2020年湖北省黄冈中学高考数学模拟试卷(理科)(4月份)
湖北省黄冈中学2020届高三普通高等学校招生全国统一考试数学理科(含答案)
|
AF
|
⋅
|
BF
|
.”那么对于椭圆
E,问否存在实数
λ,使得 |
AF2
|
+
|
BF2=|
λ | AF2 | ⋅ | BF2 | 成
立,若存在求出 λ 的值;若不存在,请说明理由.
21. (12 分)已知函数 f (= x) ex−2 +1.
(1)求函数 f(2x)在 x=1 处的切线方程; (2)若不等式 f(x+y)+ f(x-y)≥mx 对任意的 x∈[0,+∞), y∈[0,+∞) 都成立,求实数 m 的取值范围.
2x)
2sin(2x
)
6
6
,由
2k≤2x ≤3 2k , k Z
k≤x≤ 5 k ,k Z
2
62
,解得 3
6
,即函数的增区间为
[
k , 5
k ], k Z
[, ]
3
ห้องสมุดไป่ตู้
6
,所以当 k 0 时,增区间为 3 2 ,选 D.
9.【答案】B【解析】作出不等式对应的平面区域,如图所示:
请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.
22. (10 分)选修 4-4 坐标系与参数方程
x=
1+
3t
在直角坐标系 xOy 中,直线 l 的参数方程为 2
(t 为参数).以原点为极点, x 轴正半轴为极轴建立极
y = 1+ t
坐标系,圆 C 的极坐标方= 程为 ρ 2 cos(θ − π ) . 4
则
|
z |2 z
湖北省黄冈中学2020届高三四月份理科数学试题参考答案
19.【解析】 (1)证明:取 AB 的中点 O ,连结 EO,OF , AC ,由题意知 EO AB .
又因为平面 ABCD 平面 ABE ,所以 EO 平面 ABCD .(2 分) 因为 BD 平面 ABCD ,所以 EO BD , 因为四边形 ABCD 为菱形,所以 BD AC ,
,而函数
y tan x 在 (0, ) 上不是单调函数,所以“ sin A sin B ”是“ tan A tan B ”的既不充分也不必要条件,
故选 D.
S1
S113
6.【答案】D【解析】执行程序框图,可得 S=0,n=2,满足条件, 2 ,n=4,满足条件, 2 4 4 ,
S 1 1 1 11
SO 2
OC 2
SC 2
,又内切圆半径
r
1 2
(3
4
5)
1
,所
以 OC 2 , SO2 SC 2 OC 2 3 2 1 , 故 SO 1 , 三 棱 锥 S ABC 的 体 积 为
V
1 3
S△ABC
SO
1 3
1 2
3
4 1
2
,③正确;对于④, 若
SA
3
,
SA
平面
ABC
,则直线
PS
其中 A(2,6) ,直线 x my 1 0 过定点 D(1,0) ,
当 m 0 时,不等式 x 1≤0 表示直线 x 1 0 及其左边的区域,不满足题意;
当
m
0
时,直线
x
my
1
0
的斜率
1 m
0
,不等式
x
my
1≤0
表示直线
x
my
2020年湖北省高考数学模拟试卷1(4月份) (含答案解析)
2020年湖北省高考数学模拟试卷1(4月份)一、选择题(本大题共12小题,共36.0分)1. 已知集合A ={x|0<x <2},B ={x|x <1或x >3},则A ∩B =( )A. (0,1)B. (0,2)∪(3,+∞)C. ⌀D. (0,+∞) 2. 已知复数z =i(1+2i),则|z|=( )A. √5B. √3C. √2D. 33. 已知角α的终边上有一点P(sin2π3,cos2π3),则tanα=( )A. −√33B. √33C. −√3D. √34. 已知双曲线x 24−y 2b 2=1(b >0)离心率是√52,那么b 等于( )A. 1B. 2C. √5D.2√55. 如图,正方体ABCD −A 1B 1C 1D 1中,M ,N 分别为棱BC ,CC 1的中点,则异面直线AC 和MN 所成角的大小为( )A. π6B. π3C. π2D. 2π36. 已知定义在R 上的函数f(x)在(−∞,−3]上单调递增,且f(x −3)为偶函数,则不等式f(x −2)<f(1)的解集为( )A. (−7,1)B.C. (−5,3)D.7. 已知向量a ⃗ =(−1,2),b ⃗ =(1,−1),则(a ⃗ −b ⃗ )⋅a ⃗ =( )A. 4B. −4C. 8D. 58. 若函数f (x )=sin (ωx −π4)(ω>0),在(−π4,π2)上是增函数,则ω的范围是( )A. (0,12]B. (0,1]C. (0,32]D. (0,2]9. 已知直三棱柱ABC −A 1B 1C 1的顶点都在球O 的球面上,AB =AC =2,BC =2√2.若球O 的表面积为72π,则这个直三棱柱的体积是( )A. 16B. 15C. 8√2D. 8310. 在△ABC 中,A >B ,则下列结论一定正确的是( )A. sinA >sinBB. sinA <cosBC. sinA >cosBD. cosA >cosB 11. 书架上有语文书,数学书各三本,从中任取两本,取出的恰好都是数学书的概率为( )A. 13B. 14C. 15D. 1612.设函数f(x)={x2e x,x≥0x2e x,x<0,则使得f(2x+1)>f(x−1)成立的x的取值范围是()A. (−∞,−2)∪(0,+∞)B. (−2,+∞)C. (−∞,0)∪(2,+∞)D. (2,+∞)二、填空题(本大题共4小题,共12.0分)13.函数f(x)=√−1+lnx的定义域是____________.14.已知某天一工厂甲、乙、丙三个车间生产的产品件数分别是1500、1300、1200,现用分层抽样方法抽取了一个样本容量为n的样本,进行质量检查,已知丙车间抽取了24件产品,则n=____________15.已知实数x,y满足约束条件{x+y≤4,5x+2y≥11,y≥12x+1,则z=2x−y的最大值为________.16.过抛物线y2=4x的焦点F作互相垂直的弦AC,BD,则点A,B,C,D所构成四边形的面积的最小值为_____________.三、解答题(本大题共7小题,共84.0分)17.已知S n为等差数列{a n}的前n项和,且a17=33,S7=49.(1)求证:a1,a5,a41成等比数列;(2)求数列{a n·3n}的前n项和T n.18.已知四棱锥P−ABCD中,底面为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC上一点,且BP⊥平面ADM.(1)求PM的长度;(2)求MD与平面ABP所成角的余弦值.19. 如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,且焦距为2√2,动弦AB 平行于x 轴,且|F 1A|+|F 1B|=4. (1)求椭圆C 的方程;(2)若点P 是椭圆C 上异于点A ,B 的任意一点,且直线PA 、PB 分别与y 轴交于点M 、N ,若MF 2、NF 2的斜率分别为k 1、k 2,求证:k 1⋅k 2是定值.20. 总体(x,y)的一组样本数据为:x 1 2 3 4 y3354x y (2)当x =6时,估计y 的值.附:回归直线方程y =bx +a ,其中a =y −bx ,b =∑x i n i=1y i −nx −y−∑x i 2n i=1−nx−2.21. 已知函数f(x)=ax 2−x −2lnx(a ∈R).(1)若函数f(x)的一个极值点为x =1,求函数f(x)的极值; (2)讨论f(x)的单调性.22.在直角坐标系xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(β+π4)=√22a,曲线C2的参数方程为{x=−1+cosθy=−1+sinθ(θ为参数,0≤θ≤π).(Ⅰ)求C1,C2的直角坐标方程;(Ⅱ)当C1与C2有两个公共交点时,求实数a的取值范围.23.选修4—5不等式选讲已知函数f(x)=m−|x−2|,m∈R.(1)当m=4时,解不等式|f(x)|≤2;(2)若不等式f(x+2)≥0的解集为[−2,2],若正数a,b满足ab+a+2b=2m,求a+b的最小值.-------- 答案与解析 --------1.答案:A解析:解:∵A={x|0<x<2},B={x|x<1或x>3};∴A∩B=(0,1).故选:A.进行交集的运算即可.考查描述法、区间表示集合的定义,以及交集的运算.2.答案:A解析:【分析】本题考查复数的运算和复数的模,属于基础题.先根据运算法则计算化简给定复数,再用模的公式计算.【解答】解:z=i(1+2i)=i+2i2=−2+i,∴|z|=√(−2)2+12=√5,故选A.3.答案:A解析:【分析】本题主要考查任意角的三角函数的定义,属于基础题.由题意利用任意角的三角函数的定义,求得tanα的值.【解答】解:∵角α的终边上有一点P(sin2π3,cos2π3),∴x=sin2π3=√32,y=cos2π3=−12,∴tanα=yx =−√33,故选:A.4.答案:A解析:【分析】本题主要考查双曲线的简单性质的应用,属于基础题. 由双曲线x 24−y 2b 2=1(b >0)离心率是√52,可得a =2,c =√5,即可求出b 的值.【解答】解:∵双曲线双曲线x 24−y 2b 2=1(b >0)离心率是√52,∴a =2,c =√5, ∴b =√5−4=1, 故选A .5.答案:B解析:解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD −A 1B 1C 1D 1中棱长为2,则A(2,0,0),C(0,2,0),M(1,2,0),N(0,2,1), AC ⃗⃗⃗⃗⃗ =(−2,2,0),MN ⃗⃗⃗⃗⃗⃗⃗ =(−1,0,1), 设异面直线AC 和MN 所成角为θ, cosθ=|AC⃗⃗⃗⃗⃗ ⋅MN ⃗⃗⃗⃗⃗⃗⃗ ||AC⃗⃗⃗⃗⃗ |⋅|MN ⃗⃗⃗⃗⃗⃗⃗ |=2√8⋅√2=12,∴θ=π3. ∴异面直线AC 和MN 所成角为π3. 故选:B .以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用同量法能求出异面直线AC 和MN 所成角.本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.答案:D解析: 【分析】本题考查函数的单调性与对称性的综合应用,涉及关于x 的不等式的解法,属于基础题. 根据题意,由函数f(x −3)为偶函数分析可得函数f(x)的图象关于直线x =−3对称,结合函数的单调性可得f(x −2)<f(1),解可得x 的取值范围,即可得答案. 【解答】解:根据题意,函数f(x −3)为偶函数,则函数f(x)的图象关于直线x =−3对称, 又由函数f(x)在[−3,+∞)单调递减,且f(x −2)<f(1),所以|x−2+3|>|1+3|,解可得:x<−5或x>3,即不等式的解集为.故选D.7.答案:C解析:解:向量a⃗=(−1,2),b⃗ =(1,−1),则(a⃗−b⃗ )⋅a⃗=(−2,3)⋅(−1,2)=2+6=8.故选:C.通过向量的坐标运算,结合向量的数量积求解即可.本题考查向量的数量积的应用,向量的坐标运算,是基本知识的考查.8.答案:B解析:【分析】本题主要考查了三角函数的图象与性质,注意数形结合的思想运用,属于中档题.根据正弦函数的单调性,求得ω的范围即可.【解答】解:∵f(x)在区间(−π4,π2)上是增函数,∴−π4ω−π4⩾−π2+2kπ,且π2ω−π4⩽π2+2kπ,k∈Z,求得ω≤1−8k且ω≤32+4k,k∈Z,∵ω>0,∴−38<k<18,k∈Z,∴k=0,ω∈(0,1].故选B.9.答案:A解析:【分析】本题考查了三棱柱与外接球的关系,三棱柱的体积,球的表面积,属于中档题.棱柱为直棱柱,底面为直角三角形,故而球心位于侧面BCC1B1的中心,根据球的表面积可得半径,根据球的半径计算棱柱的高即可求出棱柱的体积.【解答】解:∵AB=AC=2,BC=2√2,∴AB⊥AC,又∵CC1⊥平面ABC,三棱柱ABC−A1B1C1的各个顶点都在球O的球面上,∴O为矩形BCC1B1的中心,设球O半径为r,则4πr2=72π,∴r=3√2.即OC=r=3√2,∴三棱柱的高ℎ=2√r2−(12BC)2=8.∴三棱柱的体积V=S△ABC⋅ℎ=12×2×2×8=16.故选A.10.答案:A解析:【分析】本题考查了正弦定理及余弦函数的性质,属于基础题.结合正弦定理,余弦函数的单调性及特殊值逐项分析即可.【解答】解:在△ABC中,由大边对大角可知,当A>B时,a>b,再根据正弦定理asinA =bsinB,可得sinA>sinB,故A对;在△ABC中,当时,sinA>cosB,故B错;当,,故C错;∵A,B∈(0,π),而y=cosx在(0,π)上单调递减,由A>B,得cosA<cosB,故D错.11.答案:C解析:【分析】书架上有语文书,数学书各三本,从中任取两本,基本事件总数n=C62=15,取出的恰好都是数学书,包含的基本事件个数为m=C32=3,由此利用等可能事件概率计算公式能求出取出的恰好都是数学书的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.【解答】解:书架上有语文书,数学书各三本,从中任取两本,基本事件总数n=C62=15,取出的恰好都是数学书,包含的基本事件个数为m=C32=3,∴取出的恰好都是数学书的概率p=mn =315=15.故选:C.12.答案:A解析:解:当x<0时,f(−x)=(−x)2⋅e−x=x2e x=f(x),当x>0时,f(−x)=(−x)2e−x=x2⋅e x=f(x),当x=0时,f(x)=0,∴f(x)是偶函数,又当x≥0时,f′(x)=2xe x+x2e x=e x(x2+2x)≥0,∴f(x)在[0,+∞)上单调递增,在(−∞,0)上单调递减.∵f(2x+1)>f(x−1),∴|2x+1|>|x−1|,解得x<−2或x>0.故选:A.判断函数奇偶性和单调性,利用函数的对称性和单调性列出不等式得出x的范围.本题考查了函数单调性与奇偶性的判断与应用,属于中档题.13.答案:[e,+∞)解析:本题考查函数的定义域,属于基础题. 【解答】解:因为f (x )=√−1+lnx , 所以−1+lnx ≥0, 即lnx ≥1, 所以x ≥e所以定义域是[e,+∞), 故答案为[e,+∞).14.答案:80解析: 【分析】本题主要考查分层抽样的知识,解答本题的关键是知道每个个体被抽取的概率:P =241200=150,然后再求n 的值. 【解答】解:每个个体被抽取的概率:P =241200=150, n =(1500+1300+1200)×150=80, 故答案为80.15.答案:2解析: 【分析】本题主要考查线性规划的应用,利用数形结合是解决本题的关键. 画出约束条件的可行域,利用目标函数的几何意义,求解即可. 【解答】解:实数x ,y 满足约束条件{x +y ≤4,5x +2y ≥11,y ≥12x +1的可行域如图:z =2x −y 经过点A 时,z 取得最大值, 由{x +y =4y =12x +1可得A(2,2) z =2x −y 的最大值为:4−2=2,故答案为:2.16.答案:32解析: 【分析】本题考查直线与抛物线的综合问题,考查抛物线的定义以及多边形面积的计算,考查计算能力,属于中等题.设直线AB 的方程为y =k(x −1),将直线AB 的方程代入抛物线的方程,列出韦达定理,利用抛物线的定义得出|AB|,同理得出|CD|,由面积公式S =12|AB|⋅|CD|结合基本不等式可得出四边形ACBD 面积的最小值. 【解答】 解:如下图所示,显然焦点F 的坐标为(1,0),所以,可设直线AB 的方程为y =k(x −1), 将直线l 的方程代入抛物线的方程并整理得 k 2x 2−2(k 2+4)x +k 2=0,所以,x 1+x 2=2+4k 2,所以,|AB|=x 1+x 2+2=4+4k 2,同理可得|CD|=4+4k 2,由基本不等式可知,四边形ACBD 的面积为S =12|AB|⋅|CD|=12×4(1+k 2)k2⋅4(1+k 2) =8(k 2+1k 2+2)≥32. 当且仅当k =±1时,等号成立,因此,四边形ACBD 的面积的最小值为32. 故答案为:32.17.答案:(1)证明:设等差数列{a n }的首项为a 1,公差为d ,由于a 17=33,S 7=49, 则:{a 1+16d =337a 1+21d =49,解得:a 1=1,d =2, 所以:a n =2n −1.则:a 1=1,a 5=9,a 41=81,即:a 52=a 1·a 41.所以:a 1,a 5,a 41成等比数列. (2)解:由(1)得:a n ⋅3n =(2n −1)⋅3n ,则:T n =1⋅31+3⋅32+⋯+(2n −1)⋅3n ①, 则:3T n =1⋅32+3⋅33+⋯+(2n −1)⋅3n+1② ①−②得:−2T n =3+2(32−3n+11−3)−(2n −1)⋅3n+1,整理得:T n =(n −1)⋅3n+1+3.故数列的前n 项和为:T n =(n −1)⋅3n+1+3.解析:本题考查的知识要点:等差数列通项公式的应用,乘公比错位相减法在数列求和中的应用. (1)首先根据通项公式建立方程组,进一步求出数列a 1,a 5,a 41成等比数列.(2)利用(1)的结论,进一步求出a n ⋅3n =(2n −1)⋅3n ,进一步利用乘公比错位相减法求出数列的和.18.答案:解:(1)如图所示建立空间直角坐标系,由已知A(0,0,0),B(2,0,0),P(0,0,1),D(0,1,0),C(2,1,0). 令PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,因为PC ⃗⃗⃗⃗⃗ =(2,1,−1),所以PM ⃗⃗⃗⃗⃗⃗ =(2λ,λ,−λ), 则M(2λ,λ,−λ),因为BP ⊥平面ADM 且BP ⃗⃗⃗⃗⃗ =(−2,0,1). 所以−5λ+1=0,则λ=15.即PM 的长为√65.(6分)(2)因为M(0,4,0.2,0.8),则MD⃗⃗⃗⃗⃗⃗⃗ =(−0.4,0.2,0.8), 因为面ABP 的一个法向量n⃗ =(0,1,0),令MD 与平面ABP 所成角为θ, 则sinθ=√0.16+0.04+0.64=23,故cosθ=√53.(12分)解析:(1)建立空间直角坐标系,令PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,利用BP ⊥平面ADM 且BP ⃗⃗⃗⃗⃗ =(−2,0,1),求出λ,即可求PM 的长度;(2)利用向量的夹角公式求MD 与平面ABP 所成角的余弦值.本题考查线面垂直,考查线面角,考查学生分析解决问题的能力,属于中档题.19.答案:解:(1)∵焦距2√2,∴2c =2√2,得c =√2,由椭圆的对称性及已知得|F 1A|=|F 2B|,又∵|F 1A|+|F 1B|=4, ∴|F 1B|+|F 2B|=4,因此2a =4,a =2,于是b =√2, 因此椭圆方程为x 24+y 22=1;(2)设B(x 0,y 0),P(x 1,y 1),则A(−x 0,y 0),直线PA 的方程为y −y 1=y 1−yx 1+x 0(x −x 1),令x =0,得y =x 1y 0+x 0y 1x 1+x 0,故M(0,x 1y 0+x 0y 1x 1+x 0),直线PB 的方程为y −y 1=y 1−yx 1−x 0(x −x 1),令x =0,得y =x 1y 0−x 0y 1x 1−x 0,故N(0,x 1y 0−x 0y 1x 1−x 0),∴k 1=−1001√2(x +x ),k 2=−x 1y 0−x 0y1√2(x −x ), 因此k 1⋅k 2=12·x 12y 02−x 02y 12x 12−x 02,∵A ,B 在椭圆C 上,∴y 12=2−x 122,y 02=2−x 022,∴k 1k 2=12⋅x 12(2−12x 02)−x 02(2−12x 12)x 12−x 02=1.故k 1·k 2为定值1.解析:本题考查椭圆标准方程的求法,考查了直线与椭圆位置关系的应用,考查计算能力,是中档题.(1)由题意求得c ,由对称性结合|F 1A|+|F 1B|=4可得2a ,再由隐含条件求得b ,则椭圆方程可求; (2)设B(x 0,y 0),P(x 1,y 1),则A(−x 0,y 0),分别写出PA 、PB 所在直线方程,求出M 、N 的坐标,进一步求出MF 2、NF 2的斜率分别为k 1、k 2,结合A 、B 在椭圆上可得k 1⋅k 2是定值.20.答案:解:(1)∵x =52,y =154,∑x i 4i=1y i =40,∑x i 24i=1=30;∴b =40−4×52×15430−4×254=12, a =y −bx =154−12×52=52, ∴回归直线方程为y =12x +52; (2)当x =6时,代入回归方程,可得y =112.解析:本题考查回归方程的求法,利用最小二乘法求回归方程的系数是解答此类问题的关键. (1)根据所给的数据求x 和y 的平均数,得到这组数据的样本中心点,利用最小二乘法的系数公式求出线性回归方程的系数,进而写出线性回归方程; (2)当x =6时,代入回归方程,即可估计y 的值.21.答案:解:(1)f(x)=ax 2−x −2lnx ,f ′(x)=2ax −1−2x (x >0),∵x =1是函数f(x)的一个极值点, ∴f′(1)=2a −1−2=0,∴a =32,,f ′(x)=3x −1−2x=3x 2−x−2x=(3x+2)(x−1)x.∴当x ∈(0,1)时,f′(x)<0,f(x)为减函数; 当x ∈(1,+∞)时,f′(x)>0,f(x)为增函数,∴x =1时,f(x)极小值为f (1)=32−1=12,无极大值;(2)由f(x)=ax 2−x −2lnx(x >0),可得:f ′(x)=2ax −1−2x=2ax 2−x−2x(x >0).①当a ≤0时,f′(x)<0,f(x)在(0,+∞)为减函数; ②当a >0时,由f′(x)=0,得x 1=1−√1+16a4a,x 2=1+√1+16a4a,显然,x 1<0,x 2>0,且当0<x <x 2时,f′(x)<0,f(x)是减函数;x >x 2时,f′(x)>0,f(x)是增函数;综上,a ≤0时,f(x)的单调减区间为(0,+∞),没有增区间; a >0时,f(x)的单调减区间为(0,1+√1+16a4a);单调增区间为.解析:本题考查函数的导数的综合应用,函数的单调性,函数的极值,考查分类讨论以及计算能力. (1)求导,由f′(1)=0求出a 的值,再利用导数得到函数的极值点,从而求出极值;(2)通过求解函数的导函数,分a ≤0与a >0两种情况,通过判断导数符号,然后求函数f(x)的单调区间.22.答案:解:(Ⅰ)由ρsin(β+π4)=√22a ,得ρ(sinβcos π4+cosβsin π4)=√22a , 即√22ρ(sinβ+cosβ)=√22a ,∴C 1的直角坐标方程为x +y =a .由{x =−1+cosθy =−1+sinθ,得(x +1)2+(y +1)2=1. ∴C 2的普通方程为(x +1)2+(y +1)2=1;(Ⅱ)圆(x +1)2+(y +1)2=1的圆心坐标为(−1,−1),半径为1,要使C 1与C 2有两个公共交点,则圆心(−1,−1)到直线x +y −a =0的距离小于圆的半径1. 即√2<1,解得:−2−√2<a <−2+√2.∴实数a 的取值范围是(−2−√2,−2+√2).解析:(Ⅰ)展开两角和的正弦,结合x =ρcosβ,y =ρsinβ求得C 1的直角坐标方程,利用平方关系消去θ求得C 2的普通方程;(Ⅱ)由曲线C 2的圆心到直线C 1的距离小于圆的半径列式求得实数a 的取值范围.本题考查极坐标方程化直角坐标方程,考查参数方程化普通方程,考查直线与圆的位置关系,是基础题.23.答案:【解答】(1)由于m =4,所以|f(x)|≤2等价变形为−2≤|x −2|−4≤2, 即2≤|x −2|≤6,所以−6≤x −2≤−2或2≤x −2≤6,所以不等式的解集为{x|−4≤x≤0或4≤x≤8};(2)不等式f(x+2)≥0等价于|x|≤m,由于该不等式的解集为[−2,2],所以m=2,故ab+a+2b=4,即(a+2)(b+1)=6,所以a+b=(a+2)+(b+1)−3⩾2√(a+2)(b+1)−3=2√6−3(当且仅当a+2=b+1=√6即a=√6−2,b=√6−1时,等号成立),所以a+b的最小值为2√6−3.解析:本题考查解绝对值不等式问题,考查基本不等式的性质,是一道中档题.(1)将|f(x)|≤2等价变形为−2≤|x−2|−4≤2,求出不等式的解集即可;(2)求出m的值,根据基本不等式的性质求出a+b的最小值即可.。
湖北省黄冈等七市(州)2020届高三4月联考模拟数学理试题(解析版)
秘密★启用前2020年湖北荆州、黄冈、襄阳、十堰、宜昌、孝感、恩施七市(州)高三联合考试 数学(理工类)本科目考试时间:2013年4月18日下午15:00-17:00★祝考试顺利★一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的. 1.设复数1a iz i+=+,其中a 为实数,若z 的实部为2,则z 的虚部为 A .-i B .i C .-1 D .1 答案:C解析:根据题意,由于复数其中a 为实数,若z 的实部为2,根据题意可知a+1=4,a=3,故可知其虚部为1,故答案为C 考点:复数的运算点评:解决的关键是根据复数的除法运算得到化简,并结合概念得到结论,属于基础题 2.已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b =A .(-2,-1)B .(2,1)C .(3,-1)D .(-3,1) 答案:A解析:根据题意,由于向量a=(2,1),b=(x ,-2),若a ∥b ,那么可知有,2 (-2)-1x=0,解得x=-4,故可知a+b=(-2,-1),选A. 考点:向量平行的充要条件 3.下列说法中不正确的个数是①命题“∀x ∈R ,123+-x x ≤0”的否定是“∃0x ∈R ,12030+-x x >0”;②若“p ∧q ”为假命题,则p 、q 均为假命题;③“三个数a ,b ,c 成等比数列”是“b=ac ”的既不充分也不必要条件 A .O B .1 C .2 D .3 答案:B解析:对于①命题“x ∈R ,≤0”的否定是“∈R ,>0”;显然成立。
