≥=+1211122()(2)f x dx xdx x dx ∞=+-⎰⎰⎰=2122112117|(2)|228x x x +-=; (2)13()22P X <<=3312211122()(2)f x dx xdx x dx =+-⎰⎰⎰=32122112113|(2)|224x x x +-=.8.设随机变量X 在[0,5]上服从均匀分布,求方程24420x Xx X +++=有实根的概率.解:X ~1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它,而方程24420x Xx X +++=有实根的充分必要条件是21616(2)0X X ∆=-+≥,即220X X --≥,故所求概率为:2{20}(1)(2)P X X P X P X --≥=≤-+≥=0+5215dx ⎰=0.6.9.设随机变量X 的分布律为求:(1)Y =2X 的分布律;(2)Z =|X |的概率分布;(3)X 2的分布律.解:(1)由X 的分布律知,Y 的取值为-2,0,2,4.且(2)(1)0.1P Y P X =-==-=,(0)(0)0.2P Y P X ====, (2)(1)0.3P Y P X ====,(4)(2)0.4P Y P X ====. 所以,Y 的分布律为(2)Z =|X |的取值为0,1,2.2(0)(0)0.2P X P X ====,2(1)(1)(1)0.4P X P X P X ===-+==,2(4)(2)0.4P X P X ====.所以,X 2的分布律为:10.设X ~U [0,4], Y =3X +1,求Y 的概率密度.解:X ~1,04()40,x f x ⎧≤≤⎪=⎨⎪⎩其它,Y =3X +1的取值范围是[1,13].Y 的分布函数131()()(31)()()3y Y y F y P Y y P X y P X f x dx --∞-=≤=+≤=≤=⎰ 当1y <时,有103y -<,13()00y Y F y dx --∞==⎰;当113y ≤<时,有1043y -≤<,103011()0412y Y y F y dx dx --∞-=+=⎰⎰; 当13y ≥时,有143y -≥,1043041()0014y Y F y dx dx dx --∞=++=⎰⎰⎰.11.已知随机变量X ~N (1,4),Y =2X +3,求Y 的概率密度..解:X~2(1)8(),()x f x x --=-∞<<+∞,建立Y 的分布函数与X 的分布函数之间的关系.因为:33()()(23)()()22Y X y y F y P Y y P X y P X F --=≤=+≤=≤=, 两边对y 求导:3313()()()()2222Y X X y y y f y F f ---''=⋅=223(1)(5)2832y y -----==,即Y ~N (5,16).12.已知X 服从参数1λ=的指数分布,Y =2X -1,求Y 的概率密度.解:由题设知,X ~,0()0,0x e x f x x -⎧>=⎨≤⎩,方法1 11()()(21)()()22Y X y y F y P Y y P X y P X F ++=≤=-≤=≤=, 两边对y 求导:1111()()()()2222Y X X y y y f y F f +++''=⋅=, 又因为12121,012,1()210,10,02y y X y e y e y f y y +-+-⎧+>⎧⎪+⎪⎪>-==⎨⎨+⎪⎪≤-⎩≤⎪⎩,所以,Y 的概率密度为:121,1()20,1y Y e y f y y +-⎧>-⎪=⎨⎪≤-⎩.四、应用题1.一批零件中有10个合格品和2个废品,安装机器时,从这批零件中任取一个,如果每次取出废品后不再放回,用X 表示在取得合格品以前已取出的废品的个数,求:(1)随机变量X 的分布律;(2)随机变量X 的分布函数.解:(1)随机变量X 的可能取值为0,1,2,且105(0)126P X ===,2105(1)121133P X ==⨯=,21101(2)12111066P X ==⨯⨯=, 得到X 的分布律为:(2)X 的可能取值0,1,2将分布函数F (x )的定义域(,)-∞+∞分为四部分: 当0x <时,()()0F x P X x =≤=,当01x ≤<时,()()F x P X x =≤5(0)6P X ===,当12x ≤<时,()()F x P X x =≤65(0)(1)66P X P X ==+==, 当2x ≤时,()()F x P X x =≤(0)(1)(2)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,05,016()65,12661,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.2.袋中有标号为1,2,2,3,3,3的六个球,从中任取一个球,求所取出的球的号码X 的概率分布及分布函数..解:X 的可能取值为1,2,3.且1(1)6P X ==,21(2)63P X ===,31(3)62P X ===, 所以,X 的概率分布为:当1x <时,()()0F x P X x =≤=,当12x ≤<时,()()F x P X x =≤1(1)6P X ===,当23x ≤<时,()()F x P X x =≤1(1)(2)2P X P X ==+==, 当3x ≥时,()()F x P X x =≤(1)(2)(3)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,11,126()1,2321,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩3. 袋中有标号为1,2,2,3,3,3的六个球,从中任取两个球,X 表示取出的两个球的最大号码,求X 的概率分布..解:X 的所有可能的取值为2,3.且112122261(2)5C C C P X C +===,112333264(3)5C C C P X C +===, 从而得到X 的概率分布为:4.