七年级数学上册全册单元测试卷测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元测试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.已知 (本题中的角均大于且小于 )
(1)如图1,在内部作,若,求的度数;
(2)如图2,在内部作,在内,在内,且,,,求的度数;
(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.
【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°
∴
(2)解:,
设,则,
则,
(3) s或15s或30s或45s
【解析】【解答】(2)解:当OI在直线OA的上方时,
有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,
∠PON= ×60°=30°,
∵∠MOI=3∠POI,
∴3t=3(30-3t)或3t=3(3t-30),
解得t= 或15;
当OI在直线AO的下方时,
∠MON═(360°-∠AOB)═ ×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°- )或180°-3t=3( -60°),
解得t=30或45,
综上所述,满足条件的t的值为 s或15s或30s或45s
【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.
2.结合数轴与绝对值的知识回答下列问题:
(1)探究:
①数轴上表示5和2的两点之间的距离是多少.
②数轴上表示﹣2和﹣6的两点之间的距离是多少.
③数轴上表示﹣4和3的两点之间的距离是多少.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.
应用:
①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.
②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.
③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.
(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.
【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.
②数轴上表示﹣2和﹣6的两点之间的距离是4.
③数轴上表示﹣4和3的两点之间的距离是7.
(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.
②若数轴上表示数a的点位于﹣4与3之间,
|a+4|+|a﹣3|=a+4+3﹣a=7;
③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,
理由是:a=1时,正好是3与﹣4两点间的距离.
(3)解:点P选在A1007A1008这条线段上
【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
(2)① 利用绝对值等于7的数是±7,就可得出a-3=±7,解方程即可;② 由已知数轴上表示数a的点位于﹣4与3之间,可得出a+4>0,a-3<0,先去掉绝对值,再合并同类项即可;③ 根据线段上的点到线段两端的距离的和最短,可得出答案。
(3)画出数轴,即可解答此题。
3.已知:,OB、OC、OM、ON是内的射线.
(1)如图1,若OM平分,ON平分当OB绕点O在内旋转时,则的大小为________;
(2)如图2,若,OM平分,ON平分当绕点O在内旋转时,求的大小;
(3)在的条件下,若,当在内绕着点O以秒的速度逆时针旋转t秒时,和中的一个角的度数恰好是另一个角的度数的两倍,求t的值
【答案】(1)78°
(2)解:∵OM平分∠AOC,ON平分∠BOD,∴∠COM ∠AOC,∠BON
∠BOD,∴∠MON=∠BON+∠COM﹣∠BOC ∠AOC ∠BOD﹣24°
(∠AOC+∠BOD)﹣24°,∴∠MON (∠AOD+∠BOC)﹣24° 180°﹣24°=66°.
(3)解:∵∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒,OM平分∠AOC,ON平分∠BOD,∴∠AOC=54°+2t,∠AOM=27+t,∠BOD=126﹣2t,∠DON=63﹣t.
若∠AOM=2∠DON时,即27+t=2(63﹣t),∴t=33;
若2∠AOM=∠DON,即2(27+t)=63﹣t,∴t=3.
综上所述:当t=3或t=33时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍.
【解析】【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM ∠AOB,∠BON ∠BON.
∵∠MON=∠BOM+∠BON ∠AOD,∴∠MON=78°.
故答案为:78°.
【分析】(1)由角平分线的定义可得∠BOM=∠AOB,∠BON=∠BOD,然后根据∠MON=∠BOM+∠BON=∠AOD即可求解;
(2)由角平分线的定义可得∠COM=∠AOC,∠BON=∠BOD,
∠MON=∠BON+∠COM-∠BOC=∠AOC+∠BOD﹣24°=(∠AOC+∠BOD)﹣24°=(∠AOD+∠BOC)﹣24°可求解;
(3)由题意可得∠AOC=54°+2t,∠AOM=27+t,∠BOD=126−2t,∠DON=63−t,分∠AOM=2∠DON,∠DON=2∠AOM两种情况讨论,列方程即可求解.
4.学习千万条,思考第一条。请你用本学期所学知识探究以下问题:
(1)已知点为直线上一点,将直角三角板的直角顶点放在点处,并在
内部作射线.
①如图1,三角板的一边与射线重合,且,若以点为观察中心,射线表示正北方向,求射线表示的方向;
②如图2,将三角板放置到如图位置,使恰好平分,且,求
的度数.