对于②若“pq”为假命题,则p 、q 均为假命题;错误,因此只要有一个为假即为假,故错误。
对于③“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件,应该是必要不充分条件,因此错误,故选B.考点:命题的真值点评:解决的关键是对于命题的否定以及真值的判定的运用,属于基础题。
2020年湖北省高考数学模拟试卷(理科)(4月份)(有答案解析)
2020年湖北省高考数学模拟试卷(理科)(4月份)一、选择题(本大题共12小题,共60.0分)1.已知实数集R ,集合,集合,则A. B.C. D.2.已知,若,则A. B. C. D.3.若,则A. 0B. 1C.D. 24.中国历法推测遵循以测为辅、以算为主的原则.例如周髀算经和易经里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为周髀算经对二十四节气晷影长的记录,其中寸表示115寸分寸分.节气冬至小寒大雪大寒小雪立春立冬雨水霜降惊蛰寒露春分秋分清明白露谷雨处暑立夏立秋小满大暑芒种小暑夏至晷影长寸135已知易经中记录某年的冬至晷影长为寸,夏至晷影长为寸,按照上述规律那么易经中所记录的春分的晷影长应为A. 寸B. 寸C. 寸D. 寸5.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为A. B.C. D.6.已知,则A. B. C. D.7.设等比数列的公比为q,前n项和为,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.如图,在平行四边形ABCD中,,F为BC的中点,G为EF上的一点,且,则实数m的值为A. B. C. D.9.已知函数,若存在,且,使得成立,则实数a的取值范围是A. B. C. D.10.已知双曲线的左右焦点分别为,,过的直线与C的两条渐近线分别交于A、B两点,若以为直径的圆过点B,且A为的中点,则C的离心率为A. B. 2 C. D.11.一竖立在水平地面上的圆锥形物体的母线长为2m,一只蚂蚁从圆锥的底面圆周上的点P出发,绕圆锥表面爬行一周后回到P点,蚂蚁爬行的最短路径为,则圆锥的底面圆半径为A. B. 1m C. D.12.已知函数,,,,且都有,满足的实数有且只有3个,给出下述四个结论:满足题目条件的实数有且只有1个;满足题目条件的实数有且只有1个;在上单调递增;的取值范围是其中所有正确结论的编号是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.设曲线上点P处的切线平行于直线,则点P的坐标是______.14.某学校选拔新生补进“篮球”、“电子竞技”、“国学”三个社团,根据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立.2019年某新生入学,假设他通过考核选拔进入该校“篮球”、“电子竞技”、“国学”三个社团的概率依次为m,,n,已知这三个社团他都能进入得慨率为,至少进入一个社团的概率为,则______.15.自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为______.16.已知椭圆的左、右焦点分别为,,M为椭圆上异于长轴端点的动点,的内心为I,则______.三、解答题(本大题共7小题,共82.0分)17.在中,角A、B、C所对的边为a、b、c,且满.求角B的值;若,求的取值范围,18.如图,在四棱锥中,侧面SCD为钝角三角形且垂直于底面ABCD,,点M是SA的中点,,,.求证:平面SCD;若直线SD与底面ABCD所成的角为,求平面MBD与平面SBC所成的锐二面角的余弦值.19.线段AB为圆M:的一条直径,其端点A,B在抛物线C:上,且A,B两点到抛物线C焦点的距离之和为11.求抛物线C的方程及直径AB所在的直线方程;过M点的直线l交抛物线C于P,Q两点,抛物线C在P,Q处的切线相交于N点,求面积的取值范围.20.已知函数.求函数的最小值;若函数在上有两个零点,,且,求证:.21.2020年春节期间爆发的新型冠状病毒,是一种可以借助飞沫和接触传播的变异病毒.某定点医院为筛查某些人是否感染该病毒,需要检验血液是否为阳性,现有n份血液样本,有以下两种检验方式:逐份检验,则需要检验n次;混合检验,将其中且份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.假设有6份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率;现取其中且份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.试运用概率统计的知识,若,试求p关于k的函数关系式;若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更小,求k的最大值.参考数据:,,,22.在平面直角坐标系xOy中,曲线的参数方程为为参数,以原点为极点,x 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.求曲线的极坐标方程以及曲线的直角坐标方程;若直线l:与曲线、曲线在第一象限交于P、Q,且,点M的直角坐标为,求的面积.23.已知实数a、b满足.求的取值范围;若,求证:.-------- 答案与解析 --------1.答案:C解析:解:,,,.故选:C.可以求出集合B,然后进行交集和补集的运算即可.本题考查了描述法的定义,交集和补集的运算,考查了计算能力,属于基础题.2.答案:B解析:解:设.,,,,解得,.则,故选:B.设由,可得,,,解得b,a.本题考查了复数的运算性质、复数相等,考查了推理能力与计算能力,属于基础题.3.答案:A解析:解:因为:,令可得:;令可得:;故.故选:A.令求得,再令即可求解结论.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.4.答案:D解析:解:由题意,晷影长则是按照等差数列的规律计算得出的,冬至晷影长为寸,设为,夏至晷影长为寸,则为,春分的晷影长为;;即春分的晷影长为.由题意,晷影长则是按照等差数列的规律计算得出的,冬至晷影长为寸,设为,夏至晷影长为寸,则为,春分的晷影长为,根据等差数列的性质即可求解.本题考查了等差数列的应用,属于基础题.5.答案:B解析:解:根据题意,设,有,即函数为偶函数,排除A、D;设,则,在区间上,为减函数,且,,其对称轴为,开口向下,在区间上为增函数,上为减函数,在区间上,为减函数,此时,函数为减函数,故函数为增函数,排除C;故选:B.根据题意,设,分析函数的奇偶性可以排除A、D,结合复合函数单调性的判断方法分析可得函数为增函数,排除C;即可得答案.本题考查函数的图象分析,涉及函数的奇偶性的分析,属于基础题.6.答案:D解析:解:,,,,,,,,故选:D.利用对数函数和指数函数的性质求解.本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.7.答案:C解析:解:若时,,时,,符合题意,是充分条件;反之也成立,故“”是“”的充要条件,故选:C.根据等比数列的前n项和为结合充分条件和必要条件的定义进行判断.本题主要考查充分条件和必要条件的应用,利用等比数列的性质是解决本题的关键.解析:解:,F为BC的中点,,,设,又,,解得.故选:A.可根据条件得出,并可设,然后根据向量加法的几何意义和向量的数乘运算即可得出,从而根据平面向量基本定理即可得出,解出m即可.本题考查了向量加法和数乘的几何意义,向量的数乘运算,平面向量基本定理,考查了计算能力,属于基础题.9.答案:C解析:【分析】本题考查分段函数,函数的单调性的应用,是中档题.当,即时,由二次函数的图象和性质,可知存在,且,使得成立;当,即时,若存在,且,使得成立,则,由此能求出实数a的取值范围.【解答】解:函数,存在,且,使得成立,当,即时,由二次函数的图象和性质,可知:存在,且,使得成立,当,即时,若存在,且,使得成立,则,解得,,综上所述:实数a的取值范围是.故选:C.10.答案:B解析:解:如图,因为A为的中点,所以,又因为B在圆上,所以,故,则:,联立,解得,则,整理得:,,即,,.故选:B.由题意画出图形,结合已知可得,写出的方程,与联立求得B点坐标,再由斜边的中线等于斜边的一半求解.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.11.答案:A解析:解:如图,在圆锥SO中,已知,沿SP剪开再展开,由题意可得,可得.设圆锥的底面圆半径为r,则,得故选:A.由题意画出图形,沿母线SP剪开再展开,由圆锥的底面周长等于展开后扇形的弧长相等列式求解.本题考查多面体与旋转体表面上的最短距离问题,考查弧长公式的应用,是基础题.12.答案:D解析:解:函数,,,,满足的实数有且只有3个,由,可得,,由可得;可得;可得;可得,由,可得,且,解得;故正确;由,可得,由,可得,由在递增,可得在上单调递增,故正确;由都有,可得的极大值为,极小值为,由的图象可得在的极大值有两个,极小值一个,故正确,错误.其中正确的为.故选:D.由,解方程,讨论,0,1,2,由题意可得的取值范围,可判断;由,可得的范围,结合余弦函数的单调区间,可判断;再由题意可得的极大值为,极小值为,结合余弦函数的图象可判断、.本题考查三角函数的图象和性质,考查转化思想和化简运算能力、推理能力,属于中档题.13.答案:解析:解:由题意得,且切线斜率为1.设切点为,则,所以,.故切点坐标为.故答案为:先对函数求导数,然后根据切点处的导数值等于切线斜率,列出切点横坐标满足的方程即可.本题考查了利用导数的几何意义的应用,本题利用切点处的导数等于切线斜率构造方程求解,注意掌握.14.答案:解析:解:因为通过考核选拔进入三个社团的概率依次为m,,n,且相互独立,所以,,又因为三个社团他都能进入的概率为,所以,因为至少进入一个社团的概率为,所以一个社团都不能进入的概率为,所以,即,联立得:.故答案为:.利用相互独立事件及对立事件的概率公式求解.正确使用相互独立事件及对立事件的概率公式进行计算,是解决此题的关键.15.答案:9600解析:解:设每天派出A型卡车x辆,B型卡车y辆,运输队所花成本为z元,则,且,,目标函数,画出满足条件的可行域如图中阴影部分所示:由图可知,当直线经过点时,截距z最小,在可行域的整数点中,点使z取得最小值,即,每天排除A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为9600元,答:每天派出A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为9600元.设每天派出A型卡车x辆,B型卡车y辆,运输队所花成本为z元,根据题意把实际问题数学化,列出需要满足的不等式组,注意,,把运输队所花成本z看作目标函数,画出可行域,根据目标函数平移得到最值的取法.本题主要考查了简单的线性规划问题,根据题意列出不等式组是解题关键,本题属于中档题.16.答案:解析:解:设的内切圆与相切于D,E,F,设,,,则,,,由椭圆的定义,可得,,,即有,,即有:,即,再由,故答案为:.运用椭圆的定义和圆切线的性质,以及内心的定义,结合解直角三角形的知识,即可求得.本题考查椭圆的方程的定义,考查切线的性质,内心的定义,属于难题.17.答案:解:,解得,可得,可得,,,或.,由可得,由正弦定理,可得,,,,,,解析:由已知利用三角函数恒等变换的应用可求,结合范围,可求B的值.由,可求得,由正弦定理,三角函数恒等变换的应用可求,由已知可求范围,利用正弦函数的性质即可求解其取值范围.本题主要考查了三角函数恒等变换的应用,正弦定理,正弦函数的性质的应用,考查了转化思想和函数思想,属于中档题.18.答案:证明:取BC的中点E,连接DE,设,,依题意,四边形ABED为正方形,且有,,,则.又平面底面ABCD,平面底面,平面SCD;解:过点S作CD的垂线,交CD延长线于点H,连接AH,平面底面ABCD,平面底面,,平面SCD,底面ABCD,故DH为斜线SD在底面ABCD内的射影,为斜线SD与底面ABCD所成的角,即.由得,,在中,,,,在中,,,,由余弦定理得,,从而,过点D作,底面ABCD,、DC、DF两两垂直,如图,以点D为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立空间直角坐标系,则0,,,,,,设平面MBD的法向量y,,由,取,得;设平面SBC的一个法向量为,由,取,得..平面MBD与平面SBC所成的锐二面角的余弦值为.解析:取BC中点E,连接DE,设,,由已知可得,则,又平面底面ABCD,由面面垂直的性质可得平面SCD;过点S作CD的垂线,交CD延长线于点H,连接AH,可得,则底面ABCD,故DH为斜线SD在底面ABCD内的射影,求解三角形可得,从而,过点D作,则底面ABCD,可得DB、DC、DF两两垂直,以点D为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立空间直角坐标系,然后分别求出平面BMD 与平面SBC的一个法向量,由两法向量所成角的余弦值可得平面MBD与平面SBC所成的锐二面角的余弦值.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.19.答案:解:设,,抛物线的焦点为F,则,又,,,抛物线C的方程为:,由,两式相减得:,直线AB的斜率为,圆M方程:化为坐标方程为:,直线AB过圆心,直线AB的方程为:,即;不妨设,,,直线l的方程为,联立方程,消去y得:,,,,抛物线C的方程为,,,抛物线C在的切线方程为:,又点在切线PN上,则,即,同理可得:,故,为一元二次方程的两根,,,又,,,,点N到直线PQ的距离,,当时,的面积取得最小值,最小值为27,面积的取值范围为:.解析:利用抛物线的定义可求出,再利用点差法求出直线AB的斜率,结合直线AB过圆心M,利用点斜式即可求出直线AB的方程:不妨设,,,直线l的方程为,与抛物线方程联立,利用韦达定理和弦长公式可求出,再利用导数的几何意义求出抛物线C在的切线方程,把点代入切线PN的方程得,同理可得:,故,为一元二次方程的两根,再次利用韦达定理得,,所以点N到直线PQ的距离,所以,故当时,的面积取得最小值,最小值为27,本题主要考查了抛物线的定义,以及直线与抛物线的位置关系,是中档题.20.答案:解:由于函数为偶函数,要求函数的最小值,只需求时的最小值即可.因为,所以,当时,设,,显然单调递增,而,,由零点存在定理,存在唯一的,使得,分当,,单减,当,,单增,而,,,,即,,单减,分又当,,,单增,所以;分只需证,其中,,构造函数,,,即单增,所以,,即当时,,而,所以,,又,即,此时,,由第问可知,在上单增,所以,,,即证分解析:由于函数为偶函数,故只需求时的最小值,利用,对x分及,两类讨论,即可求得函数的最小值;只需证,其中,,构造函数,,利用导数结合题意可证得.本题考查利用导数来求曲线某点的切线方程及利用导数研究函数的单调性,考查函数与方程思想、分类讨论思想及等价转化思想的综合运用,考查逻辑推理与运算能力,属于难题.21.答案:解:设恰好经过4次检验就能把阳性样本全部检验出来的事件为A,则,故恰好经过4次检验就能把阳性样本全部检验出来的概率为;由已知得,可能的取值为1,,所以,,所以,由,所以,即,,得,故p关于k的函数关系式为,,且;由题意,所以,,由,所以,两边取对数得,设,,由,当时,,函数递减,当时,,函数递增;,,,,,,,故满足条件的k最大为8.解析:设恰好经过4次检验就能把阳性样本全部检验出来的事件为A,求出概率即可;由已知得,可能的取值为1,,由,求出k的关系式即可;由题意,所以,两边取对数得,设,,根据函数的单调性结合题目给的条件判断即可.本题考查了求事件的概率,考查了数学期望与函数求导的综合,考查运算能力和实际应用能力,中档题.22.答案:解:曲线的参数方程为为参数,转换为直角坐标方程为,转换为极坐标方程为.曲线的极坐标方程为转换为直角坐标方程为.直线l:转换为极坐标方程为,代入,解得.代入,得到,由于,所以,故:,解得,,所以,.则.解析:直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.利用极径的应用和三角函数关系式的恒等变换的应用及面积公式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,极径的应用,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:因为,所以.当时,,解得,即;当时,,解得,即,所以,则,而,所以,即;由知,因为当且仅当时取等号,所以.解析:由已知得.当时,,解得,即;当时,,解得,即,得,即,即;由知,可得即.本题考查了不等式的性质,不等式的证明,属于中档题.。
2020年湖北省高考数学模拟试卷(理科)(4月份) (含答案解析)
2020年湖北省高考数学模拟试卷(理科)(4月份)一、单项选择题(本大题共12小题,共60.0分)1. R 是实数集,A ={x|3≤x <7},B ={x|4<x <10},则(∁R A)∩B =( )A. [3,10)B. (4,7)C. [7,10)D. [3,4]2. 若复数z 满足|z|⋅z .=20−15i ,则z 的虚部为( )A. 3B. −3C. 3iD. −3i3. 记(2−x)7=a 0+a 1(1+x)+⋯…+a 7(1+x)7,则a 0+a 1+a 2+⋯…+a 6的值为( )A. 1B. 2C. 129D. 21884. 已知函数f(x)=log 21−x1+x ,若f(a)=12,则f(−a)=( ).A. 2B. −2C. 12D. −125. 函数f(x)=sinx +cosx x的大致图象为( )A.B.C.D.6. 如果log 12x <log 12y <0,那么( ) A. y <x <1 B. x <y <1 C. y >x >1 D. x >y >17. 已知p :f(x +1)是偶函数,q :函数f(x)关于直线x =1对称,则p 是q 的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分又不必要条件8. 在平行四边形ABCD 的边AD 上一点E 满足AE =14AD ,且AC ∩BD =F ,若AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,则EF ⃗⃗⃗⃗⃗ =( ) A. 12a⃗ +14b ⃗ B. 12a⃗ −14b ⃗ C. −12a⃗ +14b ⃗ D. 14a⃗ +14b ⃗ 9. 已知函数f(x)={x 2−2ax +8,x ≤12x,x >1,f(x)在定义域上单调递减,则实数a 的范围为( )A. (1,72)B. (1,+∞)C. [1,72]D. (−∞,72]10. 双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在C 上,△PF 1F 2为等腰直角三角形,则双曲线的离心率为( )A. √2−1B. √2+1C. √3D. √3+111. 如图,圆锥顶点为P ,底面圆心为O ,过轴PO 的截面PAB ,C 为PA 中点,PA =4√3,PO =6,则从点C 经圆锥侧面到点B 的最短距离为( )A. 2√15B. 2√15−6√2C. 6D. 2√15−6√312. 已知函数f(x)=sin(2x +φ),其中φ为实数,若f(x)≤|f(π6)|对x ∈R 恒成立,且f(π2)<f(π).则下列结论正确的是( )A. f(1112π)=−1 B. f(7π10)>f(π5) C. f(x)是奇函数D. f(x)的单调递增区间是[kπ−π3,kπ+π6](k ∈Z)二、填空题(本大题共4小题,共20.0分)13. 已知曲线y =13x 3+x 2上点P 处切线的斜率为3,则点P 的坐标为____________14. 北京大学为响应习近平总书记寄语青年人“忠于祖国不负时代,放飞青春梦想实现中华民族伟大复兴”新建立3个社团,若每位同学参加各个社团的可能性相同,每位同学必须参加社团且只能参加其中一个社团,则甲、乙两位同学参加同一社团的概率为_____.15. 已知满足{x ≥2x +y ≤42x −y −m ≤0 ,若目标函数z =3x +y 的最大值为10,则z 的最小值为______.16. 已知F 1,F 2分别为椭圆C :x 29+y 25=1的左、右焦点,M 是椭圆上位于第一象限的一点,|MF 1|=133,A 、B 是椭圆C 上异于M 的两点,且△AMB 的重心为F 2,则直线AB 的斜率为________. 三、解答题(本大题共7小题,共82.0分)17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c −a)cosB −bcosA =0.(Ⅰ)求角B 的大小;(Ⅱ)求√3sinA +sin(C −π6)的取值范围.18. 如图,在四棱锥P −ABCD 中,底面ABCD 为矩形且AD =2AB ,侧面PAD ⊥底面ABCD ,且侧面PAD 是正三角形,E 是AD 中点.(1)证明:CE ⊥平面PBE ; (2)求二面角D −PC −B 的余弦值.19. 已知A ,B 两点在抛物线C :x 2=4y 上,点M(0,4)满足MA ⃗⃗⃗⃗⃗⃗ =λBM ⃗⃗⃗⃗⃗⃗ .(1)若线段|AB|=12√2,求直线AB 的方程;(2)设抛物线C过A、B两点的切线交于点N.求证:点N在一条定直线上.20.设函数f(x)=ln(2x+3)+x2,求f(x)在(−1,+∞)上的最小值.21.五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.(1)试求选出3种商品中至少有一种是家电的概率;(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为 6n元的奖金.假设顾客每次抽奖中奖的概率都是1,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场利益无4损害?22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =cosαy =1+sinα(α为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设A ,B 为曲线C 上两点(均不与O 重合),且满足∠AOB =π3,求|OA|+|OB|的最大值.23. 若a >b >0,求证:a +1(a−b)b ≥3.【答案与解析】1.答案:C解析:解:∁R A ={x|x <3,或x ≥7}; ∴(∁R A)∩B =[7,10). 故选:C .进行补集、交集的运算即可.考查描述法、区间的定义,以及补集、交集的运算.2.答案:A解析:解:设z =a +bi(a,b ∈R),由|z|⋅z .=20−15i ,得√a 2+b 2(a −bi)=20−15i , ∴{√a 2+b 2b =15√a 2+b 2a=20,解得a =4,b =3.∴z 的虚部为3. 故选:A .设z =a +bi(a,b ∈R),代入|z|⋅z .=20−15i ,由复数相等的条件列式求得a ,b 得答案. 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础的计算题.3.答案:C解析:解:记(2−x)7=a 0+a 1(1+x)+⋯+a 7(1+x)7=−[−3+(x +1)]7,∴a 7=−C 77=−1,则令x =0,可得a 0+a 1+a 2+⋯+a 6+a 7=a 0+a 1+a 2+⋯+a 6−1=27=128, 则a 0+a 1+a 2+⋯+a 6=129, 故选:C .二项式即−[−3+(x +1)]7,求得a 7 的值,可得a 0+a 1+a 2+⋯+a 6的值.本题主要考查二项式定理的应用,注意分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.4.答案:D解析:由已知得函数的定义域为(−1,1)且f(−x)=log21−(−x)1+−x =−log21−x1+x=−f(x),所以函数f(x)是奇函数,故f(−a)=−f(a)=−12,故选D.5.答案:B解析:本题考查函数的图象的判断,函数的奇偶性,属于简单题.利用函数的奇偶性排除错误选项,然后再利用函数值的正负判断即可.解:函数f(x)=sinx+cosxx ,定义域关于原点对称,满足函数f(−x)=−sinx−cosxx=−f(x),所以函数为奇函数,排除A、C,因为x∈(0,π2)时,sinx>0,cosxx>0,此时f(x)>0,所以排除D,故选:B.6.答案:D解析:本题考查对数函数的性质,属于基础题.根据题意,结合对数函数的性质求解即可.解:log12x<log12y<0=log121,因为log12x为减函数,则x>y>1.故选D.7.答案:C解析:解:若f(x+1)是偶函数,则f(−x+1)=f(x+1),则函数f(x)关于直线x=1对称,则p是q的充要条件,故选:C根据函数的性质以及充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,根据函数奇偶性和对称性的性质是解决本题的关键.8.