设一批产品共1000个,其中40个是次品,随机抽取100个样品,按下列两种方式抽样,分别求样品中次品数X 的概率分布.(1)不放回抽样; (2)有放回抽样.解:(1)不放回抽样,X 的可能取值为0,1,2,…,40.{X =k }表示100个样品中恰好有k 个次品,则100401000401001000()k kC C P X k C --==,得到X 的概率分布为: 100409601001000(),0,1,2,...,40.k kC C P X k k C -=== (2)有放回抽样,X 的可能取值为0,1,2,…,100.由于有放回抽样,抽取100个样品可看作进行了100重贝努里试验,且每次抽到次品的概率都是0.04,抽到正品的概率为0.96,X ~B (100,0.04).则X 的概率分布为:100100()0.040.96,0,1,2,...,100.kk k P X k C k -===5.抛掷一枚质地不均匀的硬币,每次正面出现的概率为13,连续抛掷10次,以X 表示正面出现的次数,求X 的分布律.由题设知,X ~B (10,13). 则X 的分布律为:101012()()(),0,1,2,...,10.33k k kP X k C k -===6.有一繁忙的交通路口,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率.解:设X 表示1000辆汽车通过路口时出事故的次数,由题意知,X ~B (1000,0.0001).由于n =1000很大,p =0.0001很小,故利用泊松分布近似代替二项分布计算.其中,10000.00010.1np λ==⨯=,0.10.1(),0,1,2,...!k P X k e k k -=≈=, 查泊松分布表可得,所求概率为:7.以电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求: (1)每分钟恰有4次呼唤的概率; (2)每分钟的呼唤次数至少有4次的概率.解:设X 表示电话交换台每分钟收到的呼唤次数,由题意知,X ~P (4),其分布律为:44(),0,1,2...!k P X k e k k -===,则(1)每分钟恰有4次呼唤的概率444(4)0.1953674!P X e -===;(2)每分钟的呼唤次数至少有4次的概率444(4)0.56653!k k P X e k ∞-=≥==∑8.袋中装有8个球,其中3个红球、5个白球,现从袋中任取3个球,求取出红球数的概率分布.解:X 表示取出3个球中含有红球的个数,则X 的可能取值为0,1,2,3. 且35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(3)56C P X C ===,于是,X 的概率分布为:9.已知某类电子元件的寿命X (单位:小时)服从指数分布,其概率密度为110001,0()10000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 一台仪器装有3个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设3个电子元件损坏与否相互独立.试求:(1)一个此类电子元件能工作1000小时以上的概率p 1; (2)一台仪器能正常工作到1000小时以上的概率p 2. 解:(1)一个此类电子元件能工作1000小时以上的概率为:p 1=11110001000100010001(1000)|1000x x P X e dx e e --+∞+∞-≥==-=⎰; (2)一台仪器能正常工作到1000小时以上,需要这3个电子元件的寿命都在1000小时以上,由独立性知,所求概率为:p 2=33[(1000)]P X e -≥=.10.公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的.设男子身高X 服从170μ=(厘米),6σ=(厘米)的正态分布,即2~(170,6)X N .问车门高度应如何确定?解:设车门高度为h 厘米,由题意知,()0.01P X h >≤,即()0.99P X h ≤≥. 因为X ~N (170,36),所以170()()()0.996h P X h F h -≤==Φ≥, 查表得:(2.33)0.99010.99Φ=>,所以1702.336h -=,解得h =183.98. 设计车门的高度为183.98厘米时,可使男子与车门碰头的机会不超过0.01.五、综合题1.设10件产品中有2件次品,现进行连续无放回抽样,直至取到正品为止,求:(1)抽样次数X 的概率分布; (2)X 的分布函数F (x ); (3)(2),(13)P X P X >-<<. .解:(1)X 的可能取值为1,2,3.且84(1)105P X ===,288(2)10945P X ==⨯=,2181(3)109845P X ==⨯⨯=. 所以,X 的概率分布为:(2)当1x <时,()()0F x P X x =≤=, 当12x ≤<时,4()()(1)5F x P X x P X =≤===, 当23x ≤<时,44()()(1)(2)45F x P X x P X P X =≤==+==, 当3x ≥时,()()(1)(2)(3)1F x P X x P X P X P X =≤==+=+==. 所以,X 的分布函数为:0,14,125()44,23451,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩;(3)(2)(1)(2)(3)1P X P X P X P X >-==+=+==; 或(2)1(2)1(2)101P X P X F >-=-≤=-=-=.8(13)(2)45P X P X <<===.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数15λ=的指数分布.(1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求(1)P Y ≥.