答案:A解析:解:根据题意得AE ⃗⃗⃗⃗⃗=14AD ⃗⃗⃗⃗⃗⃗ ,F 为AC 和BD 的交点,∴F 为AC 的中点, ∴AF ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ )=12(a ⃗ +b ⃗ ),∴EF ⃗⃗⃗⃗⃗ =AF ⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12a ⃗ +12b ⃗ −14b ⃗ =12a ⃗ +14b ⃗ ,故选:A .AE ⃗⃗⃗⃗⃗ =14AD ⃗⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )由向量的减法得EF ⃗⃗⃗⃗⃗ 本题考查平面向量基本定理及向量的表示.9.答案:C解析:本题考查分段函数的单调性,注意函数单调性的定义,属于基础题.由分段函数的解析式知,当x >1时,f(x)单调递减,f(x)<2,当x ⩽1时,f(x)在(−∞,a )上单调递减,则{a ⩾1f (1)=1−2a +8⩾2,求解即可.解:∵函数f(x)={x 2−2ax +8,x ≤12x,x >1,当x >1时,f(x)=2x ,函数f(x)单调递减,则f(x)<2, 当x ⩽1时,f(x)=x 2−2ax +8=(x −a )2+8−a 2,函数f(x)的图象开口向上,对称轴为x =a ,f(x)在(−∞,a )上单调递减, ∵f(x)在定义域上单调递减,则{a ⩾1f (1)=1−2a +8⩾2,解得1⩽a ⩽72. ∴实数a 的范围为.故选C .10.答案:B解析:本题考查了双曲线的性质,离心率的计算,属于中档题. 根据F 1F 2=PF 2列方程得出a ,b ,c 的关系,从而得出答案. 解:不妨设P 在第一象限,∵△PF 1F 2为等腰直角三角形,F 1F 2=PF 2,且F 1F 2⊥PF 2,把x=c代入双曲线方程得y=b2a ,即PF2=b2a,∴2c=b2a =c2−a2a,即c2−2ac−a2=0,∴e2−2e−1=0,解得e=√2+1或e=−√2+1(舍),故选:B.11.答案:A解析:本题考查旋转体表面上的最短距离问题,考查弧长公式的应用,是基础题.由题意画出图形,得到圆锥沿母线剪开再展开的图形,由勾股定理求解.解:如图,沿圆锥母线PA剪开再展开,∵PA=4√3,PO=6,∴OA=2√3,则圆锥底面周长为4√3π,展开后所得扇形为半圆,B到B′处,则从点C经圆锥侧面到点B的最短距离为√(2√3)2+(4√3)2=2√15.故选:A.12.答案:D解析:根据题意首先判断φ的取值,然后逐条验证.对A,代入求值即可;对B,代入比较大小即可;对C,根据奇函数定义,验证是否适合;对D,通过解不等式求单调区间的方法求解.本题借助考查命题的真假判断,考查三角函数的性质.解:∵f(x)≤|f(π6)|对x∈R恒成立,∴2×π6+φ=kπ+π2⇒φ=kπ+π6,k∈Z.∵f(π2)<f(π)⇒sin(π+φ)=−sinφ<sin(2π+φ)=sinφ⇒sinφ>0.∴φ=2kπ+π6,k∈Z.不妨取φ=π6f(11π12)=sin2π=0,∴A×;∵f(7π10)=sin(7π5+π6)=sin47π30=−sin17π30<0,f(π5)=sin(2π5+π6)=sin17π30>0,∴B×;∵f(−x)≠−f(x),∴C×;∵2kπ−π2≤2x+π6≤2kπ+π2⇒kπ−π3≤x≤kπ+π6,k∈Z.∴D√;故选D.13.答案:(1,43)或(−3,0)解析:本题考查导数的几何意义,设P的坐标,然后利用导数的几何意义求解即可.解:设P(x0,y0),又y=13x3+x2,所以y′=x2+2x,由已知有x02+2x0=3,所以x0=1或−3,所以点P的坐标为(1,43)或(−3,0).故答案为(1,43)或(−3,0).14.答案:13解析:本题考查相互独立事件同时发生的概率计算,属于基础题目.先得出甲乙参加A 社团的概率,求出甲乙都参加A 社团的概率,进而得出答案.解:记3个社团分别为A,B,C ,依题意甲参加A 社团的概率为13,乙参加A 社团的概率为13, 所以甲和乙都参加A 社团的概率为13×13=19,同理可得甲和乙都参加B 社团的概率为19,甲和乙都参加C 社团的概率为19, 所以甲、乙两位同学参加同一社团的概率为19+19+19=13.故答案为:13.15.答案:5解析:解:不等式组对应的平面区域如图: 由z =3x +y 得y =−3x +z平移直线y =−3x +z ,则由图象可知当直线y =−3x +z 经过点C 时,直线y =−3x +z 的截距最大,此时z 最大,为3x +y =10由{3x +y =10x +y =4,解得{x =3y =1,即C(3,1),此时C 在2x −y −m =0上, 则m =5.当直线y =−3x +z 经过点A 时,直线y =−3x +z 的截距最小,此时z 最小, 由{x =22x −y −5=0,得{x =2y =−1,即A(2,−1), 此时z =3×2−1=5, 故答案为:5.作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到m 的值.然后即可得到结论.本题主要考查线性规划的应用,根据z 的几何意义,利用数形结合是解决本题的关键.16.答案:43解析:本题考查椭圆的性质和几何意义,属于中档题.根据椭圆的定义求出|MF 2|的长,根据焦半径的公式得到MF 2⊥F 1F 2,再结合重心的坐标公式,得到A 、B 的横、纵坐标之和,联想到点差法求出直线AB 的斜率. 解:易知F 2(2,0).∵|MF 1|=133,∴|MF 2|=2×3−133=53=b 2a,根据焦半径公式可得MF 2⊥F 1F 2,M(2,53). 设A(x 1,y 1),B(x 2,y 2), 由题知x 1+x 2+23=2,y 1+y 2+533=0,则x 1+x 2=4,y 1+y 2=−53. 又∵A 、B 在椭圆C 上,∴x 129+y 125=1,x 229+y 225=1,相减得y 1−y 2x 1−x 2=−59⋅x 1+x2y 1+y 2=−59×4−53=43.故答案为:43.17.答案:解:(Ⅰ)在△ABC 中,∵(2c −a)cosB −bcosA =0,∴2sinCcosB −sinAcosB −sinBcosA =0, 即2sinCcosB −sin(A +B)=0, 又sin(A +B)=sinC ,∴2sinCcosB −sinC =0即sinC(2cosB −1)=0, ∵C 是三角形的内角,sinC ≠0, ∴cosB =12,且B 是三角形内角, ∴B =π3.(Ⅱ)由(Ⅰ)可得√3sinA+sin(C−π6)=√3sinA+cosA=2sin(A+π6),∵A∈(0,2π3),∴A+π6∈(π6,5π6),∴sin(A+π6)∈(12,1],∴2sin(A+π6)∈(1,2],即√3sinA+sin(C−π6)的取值范围是(1,2].解析:本题主要考查正弦定理、两角和差的正弦公式,正弦函数的定义域和值域,考查了计算能力与推理能力,属于中档题.(Ⅰ)在△ABC中,由条件利用正弦定理、两角和差的正弦公式可得sinC(2cosB−1)=0,故有cosB=12,由此求得B的值.(Ⅱ)由(Ⅰ)可得√3sinA+sin(C−π6)=2sin(A+π6),根据A∈(0,2π3),利用正弦函数的定义域和值域求得√3sinA+sin(C−π6)的取值范围.18.答案:解:(1)证明:∵侧面△PAD是正三角形,E是AD中点,∴PE⊥AD,∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,∴PE⊥底面ABCD,∴PE⊥CE,∵底面ABCD是矩形且AD=2AB,∴AE=DE=AB=CD,∴∠AEB=∠DEC=45°,∴∠AEB+∠DEC=90°,∴∠BEC=90°,∴BE⊥CE,∵PE∩BE=E,∴CE⊥平面PBE.(2)解:以E 为原点,以ED ,EP 所在直线,AD 的垂直平分线为x ,z ,y 轴,建立空间直角坐标系, 设AD =2AB =2,则点D(1,0,0),C(1,1,0),P(0,0,√3),B(−1,1,0), ∴PD ⃗⃗⃗⃗⃗ =(1,0,−√3),PC ⃗⃗⃗⃗⃗ =(1,1,−√3),PB ⃗⃗⃗⃗⃗ =(−1,1,−√3), 设平面PCB 的法向量m⃗⃗⃗ =(x,y ,z), 则{m ⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =−x +y −√3z =0m ⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =x +y −√3z =0,取z =1,得m ⃗⃗⃗ =(0,√3,1), 设平面PCD 的法向量n ⃗ =(a,b ,c), 则{n ⃗ ⋅PD ⃗⃗⃗⃗⃗ =a −√3c =0n ⃗ ⋅PC ⃗⃗⃗⃗⃗ =a +b −√3c =0,取c =1,得n ⃗ =(√3,0,1),设二面角D −PC −B 的平面角为θ,则θ为钝角, ∴二面角D −PC −B 的余弦值为:cosθ=−|m ⃗⃗⃗ ⋅n ⃗⃗ ||m⃗⃗⃗ |⋅|n ⃗⃗ |=−14.解析:本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出PE ⊥AD ,从而PE ⊥底面ABCD ,PE ⊥CE ,AE =DE =AB =CD ,BE ⊥CE ,由此能证明CE ⊥平面PBE .(2)以E 为原点,以ED ,EP 所在直线,AD 的垂直平分线为x ,z ,y 轴,建立空间直角坐标系,利用向量法能求出二面角D −PC −B 的余弦值.19.答案:解:(1)设A(x 1,y 1),B(x 2,y 2),l AB :y =kx +4与x 2=4y 联立得x 2−4kx −16=0, △=(−4k)2−4(−16)=16k 2+64>0, x 1+x 2=4k ,x 1x 2=−16,|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅4√k 2+4, 又|AB|=12√2,即√1+k 2⋅4√k 2+4=12√2,解得:k 2=2,k 2=−7(舍),所以直线的方程y =±√2x +4 (2)证明:过点A 的切线:y =12x 1(x −x 1)+y 1=12x 1x −14x 12,①, 过点B 的切线:y =12x 2x −14x 22,②,联立①②得点N(x 1+x 22,−4),所以点N 在定直线y =−4上.解析:(1)设A(x 1,y 1),B(x 2,y 2),根据韦达定理表示出x 1+x 2=4k ,x 1x 2=−16,根据弦长公式计算即可(2)先表示出过点A 的切线和过点B 的切线,然后两直线联立可求出点N 的坐标,即可得到点N 在定直线y =−4上.本题主要考查了抛物线的应用.涉及了抛物线的性质,向量的计算,属于中档题20.答案:ln2+14.解析:依题意知函数f(x)的定义域为(−32,+∞),f′(x)=2(2x+1)(x+1)2x+3,当−1<x <−12时,f′(x)<0恒成立;当x >−12时,f′(x)>0恒成立,∴f(x)在(−1,−12)上递减,在(−12,+∞)上递增,∴f(x)在(−1,+∞)上的最小值为f(−12)=ln2+14.21.答案:解:(1)设选出的3种商品中至少有一种是家电为事件A ,从2种服装、3种家电、4种日用品中,选出3种商品,一共有C 93种不同的选法, 选出的3种商品中,没有家电的选法有C 63种,所以选出的3种商品中至少有一种是家电的概率为 P(A)=1−C 63C 93=1−521=1621;(2)设顾客三次抽奖所获得的奖金总额为随机变量ξ, 其所有可能的取值为0,n ,3n ,6n ;(单元:元) ξ=0表示顾客在三次抽奖都没有获奖,所以P(ξ=0)=C 3(14)0(1−14)3=2764, 同理P(ξ=n)=C 31(14)1(1−14)2=2764; P(ξ=3n)=C 32(14)2(1−14)=964; P(ξ=6n)=C 33(14)3(1−14)0=164;顾客在三次抽奖中所获得的奖金总额的期望值是: Eξ=0×2764+n ×2764+3n ×964+6n ×164=15n 16,由15n16≤60,解得n ≤64,所以n 最高定为64元,才能使促销方案对商场利益无损害.解析:本题考查了古典概型的概率以及离散型随机变量的分布列和数学期望的计算问题,是中档题. (1)设选出的3种商品中至少有一种是家电为事件A ,利用对立事件的概率求出A 的概率值; (2)设顾客三次抽奖所获得的奖金总额为随机变量ξ,写出ξ的所有可能取值,求出对应的概率值,计算数学期望,利用数学期望值列不等式,求出奖金数额n 的最高值.22.答案:解:(I)曲线C 的参数方程为{x =cosαy =1+sinα(α为参数),转换为直角坐标方程为x 2+(y −1)2=1,整理得x 2+y 2−2y =0,转换为极坐标方程为ρ=2sinθ. (II)设A(ρ1,θ),则B(ρ2,θ+π3), 故ρ1=2sinθ,ρ2=2sin(θ+π3),所以|OA|+|OB|=ρ1+ρ2=2sinθ+2sin(θ+π3)=2√3sin(θ+π6). 当θ=π3时,|OA|+|OB|的最大值为2√3.解析:(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间的转换求出结果. (Ⅱ)利用三角函数关系式的恒等变换和极径的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,极径的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:见解析解析:a +1(a−b)b =(a −b)+b +1(a−b)b ,∵a >b >0,∴a −b >0,b >0,1(a−b)b >0,∴(a −b)+b +1(a−b)b≥3√(a −b)⋅b ⋅1(a−b)b3=3,∴a +1(a−b)b ≥3,当且仅当a −b =b =1(a−b)b ,即a =2,b =1时等号成立.。
湖北省黄冈中学2020届高三普通高等学校招生全国统一考试线上模拟测试(四)数学理科
2020普通高等学校招生全国统一考试线上测试(四)数学(理科)第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数2()2,f x x x =-集合A {|()0},{|()0},x f x B x f x '=≤=≤则A∩B= ( )A. [-1,0]B. [-1,2]C. [0,1]D. (-∞,1]∪[2,+∞) 2.设i 是虚数单位,若复数z=1+i,则22||z z z +=() A.1+iB.1-iC. -1-iD. -1+i 3.命题“(0,1),ln x x e x -∀∈>”的否定是().(0,1),ln x A x e x -∀∈≤000.(0,1),ln x B x e x -∃∈> 000. (0.1),ln x C x e x -∃∈<000.(01),ln x D x e x -∃∈≤ 4.已知||3,||2==a b ,若a ⊥(a -b ),则向量a +b 在向量b 方向的投影为1.2A 7.2B 1.2C - 7.2D - 5.在△ABC 中,“sinA>sinB”是“tanA> tanB”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()11.12A B.6 11.2C 22.3D第6题图 第7题图7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为.243A π+.483B π+.483C π+ .144183D π+8.函数y cos 22([0,])2x x x π=∈的单调递增区间是() .[0,]6A π .[0,]3B π .[,]62C ππ .[,]32D ππ9.在平面直角坐标系中,若不等式组44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩所表示的平面区域内存在点00(,),x y 使不等式0010x my ++≤成立,则实数m 的取值范围为( )5.(,]2A -∞- 1.(,]2B -∞- C. [4,+∞) D. (-∞,-4] 10. 已知函数1()2x f x ex -=+-的零点为m,若存在实数n 使230x ax a --+=) 且|m-n|≤1,则实数a 的取值范围是()A. [2,4] 7.[2,]3B 7.[,3]3C D. [2,3]11.已知双曲线2222:1(0,x y E a b a b-=>>0)满足以下条件: ①双曲线E 的右焦点与抛物线24y x =的焦点F 重合;②双曲线E 与过点P(4,2)的幂函数()a f x x =的图象交于点Q ,且该幂函数在点Q 处的切线过点F 关于原点的对称点.则双曲线的离心率是1.2A1.2B 3.2C.1D 12.已知函数1(),x f x xe -=若对于任意的0(0,],x e ∈函数20()ln ()1g x x x ax f x =-+-+在(0,e]内都有两个不同的零点,则实数a 的取值范围为A. (1,e] 2.(,]B e e e - 22.(,]C e e e e -+ 2.(1,]D e e- 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.)613.(12)(1)x x -+的展开式中2x 的系数为____14. 我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程2px q =中,p 为“隅”,q 为“实”.即若△ABC 的大斜、中斜、小斜分别为a,b,c,则22222221[()]42a c b S a c +-=-.已知点D 是△ABC 边AB 上一点,AC=3, BC=2,∠A 81545,tan CD BCD ︒+=∠=,则△ABC 的面积为____ 15. 过直线y=kx+7上一动点M(x,y)向圆22:20C x y y ++=引两条切线MA,MB,切点为A, B,若k ∈[1,4],则四边形MACB 的最小面积[3,7]S ∈的概率为___16.三棱锥S-ABC 中,点P 是Rt △ABC 斜边AB 上一点.给出下列四个命题:①若SA ⊥平面ABC,则三棱锥S- ABC 的四个面都是直角三角形;②若AC=4, BC=4,SC=4, SC ⊥平面ABC ,则三棱锥S- ABC 的外接球体积为323π;③若3,4,3,AC BC SC ===S 在平面ABC 上的射影是△ABC 内心,则三棱锥S- ABC 的体积为2; ④若AC=3, BC=4, SA=3, SA ⊥平面ABC,则直线PS 与平面SBC 所成的最大角为60°.其中正确命题的序号是_____(把你认为正确命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知等差数列{}n a 的前n 项和为,n S 且满足461118,121.a a S +==(1)求数列{}n a 的通项公式;(2)设(3)2,n n n b a =+数列{}n b 的前n 项和为,n T 求.n T18. (12分)某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图。
2020年高考模拟湖北省黄冈中学高考(理科)数学模拟试卷 含解析
2020年高考模拟高考数学模拟试卷(理科)一、选择题1.已知集合A={x|9x2﹣3<1},B={y|y<2},则(∁R A)∩B=()A.B.∅C.D.2.已知复数z1=3﹣bi,z2=1﹣2i,若是实数,则实数b的值为()A.6B.﹣6C.0D.3.AQI即空气质量指数,AQI越小,表明空气质量越好,当AQI不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI的统计数据.则下列叙述正确的是()A.这12天的AQI的中位数是90B.12天中超过7天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这12天的AQI的平均值为1004.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(4x+4﹣x)|x|B.f(x)=(4x﹣4﹣x)log2|x|C.f(x)=(4x+4﹣x)log2|x|D.f(x)=(4x+4﹣x)|x|5.设a=log48,b=log0.48,c=20.4,则()A.b<c<a B.c<b<a C.c<a<b D.b<a<c6.已知A、B是圆O:x2+y2=16的两个动点,||=4,=﹣.若M是线段AB的中点,则•的值为()A.8+4B.8﹣4C.12D.47.“仁义礼智信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延生为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”,将“仁义礼智信”排成一排,“仁”排在第一位,且“智信”相邻的概率为()A.B.C.D.8.如图所示,在单位正方体ABCD﹣A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P 取得最小值,则此最小值为()A.2B.C.2+D.9.已知双曲线的右焦点为F,渐近线为l1,l2,过点F的直线l与l1,l2的交点分别为A,B,若AB⊥l2,则|AB|=()A.B.C.D.10.已知数列{a n}的通项公式为,则数列{a n}的前2020项和为()A.B.C.D.11.已知函数,现有如下命题:①函数f(x)的最小正周期为;②函数f(x)的最大值为;③是函数f(x)图象的一条对称轴.其中正确命题的个数为()A.0B.1C.2D.312.已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,则三棱锥P﹣ABD体积的最大值是()A.B.C.D.二、填空题13.已知实数x,y满足,则目标函数z=5x+2y的最大值是.14.设S n为数列{a n}的前n项和,已知a1=2,对任意p,q∈N*,都有a p+q=a p•a q,则(n>1且n∈N*)的最小值为.15.点A,B为椭圆E:长轴的端点,C、D为椭圆E短轴的端点,动点M满足,若△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为.16.已知函数f(x)对x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,则实数m的取值范围是.三、解答题17.在△ABC中,内角A,B,C的对边分别是a,b,c,已知,点M 是BC的中点.(1)求A的值;(2)若a=,求中线AM的最大值.18.如图,ABCD是边长为2的正方形,面EAD⊥面ABCD,且EA=ED,O是线段AD 的中点,过E作直线l∥AB,F是直线l上一动点.(1)求证:OF⊥BC;(2)若直线l上存在唯一一点F使得直线OF与平面BCF垂直,求二面角B﹣OF﹣C 的余弦值.19.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:质量指标值m m<185185≤m<205m≥205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?20.已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.21.已知函数f(x)=xe x﹣1﹣a(x+lnx),a∈R.(1)若f(x)存在极小值,求实数a的取值范围;(2)设x0是f(x)的极小值点,且f(x0)≥0,证明:f(x0)≥2(x02﹣x03).(二)选考题:共10分.请考生在第19-1,19-2题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)射线OM与曲线C1交于点M,射线ON与曲线C2交于点N,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.参考答案一、选择题1.已知集合A={x|9x2﹣3<1},B={y|y<2},则(∁R A)∩B=()A.B.∅C.D.解:根据题意,集合A={x|9x2﹣3<1}=(﹣,),则∁R A=(﹣∞,﹣]∪[,+∞),又由B={y|y<2},则(∁R A)∩B=(﹣∞,﹣]∪[,2),故选:C.2.已知复数z1=3﹣bi,z2=1﹣2i,若是实数,则实数b的值为()A.6B.﹣6C.0D.解:∵===是实数,则6﹣b=0,∴实数b的值为6,故选:A.3.AQI即空气质量指数,AQI越小,表明空气质量越好,当AQI不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI的统计数据.则下列叙述正确的是()A.这12天的AQI的中位数是90B.12天中超过7天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这12天的AQI的平均值为100解:这12天的AQI的中位数是=99.5,故A错误;这12天中,空气质量为“优良”的有95,85,77,67,72,92,故B错误;从4日到9日,AQI数值越来越低,空气质量越来越好,故C正确,(67+72+77+85+92+97+104+111+135+138+144+201)=110.25,所以D错误,故选:C.4.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(4x+4﹣x)|x|B.f(x)=(4x﹣4﹣x)log2|x|C.f(x)=(4x+4﹣x)log2|x|D.f(x)=(4x+4﹣x)|x|解:函数f(x)的图象如图所示,函数是偶函数,x=1时,函数值为0.f(x)=(4x+4﹣x)|x|是偶函数,但是f(1)≠0,f(x)=(4x﹣4﹣x)log2|x|是奇函数,不满足题意.f(x)=(4x+4﹣x)log2|x|是偶函数,f(1)=0满足题意;f(x)=(4x+4﹣x)|x|是偶函数,f(1)=0,x∈(0,1)时,f(x)>0,不满足题意.则函数f(x)的解析式可能是f(x)=(4x+4﹣x)log2|x|.故选:C.5.设a=log48,b=log0.48,c=20.4,则()A.b<c<a B.c<b<a C.c<a<b D.b<a<c解:∵b底大于0小于1而真数大于1∴b<0∵a=log48=c=20.4<20.5=,∴a>c>b故选:A.6.已知A、B是圆O:x2+y2=16的两个动点,||=4,=﹣.若M是线段AB的中点,则•的值为()A.8+4B.8﹣4C.12D.4解:因为M是线段AB的中点,所以=+,从而•=(﹣)•(+)=2﹣2+•,由圆的方程可知圆O的半径为4,即||=||=4,又因为||=4,所以<,>=60°,故•=8,所以•=×16﹣×16+×8=12.故选:C.7.“仁义礼智信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延生为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”,将“仁义礼智信”排成一排,“仁”排在第一位,且“智信”相邻的概率为()A.B.C.D.解:将“仁义礼智信”排成一排,基本事件总数n=,“仁”排在第一位,且“智信”相邻包含的基本事件个数m==12,∴“仁”排在第一位,且“智信”相邻的概率为p==.故选:A.8.如图所示,在单位正方体ABCD﹣A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P 取得最小值,则此最小值为()A.2B.C.2+D.解:如图所示,把对角面A1C绕A1B旋转至A1BC′D1′,使其与△AA1B在同一平面上,连接AD1′,则AD1′==为所求的最小值.故选:D.9.已知双曲线的右焦点为F,渐近线为l1,l2,过点F的直线l与l1,l2的交点分别为A,B,若AB⊥l2,则|AB|=()A.B.C.D.解:如图,由双曲线C:,得,b=1,c=3.设l1:y=,l2:,则,∴AB:y=(x﹣3),联立,解得B(,﹣);联立,解得A(,).∴|OA|=,|OB|=.∴|AB|2==.∴|AB|=.故选:A.10.已知数列{a n}的通项公式为,则数列{a n}的前2020项和为()A.B.C.D.解:∵数列{a n}的通项公式为=(﹣1)n﹣1,则数列{a n}的前2020项和为:=1=.故选:C.11.已知函数,现有如下命题:①函数f(x)的最小正周期为;②函数f(x)的最大值为;③是函数f(x)图象的一条对称轴.其中正确命题的个数为()A.0B.1C.2D.3解:由题意可知,函数f(x)的最小正周期为,即①正确;②当时,f(x)=﹣=,当时,f(x)==,当时,f(x)==,可绘制出该函数的图象如下图所示,故函数的最大值为,即②正确;③由②的分析可得函数关于对称,即③正确;故选:D.12.已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,则三棱锥P﹣ABD体积的最大值是()A.B.C.D.解:如图,由题意,PA=PB=PC=2,∠ABC=90°,可知P在平面ABC上的射影G为△ABC的外心,即AC中点,则球的球心在PG的延长线上,设PG=h,则OG=2﹣h,∴OB2﹣OG2=PB2﹣PG2,即4﹣(2﹣h)2=4﹣h2,解得h=1.则AG=CG=,过B作BD⊥AC于D,设AD=x,则CD=,再设BD=y,由△BDC∽△ADB,可得,∴y=,则,令f(x)=,则f′(x)=,由f′(x)=0,可得x=,∴当x=时,f(x)max=,∴△ABD面积的最大值为,则三棱锥P﹣ABD体积的最大值是.故选:B.二、填空题:共4小题,每小题5分,共20分.13.已知实数x,y满足,则目标函数z=5x+2y的最大值是15.解:先根据约束条件画出可行域,如图:然后平移直线z=5x+2y,当直线z=5x+2y过点A(3,0)时,z最大值为15.故答案为:15.14.设S n为数列{a n}的前n项和,已知a1=2,对任意p,q∈N*,都有a p+q=a p•a q,则(n>1且n∈N*)的最小值为32.解:依题意,由p,q∈N*,及p,q的任意性,可令p=n,q=1,则a p+q=a p•a q,即为a n+1=a n•a1=2a n.∴数列{a n}是以2为首项,2为公比的等比数列.∴a n=2•2n﹣1=2n,n∈N*.∴S n﹣1==2n﹣2.∴===2n+≥2=32.当且仅当2n=,即n=4时,等号成立.∴(n>1且n∈N*)的最小值为32.故答案为:32.15.点A,B为椭圆E:长轴的端点,C、D为椭圆E短轴的端点,动点M满足,若△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为.解:由题意可得A(﹣a,0),B(a,0),C(0,b),D(0,﹣b),设M(x,y),因为动点M满足,所以=2,整理可得:x2+y2﹣ax+a2=0,即(x﹣)2+y2=a2,则可得M是以(,0)为圆心,以为半径的圆,所以当M(a,)时△MAB面积的最大值为8,即=8,解得a=,当M位于M1(a,0)时,△MCD面积的最小值为1,即=1,所以b=,所以离心率e===,故答案为:.16.已知函数f(x)对x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,则实数m的取值范围是(﹣∞,﹣e].解:∵函数f(x)对x∈R均有f(x)+2f(﹣x)=mx﹣6①,∴将﹣x换为x,得f(﹣x)+2f(x)=﹣mx﹣6②,∴由①②,解得f(x)=﹣mx﹣2.∵f(x)≥lnx恒成立,∴m≤﹣恒成立,∴只需m≤.令,则g'(x)=,令g'(x)=0,则x=,∴g(x)在(0,)上单调递减,在(,+∞)上单调递增,∴,∴m≤﹣e,∴m的取值范围为(﹣∞,﹣e].故答案为:(﹣∞,﹣e].三、解答题:共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第14至18题为必考题,每个试题考生都必须作答,第19-1、19-2题为选考题,考生根据要求作答.(一)必考题:共5小题,每小题l2分,共60分.17.在△ABC中,内角A,B,C的对边分别是a,b,c,已知,点M 是BC的中点.(1)求A的值;(2)若a=,求中线AM的最大值.解:(1)△ABC中,内角A,B,C的对边分别是a,b,c,已知,由正弦定理得:,由于sin B=sin(A+C)=sin A cos C+cos A sin C,且sin C≠0,整理得:tan A=,(0<A<π),所以A=.(2)在△ABC中,由余弦定理b2+c2﹣bc=3,由于,当且仅当b=c时,等号成立.所以b2+c2≤6.由于AM是BC边的中线,所以:在△ABM和△ACM中,由余弦定理得:①,②由①②得:,当且仅当b=c时,AM的最大值为.18.如图,ABCD是边长为2的正方形,面EAD⊥面ABCD,且EA=ED,O是线段AD 的中点,过E作直线l∥AB,F是直线l上一动点.(1)求证:OF⊥BC;(2)若直线l上存在唯一一点F使得直线OF与平面BCF垂直,求二面角B﹣OF﹣C 的余弦值.【解答】(1)证明:∵EA=ED,O是AD的中点,∴EO⊥DA,∵面EAD⊥面ABCD,面EAD∩面ABCD=AD,∴EO⊥面ABCD,∴EO⊥BC∵EF∥AB,BC⊥AB,∴EF⊥BC∵EO∩EF=E∴BC⊥面EOF∵OF⊂面EOF,∴OF⊥BC;(2)解:设BC的中点为M,连接OM,FM,设OM的中点为N,连接FN∵EF∥AB,OM∥AB,∴EF∥OM,∴E,F,O,M四点共面∵OF⊥BC,∴OF⊥面FBC等价于OF⊥FM,∴直线l上存在唯一一点F使得直线OF与平面BCF垂直,即等价于以OM为直径的圆与直线l相切,F恰为切点,NF⊥EF∴直线l与直线OM的距离为1,故NF=1∵OE⊥EF,NF⊥EF,OE,NF共面,∴NF∥OE∵EO⊥面ABCD,∴NF⊥面ABCD在直角△FNB和△FNC中,BF=CF=∵OF⊥面FBC,∴OF⊥BF,OF⊥CF∴∠BFC为二面角B﹣OF﹣C的平面角∴在△BFC中,BF=CF=,BC=2,cos∠BFC==.19.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:质量指标值m m<185185≤m<205m≥205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?解:(Ⅰ)根据抽样调查数据,一、二等品所占比例的估计值为0.200+0.300+0.260+0.090+0.025=0.875,由于该估计值小于0.90,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定.(Ⅱ)由频率分布直方图知,一、二、三等品的频率分别为0.375、0.5、0.125,故在样本中用分层抽样方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中随机抽取4件,一、二、三等品都有的情况有2种:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.(Ⅲ)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为:170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4“质量提升月”活动后,产品质量指标值X近似满足X~N(218,140),则E(X)=218.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了:218﹣200.4=17.6.20.已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y(II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,由消去y,整理得x2﹣4kx﹣4=0,所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x2|==4,由解得点M的横坐标为x M===,同理可得点N的横坐标为x N=,所以|MN|=|x M﹣x N|=|﹣|=8||=,令4k﹣3=t,t≠0,则k=,当t>0时,|MN|=2>2,当t<0时,|MN|=2=2≥.综上所述,当t=﹣,即k=﹣时,|MN|的最小值是.21.已知函数f(x)=xe x﹣1﹣a(x+lnx),a∈R.(1)若f(x)存在极小值,求实数a的取值范围;(2)设x0是f(x)的极小值点,且f(x0)≥0,证明:f(x0)≥2(x02﹣x03).解:(1)∵函数f(x)=xe x﹣1﹣a(x+lnx),a∈R.∴.令g(x)=xe x﹣1﹣a,则g′(x)=(x+1)e x﹣1>0,∴g(x)在(0,+∞)上是增函数.又∵当x→0时,g(x)→﹣a,当x→+∞时,g(x)→+∞.∴当a≤0时,g(x)>0,f′(x)>0,函数f(x)在区间(0,+∞)上是增函数,不存在极值点;当a>0时,g(x)的值域为(﹣a,+∞),必存在x0>0,使g(x0)=0.∴当x∈(0,x0)时,g(x)<0,f′(x)<0,f(x)单调递减;当x∈(x0,+∞)时,g(x)>0,f′(x)>0,f(x)单调递增;∴f(x)存在极小值点.综上可知实数a的取值范围是(0,+∞).证明:(2)由(1)知﹣a=0,即a=.∴lna=lnx0+x0﹣1,f(x0)=(1﹣x0﹣lnx0).由f(x0)≥0,得1﹣x0﹣lnx0≥0.令g(x)=1﹣x﹣lnx,由题意g(x)在区间(0,+∞)上单调递减.又g(1)=0,∴由f(x0)≥0,得0<x0≤1,令H(x)=x﹣lnx﹣1,(x>0),则H′(x)=1﹣=,当x>1时,H′(x)>0,函数H(x)单调递增;当0<x<1时,H′(x)<0,函数H(x)单调递减;∴当x=1时,函数H(x)取最小值H(1)=0,∴H(x)=x﹣lnx﹣1≥0,即x﹣1≥lnx,即e x﹣1≥x,∴,1﹣x0﹣lnx0≥1﹣x0﹣(x0﹣1)=2(1﹣x0)≥0,∴f(x0)=(1﹣x0﹣lnx0)≥•2(1﹣x0)=2(﹣),∴f(x0)≥2(x02﹣x03).(二)选考题:共10分.请考生在第19-1,19-2题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)射线OM与曲线C1交于点M,射线ON与曲线C2交于点N,求的取值范围.解:(1)由曲线C1的参数方程(φ为参数),得:,即曲线C1的普通方程为.又x=ρcosθ,y=ρsinθ,曲线C1的极坐标方程为3ρ2cos2θ+2ρ2sin2θ=6,即ρ2cos2θ+2ρ2=6.曲线C2的极坐标方程可化为,故曲线C2的直角方程为.(2)由已知,设点M和点N的极坐标分别为(ρ1,α),,其中,则,.于是.由,得﹣1<cosα<0,故的取值范围是.一、选择题23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…。
2020年湖北省高考(理科)数学模拟试卷 (word版含解析)
2020年湖北高考数学(4月份)模拟试卷(理科)一、选择题(共12小题).1.已知实数集R,集合A={x|﹣1<x<5},集合B =,则A∩(∁R B)=()A.{x|﹣1<x≤2}B.{x|x>﹣1} C.{x|﹣1<x≤0}D.{x|0≤x<5}2.已知z∈C ,若,则z=()A .B .C .D .3.若(1﹣2x)2020=a0+a1x+a2x2+…+a2020x2020,则a1+a2+a3+…+a2020=()A.0 B.1 C.﹣1 D.24.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中寸表示115寸分(1寸=10分).节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长(寸)135 125115.1105.295.375.5 66.545.735.825.916.0 已知《易经》中记录某年的冬至晷影长为130.0寸,夏至晷影长为14.8寸,按照上述规律那么《易经》中所记录的春分的晷影长应为()A.91.6寸B.82.0寸C.81.4寸D.72.4寸5.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为()A .B .C .D .6.已知,则()A.y<x<z B.z<y<x C.z<x<y D.y<z<x7.设等比数列{a n}的公比为q,前n项和为S n,则“|q|=1”是“S6=3S2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.如图,在平行四边形ABCD中,DE=EC,F为BC的中点,G为EF上的一点,且,则实数m的值为()A.B.C.D.9.已知函数f(x)=,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]10.已知双曲线的左右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A、B两点,若以F1F2为直径的圆过点B,且A为F1B的中点,则C的离心率为()A.B.2 C.D.11.一竖立在水平地面上的圆锥形物体的母线长为2m,一只蚂蚁从圆锥的底面圆周上的点P出发,绕圆锥表面爬行一周后回到P点,蚂蚁爬行的最短路径为m,则圆锥的底面圆半径为()A.m B.1m C.m D.m12.已知函数f(x)=cos(ωx)(ω>0),x1,x2,x3∈[0,π],且∀x∈[0,π]都有f(x1)≤f(x)≤f(x2),满足f(x3)=0的实数x3有且只有3个,给出下述四个结论:其中所有正确结论的编号是()①满足题目条件的实数x1有且只有1个;②满足题目条件的实数x2有且只有1个;③f(x)在(0,)上单调递增;④ω的取值范围是[).A.①④B.②③C.①②③D.①③④二、填空题:共4小题,每小题5分,共20分.13.设曲线y=e x+1上点P处的切线平行于直线x﹣y﹣1=0,则点P的坐标是.14.某学校选拔新生补进“篮球”、“电子竞技”、“国学”三个社团,根据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立.2019年某新生入学,假设他通过考核选拔进入该校“篮球”、“电子竞技”、“国学”三个社团的概率依次为m,,n,已知这三个社团他都能进入得慨率为,至少进入一个社团的概率为,则m+n=.15.自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A 型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为.16.已知椭圆的左、右焦点分别为F1,F2,M为椭圆上异于长轴端点的动点,△MF1F2的内心为I,则=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分17.在△ABC中,角A、B、C所对的边为a、b、c,且满.(1)求角B的值;(2)若,求的取值范围,18.如图,在四棱锥S﹣ABCD中,侧面SCD为钝角三角形且垂直于底面ABCD,CD=SD,点M是SA 的中点,AD∥BC,∠ABC=90°,AB=AD=BC.(1)求证:BD⊥平面SCD;(2)若直线SD与底面ABCD所成的角为60°,求平面MBD与平面SBC所成的锐二面角的余弦值.19.线段AB为圆M:x2+y2+2x﹣10y+6=0的一条直径,其端点A,B在抛物线C:x2=2py(p>0)上,且A,B两点到抛物线C焦点的距离之和为11.(1)求抛物线C的方程及直径AB所在的直线方程;(2)过M点的直线l交抛物线C于P,Q两点,抛物线C在P,Q处的切线相交于N点,求△PQN面积的取值范围.20.已知函数f(x)=x2+πcos x.(1)求函数f(x)的最小值;(2)若函数g(x)=f(x)﹣a在(0,+∞)上有两个零点x1,x2,且x1<x2,求证:x1+x2<π.21.2020年春节期间爆发的新型冠状病毒(2019﹣nCoV),是一种可以借助飞沫和接触传播的变异病毒.某定点医院为筛查某些人是否感染该病毒,需要检验血液是否为阳性,现有n份血液样本,有以下两种检验方式:(a)逐份检验,则需要检验n次;(b)混合检验,将其中k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有6份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(i)试运用概率统计的知识,若Eξ1=Eξ2,试求p关于k 的函数关系式p=f(k);(ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更小,求k的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094,In7≈1.9459(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.作答时写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;(2)若直线l:y=kx与曲线C1、曲线C2在第一象限交于P、Q,且|OQ|=|PQ|,点M的直角坐标为(1,0),求△PMQ的面积.[选修4-5:不等式选讲]23.已知实数a、b满足a2+b2﹣ab=3.(1)求a﹣b的取值范围;(2)若ab>0,求证:++≥.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知实数集R,集合A={x|﹣1<x<5},集合B=,则A∩(∁R B)=()A.{x|﹣1<x≤2}B.{x|x>﹣1} C.{x|﹣1<x≤0}D.{x|0≤x<5}【分析】可以求出集合B,然后进行交集和补集的运算即可.解:∵A={x|﹣1<x<5},B={y|y>0},∴∁R B={y|y≤0},A∩(∁R B)={x|﹣1<x≤0}.故选:C.2.已知z∈C,若,则z=()A.B.C.D.【分析】设z=a+bi(a,b∈R).由,可得﹣(a﹣bi)=1+2i,﹣a =1,b=2,解得b,a.解:设z=a+bi(a,b∈R).∵,∴﹣(a﹣bi)=1+2i,∴﹣a=1,b=2,解得b=2,a=.则z=+2i,故选:B.3.若(1﹣2x)2020=a0+a1x+a2x2+…+a2020x2020,则a1+a2+a3+…+a2020=()A.0 B.1 C.﹣1 D.2【分析】令x=0求得a0,再令x=1即可求解结论.解:因为:(1﹣2x)2020=a0+a1x+a2x2+…+a2020x2020,令x=0可得:1=a0;令x=1可得:a0+a1+a2+a3+…+a2020=(1﹣2×1)2020=1;故a1+a2+a3+…+a2020=1﹣1=0.故选:A.4.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中寸表示115寸分(1寸=10分).节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长(寸)135125115.1105.295.375.5 66.5 45.7 35.8 25.916.已知《易经》中记录某年的冬至晷影长为130.0寸,夏至晷影长为14.8寸,按照上述规律那么《易经》中所记录的春分的晷影长应为()A.91.6寸B.82.0寸C.81.4寸D.72.4寸【分析】由题意,晷影长则是按照等差数列的规律计算得出的,冬至晷影长为130.0寸,设为a1=130,夏至晷影长为14.8寸,则为a13=14.8,春分的晷影长为a7,根据等差数列的性质即可求解.解:由题意,晷影长则是按照等差数列的规律计算得出的,冬至晷影长为130.0寸,设为a1=130,夏至晷影长为14.8寸,则为a13=14.8,春分的晷影长为2a7=a1+a13;∴a7=72.4;即春分的晷影长为72.4.故选:D.5.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为()A .B .C.D.【分析】根据题意,设f(x)=,分析函数的奇偶性可以排除A、D,结合复合函数单调性的判断方法分析可得函数y=f(x)为增函数,排除C;即可得答案.解:根据题意,设f(x)=,有f(﹣x)=f(x),即函数f (x)为偶函数,排除A、D;设t=cos x,则y=﹣2t2+t+1,在区间[0,]上,t=cos x为减函数,且0≤t≤1,y=﹣2t2+t+1,其对称轴为t=,开口向下,在区间(﹣∞,)上为增函数,(,+∞)上为减函数,在区间(0,arccos)上,t=cos x为减函数,此时<t<1,函数y=﹣2t2+t+1为减函数,故函数y=f(x)为增函数,排除C;故选:B.6.已知,则()A.y<x<z B.z<y<x C.z<x<y D.y<z<x【分析】利用对数函数和指数函数的性质求解.解:∵20.1>20=1,∴x>1,∵,∴0 ,∴0 ,∵,∴,∴y<z<x,故选:D.7.设等比数列{a n}的公比为q,前n项和为S n,则“|q|=1”是“S6=3S2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据等比数列的前n项和为S n.结合充分条件和必要条件的定义进行判断.解:若q=1时,S6=6a1=3S2=3•2a1=6a1,q=﹣1时,S6=3S2=0,符合题意,是充分条件;反之也成立,故“|q|=1”是“S6=3S2”的充要条件,故选:C.8.如图,在平行四边形ABCD中,DE=EC,F为BC的中点,G为EF上的一点,且,则实数m的值为()A.B.C.D.【分析】可根据条件得出,并可设,然后根据向量加法的几何意义和向量的数乘运算即可得出=,从而根据平面向量基本定理即可得出,解出m即可.解:∵,F为BC的中点,∴,,设===,又,∴,解得m=.故选:A.9.已知函数f(x)=,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]【分析】当<1,即a<2时,由二次函数的图象和性质,可知存在x1,x2∈(﹣∞,1]且x1≠x2,使得f(x1)=f(x2)成立;当≥1,即a≥2时,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则﹣1+a>3a﹣7,由此能求出实数a的取值范围.解:函数f(x)=,存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,当<1,即a<2时,由二次函数的图象和性质,可知:存在x1,x2∈(﹣∞,1]且x1≠x2,使得f(x1)=f(x2)成立,当≥1,即a≥2时,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则﹣1+a>3a﹣7,解得a<3,∴2≤a<3,综上所述:实数a的取值范围是(﹣∞,3).故选:C.10.已知双曲线的左右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A、B两点,若以F1F2为直径的圆过点B,且A为F1B的中点,则C的离心率为()A.B.2 C.D.