解:(1)由题设知,151,0~()50,0x e x X f x x -⎧>⎪=⎨⎪≤⎩,则司机在此收费站等候时间超过10分钟的概率为:125101(10)5x p P X e dx e -+∞-=>==⎰; (2)由题意知,2~(2,)Y B e -,Y 的分布律为:22222222()()(1)(1),0,1,2.k k k k k k P Y k C e e C e e k ------==-=-= 2224(1)1(0)1(1)2P Y P Y e e e ---≥=-==--=-.3.甲乙丙三人独立地等1,2,3路公共汽车,他们等车的时间(单位:分钟)都服从[0,5]上的均匀分布,求三人中至少有两人等车不超过2分钟的概率.解:设一个人等车的时间为X ,由题设知,X ~U [0,5],其密度函数:1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它. 则一个人等车不超过2分钟的概率为:221(2)()0.45p P X f x dx dx -∞=≤===⎰⎰. 设Y 表示三人中等车时间不超过2分钟的人数,则Y ~B (3,0.4),则三人中至少有两人等车不超过2分钟的概率为:223333(2)(2)(3)0.40.60.4P Y P Y P Y C C ≥==+==+=0.352.4.设测量距离时产生的随机误差X ~N (0,102)(单位:米),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知(1.96)0.975.Φ=(1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;(3)求三次测量中至少有一次误差绝对值大于19.6的概率. 解:(1) p =(||19.6)1(||19.6)P X P X >=-≤019.601(||)1[2(1.96)1]1010X P --=-≤=-Φ-=0.05. (2)由题意知,Y ~B (3, 0.05),Y 的分布律为:33()0.050.95,0,1,2,3.k k k P X k C k -===(3)三次测量中至少有一次误差绝对值大于19.6的概率为: 3(1)1(0)10.95P Y P Y ≥=-==-=0.142625.5.设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从参数110λ=的指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.(1)写出Y 的分布律;(2)求该顾客一个月至少有一次未等到服务而离开窗口的概率.解:(1)由题设知,等待服务的时间X ~1101,0()100,0x e x f x x -⎧>⎪=⎨⎪≤⎩,顾客离开银行的概率为:1110101(10)10x p P X e dx e -+∞-=>==⎰.由题意知,Y ~B (5,e -1),其分布律为:1155()()(1),0,1,...,5.k k k P Y k C e e k ---==-=(2)所求概率为(1)P Y ≥=151(0)1(1)P Y e --==--0.899≈.6.设连续型随机变量X 的分布函数为:20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩,求:(1)系数A ; (2)X 的概率密度; (3)(0.30.7)P X <≤; (4)Y =X 2的概率密度.解:(1)由F (x )的连续性知,11lim ()lim ()(1)x x F x F x F -+→→==,有21lim 1x Ax -→=,得1A =; (2)X 的概率密度2,01()()0,x x f x F x <<⎧'==⎨⎩其它;(3)(0.30.7)P X <≤22(0.7)(0.3)0.70.30.4F F =-=-=,或(0.30.7)P X <≤=0.720.70.30.32|0.4xdx x ==⎰; (4)因为20Y X =≥,所以,当0y <时,()()0Y F y P Y y =≤=, 当01y ≤<时,2()()()(Y F y P Y y P X y P X =≤=≤=≤≤()f x dx xdx y ===,当1y ≥时,101()(()21Y F y P X f x dx xdx dx =≤≤==+=⎰所以,X 的分布函数为:0,0(),011,1Y y F y y y y <⎧⎪=≤<⎨⎪≥⎩,X 的概率密度为:1,01()0,Y y f y <<⎧=⎨⎩其它.7.连续型随机变量X 的分布函数为()arctan ,()F x A B x x =+-∞<<+∞,求:。
九年级数学上册 25.1 随机事件与概率(第2课时)课后作
随机事件与概率第2课时概率一、教材题目:P134 T2-T52. 足球比赛前,由裁判员抛掷一枚硬币,若正面向上则由甲队首先开球,若反面向上则由乙队首先开球.这种确定首先开球一方的做法对参赛的甲、乙两队公平吗?为什么?3. 10件外观相同的产品中有1件不合格,现从中随机抽取1件进行检测,抽到不合格产品的概率为多少?4.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”.掷小正方体后,观察朝上一面的数字.(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?如图是一个可以自由转动的质地均匀的转盘,被分成12个相同的扇形.请你在转盘的适当地方涂上红、蓝两种颜色,使得转动的转盘停止时,指针指向红、蓝两色的概率分别为11 ,. 36二、补充: 部分题目来源于《点拨》3.某商店举办有奖购物活动,购物满100元者发兑奖券一张,在10 000张兑奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人获得一张兑奖券,则他中一等奖的概率是( )A.1100B.11 000C.110 000D.1110 0005.在英语句子“Wish you success!”(祝你成功!)