【分析】由题意画出图形,结合已知可得F1B⊥OA,写出F1B的方程,与y=联立求得B点坐标,再由斜边的中线等于斜边的一半求解.解:如图,因为A为F1B的中点,所以,又因为B在圆上,所以=0,故OA⊥F1B,则F1B:y=(x+c),联立,解得B(,),则OB2=()2+()2=c2,整理得:b2=3a2,∴c2﹣a2=3a2,即4a2=c2,∴=4,e==2.故选:B.11.一竖立在水平地面上的圆锥形物体的母线长为2m,一只蚂蚁从圆锥的底面圆周上的点P出发,绕圆锥表面爬行一周后回到P点,蚂蚁爬行的最短路径为m,则圆锥的底面圆半径为()A.m B.1m C.m D.m【分析】由题意画出图形,沿母线SP剪开再展开,由圆锥的底面周长等于展开后扇形的弧长相等列式求解.解:如图,在圆锥SO中,已知SP=2,沿SP剪开再展开,由题意可得PP′=,可得∠PSP′=.设圆锥的底面圆半径为r,则2πr=,得r=m.故选:A.12.已知函数f(x)=cos(ωx)(ω>0),x1,x2,x3∈[0,π],且∀x∈[0,π]都有f(x1)≤f(x)≤f(x2),满足f(x3)=0的实数x3有且只有3个,给出下述四个结论:①满足题目条件的实数x1有且只有1个;②满足题目条件的实数x2有且只有1个;③f(x)在(0,)上单调递增;④ω的取值范围是[).其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④【分析】由f(x)=0,解方程,讨论k=﹣1,0,1,2,由题意可得ω的取值范围,可判断④;由x∈(0,),可得ωx的范围,结合余弦函数的单调区间,可判断③;再由题意可得f(x)的极大值为f(x2),极小值为f(x1),结合余弦函数的图象可判断①、②.解:函数f(x)=cos(ωx)(ω>0),x1,x2,x3∈[0,π],满足f(x3)=0的实数x3有且只有3个,由cos(ωx)=0,可得ωx=kπ+,k∈Z,由k=0可得x=;k=﹣1可得x=;k=1可得x=;k=2可得x=,由x3∈[0,π],可得>π,且≤π,解得≤ω<;故④正确;由x∈(0,),可得ωx∈(﹣,﹣),由≤ω<,可得﹣∈(﹣,﹣),由y=cos x在(﹣π,0)递增,可得f(x)在(0,)上单调递增,故③正确;由∀x∈[0,π]都有f(x1)≤f(x)≤f(x2),可得f(x)的极大值为f(x2),极小值为f(x1),由y=cos x的图象可得f(x)在[0,π]的极大值有两个,极小值一个,故①正确,②错误.其中正确的为①③④.故选:D.二、填空题:共4小题,每小题5分,共20分.13.设曲线y=e x+1上点P处的切线平行于直线x﹣y﹣1=0,则点P的坐标是(0,2).【分析】先对函数求导数,然后根据切点处的导数值等于切线斜率,列出切点横坐标满足的方程即可.解:由题意得y′=e x,且切线斜率为1.设切点为P(x,y),则e x=1,所以x=0,∴y=e0+1=2.故切点坐标为(0,2).故答案为:(0,2)14.某学校选拔新生补进“篮球”、“电子竞技”、“国学”三个社团,根据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立.2019年某新生入学,假设他通过考核选拔进入该校“篮球”、“电子竞技”、“国学”三个社团的概率依次为m,,n,已知这三个社团他都能进入得慨率为,至少进入一个社团的概率为,则m+n=.【分析】利用相互独立事件及对立事件的概率公式求解.解:因为通过考核选拔进入三个社团的概率依次为m,,n,且相互独立,所以0≤m≤1,0≤n≤1,又因为三个社团他都能进入的概率为,所以①,因为至少进入一个社团的概率为,所以一个社团都不能进入的概率为1=,所以(1﹣m)(1﹣n)=,即1﹣m﹣n+mn=②,联立①②得:m+n=.故答案为:.15.自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为9600.【分析】设每天派出A型卡车x辆,B型卡车y辆,运输队所花成本为z元,根据题意把实际问题数学化,列出需要满足的不等式组,注意x∈N,y∈N,把运输队所花成本z看作目标函数,画出可行域,根据目标函数平移得到最值的取法.解:设每天派出A型卡车x辆,B型卡车y辆,运输队所花成本为z元,则,且x∈N,y∈N,目标函数z=1200x+1800y,画出满足条件的可行域如图中阴影部分所示:由图可知,当直线z=240x+378y经过点B(8,0)时,截距z最小,∵在可行域的整数点中,点(8,0)使z取得最小值,即z min=1200×8+1800×0=9600,∴每天排除A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为9600元,答:每天派出A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为9600元.16.已知椭圆的左、右焦点分别为F1,F2,M为椭圆上异于长轴端点的动点,△MF1F2的内心为I,则=﹣1.【分析】运用椭圆的定义和圆切线的性质,以及内心的定义,结合解直角三角形的知识,即可求得.解:设△MF1F2的内切圆与△MF1F2相切于D,E,F,设MD=u,DF1=v,FF2=t,则MD=MF=u,DF1=EF1=v,EF2=FF2=t,由椭圆的定义,可得,MF1+MF2=2a=2,F1F2=2c=2,即有2u+v+t=2,v+t=2,即有:2u=2﹣2,即u=﹣1,再由=|MI|cosθ=|MF|=u=﹣1,故答案为:﹣1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分17.在△ABC中,角A、B、C所对的边为a、b、c,且满.(1)求角B的值;(2)若,求的取值范围,【分析】(1)由已知利用三角函数恒等变换的应用可求cos B=±,结合范围B∈(0,π),可求B 的值.(2)由,可求得B=,由正弦定理,三角函数恒等变换的应用可求a﹣c=sin(A ﹣),由已知可求范围≤A﹣<,利用正弦函数的性质即可求解其取值范围.解:(1)∵=2(cos A+sin A)(cos A+sin A)=2(cos2A﹣sin2A)=×﹣=+cos2A,∴解得cos2B=﹣,可得2cos2B﹣1=﹣,∴可得cos2B=,∴cos B=±,∵B∈(0,π),∴B=或.(2)∵,∴由(1)可得B=,由正弦定理==2,可得a=2sin A,c=2sin C,∴a﹣c=2sin A﹣sin C=2sin A﹣sin(﹣A)=2sin A﹣sin cos A+cos sin A=sin A﹣cos A =sin(A﹣),∵b≤a,∴≤A<,≤A﹣<,∴a﹣c∈[,).18.如图,在四棱锥S﹣ABCD中,侧面SCD为钝角三角形且垂直于底面ABCD,CD=SD,点M是SA 的中点,AD∥BC,∠ABC=90°,AB=AD=BC.(1)求证:BD⊥平面SCD;(2)若直线SD与底面ABCD所成的角为60°,求平面MBD与平面SBC所成的锐二面角的余弦值.【分析】(1)取BC中点E,连接DE,设AB=AD=a,BC=2a,由已知可得BD2+CD2=BC2,则BD⊥CD,又平面SCD⊥底面ABCD,由面面垂直的性质可得BD⊥平面SCD;(2)过点S作CD的垂线,交CD延长线于点H,连接AH,可得SH⊥CD,则SH⊥底面ABCD,故DH为斜线SD在底面ABCD内的射影,求解三角形可得AH2+DH2=AD2,从而∠AHD=90°,过点D 作DF∥SH,则DF⊥底面ABCD,可得DB、DC、DF两两垂直,以点D为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立空间直角坐标系,然后分别求出平面BMD与平面SBC的一个法向量,由两法向量所成角的余弦值可得平面MBD与平面SBC所成的锐二面角的余弦值.【解答】(1)证明:取BC的中点E,连接DE,设AB=AD=a,BC=2a,依题意,四边形ABED为正方形,且有BE=DE=CE=a,BD=CD=,∴BD2+CD2=BC2,则BD⊥CD.又平面SCD⊥底面ABCD,平面SCD⊥底面ABCD=CD,∴BD⊥平面SCD;(2)解:过点S作CD的垂线,交CD延长线于点H,连接AH,∵平面SCD⊥底面ABCD,平面SCD∩底面ABCD=CD,SH⊥CD,SH⊂平面SCD,∴SH⊥底面ABCD,故DH为斜线SD在底面ABCD内的射影,∠SDH为斜线SD与底面ABCD所成的角,即∠SDH=60°.由(1)得,SD=a,∴在Rt△SHD中,SD=a,DH=a,SH=a,在△ADH中,∠ADH=45°,AD=a,DH=a,由余弦定理得AH=,∴AH2+DH2=AD2,从而∠AHD=90°,过点D作DF∥SH,∴DF⊥底面ABCD,∴DB、DC、DF两两垂直,如图,以点D为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立空间直角坐标系,则B(a,0,0),C(0,a,0),S(0,﹣a,a),A(a,﹣a,0),M(a,﹣a,a),设平面MBD的法向量=(x,y,z),由,取z=1,得=(0,,1);设平面SBC的一个法向量为,由,取x1=1,得.∴cos<>===.∴平面MBD与平面SBC所成的锐二面角的余弦值为.19.线段AB为圆M:x2+y2+2x﹣10y+6=0的一条直径,其端点A,B在抛物线C:x2=2py(p>0)上,且A,B两点到抛物线C焦点的距离之和为11.(1)求抛物线C的方程及直径AB所在的直线方程;(2)过M点的直线l交抛物线C于P,Q两点,抛物线C在P,Q处的切线相交于N点,求△PQN 面积的取值范围.【分析】(1)利用抛物线的定义可求出p=1,再利用点差法求出直线AB的斜率,结合直线AB过圆心M,利用点斜式即可求出直线AB的方程:(2)不妨设P(x1,y1),Q(x2,y2),N(x0,y0),直线l的方程为y=k(x+1)+5,与抛物线方程联立,利用韦达定理和弦长公式可求出|PQ|,再利用导数的几何意义求出抛物线C在P(x1,y1)的切线方程,把点N(x0,y0)代入切线PN的方程得,同理可得:,故x1,x2为一元二次方程x2﹣2x0x+2y0=0的两根,再次利用韦达定理得x0=k,y0=﹣k﹣5,所以点N到直线PQ的距离d=,所以S△PQN==,故当k=﹣1时,△PQN的面积取得最小值,最小值为27,解:(1)设A(x1,y1),B(x2,y2),抛物线的焦点为F,则|AF|+|BF|=y1+y2+p,又y1+y2=10,∴10+p=11,∴p=1,∴抛物线C的方程为:x2=2y,由,两式相减得:==﹣1,∴直线AB的斜率为﹣1,圆M方程:x2+y2+2x﹣10y+6=0化为坐标方程为:(x+1)2+(y﹣5)2=20,∴直线AB过圆心(﹣1,5),∴直线AB的方程为:y﹣5=﹣(x+1),即x+y﹣4=0;(2)不妨设P(x1,y1),Q(x2,y2),N(x0,y0),直线l的方程为y=k(x+1)+5,联立方程,消去y得:x2﹣2kx﹣2k﹣10=0,∴x1+x2=2k,x1x2=﹣2k﹣10,∴|PQ|==2,∵抛物线C的方程为x2=2y,∴,∴y'=x,∴抛物线C在P(x1,y1)的切线方程为:y﹣y1=x1(x﹣x1),又∵点N(x0,y0)在切线PN上,则y0﹣y1=x1(x0﹣x1),即,同理可得:,故x1,x2为一元二次方程x2﹣2x0x+2y0=0的两根,∴x1+x2=2x0,x1x2=2y0,又x1+x2=2k,x1x2=﹣2k﹣10,∴x0=k,y0=﹣k﹣5,∴点N到直线PQ的距离d===,∴S△PQN==2×==,∴当k=﹣1时,△PQN的面积取得最小值,最小值为27,∴△PQN面积的取值范围为:[27,+∞).20.已知函数f(x)=x2+πcos x.(1)求函数f(x)的最小值;(2)若函数g(x)=f(x)﹣a在(0,+∞)上有两个零点x1,x2,且x1<x2,求证:x1+x2<π.【分析】(1)由于函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值,利用f′(x)=2x ﹣πsin x,对x分x∈(0,)及x∈(,+∞),两类讨论,即可求得函数f(x)的最小值;(2)只需证<,其中x1∈(0,),x2∈(,+∞),构造函数F(x)=f(x)﹣f(π﹣x),x∈(0,),利用导数结合题意可证得x1+x2<π.解:(1)由于函数f(x)=x2+πcos x为偶函数,要求函数f(x)的最小值,只需求x∈[0,+∞)时f (x)的最小值即可.因为f′(x)=2x﹣πsin x,所以,当x∈(0,)时,设h(x)=2x﹣πsin x,h′(x)=2﹣πcos x,显然h′(x)单调递增,而h′(0)<0,h′()>0,由零点存在定理,存在唯一的x0∈(0,),使得h′(x0)=0,…2分当x∈(0,x0),h′(x)<0,h(x)单减,当x∈(x0,),h′(x)>0,h(x)单增,而h(0)=0,h()=0,x∈(0,),h(x)<0,即x∈(0,),f′(x)<0,f(x)单减,...4分又当x∈(,+∞),2x>π>πsin x,f′(x)>0,f(x)单增,所以f(x)min=f()=; (5)分(2)只需证<,其中x1∈(0,),x2∈(,+∞),构造函数F(x)=f(x)﹣f(π﹣x),x∈(0,),F′(x)=f′(x)+f′(π﹣x)=2π﹣2πsin x>0,即F(x)单增,所以,F(x)<F()=0,即当x∈(0,)时,f(x)<f(π﹣x),而x1∈(0,),所以,f(x1)<f(π﹣x1),又f(x1)=f(x2),即f(x2)<f(π﹣x1),此时x2,π﹣x2∈(,+∞),由第(1)问可知,f(x)在(,+∞)上单增,所以,x2<π﹣x1,x1+x2<π,即证…12分21.2020年春节期间爆发的新型冠状病毒(2019﹣nCoV),是一种可以借助飞沫和接触传播的变异病毒.某定点医院为筛查某些人是否感染该病毒,需要检验血液是否为阳性,现有n份血液样本,有以下两种检验方式:(a)逐份检验,则需要检验n次;(b)混合检验,将其中k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有6份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(i)试运用概率统计的知识,若Eξ1=Eξ2,试求p关于k的函数关系式p=f(k);(ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更小,求k的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094,In7≈1.9459【分析】(1)设恰好经过4次检验就能把阳性样本全部检验出来的事件为A,求出概率即可;(2)(i)由已知得Eξ1=k,ξ2可能的取值为1,k+1,由Eξ1=Eξ2,求出k的关系式即可;(ii)由题意Eξ1<Eξ2,所以,两边取对数得lnk>,设g(x)=lnx﹣,x≥2,根据函数的单调性结合题目给的条件判断即可.解:(1)设恰好经过4次检验就能把阳性样本全部检验出来的事件为A,则P(A)=,故恰好经过4次检验就能把阳性样本全部检验出来的概率为;(2)(i)由已知得Eξ1=k,ξ2可能的取值为1,k+1,所以P(ξ2=1)=(1﹣p)k,P(ξ2=k+1)=1﹣(1﹣p)k,所以Eξ2=(1﹣p)k+(k+1)[1﹣(1﹣p)k]=k+1﹣k(1﹣p)k,由Eξ1=Eξ2,所以k=k+1﹣k(1﹣p)k,即1=k(1﹣p)k,(1﹣p),得p=1﹣,故p关于k的函数关系式为f(k)=1﹣,(k∈N*,且k≥2);(ii)由题意Eξ1<Eξ2,所以k<k+1﹣k(1﹣p)k,,由,所以,两边取对数得lnk>,设g(x)=lnx﹣,x≥2,由g'(x)=,当x>4时,g'(x)<0,函数递减,当2≤x≤4时,g'(x)>0,函数递增;ln2≈0.6931>,ln3≈1.0986,ln5≈1.6094>,ln6≈1.7917,In7≈1.9459,ln8=2ln3≈2.0793,ln9≈2.1972<,故满足条件的k最大为8.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.作答时写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;(2)若直线l:y=kx与曲线C1、曲线C2在第一象限交于P、Q,且|OQ|=|PQ|,点M的直角坐标为(1,0),求△PMQ的面积.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用极径的应用和三角函数关系式的恒等变换的应用及面积公式的应用求出结果.解:(1)曲线C1的参数方程为(θ为参数),转换为直角坐标方程为x2+y2﹣4x=0,转换为极坐标方程为ρ=4cosθ.曲线C2的极坐标方程为.转换为直角坐标方程为.(2)直线l:y=kx转换为极坐标方程为θ=θ0,代入,解得.代入ρ=4cosθ,得到ρP=4cosθ0,由于|OQ|=|PQ|,所以ρP=2ρQ,故:,解得,,所以,.则.[选修4-5:不等式选讲]23.已知实数a、b满足a2+b2﹣ab=3.(1)求a﹣b的取值范围;(2)若ab>0,求证:++≥.【分析】(1)由已知得a2+b2=3+ab≥2|ab|.①当ab≥0时,3+ab≥2ab,解得ab≤3,即0≤ab≤3;②当ab<0时,3+ab≥﹣2ab,解得ab≥﹣1,即﹣1≤ab<0,得0≤3﹣ab≤4,即0≤(a﹣b)2≤4,即﹣2≤a﹣b≤2;(2)由(1)知0<ab≤3,可得==即.解:(1)因为a2+b2﹣ab=3,所以a2+b2=3+ab≥2|ab|.①当ab≥0时,3+ab≥2ab,解得ab≤3,即0≤ab≤3;②当ab<0时,3+ab≥﹣2ab,解得ab≥﹣1,即﹣1≤ab<0,所以﹣1≤ab≤3,则0≤3﹣ab≤4,(a﹣b)2=a2+b2﹣2ab=3+ab﹣2ab=3﹣ab,所以0≤(a﹣b)2≤4,即﹣2≤a﹣b≤2;(2)由(1)知0<ab≤3,因为==当且仅当ab=2时取等号,所以.。
2020年湖北省黄冈中学高考数学三模试卷(理科)(附详解)
2020年湖北省黄冈中学高考数学三模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知全集U=R,A={x|y=ln(1−x2)},B={y|y=3x−1},则A∩(∁U B)=()A. (−1,0)B. [0,1)C. (0,1)D. (−1,0]2.若复数z满足z(1+i)=|1+√3i|,则复数z的共轭复数的模为()A. 1B. √2C. 2D. 2√23.(x2+2x)5的展开式中x4的系数为()A. 10B. 20C. 40D. 804.已知向量a⃗,b⃗ 满足|a⃗|=1,a⃗⋅b⃗ =−1,则a⃗⋅(2a⃗−b⃗ )=()A. 0B. 2C. 3D. 45.已知a=(tan2π5)0.1,b=log32,c=log2(cos3π7),则()A. a>b>cB. b>a>cC. c>a>bD. a>c>b6.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.现有四名志愿者医生被分配到A、B、C三所不同的乡镇医院中,若每所医院至少分配一名医生,则医生甲恰好分配到A医院的概率为()A. 112B. 16C. 14D. 137.把函数f(x)=sin(2x−π6)的图象上每个点的横坐标扩大到原来的2倍,再向左平移π3个单位,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为()A. [π,2π]B. [π3,4π3] C. [π12,π3] D. [π4,5π4]8.已知直三棱柱ABC−A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. √32B. √155C. √105D. √339.已知双曲线C:x2a −y2b=1(a>0,b>0),过左焦点F作斜率为12的直线与双曲线的一条渐近线相交于点A,且A在第一象限,若|OA|=|OF|,则双曲线C的离心率为()A. 53B. √5+12C. 2D. √510. 方程:2(x −1)(x −3)=y(e x−2+e 2−x )的曲线有下列说法:①该曲线关于x =2对称; ②该曲线关于点(2,−1)对称; ③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( )A. ②③B. ①④C. ②④D. ①③11. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且BC 边上的高为√36a ,则cb +bc 的最大值是( )A. 8B. 4C. 3√2D. 612. 在三棱锥A −BCD 中,△ABC 和△BCD 都是边长为2的正三角形,当三棱锥A −BCD的表面积最大时,其内切球的半径是( )A. 2√2−√6B. 2−√3C. √2D. √66二、填空题(本大题共4小题,共20.0分)13. 一批产品的二等品率为0.03,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______. 14. 若α∈(0,π2),sin(α−π4)=35,则cos2α=______.15. 已知抛物线y 2=2px(p >0)的焦点为F ,O 为坐标原点,点M ,N 为抛物线准线上相异的两点,且M ,N 两点的纵坐标之积为−8,直线OM ,ON 分别交抛物线于A ,B 两点,若A ,F ,B 三点共线,则p =______.16. 已知不等式x −3lnx +1≥mlnx +n(m,n ∈R ,且m ≠−3)对任意正实数x 恒成立,则n−3m+3的最大值为______.三、解答题(本大题共7小题,共82.0分)17. 设{a n }是等差数列,{b n }是等比数列.已知a 1=1,b 1=2,b 2=2a 2,b 3=2a 3+2. (1)求{a n }和{b n }的通项公式;(2)数列{c n }满足c n ={1,n =2ka n ,n ≠2k (k ∈N),设数列{c n }的前n 项和为S n ,求S 2n .18. 如图,已知四棱锥P −ABCD ,底面ABCD 为菱形,AB =2√3,∠ABC =60°,PA ⊥平面ABCD ,E ,F 分别是BC ,PC 的中点.(1)证明:AE ⊥PD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成的角最大值为60°,求二面角E −AF −C 的余弦值. 19. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为√22,且△TFO 面积的最大值为12.(1)求椭圆的方程;(2)设点A(0,1),直线l :y =kx +t(t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM|⋅|ON|=2,求证:直线l 经过定点.20. 某市旅游局为尽快恢复受疫情影响的旅游业,准备在本市的景区推出旅游一卡通(年卡).为了更科学的制定一卡通的有关条例,市旅游局随机调查了2019年到本市景区旅游的1000个游客的年旅游消费支出(单位:百元),并制成如图频率分布直方图:由频率分布直方图,可近似地认为到本市景区旅游的游客,其旅游消费支出服从正态分布N(μ,3.22),其中μ近似为样本平均数x−(同一组数据用该组区间的中点值作代表).(1)若2019年到本市景区旅游游客为500万人,试估计2019年有多少游客在本市的年旅游消费支出不低于1820元;(2)现依次抽取n个游客,假设每个游客的旅游消费支出相互独立,记事件A表示P n−2+“连续3人的旅游消费支出超出μ”.若P n表示A−的概率,P n=aP n−1+14 bP n−3(n≥3,a,b为常数),且P0=P1=P2=1.(i)求P3,P4及a,b;(ii)判断并证明数列{P n}从第三项起的单调性,试用概率统计知识解释其实际意义.(参考数据:P(μ−σ<X<μ+σ)≈0.6826,P(μ−2σ<X<μ+2σ)≈0.9544,P(μ−3σ<X<μ+3σ)≈0.9973)21.已知函数f(x)=√x−a−sinx(a∈R).(1)当a=0时,证明:f(x)≥0;(2)若a <−14,证明:f(x)在(0,π2)有唯一的极值点x 0,且f(x 0)>1π−2x 0−x 0.22. 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=4cosθ(ρ>0).M 为曲线C 1上的动点,点P 在射线OM 上,且满足|OM|⋅|OP|=20.(Ⅰ)求点P 的轨迹C 2的直角坐标方程;(Ⅱ)设C 2与x 轴交于点D ,过点D 且倾斜角为5π6的直线l 与C 1相交于A ,B 两点,求|DA|⋅|DB|的值.23. 已知a ,b ,c 为正数,且满足a +b +c =3,证明:(1)1ab+1bc+1ca≥3;(2)a 2b 2+b 2c 2+c 2a 2≥3abc .答案和解析1.【答案】D【解析】解:由题得:A={x|1−x2>0}={x|−1<x<1},B={y|y>0}=(0,+∞),∴∁U B={x|x≤0}=(−∞,0];∴A∩(∁U B)=(−1,0].故选:D.根据已知求出B的补集,再结合交集的定义求解结论即可.本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.2.【答案】B【解析】【分析】本题考查复数代数形式的乘除运算,共轭复数,考查复数模的求法,是基础题.把已知等式变形,再由复数代数形式的乘除运算化简,结合|z−|=|z|求解.【解答】解:由z(1+i)=|1+√3i|,得z=|1+√3i|1+i =21+i=2(1−i)(1+i)(1−i)=1−i,∴|z−|=|z|=√2.