中任选一个字母,这个字母为“s”的概率是________.8.〈广西南宁〉在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率为( )A.325B.425C.15D.625(第8题)13.一个口袋中放着若干个红球和白球,这两种球除了颜色以外没有其他区别,口袋中的球已经搅匀,蒙上眼睛从口袋中取出一个球,取出红球的概率是14. (1)取出白球的概率是多少?(2)如果口袋中的白球有18个,那么口袋中的红球有多少个?答案教材2.解:公平.因为抛掷一枚硬币,正面向上和反面向上的可能性都是12,所以甲、乙两队谁首先开球的可能性也是相同的. 点拨:判断是否公平主要看事件发生的可能性是否相同.3.解:抽到不合格产品的概率为110. 4.解:(1)出现“5”的概率是26=13; (2)出现“6”的概率是0;(3)出现奇数的概率是46=23. 5.略. 点拨:涂4个红色的,2个蓝色的扇形即可.点拨3.B 5.278.D 点拨:可以找到6个恰好能使△ABC 的面积为1的点,如图所示,∴所求概率为625.(第8题)13.解:(1)P (取出白球)=1-P (取出红球)=1-14=34. (2)设口袋中的红球有x 个,则有xx +18=14(或18x +18=34),解得x =6.经检验,x =6是分式方程的根,且符合题意,所以口袋中的红球有6个.。
高考数学总复习 114随机事件的概率、互斥事件的概率课后作业 北师大版
一、选择题1.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生m次,则事件A发生的频率mn就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是( )A.①②③④ B.①④⑤C.①②③④⑤ D.②③[答案] B[解析]由概率与频率的相关定义及联系知①④⑤正确.2.从装有红球和绿球的口袋中任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的事件是( )A.至少有一个红球;至少有一个绿球B.恰有一个红球;恰有两个绿球C.至少有一个红球;都是红球D.至少有一个红球;都是绿球[答案] B[解析]A中至少有一个红球包括“一红一绿”和“2个红球”,而“至少有一个绿球”包括“一红一绿”和“2个绿球”,两事件相交后为“一红一绿”不是空集,∴不是互斥事件.B中两事件不会同时发生,且并起来不是必然事件,∴是互斥不对立事件.C中“至少有一个红球”包含“都是红球”,∴不是互斥事件.D中“至少有一个红球”与“都是绿球”是对立事件.3.(文)从6名学生中选取4人参加数学竞赛,其中A同学被选中的概率为( )A.12B.13C.35D.23[答案] D[解析]从6名学生中选4人,每人被选中的可能性都是46=23,∴P(A)=23.∴选D.(理)(2012·天津模拟)某班有60名学生,其中女生24人,现任选一人,则选中男生的概率为( )A.136B.160C.25D.35[答案] D[解析]由题意知男生有60-24=36(人),故男生选中的概率为3660=35.4.在一个袋子里装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.112B.110C.15D.310[答案] D[解析]随机从袋子中取2个小球的基本事件为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共有10种,其中数字之和为3或6的,有(1,2),(1,5),(2,4)3种,∴数字之和为3或6的概率为P=3 10 .5.(2011·浙江文,8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910[答案] D[解析]本题考查了概率中的古典概型.设3个红球分别为A1,A2,A3,2个白球分别为B1,B2则本题中Ω={(A1,A2,A3),(A1,A2,B1),(A1,A3,B1),(A2,A3,B1),(A1,A2,B2),(A1,A3,B2),(A2,B3,B2),(A1,B1,B2),(A2,B1,B2),(A3,B1,B2)}共有10个基本事件,所以“所取3个球中至少有1个白球”与“所取3个球中一个白球也没有”互为对立事件∴P=1-110=910.6.(文)口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球的概率为0.4,摸出黄球的概率为0.35,则摸出白球的概率是( )A.0.2 B.0.3C.0.25 D.0.5[答案] C[解析]记事件A、B、C分别是为“摸出一球是红球”,“摸出一球是黄球”,“摸出一球是白球”,由已知得事件A、B、C互斥,且事件A∪B∪C是必然事件,∴P(A∪B∪C)=P(A)+P(B)+P(C)=1,∴P(C)=1-0.4-0.356=0.25.(理)12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( )A.155B.355C.14D.13[答案] B[解析]考查概率问题,本题涉及到平均分组问题,注意求法.所求概率为P=C19×C48·C44A22C412·C48·C44A33=92×6×4×3×212×11×10×9=355.二、填空题7.甲、乙两人下棋,甲获胜的概率为0.3,两人下成和棋的概率为0.5,那么甲不输的概率是________.[答案]0.8[解析]“甲获胜”记为事件A,“两人下成和棋”记为事件B,则易知A与B互斥,所以甲不输的概率为P(A∪B)=P(A)+P(B)=0.3+0.5=0.8.8.(文)中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.[答案]19 28[解析]设事件A为“甲夺得冠军”,事件B为“乙夺得冠军”,则P(A)=37,P(B)=14,因为事件A和事件B是互斥事件,∴P(A∪B)=P(A)+P(B)=37+14=1928.(理)在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是________.[答案]17 45[解析]方法一(直接法):“至少取到1枝次品”包括:A=“第一次取次品,第二次取到正品”;B=“第一次取正品,第二次取到次品”;C=“第一、二次均取到次品”三种互斥事件,所以所求事件的概率为P(A)+P(B)+P(C)=2×8+8×2+2×110×9=1745.方法二(间接法):“至少取到1枝次品”的对立事件为“取到的2枝铅笔均为正品”,所以所求事件的概率为1-8×710×9=1745.三、解答题9.袋中装有6个球,其中4个白球,2个红球,从袋中任意取出2球,求下列事件的概率:(1)A:取出的2球都是白球.(2)B:取出的2球1个是白球,另1个是红球.[分析] 要先计算出从6个球中任取2个球的基本事件总数,可以用列举法.[解析]设4个白球的编号为1、2、3、4,2个红球的编号为5、6.从袋中6个小球中任取2个,其基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件.(1)从袋中的6个小球中任取2个,所取的2球全是白球的方法总数,即是从4个白球中任取2个的方法总数,共有6种,即A={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},所以P(A)=615=25.(2)从袋中的6个小球中任取2个,其中1个是红球,而另1个是白球,则B={(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)},共8个基本事件.所以P(B)=8 15 .[点评] 在古典概型条件下,当基本事件总数为n时,每一个基本事件发生的概率均为1n,要求事件A的概率,关键是求出基本事件总数n和事件A中所含基本事件数m,再由古典概型概率公式P(A)=mn求出事件A的概率.一、选择题1.(文)荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍.如图,假设现在青蛙在A叶上,则顺时针跳动一次停在C叶上的概率是( )A.13B.23C.49D.12 [答案] A[解析] 设青蛙按顺时针方向跳的概率为P 1,按逆时针方向跳的概率为P 2,则有P 2=2P 1,P 1+P 2=1,∴P 1=13,P 2=23,则顺时针跳动一次停在C 叶上的概率为P 1=13.(理)m ∈{-2,-1,0,1,2,3},n ∈{-3,-2,-1,0,1,2},且方程x 2m +y 2n =1有意义,则方程x 2m +y 2n=1可表示不同的双曲线的概率为( )A.3625B .1 C.925 D.1325 [答案] D[解析] 由题设知⎩⎪⎨⎪⎧ m >0n <0或⎩⎪⎨⎪⎧m <0n >0,1°⎩⎪⎨⎪⎧ m >0n <0时有不同取法3×3=9种.2°⎩⎪⎨⎪⎧m <0n >0时有不同取法2×2=4种,∴所求概率P =9+45×5=1325. 2.(文)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x ,y ,则log 2x y =1的概率为( )A.16B.536C.112D.12[答案] C[解析]log2x y=1⇒y=2x,x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},∴x=1,y=2或x=2,y=4或x =3,y=6共3种情况,基本事件为(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(6,6)共36种情况,∴P=336=112.(理)从-1、0、1、2这四个数中选出三个不同的数作为函数f(x)=ax2+bx+c的系数组成不同的二次函数,其中的二次函数有变号零点的概率为( )A.79B.712C.59D.512[答案] A[解析]首先取a,∵a≠0,∴a的取法有3种,再取b,b的取法有3种,最后取c,c的取法有2种,∴共组成不同的二次函数3×3×2=18个.f(x)若有变号零点,不论a>0还是a<0,均应有Δ>0,即b2-4ac>0,∴b2>4ac.①首先b取0时,a、c须异号,a=-1,则c有2种,a取1或2,则c只能取-1,∴共有4种.②b=1时,若c=0,则a有2种,若c=-1,a只能取2.若c=2,则a=-1,共有4种.③若b=-1,则c只能取0,有2种.④若b=2,取a有2种,取c有2种,共有2×2=4种.综上,满足b2>4ac的取法有4+4+2+4=14种,∴所求概率P=1418=79.二、填空题3.(文)某战士射击1次,未中靶的概率是0.05,中靶环数大于5的概率为0.7,则中靶环数大于0且小于5的概率为________.[答案]0.25[解析]设事件A为“中靶环数大于0且小于5”,其对立事件是“未中靶或中靶环数大于5”.∴P(A)=1-(0.05+0.7)=1-0.75=0.25.∴中靶环数大于0且小于5的概率是0.25.(理)甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.[答案]0.95[解析]由对立事件的性质知,在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95.4.(文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.[答案]3 4[解析]从四条线段中任取三条的所有情况有:(2,3,4),(2,4,5),(2,3,5),(3,4,5).其中能构成三角形的有(2,3,4),(2,4,5)和(3,4,5),所以P=3 4 .(理)(2011·湖北理,12)在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________.(结果用最简分数表示)[答案]28 145[解析]本题考查古典概型的概率计算及互斥、对立事件的概率分式.法一:至少取到1瓶分为恰好取到1瓶和恰好取到2瓶.∴P=C13C127C230+C23C230=28145法二:“至少取到一瓶”的对立事件为“两瓶都未过保质期”.