故选B.3.【答案】C【解析】【分析】本题考查二项展开式中x4的系数的求法,是基础题.由二项式定理得(x2+2x )5的展开式的通项为:T r+1=C5r(x2)5−r(2x)r=2r C5r x10−3r,由10−3r=4,解得r=2,由此能求出(x2+2x)5的展开式中x4的系数.【解答】解:由二项式定理得(x2+2x)5的展开式的通项为:T r+1=C5r(x2)5−r(2x)r=2r C5r x10−3r,由10−3r=4,解得r=2,∴(x2+2x)5的展开式中x4的系数为22C52=40.故选:C.4.【答案】C【解析】解:a⃗⋅(2a⃗−b⃗ )=2a⃗2−a⃗⋅b⃗ =2×1−(−1)=3.故选:C.根据平面向量数量积的运算法则即可得解.本题考查平面向量数量积的运算,属于基础题.5.【答案】A【解析】解:a=(tan2π5)0.1>(tan2π5)0=1,b∈(0,1),c<0.∴a>b>c.故选:A.利用指数函数、对数函数三角函数的单调性即可得出.本题考查了指数函数、对数函数三角函数的单调性,考查了推理能力与计算能力,属于基础题.6.【答案】D【解析】解:基本事件总数n=C42A33=36,医生甲恰好分配到到A医院包含的基本事件个数m=A33+C32A22=12,所以医生甲恰好分配到A医院的概率为p=mn =1236=13,故选:D.基本事件总数n,然后得到甲被选中包含的基本事件有m,由此能求出甲被选中的概率.本题考查概率的求法,古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.【答案】B【解析】解:函数f(x)=sin(2x−π6)的图象上每个点的横坐标扩大到原来的2倍,可得y=sin(x−π6)的图象;再向左平移π3个单位,得到函数g(x)=sin(x+π3−π6)=sin(x+π6)的图象.令2kπ+π2≤x+π6≤2kπ+3π2,求得2kπ+π3≤x≤2kπ+4π3,可得函数g(x)的减区间为[2kπ+π3,2kπ+4π3],k∈Z,故选:B.由题意利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再根据正弦函数的单调性,求出g(x)的一个单调递减区间.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.8.【答案】C【解析】【分析】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则MN//AB1,NP//BC1,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,π2]),可知MN=12AB1=√52,NP=12BC1=√22;作BC中点Q,则△PQM为直角三角形,PQ=1,MQ=12AC,△ABC中,由余弦定理得AC2=AB2+BC2−2AB⋅BC⋅cos∠ABC=4+1−2×2×1×(−12)=7,∴AC =√7,∴MQ =√72,MP =√MQ 2+PQ 2=√112; 在△PMN 中,由余弦定理得cos∠MNP =MN 2+NP 2−PM 22⋅MN⋅NP=(√52)2+(√22)2−(√112)22×√52×√22=−√105; 又异面直线所成角的范围是(0,π2], ∴AB 1与BC 1所成角的余弦值为√105.故选C .9.【答案】A【解析】解:由题意可得直线l 的方程为:y =12(x +c),与渐近线y =ba x 联立,可得x =12⋅acb−a 2,y =bc2b−a ,因为|OA|=|OF|,即(ac 2b−a )2+(bc2b−a )2=c 2,整理可得3b =4a ,9b 2=9(c 2−a 2)=16a 2,即9c 2=25a 2, 因为e =ca >1, 解得e =53. 故选:A .求出直线l 的方程,以及渐近线方程联立,求出A 的坐标,通过|OA|=|OF|,转化求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,离心率的求法,是基本知识的考查.10.【答案】D【解析】解:将方程2(x −1)(x −3)=y(e x−2+e 2−x )整理可得y =2(x−1)(x−3)e x−2+e 2−x,令y =f(x)将x 换成4−x 时,即f(4−x)=2[(4−x)−1][(4−x)−3]e +e =2(x−3)(x−1)e +e ,所以f(x)=f(4−x),所以曲线关于x =2对称,所以①正确,②不正确; 当x <0时,f(x)>0,所以该曲线不经过第三象限,故③正确, 曲线过的整数点(1,0),(3,0)(2,−1)三个整数点,故④不正确, 故选:D . 将方程整理可得y =2(x−1)(x−3)e x−2+e 2−x,令y =f(x),可得f(4−x)=f(x)所以可得曲线关于x =2对称,不关于(2,−1)点对称,且x<0时f(x)>0,故不过第三象限,只有3个整数点,可得答案.本题考查曲线与方程的关系,及函数的对称性,属于中档题.11.【答案】B【解析】解:cb +bc=c2+b2bc,这个形式很容易联想到余弦定理:cosA=b2+c2−a22bc①而条件中的“高”容易联想到面积,a⋅√36a=bcsinA,即a2=2√3bcsinA②,将②代入①得:b2+c2=2bc(cosA+√3sinA),∴cb +bc=2(cosA+√3sinA)=4sin(A+π6),当A=π3时取得最大值4,故选:B.利用三角形的面积公式、余弦定理,化简cb +bc,再利用辅助角公式,即可求得结论.本题考查余弦定理及其应用,考查辅助角公式,考查学生的计算能力,属于中档题.12.【答案】A【解析】解:在三棱锥A−BCD中,△ABC和△BCD都是边长为2的正三角形,三棱锥A−BCD的表面积为S,S=2√3+S△ABD+S△ACD=2√3+4sin∠ABD故当AB⊥BD时,表面积最大,为4+2√3,过A作BC的垂线,垂足为E,连接ED,三棱锥A−BCD的体积为V,V=V B−AED+V C−AED=13⋅√2⋅2=2√23设内切球的半径为r,因为13Sr=V,所以r=2√2−√6.故选:A.画出图形,求出表面积,判断表面积取得最大值时的位置,然后求解体积,设出内切球的半径,转化求解即可.本题考查球体表面积的计算,解决本题的关键在于表面积最大时的情况以及求解内切球的半径,考查推理能力与计算能力,属于中等题.13.【答案】2.91【解析】解:一批产品的二等品率为0.03,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则X~(100,0.03),∴DX=100×0.03×0.97=2.91.故答案为:2.91.X~(100,0.03),由此能求出DX.本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用.14.【答案】−2425【解析】解:若α∈(0,π2),∴α−π4∈(−π4,π4),∵sin(α−π4)=35∈(0,√22),∴α−π4∈(0,π4),∴cos(α−π4)=√1−sin2(α−π4)=45,∴cos2α=−sin(2α−π2)=−2sin(α−π4)cos(α−π4)=−2425.故答案为:−2425.由已知可求范围α−π4∈(0,π4),利用同角三角函数基本关系式可求cos(α−π4)=√1−sin2(α−π4)=45,进而根据诱导公式,二倍角的正弦函数公式即可求解.本题主要考查了同角三角函数基本关系式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.15.【答案】2√2【解析】解:由抛物线焦点弦的性质可知,y A=y N,y B=y M,∴y A⋅y B=y M⋅y N=−8∴−p2=−8,∴p=2√2.故答案为:2√2.利用抛物线的焦点弦的性质,列出方程,求解p即可.本题考查抛物线的简单性质的应用,是基本知识的考查.16.【答案】−ln2【解析】解:令f(x)=x −3lnx +1−mlnx −n ,则f′(x)=1−m+3x(x >0),若m +3<0,则f′(x)>0,f(x)单调递增,由当x →0时,f(x)→−∞,不合题意; ∴m +3>0,由f′(x)=0,得x =m +3,当x ∈(0,m +3)时,f′(x)<0,当x ∈(m +3,+∞)时,f′(x)>0,∴当x =m +3时,f(x)有最小值,则f(m +3)=m +3−3ln(m +3)+1−mln(m +3)−n ≥0,即n −3≤m +4−(m +3)ln(m +3),∴n−3m+3≤m+1m+3−ln(m +3), 令g(x)=x+1x+3−ln(x +3),则g′(x)=2(x+3)−1x+3=−x−1(x+3). 当x ∈(−3,−1)时,g′(x)>0,当x ∈(−1,+∞)时,g′(x)<0, 所以当x =−1时,g(x)有最大值为−ln2.即n−3m+3的最大值为−ln2. 故答案为:−ln2.构造函数f(x)=x −3lnx +1−mlnx −n ,利用导数f′(x)判断f(x)的单调性,求f(x)的最值,可得n−3m+3≤m+1m+3−ln(m +3),令g(x)=x+1x+3−ln(x +3),利用导数求其最大值得答案.本题考查利用导数求最值,考查数学转化思想方法,考查逻辑思维能力与推理运算能力,属于中档题.17.【答案】解:(1)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,由a 1=1,b 1=2,b 2=2a 2,b 3=2a 3+2, 可得2q =2(1+d),2q 2=2(1+2d)+2, 解得d =1,q =2,则a n =1+n −1=n ,b n =2n ,n ∈N ∗; (2)由于数列{c n }满足c n ={1,n =2k a n ,n ≠2k(k ∈N),所以S 2n =c 1+c 2+⋯+c 2n =(a 1+a 2+a 3+⋯+a 2n )−(a 21+a 22+⋯+a 2n )+n , =(1+2+3+⋯+2n )−(2+22+⋯+2n )+n , =12(1+2n )2n −2(2n −1)2−1+n ,═2n−1(1+2n )−2n+1+2+n ,=22n−1−3⋅2n−1+n +2,【解析】(1)利用已知条件求出数列的通项公式. (2)利用分组法的应用求出数列的和.本题考查的知识要点:数列的通项公式,数列的求和,分组法求和,主要考查学生的运算能力和转换能力及思维能力,属于中档题.18.【答案】(1)证明:∵四边形ABCD 为菱形,且∠ABC =60°,∴△ABC 为正三角形,∵E 为BC 的中点,∴AE ⊥BC , 又BC//AD ,∴AE ⊥AD .∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE . ∵AP ⊂平面PAD ,AD ⊂平面PAD ,且PA ∩AD =A , ∴AE ⊥平面PAD ,又PD ⊂平面PAD ,∴AE ⊥PD .(2)解:以A 为原点,AE 、AD 、AP 分别为x 、y 、z 轴建立如图所示的空间直角坐标系.设AP =a ,则A(0,0,0),P(0,0,a),E(3,0,0),C(3,√3,0),D(0,2√3,0),F(32,√32,a2),设PH ⃗⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,点H 为(x,y ,z),则(x,y ,z −a)=λ(0,2√3,−a),∴H(0,2√3λ,(1−λ)a), ∴EH⃗⃗⃗⃗⃗⃗ =(−3,2√3λ,(1−λ)a). 设EH 与平面PAD 所成角为θ, ∵平面PAD 的法向量为n ⃗ 0=(1,0,0),∴sinθ=|cos <EH ⃗⃗⃗⃗⃗⃗ ,n 0⃗⃗⃗⃗ >|=|EH ⃗⃗⃗⃗⃗⃗ ⋅n 0⃗⃗⃗⃗⃗ |EH ⃗⃗⃗⃗⃗⃗ |⋅|n 0⃗⃗⃗⃗⃗ ||=|√9+12λ2+(1−λ)2a 2⋅1|=√(12+a 2)(λ−a 212+a 2)2+21a 2+12×912+a 2∵EH 与平面PAD 所成的角最大值为60°, ∴3√21a2+12⋅912+a 2=√32,解得a=2,∴AF⃗⃗⃗⃗⃗ =(32,√32,1).∵AE ⃗⃗⃗⃗⃗ =(3,0,0),∴设平面AEF 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),则{n 1⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =0n 1⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =0,即{32x 1+√32y 1+z 1=03x 1=0, 令y 1=2,则x 1=0,z 1=−√3,∴n 1⃗⃗⃗⃗ =(0,2,−√3). 同理可得,平面ACF 的法向量为n 2⃗⃗⃗⃗ =(1,−√3,0), ∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√37×2=−√217. 由图可知,二面角E −AF −C 为锐二面角, 故二面角E −AF −C 的余弦值为√217.【解析】(1)易知AE ⊥AD ,由线面垂直的性质定理可得PA ⊥AE ,再由线面垂直的判定定理可推出AE ⊥平面PAD ,从而有AE ⊥PD .(2)以A 为原点,AE 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AP =a ,逐一写出A 、P 、E 、C 、D 、F 的坐标;设PH ⃗⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,点H 为(x,y ,z),从而可用含a 和λ的式子表示EH ⃗⃗⃗⃗⃗⃗ ;设EH 与平面PAD 所成角为θ,易知平面PAD 的法向量n 0⃗⃗⃗⃗ ,则sinθ=|cos <EH ⃗⃗⃗⃗⃗⃗ ,n 0⃗⃗⃗⃗ >|,结合配方法进行化简可列出关于a 的方程,求得a 的值后,再根据法向量的性质分别求得平面AEF 和平面ACF 的法向量n 1⃗⃗⃗⃗ 与n 2⃗⃗⃗⃗ ,最后由空间向量数量积的坐标运算即可得解.本题考查空间中线与面的垂直关系、线面角和二面角的求法,熟练掌握空间中线面垂直的判定定理与性质定理,以及利用空间向量处理线面角、二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.19.【答案】解:(1)设T(x 0,y 0),F(c,0),由c a =√22,可得a 2=2c 2,依题意S max =12⋅cb =12,所以a =√2,b =1, 所以椭圆C 的方程为x 22+y 2=1.(2)设P(x 1,y 1),Q(x 2,y 2),联立{x 22+y 2=1y =kx +t(t ≠1),得(1+2k 2)x 2+4ktx +2t 2−2=0, △>0,x 1+x 2=−4kt1+2k 2,x 1x 2=2t 2−21+2k 2,直线AP :y −1=y 1−1x 1x ,令y =0得x =−x1y 1−1,即|OM|=|−x1y 1−1|;同理可得|ON|=|−x2y 2−1|.又|OM||ON|=2, 所以|−x 1y 1−1||−x 2y 2−1|=|x 1x2y 1y 2−(y 1+y 2)+1|=2化简,得|t 2−1t 2−2t+1|=1,解得只有t =0满足题意,所以直线方程为y =kx ,所以直线l 恒过定点(0,0).【解析】(1)设T(x 0,y 0),F(c,0),通过椭圆的离心率以及三角形底面积求a ,b 的值,然后求出椭圆C 的方程.(2)设P(x 1,y 1),Q(x 2,y 2),联立{x 22+y 2=1y =kx +t(t ≠1),利用韦达定理得到关系式,然后求出|OM|和|ON|,再通过|OM||ON|=2,求出t ,推出直线l 恒过的定点.本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题.20.【答案】解:(1)直方图可得x −=(0.0125×4+0.05×8+0.1375×12+0.375×16+0.125×20)×4=11.8,∵μ=x −=11.8,σ=3.2,μ+2σ=1820元, ∴旅游费用支出不低于1820元的概率为P(x ≥μ+2σ)=1−P(μ−2σ<x<μ+2σ)2=1−0.95442=0.0228,∴500×0.022=11.4,估计2019年有11.4万的游客在本市的年旅游费用支出不低于1820元. (2)(i)P 3=1−18=78,P 4=1−2+116=1316,由{P 3=aP 2+14P 1+bP 0P 4=aP 3+14P 2+bP 1,即{78=a +14+b 1316=78a +14+b , 解得{a =12b =18;(ii)数列{P n }从第三项起单调递减. P n =12P n−1+14P n−2+18P n−3(n ≥3),故P n+1−P n =(12P n +14P n−1+18P n−2)−(12P n−1+14P n−2+18P n−3)=12P n −14P n−1−18P n−2−18P n−3 =12(12P n−1+14P n−2+18P n−3)−14P n−1−18P n−2−18P n−3=−116P n−3,又P n>0,∴−116P n−3<0,即从第三项起数列{P n}单调递减.由此,可知随着抽查人数n的增加,事件“不连续3人的旅游费用支出超出μ”的可能性会越来越小.(即最终会出现连续3人的旅游费用支出超出μ这一事件).【解析】(1)由直方图可得x−,即可得到μ,结合已知的σ=3.2,可知旅游费用支出不低于1820元的概率为P(x≥μ+2σ),求得概率后乘以500得答案.(2)(i)先由题意求得P3与P4的值,再列关于a,b的方程组求解a,b的值;(ii)由P n=12P n−1+14P n−2+18P n−3(n≥3),利用作差法可得从第三项起数列{P n}单调递减.其实际意义为随着抽查人数n的增加,事件“不连续3人的旅游费用支出超出μ”的可能性会越来越小.(即最终会出现连续3人的旅游费用支出超出μ这一事件).本小题主要考查频率分布直方图、平均数、正态分布、随机事件的概率、数列及其性质等基础知识,考查运算求解能力、数据处理能力、应用意识,考查分类与整合思想、统计思想、化归与转化思想.21.【答案】解:(1)若x>1,则√x>1≥sinx;若0≤x<1,则√x≥x.令g(x)=x−sinx(x≥0),可知g′(x)=1−cosx≥0,故g(x)≥g(0)=0,即x≥sinx(x≥0),故√x≥sinx(x≥0).(2)证明:f′(x)=2√x−a cosx,令g(x)=2√x−acosx,g′(x)=−14(x−a)32+sinx,∵a<−14,∴g′(x)是(0,π2)上的增函数,又g′(0)=−14(−a)32<0,g′(π2)=1−14(π2−a)32>0,故存在唯一实数t0∈(0,π2),使g′(t0)=0,当x∈(0,t0)时,g′(x)<0,g(x)递减;当x∈(t0,π2)时,g′(x)>0,g(x)递增,∵g(0)=2√−a −1<0,g(π2)=2√π2−a>0.故存在唯一实数x0∈(0,π2),使g(x0)=2x−a−cosx0=0.当x∈(0,x0)时,f′(x)=g(x)<0,f(x)递减;当x∈(x0,π2)时,f′(x)=g(x)>0,f(x)递增.∴f(x)在(0,π2)有唯一极小值点x0,且极小值为f(x0)=√x0−a−sinx0.又由g(x0)=2x−a−cosx0=0,得√x0−a=12cosx0,∴f(x 0)=12cosx 0−sinx 0,又f(x 0)+x 0=12cosx 0+(x 0−sinx 0)>12cosx 0.以下只需证明12cosx 0>1π−2x 0,0<2cosx 0<π−2x 0.∵x 0∈(0,π2),∴2cosx 0=2sin(π2−x 0)<2(π2−x 0)=π−2x 0.则f(x 0)+x 0=12cosx 0+(x 0−sinx 0)>12cosx 0>1π−2x 0,f(x 0)>1π−2x 0−x 0.【解析】(1)代入a 的值,求出函数的导数,根据函数的单调性证明即可;(2)求出函数的导数,根据函数的单调性求出f(x)在(0,π2)有唯一极小值点x 0,从而证明结论成立.本题考查了函数的单调性,最值问题,考查导数的应用以及不等式的证明,考查转化思想,是一道综合题.22.【答案】解:(Ⅰ)设P(ρ,θ),M(ρ0,θ),|OM|⋅|OP|=20,可得ρ0ρ=20, 即有4ρcosθ=20,即ρcosθ=5,可得点P 的轨迹C 2的直角坐标方程为x =5;(Ⅱ)C 2与x 轴交于点D(5,0),过点D 且倾斜角为5π6的直线l 的参数方程设为 {x =5−√32ty =12t(t 为参数),曲线C 1的极坐标方程为ρ=4cosθ(ρ>0),即为ρ2=4ρcosθ, 化为直角坐标方程为x 2+y 2=4x , 将直线l 的参数方程代入x 2+y 2=4x , 可得t 2−3√3t +5=0,设A 、B 对应的参数分别为t 1,t 2, 即有t 1t 2=5,|DA|⋅|DB|=|t 1t 2|=5.【解析】本题考查极坐标方程的运用,以及直线的参数方程的几何意义,考查化简整理的运算能力,属于中档题.(Ⅰ)设P(ρ,θ),M(ρ0,θ),由曲线C 1的极坐标方程,再由直角坐标和极坐标的互化,可得所求方程;(Ⅱ)求得D 的坐标,以及直线l 的参数方程,圆的直角坐标方程,联立两个方程,结合参数的几何意义,计算可得所求值.23.【答案】证明:(1)∵a ,b ,c 为正数,且满足a +b +c =3,∴3=a +b +c ≥3√abc 3,当且仅当a =b =c =1时取等号,∴0<abc ≤1,∴1ab +1bc +1ca =a+b+c abc=3abc≥3,∴1ab +1bc +1ca ≥3;(2)∵a 2b 2+b 2c 2≥2√a 2b 2c 2=2ab 2c ,当且仅当a =c 时取等号, 同理a 2b 2+c 2a 2≥2a 2bc ,b 2c 2+c 2a 2≥2abc 2, ∴2(a 2b 2+b 2c 2+c 2a 2)≥2abc(a +b +c)=6abc , ∴a 2b 2+b 2c 2+c 2a 2≥3abc ,当且仅当a =b =c 时取等号, ∴a 2b 2+b 2c 2+c 2a 2≥3abc .【解析】(1)根据条件可得3=a +b +c ≥3√abc 3,然后由1ab +1bc +1ca =a+b+c abc可证明结论;(2)利用基本不等式可得2(a 2b 2+b 2c 2+c 2a 2)≥2abc(a +b +c)=6abc ,从而证明结论.本题考查了利用综合法证明不等式和基本不等式的应用,考查了转化思想,属中档题.。
2020年湖北省黄冈中学高考数学模拟试卷(理科)
2020年湖北省黄冈中学高考数学模拟试卷(理科)(四)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B =()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)2.(5分)设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i3.(5分)命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx04.(5分)已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣5.(5分)在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要6.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.7.(5分)木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+188.(5分)函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,] 9.(5分)在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4] 10.(5分)已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m。
湖北省黄冈中学2020届高三普通高等学校招生全国统一考试线上模拟测试(四)数学理科答案
其中 A(2,6) ,直线 x my 1 0 过定点 D(1,0) ,
当 m 0 时,不等式 x 1≤0 表示直线 x 1 0 及其左边的区域,不满足题意;
当
m
0
时,直线
x
my
1
0
的斜率
1 m
0
,不等式
x
my
1≤0
表示直线
x
my
1
0
下方的区域,
不满足题意;
当
m
0
时,直线
x
my
1
0
的斜率
1 m
2x)
2sin(2x
)
6
6
,由
2k≤2x ≤3 2k , k Z
k≤x≤ 5 k ,k Z
2
62
,解得 3
6
,即函数的增区间为
[
k , 5
k ], k Z
[, ]
3
6
,所以当 k 0 时,增区间为 3 2 ,选 D.
9.【答案】B【解析】作出不等式对应的平面区域,如图所示:
S 2 r2 1 r2 sin120 2 62 1 62 sin120 24 9 3
积为 3 2
3
2
,故几何体的体积为:
V 1 Sh 1 (24 9 3) 6 48 18 3
33
,故选 C.
·6·
8.【答案】D【解析】因为
y cos 2x 3 sin 2x
2sin(
,而函数
y tan x 在 (0, ) 上不是单调函数,所以“ sin A sin B ”是“ tan A tan B ”的既不充分也不必要条件,
故选 D.
S1
2020年湖北省高考数学模拟试卷(理科)(4月份)(有答案解析)
2020年湖北省高考数学模拟试卷(理科)(4月份)题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.已知集合M={x|-3<x<2},N={x|()x≤4},则()A. M∩N=(-2,2)B. M∩N=(-3,-2)C. M∪N=[-2,+∞)D. M∪N=(-3,+∞)2.已知复数z=-1+2i,则下列关系式中正确的是()A. |z|<2B. |z|>3C. |z|≠|1+2i|D. |z|=|1-2i|3.已知sin x+cos x=,则cos(x-)=()A. B. C. D.4.已知双曲线C:-=1(a>0,b>0)的离心率为,则双曲线C的渐近线方程为()A. 2x±y=0B. x±2y=0C. ±y=0D. ±y=05.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. 1 C. D.6.已知函数f(x)是定义域为R的奇函数,当x≥0时,f(x)=ln(1+x2)+x,则不等式f(2x+1)>1+ln2的解集为()A. {x|x>0}B. {x|x<0}C. {x|x>1}D. {x|x<1}7.甲乙2人从4门课程中各自选修2门课程,并且所选课程中恰有1门课程相同,则不同的选法方式有()A. 36种B. 30种C. 24种D. 12种8.如图,圆O是边长为2的等边三角形ABC的内切圆,其与BC边相切于点D,点M为圆上任意一点,=x+y(x,y∈R),则2x+y的最大值为()A.B.C. 2D. 29.在△ABC中,给出下列说法:①若A>B,则一定有sin A>sin B;②恒有cos A+cos B>0;③若sin A<cos B,则△ABC为锐角三角形.其中正确说法的个数有()A. 0B. 1C. 2D. 310.已知函数f(x)=sin(ωx+φ),其中ω>0,0<φ<π,f(x)≤f()恒成立,且f(x)在区间(0,)上恰有两个零点,则ω的取值范围是()A. (6,10)B. (6,8)C. (8,10)D. (6,12)11.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.12.已知不等式x-3ln x+1≥m ln x+n(m,n∈R,且m≠-3)对任意实数x恒成立,则的最大值为()A. -2ln2B. -ln2C. 1-ln2D. 2-ln2二、填空题(本大题共4小题,共12.0分)13.在的展开式中的系数为______.14.已知实数x,y满足约束条件,则z=2x-y的最大值为______.15.已知正三棱锥P-ABC的底面边长为3,外接球的表面积为16π,则正三棱锥P-ABC的体积为______.16.如图,过抛物线y2=2px(p>0)的焦点F作两条互相垂直的弦AB、CD,若△ACF与△BDF面积之和的最小值为16,则抛物线的方程为______.三、解答题(本大题共7小题,共84.0分)17.已知数列{a n}满足a2-a1=1,其前n项和为S n,当n≥2时,S n-1-1,S n,S n+1成等差数列(1)求证{a n}为等差数列;(2)若S n=0,S n+1=4,求n.18.已知四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=3,BC=4,AC=5.(1)当AP变化时,点C到平面PAB的距离是否为定值?若是,请求出该定值;若不是,请说明理由;(2)当直线PB与平面ABCD所成的角为45°时,求二面角A-PD-C的余弦值.19.已知椭圆Γ:+=1(a>b>0)的离心率为,椭圆上的点到左焦点的最小值为2-.(1)求椭圆Γ的方程;(2)已知直线x=1与x轴交于点M,过点M的直线AB与Γ交于A、B两点,点P为直线x=1上任意一点,设直线AB与直线x=4交于点N,记PA,PB,PN的斜率分别为k1,k2,k0,则是否存在实数λ,使得k1+k2=λk0恒成立?若是,请求出λ的值;若不是,请说明理由.20.近年来,随着网络的普及,数码产品早已走进千家万户的生活,为了节约资源,促进资源循环利用,折旧产品回收行业得到迅猛发展,电脑使用时间越长,回收价值越低,某二手电脑交易市场对2018年回收的折旧电脑交易前使用的时间进行了统计,得到如图所示的频率分布直方图,在如图对时间使用的分组中,将使用时间落入各组的频率视为概率.(1)若在该市场随机选取3个2018年成交的二手电脑,求至少有2个使用时间在(4,8]上的概率;(2)根据电脑交易市场往年的数据,得到如图所示的散点图,其中x(单位:年)表示折旧电脑的使用时间,y(单位:百元)表示相应的折旧电脑的平均交易价格.(ⅰ)由散点图判断,可采用y=e a+bx作为该交易市场折旧电脑平均交易价格与使用年限x的回归方程,若t=ln y i,,选用如下参考数据,求y关于x的回归方程5.58.5 1.9301.479.75385(ⅱ)根据回归方程和相关数据,并用各时间组的区间中点值代表该组的值,估算该交易市场收购1000台折旧电脑所需的费用附:参考公式:对于一组数据(u i,v i)(i=1,2,……,n),其回归直线=+βu的斜率和截距的最小二乘估计分别为:.参考数据:e3.25≈26,e2.65≈14,e2.05≈7.8,e1.45≈4.3,e0.85≈2.3..21.已知f(x)=x-(ln x)2-k ln x-1(k∈R).(1)若f(x)是(0,+∞)上的增函数,求k的取值范围;(2)若函数f(x)有两个极值点,判断函数f(x)零点的个数.22.在直角坐标系xOy中,曲线C1的参数方程为(α是参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线θ=β(0<β)与曲线C1交于O,A两点,与曲线C2交于O,B两点,求|OA|+|OB|取最大值时tanβ的值.23.已知函数f(x)=|x-3|-t,t∈R.(1)当t=3时,解不等式|f(x)|≥3;(2)若不等式f(x+2)≤0的解集为[-1,3],正数a,b满足ab-2a-8b=2t-2,求a+2b的最小值.-------- 答案与解析 --------1.答案:D解析:解:∵集合A={x|-3<x<2},N={x|()x≤4}={x|x≥-2},∴M∩N={x|-2≤x<2},M∪N={x|x>-3}.故选:D.分别求出集合M和集合N,由此能求出M∩N,M∪N,从而能判断命题真假.本题考查交集、并集的求法,考查交集、并集定义、不等式性质等基础知识,是基础题.2.答案:D解析:解:∵z=-1+2i,∴|z|=,而|1-2i|=.∴|z|=|1-2i|.故选:D.利用复数模的计算公式求得|z|,可得|z|=|1-2i|.本题考查复数模的求法,是基础题.3.答案:B解析:解:∵已知sin x+cos x=2sin(x+)=,即sin(x+)=,则cos(x-)=sin(x+)=,故选:B.由题意利用同角三角函数的基本关系、诱导公式,求得cos(x-)的值.本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.4.答案:B解析:解:双曲线C:-=1(a>0,b>0)的离心率为,可得:,即,可得,则双曲线C的渐近线方程为:x±2y=0.故选:B.通过双曲线的离心率求出b与a的关系,然后求解双曲线的渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查.5.答案:C解析:解:由三视图还原原几何体如图,可知该几何体为四棱锥P-ABCD,底面ABCD是边长为2的正方形,侧棱PA⊥底面ABCD,PA=1.∴该几何体的体积为.故选:C.由三视图还原原几何体,可知该几何体为四棱锥P-ABCD,底面ABCD是边长为2的正方形,侧棱PA⊥底面ABCD,PA=1.再由棱锥体积公式求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.6.答案:A解析:解:根据题意,当x≥0时,f(x)=ln(1+x2)+x,易得f(x)在[0,+∞)上为增函数,又由f(x)为定义在R上的奇函数,则f(x)在R上为增函数,且f(1)=ln(1+1)+1=1+ln2,则f(2x+1)>1+ln2⇒f(2x+1)>f(1)⇒2x+1>1,解可得x>0,即不等式f(2x+1)>1+ln2的解集为{x|x>0};故选:A.根据题意,由函数的解析式分析可得f(x)在[0,+∞)上为增函数,结合函数的单调性可得f(x)在R上为增函数,又由f(1)=1+ln2,据此可得f(2x+1)>1+ln2⇒f(2x+1)>f(1)⇒2x+1>1,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,注意分析f(x)的单调性,属于基础题.7.答案:C解析:解:所选课程中恰有1门课程相同,有4种,然后从剩余3门,选1门有A=3,共有4×6=24,故选:C.根据排列组合的公式进行计算即可.本题主要考查排列组合的应用,先确定1门课程相同,然后则在从剩余3分进行选择是解决本题的关键.8.答案:C解析:解:如图以D为原点,BC,AD所在的直线为x,y轴建立如图所示的直角坐标系,则A(0,3),B(-,0),D(0,0),∴,,∵圆O是边长为2的等边三角形ABC的内切圆,∴圆O的方程为:x2+(y-1)2=1,设点M的坐标为(cosθ,sinθ+1),∵=x+y(x,y∈R),∴(cosθ+,sinθ+1)=x(,3)+y(,0),∴,∴,∴2x+y==,∴当时,2x+y的最大值为2.故选:C.建立直角坐标系,设点M的坐标为(cosθ,sinθ+1),然后根据条件建立2x+y,与sinθ,cosθ的关系式,再利用三函数的性质即可求出2x+y的最值.本题考查了向量的坐标运算以及圆的方程和三角函数的性质,考查了学生的运算能力和转化能力,属于中档题.9.答案:C解析:【分析】由三角形的正弦定理和边角公式可判断①;由余弦函数的单调性可判断②;可取A=120°,B=15°,可判断③.本题考查三角形的正弦定理和边角关系、三角形的形状判断,考查余弦函数的性质,判断能力和推理能力,属于基础题.【解答】解:在△ABC中,①,若A>B,可得a>b,即2R sin A>2R sin B,(R为△ABC的外接圆的半径),则一定有sin A>sin B,故正确;②,由0<A<π-B<π,可得cos A>cos(π-B)=-cos B,恒有cos A+cos B>0,故正确;③,若sin A<cos B,由sin A>0,可得cos B>0,即B为锐角,可取A=120°,B=15°,满足sin120°=,cos15°=,满足sin A<cos B,则△ABC为钝角三角形.故错误.故选:C.10.答案:A解析:解:依题意得f()为f(x)的最大值1,∴ω+φ=2kπ+,k∈Z,∵φ∈(0,π),∴ω∈(8k-2,8k+2)k∈Z①又f(x)在区间(0,)上恰有两个零点,∴0≥-T,且0<-T,即≤T<,即≤<,解得6<ω≤10,②∴由①②ω∈(6,10).故选:A.f(x)≤f()恒成立⇔ω+φ=2kπ+,k∈Z;f(x)在区间(0,)上恰有两个零点⇔⇔0≥-T,且0<-T,将T=代入可得.本题考查了三角函数的最值,属中档题.11.答案:B解析:解:“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,基本事件总数n==720,满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数:第一节是数,有:=36种排法,第二节是数,有:=84种排法,∴m=36+84=120,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率p==.故选:B.基本事件总数n==720,满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数:第一节是数,有:=36种排法,第二节是数,有:=84种排法,从而m=36+84=120,由此能求出满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.12.答案:B解析:解:令f(x)=x-3ln x+1-m ln x-n,则f′(x)=1-(x>0),若m+3<0,则f′(x)>0,f(x)单调递增,由当x→0时,f(x)→-∞,不合题意;∴m+3>0,由f′(x)=0,得x=m+3,当x∈(0,m+3)时,f′(x)<0,当x∈(m+3,+∞)时,f′(x)>0,∴当x=m+3时,f(x)有最小值,则f(m+3)=m+3-3ln(m+3)+1-m ln(m+3)-n≥0,即n-3≤m+4-(m+3)ln(m+3),≤,令g(x)=,则g′(x)=.当x∈(-3,-1)时,g′(x)>0,当x∈(-1,+∞)时,g′(x)<0,∴当x=-1时,g(x)有最大值为-ln2.即的最大值为-ln2.故选:B.令f(x)=x-3ln x+1-m ln x-n,利用导数可得当x=m+3(m+3>0)时,f(x)有最小值,则f(m+3)=m+3-3ln (m+3)+1-m ln(m+3)-n≥0,即n-3≤m+4-(m+3)ln(m+3),≤,令g(x)=,利用导数求其最大值得答案.本题考查利用导数求最值,考查数学转化思想方法,考查逻辑思维能力与推理运算能力,属中档题.13.答案:-84解析:【分析】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.在二项展开式的通项公式中,令x的幂指数等于-1,求出r的值,即可求得展开式中的系数.【解答】解:(2x2-)7的通项公式T r+1=•(-1)r•27-r•x14-3r,令14-3r=-1,求得r=5,可得展开式中的系数为×(-1)×4=-84.故答案为-84.14.答案:2解析:解:实数x,y满足约束条件的可行域如图:z=2x-y经过可行域的A时,取得最大值,由可得A(2,2)z=2x-y的最大值为:4-2=2,故答案为:2.画出约束条件的可行域,利用目标函数的几何意义,求解即可.本题主要考查线性规划的应用,利用数形结合是解决本题的关键.15.答案:或解析:解:∵正三棱锥P-ABC的外接球的表面积为16π,则其外接球的半径为2,底面三角形ABC的外接圆的半径AG=.设正三棱锥P-ABC的高为h,当球心在正三棱锥内部时,如图,则22=(h-2)2+3,解得h=3,正三棱锥P-ABC的体积为V=;同理,当球心在正三棱锥外部时,则22=(2-h)2+3,解得h=1.∴正三棱锥P-ABC的体积为V=.故答案为:或.由三棱锥外接球的表面积求出三棱锥外接球的半径,然后分类求三棱锥的高,代入体积公式求解.本题考查多面体外接球的表面积与体积的求法,考查数形结合的解题思想方法与分类讨论得数学思想方法,是中档题.16.答案:解析:解:设直线AB的倾斜角为锐角θ,则直线CD的倾斜角为,由焦半径公式得,,,,∴△ACF的面积为====,同理可得△BDF的面积为,令,则△ACF与△BDF面积之和为,再令x=t2+1∈[1,2),则△ACF与△BDF面积之和为,由双勾函数的单调性可知,当x=1时,△ACF与△BDF面积之和取到最小值,即2p2=16,由于p>0,得,因此,抛物线的方程为.故答案为:.设直线AB的倾斜角为锐角θ,则直线CD的倾斜角为,利用焦半径公式分别求出|AF|、|BF|、|CF|、|DF|,并求出△ACF与△BDF面积之和的表达式,通过不断换元,并利用双勾函数的单调性求出两个三角形面积之和的最小值,求出p的值,于是得出抛物线的方程.本题考查直线与抛物线的综合问题,考查抛物线的定义,考查计算能力与推理能力,属于中等题.17.答案:解:(1)证明:根据题意,当n≥2时,S n-1-1,S n,S n+1成等差数列,则2S n=(S n-1-1)+(S n+1),变形可得:S n-S n-1=(S n+1-S n)-1,即a n+1-a n=1,则数列{a n}是公差为1的等差数列;(2)由(1)的结论,数列{a n}是公差为1的等差数列,则a n=a1+(n-1),又由S n=0,S n+1=4,则a n+1=S n+1-S n=4,则有a n+1=a1+n=4,①又由S n=0,可得S n==0,变形可得2a1+(n-1)=0,②联立①②可得:n=7.解析:(1)根据题意,根据等差中项的性质可得2S n=(S n-1-1)+(S n+1),变形可得:S n-S n-1=(S n+1-S n)-1,即a n+1-a n=1,由等差数列的定义分析可得答案;(2)由(1)的结论可得a n=a1+(n-1),又由S n=0,S n+1=4,则a n+1=S n+1-S n=4,则有a n+1=a1+n=4,又由S n=0,可得S n==0,变形可得2a1+(n-1)=0,联立两个式子求出n的值,即可得答案.本题考查等差数列的性质的应用,涉及等差数列的通项公式的应用,属于基础题.18.答案:解:(1)由AB=3,BC=4,AC=5,知AB2+BC2=AC2,则AB⊥BC,由PA⊥面ABCD,BC⊂面ABCD,得PA⊥BC,由PA∩AB=A,PA,AB⊂面PAB,则BC⊥面PAB,则点C到平面PAB的距离为一个定值BC=4.(2)由PA⊥面ABCD,AB为PB在平面ABCD上的射影,则∠PBA为直线PB与平面ABCD所成的角,则∠PBA=45°,所以PA=AB=3.由AD∥BC,AB⊥BC,得AB⊥AD,故直线AB、AD、AP两两垂直,因此,以点A为坐标原点,以AB、AD、AP所在的直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,P(0,0,3),D(0,3,0),C(3,4,0),=(0,-3,3),=(3,1,0),设平面PDC的法向量为=(x,y,z),则,取x=1,则=(1,-3,-3),平面PAD的一个法向量=(1,0,0),cos<>===,由题意得A-PD-C的平面角为钝角,∴二面角A-PD-C的余弦值为-.解析:(1)根据几何关系得到BC⊥面PAB,进而得到点面距离.(2)根据线面角得到∠PBA=45°,所以PA=AB=3,建立坐标系求得面的法向量由向量夹角的计算公式,进而得到二面角的余弦值.这个题目考查了空间中的直线和平面的位置关系,线面角的找法,平面和平面的夹角.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.19.答案:解:(1)椭圆上的左顶点到左焦点的距离最小为2-,结合题干条件得到,解得a=2,b=1,故椭圆Γ的方程为:.(2)设A(x1,y1),B(x2,y2),P(1,t),M(1,0),若直线AB与x轴不重合时,设直线AB的方程为x=my+1,点N(4,),,将直线代入椭圆方程整理得:(m2+4)y2+2my-3=0,△>0,则y1+y2=-,,+======2•=2k0,若直线AB与x轴重合时,则B(-2,0),A(2,0),N(4,0),此时k1+k2==-t,而k0=-t,故k1+k2=2k0.综上所述,存在实数λ=2符合题意.解析:(1)根据题干列出式子2-=a-c,结合求解即可;(2)设出直线方程,联立直线和椭圆方程,设A(x1,y1),B(x2,y2),P(1,t),+,根据韦达定理化简得到结果.当直线AB与x轴重合时验证即可.本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.20.答案:解:(1)由频率分布直方图可知一台电脑使用时间在(4,8]上的概率为:P=(0.14+0.06)×2=0.4=,设“任取3台电脑,至少有两台使用时间在(4,8]”为事件A,则P(A)=••+•=;(2)(ⅰ)由y=e a+bx得ln y=a+bx,即t=a+bx,===-0.3=-=1.9-(-0.3)×5.5=3.55,即t=-0.3x+3.55,所以=e-0.3x+3.55;(ⅱ)根据频率分布直方图对成交的二手折旧电脑使用时间在(0,2],(2,4],(4,6],(6,8],(8,10]上的频率依次为:0.2,0.36,0.28,0,12,0.04:根据(1)中的回归方程,在区间(0,2]上折旧电脑价格的预测值为e3.55-0.3×1=e3.25≈26,在区间(2,4]上折旧电脑价格的预测值为e3.55-0.3×3=e2.65≈14,在区间(4,6]上折旧电脑价格的预测值为e3.55-0.3×5=e2.05≈7.8,在区间(6,8]上折旧电脑价格的预测值为e3.55-0.3×7=e1.45≈4.3,在区间(8,10]上折旧电脑价格的预测值为e3.55-0.3×9=e0.85≈2.3,于是,可以预测该交易市场一台折旧电脑交易的平均价格为:0.2×26+0.36×14+0.28×7.8+0.12×4.3+0.04×2.3=13.032(百元)故该交易市场收购1000台折旧电脑所需的费用为:1000×13.032=1303200(元).解析:(1)由频率分布直方图知一台电脑使用时间在(4,8]上的概率值,再计算满足题意的概率值;(2)(ⅰ)根据公式计算得到其中的回归系数,即可写出回归方程;(ⅱ)根据频率分布直方图对成交的二手折旧电脑使用时间在(0,2],(2,4],(4,6],(6,8],(8,10]上的频率值,再得到各个区间上的相应的估计值,进而得到平均值.本题考查了回归分析回归方程的计算,频率分布直方图的应用问题,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.21.答案:解:(1)由f(x)=x-,得f'(x)=,由题意知f'(x)≥0恒成立,即x-ln x-k≥0,设F(x)=x-ln x-k,F'(x)=1-,x∈(0,1)时F'(x)<0,F(x)递减;x∈(1,+∞)时,F'(x)>0,F(x)递增;故F(x)min=F(1)=1-k≥0,∴k≤1,故k的取值范围是:(-∞,1];(2)当k≤1时,f(x)单调,无极值;当k>1时,F(1)=1-k<0,一方面,F(e-k)=e-k,且F(x)在(0,1)递减,∴F(x)在区间(e-k,1)有一个零点,另一方面,F(e k)=e k-2k,设g(k)=e k-2k(k>1),则g'(k)=e k-2>0,从而g(k)在(1,+∞)递增,则g(k)>g(1)=e-2>0,即F(e k)>0,又F(x)在(1,+∞)递增,∴F(x)在区间(1,e k)有一个零点,因此,当k>1时,f'(x)在(e-k,1)和(1,e k)各有一个零点,将这两个零点记为x1,x2(x1<1<x2),当x∈(0,x1)时F(x)>0,即f'(x)>0;当x∈(x1,x2)时F(x)<0,即f'(x)<0;当x∈(x2,+∞)时F(x)>0,即f'(x)>0,从而f(x)在(0,x1)递增,在(x1,x2)递减,在(x2,+∞)递增;于是x1是函数的极大值点,x2是函数的极小值点,下面证明:f(x1)>0,f(x2)<0,由f'(x1)=0得x1-ln x1-k=0,即k=x1-ln x1,由得=,令,则m'(x)=,①当x∈(0,1)时m'(x)<0,m(x)递减,则m(x)>m(1)=0,而x1<1,故f(x1)>0;②当x∈(1,+∞)时m'(x)<0,m(x)递减,则m(x)<m(1)=0,而x2>1,故f(x2)<0;一方面,因为f(e-2k)=e-2k-1<0,又f(x1)>0,且f(x)在(0,x1)递增,∴f(x)在(e-2k,x1)上有一个零点,即f(x)在(0,x1)上有一个零点.另一方面,根据e x>1+x(x>0)得e k>1+k,则有f(e4k)=e4k-12k2-1>(1+k)4-12k2-1=,又f(x2)<0,且f(x)在(x2,+∞)递增,故f(x)在(x2,e4k)上有一个零点,故f(x)在(x2,+∞)上有一个零点,又f(1)=0,故f(x)有三个零点.解析:(1)由题意知f′(x)≥0恒成立,构造函数F(x)=x-ln x -k,对函数求导,求得函数最值,进而得到结果;(2)当k>1时先对函数求导研究函数的单调性可得到函数有两个极值点,再证f(x1)>0,f(x2)<0本题考查函数的零点与导数的综合应用,关键是利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,属难题.22.答案:解:(1)由(α是参数),得,∴,即,∴曲线C1的极坐标方程为.由ρ=4sinθ,得ρ2=4ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:x2+y2=4y,故曲线C2的直角坐标方程为x2+y2-4y=0.(2)设点A、B的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β(0<β)分别代入曲线C1、C2极坐标方程得:,ρ2=4sinβ,则|OA|+|OB|=+4sinβ=(β+φ),其中φ为锐角,且满足sinφ=,cosφ=,当β+φ=时,|OA|+|OB|取最大值,此时φ,tanβ=tan(φ)===.解析:(1)先得到C1的一般方程,再由极坐标化直角坐标的公式得到一般方程,将ρ2=x2+y2,y=ρsinθ代入得x2+y2=4y,得到曲线C2的直角坐标方程;(2)设点A、B的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β(0<β)分别代入曲线C1、C2极坐标方程得:,ρ2=4sinβ,可得|OA|+|OB|=+4sinβ,化简可得到最值,此时φ,可求解.本题考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些,是中档题.23.答案:解(1)当t=3时,由|f(x)|≥3得||x-3|-3|≥3,即|x-3|-3≥3或|x-3|-3≤-3,⇔|x-3|≥6或|x-3|≤0⇔x-3≥6或x-3≤-6或x=3解之得:x≥9或x≤-3或x=3.(2)由f(x+2)≤0得|x-1|-t≤0,即-t+1≤x≤t+1,故,所以t=2,由ab-2a-8b=2t-2得ab-2a-8b=2,则(a-8)(b-2)=18,a+2b=(a-8)+2(b-2)+12≥2+12=2×6+12=24,当且仅当a-8=2(b-2)即a=14,b=5时取等号.解析:(1)原式子等价于||x-3|-3|≥3,即|x-3|-3≥3或|x-3|-3≤-3,由绝对值不等式的几何意义求解即可;(2)由原式得|x-1|-t≤0,即-t+1≤x≤t+1,故,再由均值不等式得解即可这个题目考查了含有绝对值的不等式的解法,以及均值不等式的应用,属于中档题.。
2020年湖北省黄冈中学高考数学模拟试卷(理科)(四) (含答案解析)