∴P=1-C227C230=1-117145=28145.三、解答题5.(文)(2011·湖南文,18)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.[解析](1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为(2)P=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦时)或越过530(万千瓦时)的概率为3 10 .(理)(2011·全国大纲文,19)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.[解析]设车主购买甲种保险为事件A,购买乙种保险但不购买甲种保险为事件B,则P(A)=0.5,P(B)=0.3(1)该地1位车主至少购买甲、乙两种保险中的1种为事件A∪B,∴A,B互斥∴P(A∪B)=P(A)+P(B)=0.5+0.3=0.8即该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.(2)两种保险都不买为事件A∪B∴P(A∪B)=1-P(A∪B)=1-0.8=0.23位车主中恰有1位车主甲、乙两种保险都不购买的概率为P=C13×(0.2)×(0.8)2=0.384.6.(文)抛掷一枚骰子,事件A表示“朝上一面的点数是奇数”,事件B表示“朝上一面的点数不超过2”.求:(1)P(A);(2)P(B);(3)P(A∪B).[解析]基本事件总数为6个.(1)事件A包括出现1,3,5三个基本事件,∴P(A)=36=12.(2)事件B包括出现1,2两个基本事件.∴P(B)=26=13.(3)事件A ∪B 包括出现1,2,3,5四个基本事件, ∴P (A ∪B )=46=23.(理)(2012·天津武清一模)从1、2、3、4、5、8、9这7个数中任取三个数,共有35种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同).(1)求取出的三个数能够组成等比数列的概率; (2)求取出的三个数的乘积能被2整除的概率.[解析] (1)从1、2、3、4、5、8、9这7个数中任取三个数,每一种不同的取法为一个基本事件,由题意可知共有35个基本事件.设取出的三个数组成等比数列的事件为A ,A 包含(1,2,4)、(2,4,8)、(1,3,9)共3个基本事件.由于每个基本事件出现的可能性相等,所以P (A )=335.(2)设取出的三个数的乘积能被2整除的事件为B ,其对立事件为C ,C 包含(1,3,5),(1,3,9),(1,5,9),(3,5,9)共4个基本事件.由于每个基本事件出现的可能性相等,所以P (C )=435.所以P (B )=1-P (C )=1-435=3135.7.(文)(2010·福建文)设平面向量a m =(m,1),b n =(2,n ),其中m ,n ∈{1,2,3,4}. (1)请列出有序数组(m ,n )的所有可能结果;(2)记“使得a m ⊥(a m -b n )成立的(m ,n )”为事件A ,求事件A 发生的概率.[分析] 本小题主要考查概率,平面向量等基础知识,考查运算求解能力,应用意识,考查化归与转化思想,必然与或然思想.[解析] (1)有序数组(m ,n )的所有可能结果为:(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2),(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16个. (2)由a m ⊥(a m -b n )得m 2-2m +1-n =0,即n =(m -1)2由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)(3,4),共2个.又基本事件的总数为16,故所求的概率为P (A )=216=18.(理)将一颗骰子先后抛掷两次,得到的点数分别记为a 、b .(1)求点P (a ,b )落在区域⎩⎪⎨⎪⎧x ≥0y ≥0x +y -5≤0内的概率;(2)求直线ax +by +5=0与圆x 2+y 2=1不相切的概率.[解析] (1)先后两次抛掷一枚骰子,将得到的点数分别记为a ,b ,则事件总数为6×6=36.∵⎩⎪⎨⎪⎧x ≥0y ≥0x +y -5≤0表示的平面区域如图所示:当a =1时,b =1,2,3,4a =2时,b =1,2,3 a =3时,b =1,2 a =4时,b =1共有(1,1)(1,2)……(4,1)10种情况. ∴P =1036=518.(2)∵直线ax +by +5=0与圆x 2+y 2=1相切的充要条件是5a 2+b2=1,即a 2+b 2=25,∵a 、b ∈{1,2,3,4,5,6}满足条件的情况只有:a =3,b =4或a =4,b =3两种情况, ∴直线与圆相切的概率P =236=118.∴直线ax +by +5=0与圆x 2+y 2=1不相切的概率P =1-118=1718.。
第1章 随机事件及其概率课后题答案
1 1 , P( AB) = 0, P( AC ) = P( BC ) = ,则事件 A, B, C 4 8
解 由 P ( AB) = 0 ,得 P ( ABC ) = 0 ,故
P( A B C ) = P( A B C ) = 1 − P( A B C )
= 1 − [ P( A) + P( B) + P(C ) − P( AB) − P( BC ) − P( AC ) + P( ABC )]
( A B) C = A ( B C ) ;
③ 分配律 ( A B ) C = ( A C ) ( B C ) , ( A B ) C = ( A C ) ( B C ) ; ④ 德 • 摩根律 A B = A B , A B = A B , 一般地,
(2) 全概率公式 设事件组 {Bi : i ∈ I } 为 S 的一个划分,且 P ( Bi ) > 0 ( i ∈ I ),则有
P ( A) = ∑ P( A | Bi ) P( Bi ) .