2020年湖北省黄冈中学高考数学模拟试卷(理科)(四)一、单项选择题(本大题共12小题,共60.0分)1.集合A={0,2},B={x∈N|x<3},则A∩B=()A. {2}B. {0,2}C. (0,2]D. [0,2]2.已知复数z=,则|z|=()1+√3iA. 3B. 5C. √5D. 103.命题“∃x0>0,x02−4x0+3<0”的否定是()A. ∀x≤0,x2−4x+3<0B. ∃x0≤0,x02−4x0+3<0C. ∀x>0,x2−4x+3≥0D. ∃x0>0,x02−4x0+3≥04.已知向量a⃗=(2,1),b⃗ =(x,−6),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 5B. 5√2C. 6D. 505.已知x,y∈R,则“x>1或y>1”是“x+y>2”的()A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分也非必要条件6.运行如图的程序框图,输出的n值为()A. 4B. 3C. 2D. 17.若一个正三棱柱的三视图如图所示,则这个正三棱柱的体积为().A. 6√3B. 2√3C. 8√3D. 8√338.函数f(x)=√3cos2x−sin2x的单调减区间为()A. [kπ+π6,π+2π3],k∈Z B. [kπ−7π12,π−π12],k∈ZC. [2kπ−7π12,2kπ−π12],k∈Z D. [kπ−π12,kπ+5π12],k∈Z9.若关于x,y的不等式组{2x−y+3>0,x+m<0,y−m>0表示的平面区域内存在点P(x0,y0)满足x0−2y0=3,则实数m的取值范围是()A. (−∞,−3)B. (−1,1)C. (−∞,−1)D. (−1,+∞)10.若函数f(x)=12x2−ax+lnx有极值,则a的取值范围是()A. [2,+∞)B. (2,+∞)C. (0,2)D. (−∞,2)∪(2,+∞)11.已知双曲线x2a2−y2b2=1(a>0,b>0)与函数y=√x(x≥0)的图象交于点P,若函数y=√x的图象与点P处的切线过双曲线左焦点F(−4,0),则双曲线的离心率是()A. √17+44B. √17+34C. √17+24D. √17+1412.若函数f(x)=e xx +a(x−lnx)在(12,2)内有两个不同的极值点,则实数a的取值范围是()A. (−2√e,−e)B. [−2√e,−e)C. (−e22,−2√e) D. (−e22,−2√e]二、填空题(本大题共4小题,共20.0分)13.若(ax−1)5的展开式中x3的系数是80,则实数a的值是_______.14.在△ABC中,已知(a+b+c)(b+c−a)=3bc,且sin A=2sin Bcos C,则△ABC的形状为____________.15.点P(x,y)是直线2x+y+4=0上的动点,PA,PB是圆C:x2+(y−1)2=1的两条切线,A,B是切点,则△PAB面积的最小值为________.16.如图,在正方体ABCD−A1B1C1D1中,点P在直线BC1上移动,给出下列命题:①三棱锥A−D1PC的体积为定值且A1D⊥PD1;②直线AP与平面ACD1所成角的大小不变;③二面角P−AD1−C的大小不变;④M是平面A1B1C1D1上到点和距离相等的点,则M点的轨迹是过D1点的直线且平行于BC的直线.其中真命题的个数是________(写出所有真命题的编号).三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式及前n项和S n;(2)求1S1+1S2+1S3+⋯+1S10的值.18.某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如表:(Ⅰ)根据以上2×2列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数X的分布列及数学期望.参考公式:κ2=n(ad−bc)2,其中n=a+b+c+d(a+b)(c+d)(a+c)(b+d)参考数据:P(K≥k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.82819.如图,在四棱锥P−ABCD中,底面ABCD为矩形且AD=2AB,侧面PAD⊥底面ABCD,且侧面PAD是正三角形,E是AD中点.(1)证明:CE⊥平面PBE;(2)求二面角D−PC−B的余弦值.20. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =√33,左、右焦点分别为F 1,F 2,且F 2与抛物线y 2=4x 的焦点重合.(Ⅰ)求椭圆的标准方程;(Ⅱ)若过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,求|AC|+|BD|的最小值.21. 已知函数f(x)=e 2x +mx ,其中m ≤0.(Ⅰ)当m =−1时,求曲线y =f(x)在点(0,f(0))处的切线方程; (Ⅱ)若不等式f(x)>0在定义域内恒成立,求实数m 的取值范围.22. 在极坐标系中,圆C 的方程为ρ=4cosθ,在以极点为原点,极轴为x 轴正半轴的平面直角坐标系中,直线l 的参数方程是{x =√22t +my =√22t(t 为参数).若直线l 与圆C 相切,求实数m 的值.23.(1)已知f(x+1)=x2+2x,求f(x)的解析式.(2)已知不等式|x−2|+|x+1|>a对于一切的实数x恒成立,求a的范围.【答案与解析】1.答案:B解析:解:集合A ={0,2},B ={x ∈N|x <3}={0,1,2}, 则A ∩B ={0,2}. 故选:B .根据交集的定义写出A ∩B .本题考查了交集的定义与计算问题,是基础题.2.答案:B解析:根据|z|=1+√3i =|1+√3i|.本题考查了复数的运算,是一道基础题. 解:|z|=|1+√3i |=|1+√3i|=102=5,故选B .3.答案:C解析:解:因为特称量词命题的否定是全量词称命题,所以命题“∃x 0>0,x 02−4x 0+3<0”的否定是∀x >0,x 2−4x +3≥0. 故选:C .直接利用特称量词命题的否定是全称量词命题写出结果即可.本题考查命题的否定.特称量词命题与全称量词命题的否定关系,基本知识的考查.4.答案:B解析:本题考查向量的数量积的性质和运用,注意运用向量垂直的条件和向量的平方即为模的平方,考查运算能力,属于基础题.由向量垂直的条件:数量积为0,可得x =3,再由向量的模的坐标运算即可得到所求值.解:向量a⃗=(2,1),b⃗ =(x,−6),若a⃗⊥b⃗ ,则a⃗⋅b⃗ =0,即有2x−6=0,解得x=3,a⃗+b⃗ =(5,−5)则|a⃗+b⃗ |=√52+(−5)2=5√2.故选B.5.答案:C解析:解:命题的等价形式为判断x+y≤2是x≤1且y≤1的关系,若x≤1且y≤1时,x+y≤2成立,即必要性成立,当x=3,y=−4时,满足x+y≤2,但x≤1且y≤1不成立,即充分性不成立,即x+y≤2是x≤1且y≤1的必要不充分条件,即“x>1或y>1”是“x+y>2”的必要不充分条件,故选:C.根据逆否命题的等价性,判断x+y≤2是x≤1且y≤1的关系,即可.本题主要考查充分条件和必要条件的判断,结合条件转化判断x+y≤2是x≤1且y≤1的关系,是解决本题的关键.6.答案:C解析:解:模拟程序的运行,可得n=1,21>11,满足条件,执行循环体,n=2,22>22,不满足条件,退出循环,输出n的值为2.故选:C.根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,可得答案.本题考查的知识点是循环结构的程序框图的应用,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答,属于基础题.7.答案:C解析:三视图复原的几何体是一个三棱柱,根据三视图数据求出底面面积,然后求出几何体的体积即可.本题是基础题,考查三视图与直观图的关系,正三棱柱的体积的求法,考查空间想象能力、计算能力.解:三视图复原的几何体是底面高为2√3的正三角形,高为2的直棱柱,底面三角形的边长为a,√a2−(12a)2=2√3,a=4,棱柱的底面面积为:12×2√3×4=4√3,几何体的体积为4√3×2=8√3.故选C.8.答案:D解析:解:∵函数f(x)=√3cos2x−sin2x=2(√32cos2x−12sin2x)=2sin(π3−2x)=−2sin(2x−π3),故本题即求y=2sin(2x−π3)的增区间.由2kπ−π2≤2x−π3≤2kπ+π2,k∈Z,可得kπ−π12≤x≤kπ+5π12,k∈Z.故y=2sin(2x−π3)的增区间为[kπ−π12,kπ+5π12],k∈Z,故选D.化简可得函数f(x)=−2sin(2x−π3),本题即求y=2sin(2x−π3)的增区间.由2kπ−π2≤2x−π3≤2kπ+π2,k∈z,求得x的范围,即得所求.本题主要考查两角和差的正弦公式,正弦函数的单调增区间的求法,体现了等价转化的数学思想,属于中档题.9.答案:C解析:本题考查二元一次不等式(组)与平面区域,属于基础题.作出不等式组所表示的平面区域,设点A的坐标为(−m,m),由题意知,直线x−2y=3必须穿过平面区域ABC,即点A在直线x−2y=3的下方,所以−m−2m>3.由此解得m的取值范围.解:不等式组表示的平面区域如图中阴影部分所示,点A的坐标为(−m,m),由题意知,直线x−2y=3必须穿过平面区域ABC,即点A在直线x−2y=3的下方,所以−m−2m>3.即m<−1,故选C.10.答案:B解析:本题考查了利用导数研究函数的单调性极值,考查了分类讨论的思想方法,考查了转化方法,考查了推理能力与计算能力,属于中档题.首先求函数的定义域,再求出导函数,利用函数有极值则导函数等0有穿过x轴的根的关系,列出不等式求解即可.解:因为函数f(x)=12x2−ax+lnx,所以f′(x)=x−a+1x =x2−ax+1x,(x>0).因为函数f(x)=12x2−ax+lnx有极值,所以导函数f′(x)=x2−ax+1x=0有解,令g(x)=x2−ax+1,则g(x)=x2−ax+1=0在(0,+∞)函数值有解,当a≤0时,必须g(0)<0不成立;当a>0时,对称轴x=a2,满足(a2)2−a⋅a2+1<0,解得a∈(2,+∞).故选B.11.答案:D解析:解:设P的坐标为(m,√m),左焦点F(−4,0),函数的导数f′(x)=2√x ,则在P处的切线斜率k=f′(m)=12√m=√mm+4,即m+4=2m,得m=4,则P(4,2),设右焦点为A(4,0),则2a=|PF|−|PA|=√64+4−√0+4=2(√17−1),即a=√17−1,∵c=4,∴双曲线的离心率e=ca =√17+14,故选:D.设P的坐标为(m,√m),求函数导数,利用导数的几何意义以及切线斜率公式建立方程关系求出m=4,根据双曲线的定义求出a,c即可.本题考查双曲线的离心率的求法,根据导数的几何意义,建立切线斜率关系,求出a,c是解决本题的关键.考查运算能力.12.答案:D解析:本题考查了利用导数研究函数的极值、零点和单调性,属于较难题.对原函数求导,根据题目条件和函数定义域,可得函数的单调区间,由导函数可知一个极值点为x=1,所以e x+ax=0在区间(12,2)内有一个根,令g(x)=−e xx,讨论其单调性和值域,则g(x)=a有一解,即可求得a的取值范围.解:由题可知,f′(x)=e x (x−1)x 2+a(1−1x )=(e x +ax)(x−1)x 2,由条件可知,f′(x)=0在区间(12,2)内有两个不同的根,又由导函数可知一个极值点为x =1,所以e x +ax =0在区间(12,2)内有一个根,且a ≠−e , 令g(x)=−e xx,则g′(x)=−e x (x−1)x 2,当x ∈(12,1)时,g′(x)>0,g(x)单调递增,当x ∈(1,2)时,g′(x)<0,g(x)单调递减, g(x)max =g(1)=−e ,所以g(12)=−2√e,g(2)=−12e 2, 又a ≠−e , 所以当a ∈(−e 22,−2√e] 时,g(x)=a 有一个根,故所求实数a 的取值范围为(−e 22,−2√e],故选D .13.答案:2解析:本题主要考查了二项式特定项的系数,以及二项展开式的通项,同时考查了计算能力,属于基础题.二项展开式的通项T r+1=C 5r (ax)5−r (−1)r =(−1)r a 5−r C 5r x 5−r ,令5−r =3可得r =2,从而有a 3C 52=80,即可求a 的值.答案:解:二项展开式的通项T r+1=C 5r (ax)5−r (−1)r =(−1)r a 5−r C 5r x 5−r .令5−r =3可得r =2,∴a 3C 52=80,∴a =2. 故答案为:214.答案:正三角形解析:本题考查了余弦定理,两角和与差的三角函数公式和解三角形的应用.利用余弦定理得A=π3,再利用两角和与差的正弦函数公式得B=C,从而得结论.解:由(a+b+c)(b+c−a)=3bc得b2+c2−a2=bc,所以cosA=b2+c2−a22bc =12.因为A为三角形内角,所以A=π3.由sin A=2sin Bcos C得sin (B+C)=2sin Bcos C,所以sin(B−C)=0,由B与C都是三角形内角知B=C,因此△ABC的是正三角形.故答案为正三角形.15.答案:85解析:本题考查了直线与圆的位置关系,切线的性质,属于中档题.当PC与直线2x+y+4=0垂直时,PA最小,设PC=d,则d≥√5,求出PA=PB的值,再求出AB,进一步得到AD的值,因而可求得三角形PAB面积的最小值.解:圆C的半径为r=1,圆心C(0,1)到直线2x+y+4=0的距离为5√22+1=√5,设PC =d ,则d ≥√5,PA =PB =√d 2−1, 则AB =2⋅PA⋅AC PC=2⋅√d 2−1d=2√1−1d 2,∴当d 取得最小值√5时,PA 取得最小值为√5−1=2, AB 取得最小值为4√55,AD 取得最小值为2√55,则CD =√AC 2−AD 2=(2√55)=√55,则PD =PC −CD =√5−√55=4√55, ∴三角形PAB 面积的最小值为:12AB ⋅PD =12×4√55×4√55=85.故答案为85.16.答案:①③④解析:本题考查了空间点、线、面的位置关系,空间轨迹问题,属于中档题.①:点P 是直线BC 1的动点,△AD 1P 的面积是定值,而点C 到平面AD 1P 的距离也是定值,故得到结论; ②:可以从向量的角度进行判断;③:平面PD 1A 平面ACD 1的法向量的夹角是不变的,得到结论.④:由M 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,M 点的轨迹是线段DC 1在空间的垂直平分线与面A 1B 1C 1D 1的交点.解:对于①:∵点P 是直线BC 1的动点,∴△AD 1P 的面积是定值,∵点C 到平面AD 1P 的距离不变,∴三棱锥A −D 1PC 的体积为定值,A 1D ⊥AD 1,A 1D ⊥AB,AD 1∩AB =B ,故A 1D ⊥平面ABC 1D 1,PD 1在平面ABC 1D 1从而A 1D ⊥PD 1,故①正确;对于②:∵随着P 点的移动,AP ⃗⃗⃗⃗⃗ 与平面ACD 1的法向量的夹角也是变化的,∴②错误; 对于③:∵平面PD 1A 平面ACD 1的法向量的夹角是不变的,∴③正确;对于④:∵M 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,∴M 点的轨迹是线段DC 1在空间的垂直平分线与面A 1B 1C 1D 1的交点,故其轨迹是直线A 1D 1,故④正确. 故答案为①③④.17.答案:解:(1)∵数列{a n}是等差数列,由a1+a2+a3=12,得3a2=12,a2=4,又a1=2,∴d=a2−a1=4−2=2,∴数列{a n}的通项公式为:a n=a1+(n−1)d=2+2(n−1)=2n,数列{a n}的前n项和为:S n=n(a1+a n)2=n(2+2n)2=n(n+1);(2)∵1S n =1n(n+1)=1n−1n+1,∴求1S1+1S2+1S3+⋯+1S10=(1−1)+(1−1)+(1−1)+⋯+(1−1)=1−111=1011.解析:(1)由已知借助于等差数列的性质求出a2,由等差数列的定义得到公差,则数列{a n}的通项公式及前n项和S n可求;(2)把1S n进行裂项,然后利用裂项相消法求和.本题考查了等差数列的通项公式,考查了等差数列的前n项和,训练了裂项相消法求数列的和,是中档题.18.答案:解:(1)由列联表可得K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=30×(4×2−8×16)212×18×20×10=10>7.879所以能在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.(2)根据题意,X可取的值为0,1,2.P(X=0)=C42C122=111,P(X=1)=C81C41C122=1633,P(X=2)=C82C122=1433,所以X的分布列是:X 的数学期望是E(X)=0×111+1×1633+2×1433=43.解析:本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.(1)由列联表求出K 2=10>7.879,从而能在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.(2)根据题意,X 可取的值为0,1,2.分别求出相应的概率,由此能求出X 的分布列和数学期望.19.答案:解:(1)证明:∵侧面△PAD 是正三角形,E 是AD 中点,∴PE ⊥AD ,∵侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD , ∴PE ⊥底面ABCD ,∴PE ⊥CE , ∵底面ABCD 是矩形且AD =2AB , ∴AE =DE =AB =CD , ∴∠AEB =∠DEC =45°, ∴∠AEB +∠DEC =90°, ∴∠BEC =90°,∴BE ⊥CE , ∵PE ∩BE =E ,∴CE ⊥平面PBE .(2)解:以E 为原点,以ED ,EP 所在直线,AD 的垂直平分线为x ,z ,y 轴,建立空间直角坐标系, 设AD =2AB =2,则点D(1,0,0),C(1,1,0),P(0,0,√3),B(−1,1,0), ∴PD ⃗⃗⃗⃗⃗ =(1,0,−√3),PC ⃗⃗⃗⃗⃗ =(1,1,−√3),PB ⃗⃗⃗⃗⃗ =(−1,1,−√3), 设平面PCB 的法向量m⃗⃗⃗ =(x,y ,z), 则{m ⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =−x +y −√3z =0m ⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =x +y −√3z =0,取z =1,得m ⃗⃗⃗ =(0,√3,1), 设平面PCD 的法向量n ⃗ =(a,b ,c), 则{n ⃗ ⋅PD ⃗⃗⃗⃗⃗ =a −√3c =0n ⃗ ⋅PC ⃗⃗⃗⃗⃗ =a +b −√3c =0,取c =1,得n ⃗ =(√3,0,1),设二面角D −PC −B 的平面角为θ,则θ为钝角,∴二面角D −PC −B 的余弦值为:cosθ=−|m ⃗⃗⃗ ⋅n ⃗⃗ ||m⃗⃗⃗ |⋅|n ⃗⃗ |=−14.解析:本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出PE ⊥AD ,从而PE ⊥底面ABCD ,PE ⊥CE ,AE =DE =AB =CD ,BE ⊥CE ,由此能证明CE ⊥平面PBE .(2)以E 为原点,以ED ,EP 所在直线,AD 的垂直平分线为x ,z ,y 轴,建立空间直角坐标系,利用向量法能求出二面角D −PC −B 的余弦值.20.答案:解:(Ⅰ)抛物线y 2=4x 的焦点为(1,0),所以c =1,又因为e =ca =1a =√33,所以a =√3,所以b 2=2,所以椭圆的标准方程为x 23+y 22=1.(Ⅱ)(i)当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y =k(x +1),代入椭圆方程x 23+y 22=1,并化简得(3k 2+2)x 2+6k 2x +3k 2−6=0.设B(x 1,y 1),D(x 2,y 2),则x 1+x 2=−6k 23k 2+2,x 1x 2=3k 2−63k 2+2,|BD|=√1+k ⋅|x 1−x 2|=√(1+k 2)⋅[(x 1+x 2)2−4x 1x 2]=4√3(k 2+1)3k 2+2. 易知AC 的斜率为−1k , 所以|AC|=4√3(1k 2+1)3×1k 2+2=4√3(k 2+1)2k 2+3.|AC|+|BD|=4√3(k 2+1)(13k 2+2+12k 2+3)=20√3(k 2+1)2(3k 2+2)(2k 2+3)≥20√3(k 2+1)2[(3k 2+2)+(2k 2+3)2]2=20√3(k 2+1)225(k 2+1)24=16√35.当k 2=1,即k =±1时,上式取等号,故|AC|+|BD|的最小值为16√35. (ii)当直线BD 的斜率不存在或等于零时,易得|AC|+|BD|=10√33>16√35. 综上,|AC|+|BD|的最小值为16√35.解析:(Ⅰ)利用抛物线y 2=4x 的焦点求出c =1,通过椭圆的离心率求出a ,然后求解b ,即可得到椭圆方程.(Ⅱ)(i)当直线BD的斜率k存在且k≠0时,直线BD的方程为y=k(x+1),代入椭圆方程x23+y22=1,并化简,设B(x1,y1),D(x2,y2),利用韦达定理以及弦长公式,求出BD,推出AC,即可转化求解|AC|+|BD|的最小值.(ii)当直线BD的斜率不存在或等于零时,验证|AC|+|BD|的最小值即可.本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想,分类讨论思想的应用以及计算能力.21.答案:解:(Ⅰ)当m=−1时,f(x)=e2x−x∴f′(x)=2e2x−1------------------------------(2分)则f′(0)=1,又f(0)=1------------------------------------(4分)∴曲线y=f(x)在点(0,f(0))处的切线方程为:y=x+1-----(5分)(Ⅱ)函数f(x)定义域为(−∞,+∞),且f′(x)=2e2x+m,其中m≤0-------(6分)下面对实数m进行讨论:①当m=0时,f(x)=e2x>0恒成立,满足条件------------------------------(7分)②当m<0时,由f′(x)>0解得x>12ln(−m2),从而知函数f(x)在(12ln(−m2),+∞)内递增;同理函数f(x)在(−∞,12ln(−m2))内递减-------------------(9分)因此f(x)在x=12ln(−m2)处取得最小值m2[ln(−m2)−1]------------(10分)∴m2[ln(−m2)−1]>0解得−2e<m<0--------------------------------(12分)综上:当m∈(−2e,0]时,不等式f(x)>0在定义域(−∞,+∞)内恒成立.---(13分)解析:(Ⅰ)当m=−1时,f′(x)=2e2x−1,可得f′(0)=1,又f(0)=1,即可得曲线y=f(x)在点(0,f(0))处的切线方程.(Ⅱ)f′(x)=2e2x+m,其中m≤0对实数m进行讨论:①当m=0,②当m<0.可得f(x)在x=1 2ln(−m2)处取得最小值m2[ln(−m2)−1],解得−2e<m<0.本题考查了利用导数研究函数的单调性极值与最值,考查了函数零点存在但是无法求出的情况下研究函数的单调性极值问题,考查了分类讨论思想方法,考查了推理能力与计算能力,属于难题.22.答案:解:圆C的方程为ρ=4cosθ,转换为直角坐标方程为:(x−2)2+y2=4.直线l 的参数方程是{x =√22t +my =√22t(t 为参数). 转换为直角坐标方程为:x −y −m =0, 若直线l 与圆C 相切,则:(2,0)到直线x −y −m =0的距离为2, 即:2=2,解得:m =2±2√2.解析:首先把参数方程直角坐标方程和极坐标方程之间进行转换,进一步利用点到直线的距离公式的应用求出参数m 的值.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.答案:解:(1)令t =x +1,则x =t −1 ,所以f(t)=(t −1)2+2(t −1)=t 2−1 , ∴f(x)=x 2−1(2)要使不等式|x −2|+|x +1|>a , 只需不等式(|x −2|+|x +1|)min >a ,而不等式|x −2|+|x +1|≥|(x −2)−(x +1)|=3,当且仅当(x −2)(x +1)≥0时等号成立; 所以a <3.解析:本题主要考查了求函数解析式和不等式中的恒成立问题,属于基础题.(1)首先令t =x +1,则x =t −1,所以f(t)=(t −1)2+2(t −1)=t 2−1,再利用同一函数确定f(x)的解析式;(2)要使不等式|x −2|+|x +1|>a ,只需不等式(|x −2|+|x +1|)min >a ,而不等式|x −2|+|x +1|≥|(x −2)−(x +1)|=3,所以a <3.。
2020年湖北省黄冈中学高考数学三模试卷(理科)(有解析)
2020年湖北省黄冈中学高考数学三模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=()A. {6,9}B. {6,7,9}C. {7,9}D. {7,9,10}2.复数z=i1−i的共轭复数的模为()A. 12B. √22C. 1D. 23.(2x−y)5的展开式中x2y3的系数是()A. 40B. 80C. −40D. −804.若向量a⃗=(2,3),b⃗ =(−1,2),则a⃗⋅(a⃗−2b⃗ )=()A. 5B. 6C. 7D. 85.设a=sin2,b=log0.3π,c=40.5,则()A. b<a<cB. a<b<cC. c<a<bD. b<c<a6.2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,一方有难八方支援,全国各地的白衣天使走上战场的第一线,某医院抽调甲乙丙三名医生,抽调A,B,C三名护士支援武汉第一医院与第二医院,参加武汉疫情狙击战.其中选一名护士与一名医生去第一医院,其它都在第二医院工作,则医生甲和护士A被选为第一医院工作的概率为()A. 112B. 16C. 15D. 197.将函数f(x)=sin(2x−π3)的图象向左平移π3个单位,再将横坐标伸长到原来的2倍后,所得函数为g(x),则g(π)=()A. −12B. 12C. −√32D. √328.在正三棱柱ABC−A1B1C1中,若AA1=2AB,D是AA1的中点,则BD与A1C1所成角的余弦值为()A. 12B. √24C. √22D. 2√239.已知双曲线C:y29−x2b=1(b>0),其焦点F到C的一条渐近线的距离为2,该双曲线的离心率e为()A. √133B. √132C. 23D. 3210.下列方程的曲线不关于x轴对称的是()A. x2−x+y2=1B. x2y+xy2=1C. 2x2−y2=1D. x+y2=−111.在△ABC中,内角A、B、C所对的边分别为a、b、c,且BC边上的高为a2,则当bc+cb取得最大值时,内角A=()A. 2π3B. π2C. π3D. π412.已知三棱锥S−ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A. √26B. √36C. √23D. √22二、填空题(本大题共4小题,共20.0分)13.一批产品中,次品率为14,现有放回地连续抽取4次,若抽取次品件数记为X,则V(X)的值为________.14.已知α∈(0,π2),cos(α+π4)=35,则cosαcos2α=______ .15.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为______ .16.当x>3时,不等式x+1x−1⩾a恒成立,则实数a的取值范围是__________.三、解答题(本大题共7小题,共82.0分)17.等差数列{a n}满足a1=3,a2+1,a5+1,a9+5成等比数列,数列{b n}满足b1=1,b n+1=b n+a n.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)数列{a nb n b n+1}的前n项和为Tn,求证:T n<1.18.如图,在四棱锥P−ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB;(2)若AB=√2,PB与平面APD所成角为45°,求二面角A−PC−B的大小.19.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√63,且经过点(√3,1)(Ⅰ)求椭圆方程;(Ⅱ)过椭圆右焦点的直线l交椭圆于AB两点,O为坐标原点,求△OAB面积的最大值。