i∈I
(3) 贝叶斯公式 设 {Bi : i ∈ I } 为 S 的一个划分,且 P ( A) > 0 , P ( Bi ) > 0 (i ∈ I ) ,则有
P( A1 A2 An ) = P( An | A1 A2 An −1 ) P( An −1 | A1 A2 An − 2 ) P( A2 | A1 ) P( A1 ) .
3.全概率公式与贝叶斯公式 (1) 划分 若事件组 {Bi : i ∈ I } 满足 一个划分.
4
B
i∈I
i
= S , Bi B j = φ , (i ≠ j ) ,则称事件组 {Bi : i ∈ I } 为 S 的
随机事件及其概率习题及解答
随机事件及其概率习题及解答第一章随机事件及其概率习题及解答习题1.个人随机地围一圆桌而坐,求甲、乙两人相邻而坐的概率.n 2.从一付扑克牌(52张)中任意抽取两张,求下列各事件的概率(1)恰好两张同一花色;(2)恰好两张都是红色牌;(3)其中恰好有一张A;(4)其中至少有一张A.3.甲、乙两人掷均匀硬币,其中甲掷1n +次,乙掷次,求甲掷出正面的次数大于乙掷出正面次数的概率.n 4. 袋中装有号的球各一只,采用(1)有放回;(2)无放回式摸球,试求在第k 次摸球时首次摸到1号球的概率。
N ,,2,1 5.有两个形状相同的罐,第一个中有球2白1黑,第二个中有球2白2黑,某人从任一罐中任取1个球,已知取出的是白球,求是从第一个中取出的概率。
6.假设每个人的生日在任何月份内是等可能的。
已知某单位中至少有一个人的生日在一月份的概率不小于0.96,问该单位有多少人?7.某人从甲地到乙地,乘火车、轮船、飞机的概率分别为0.2,0.4,0.4,乘火车迟到的概率为0.5,乘轮船迟到的概率为0.2,乘飞机不会迟到。
问这个人迟到的概率是多少?如果他迟到了,问他乘轮船的概率是多少?8.10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。
9.某人投篮,命中率为0.8,现独立投五次,求最多命中两次的概率。
10.某班有个学生,上体育课时老师发给每人一根绳子进行跳绳练习,跳了10分钟后把绳子放在一堆,进行别的练习,后来每人又随机拿了一根绳子进行练习,问至少有一个学生拿到自己原先使用的绳子的概率.N 11.设一枚深水炸弹击沉一潜水艇的概率为13,击伤的概率为12,击不中的概率为16.并设击伤两次也会导致潜水艇下沉.求施放4枚深水炸弹能击沉潜水艇的概率.12.甲、乙两人进行乒乓球比赛,每局甲胜的概率为.问对甲而言,采用三局二胜制有利,还是采用五局三胜制有利.设各局胜负相互独立.,1/p p ≥2习题解答1.解令A ={甲、乙两人相邻而坐},设想圆桌周围有1,这个位置,由于该问题属于圆排列问题,所以不妨认为甲坐1号位置,那么2,,n n A 发生当且仅当乙坐2号或号位置,从而n1,2,()2,21n P A n n =??=?>. 2.解(1)235.025221314=C C C (2)245.0252226=C C (3)145.025214814=C C C (4)149.01252248=?C C 3.解令A ={甲掷出正面的次数大于乙掷出正面次数},B ={甲掷出反面的次数大于乙掷出反面次数},由硬币的均匀性知,,容易看出,()()P A P B =,A B S AB ==?∪,由此可知1()2P A =. 4.解:设}1{号球次摸到第i A i =(1))|()|()|()()(1212211121121=k k k k k k A A A A P A A A A P A A P A P A A A A PNN N N N N N N N N k 1111111=?????=? (2))|()|()|()()(1212211121121=k k k k k k A A A A P A A A AP A A P A P A A A A PNk N k N k N N N N N 1)1(1)2()1(121== 5.设=“取到第i 个罐中的球”,i A 2,1=i ,B =“取到白球”,则21)()(21==A P A P ,32)|(1=A B P ,2142)|(2==A B P 则全概率公式)|()()|()()(2211A B P A P A B P A P B P = 12721213221=×+×= 由bayes 公式有741273221)()|()()|(111=×==B P A B P A P B A P 6.解:设该单位有个人,=“第个人生日在一月份”,则n i A i ),,2,1(n i =121)(=i A P ),,2,1(n i =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业题
1.下列事件中,随机事件的个数为()
①明天是阴天;②方程x2+2x+5=0有两个不相等的实根;③抛一枚硬币,出现正面;④一个三角形的大边对大角,小边对小角.
A.1B.2
C.3D.4
2.“连续掷两个质地均匀的骰子,记录朝上的点数”,该试验的样本点共有()
A.6个B.12个
C.24个D.36个
3.掷一个质地均匀的正方体骰子,事件E={向上的点数为1},事件F={向上的点数为5},事件G={向上的点数为1或5},则有()
A.E⊆F B.G⊆F
C.E∪F=G D.E∩F=G
4.下列概率模型:
①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;
②某射手射击一次,可能命中0环,1环,2环,…,10环;
③某小组有男生5人,女生3人,从中任选1人做演讲;
④一只使用中的灯泡的寿命长短;
⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.
其中属于古典概型的是________.
5.盒子里装有6个红球,4个白球,从中任取3个球.设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”.已
知P(A)=3
10,P(B)=
1
2,则这3个球中既有红球又有白球的概率是________.
6、掷一枚骰子,有下列事件:
A={出现奇数点},B={出现偶数点},C={出现点数小于3},D={出现点数大于2},E={出现点数是3的倍数}.
(1)用样本点表示事件A∩B,事件B∩C;
(2)用样本点表示事件A∪B,事件B∪C;
(3)用样本点表示事件D-,事件A-∩C,事件B-∪C,事件D-∪E-.
7.任意掷两个骰子,计算:
(1)出现点数之和为奇数的概率;
(2)出现点数之和为偶数的概率.
8、某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
9、甲、乙两人玩一种游戏,每次甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.
(1)若事件A表示“和为6”,求P(A);
(2)现连玩三次,若事件B表示“甲至少赢一次”,事件C表示“乙至少赢两次”,试问B与C是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
课后作业题答案
1、B,
2、D,
3、C,
4、③,
5、4 5,
6、由题意可得A={1,3,5},B={2,4,6},
C={1,2},D={3,4,5,6},E={3,6}.
(1)A∩B={1,3,5}∩{2,4,6}=∅.
B∩C={2,4,6}∩{1,2}={2}.
(2)A∪B={1,3,5}∪{2,4,6}={1,2,3,4,5,6},
B∪C={2,4,6}∪{1,2}={1,2,4,6}.
(3)D-={1,2},A-={2,4,6},A-∩C{2,4,6}∩{1,2}={2},B-={1,3,5},B-∪C={1,3,5}∪{1,2}={1,2,3,5},E-={1,2,4,5},D-∪E-={1,2}∪{1,2,4,5}={1,2,4,5}.
7、解任意掷两个骰子,这个试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},共包含36个样本点,这36个样本点发生的可能性是相等的.
(1)“出现点数之和为奇数”包含的样本点有(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),
(6,5),共18个.因此点数之和为奇数的概率为18
36=
1
2.
(2)“出现点数之和为偶数”包含的样本点有(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),
(6,6),共18个.因此点数之和为偶数的概率为18
36=
1
2.
8、解(1)P(A)=
1
1000,P(B)=
10
1000=
1
100,P(C)=
50
1000=
1
20.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”为事件M,则M=A∪B∪C,∵事件A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
=
1
1000+
1
100+
1
20=
61
1000.
故1张奖券的中奖概率为611000.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,由对立事件概率公式
得P (N )=1-P (A ∪B )=1-⎝ ⎛⎭
⎪⎫11000+1100=9891000. 故1张奖券不中特等奖且不中一等奖的概率为9891000.
9、解 (1)易知样本点总数n =25,且每个样本点出现的可能性相等.
事件A 包含的样本点共5个:(1,5),(2,4),(3,3),(4,2),(5,1).所以P (A )=525=15.
(2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次.
(3)这种游戏规则不公平.
和为偶数的样本点有:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).共13个,
所以甲赢的概率为1325,乙赢的概率为1-1325=1225,
所以这种游戏规则不公平.。