狭义相对论时空观

合集下载

狭义相对论的四维时空观

狭义相对论的四维时空观

狭义相对论的四维时空观狭义相对论的四维时空观狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。

在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。

现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。

我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。

四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。

在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。

在四维时空里,动量和能量实现了统一,称为能量动量四矢。

另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。

值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。

四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。

可以说至少它比牛顿力学要完美的多。

至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。

这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。

在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

--------------------------------------------------------------------------------狭义相对论基本原理物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。

第5章--狭义相对论(时空观)

第5章--狭义相对论(时空观)

L0 = u
的棒, 例2 有一固有长度为 L0 的棒,在S系中沿 x 轴放置。另存在一 ´ 系中沿 轴放置。另存在一S´ 相对S 轴正方向运动。 当棒在S系中沿轴以 系中沿轴以v 系,以 u 相对 系沿 x 轴正方向运动。求:当棒在 系中沿轴以 运动时, 运动时,从S´系中测得该棒的长度为多少? ´系中测得该棒的长度为多少? 系中以v 运动时, 解:当棒在 S 系中以 运动时,在 S´系看其速度为 ´
(原长 原长) 原长
l0
o x1
x2
x
o'
x'
S’系中 观测者必须同时测 x1 、2 , 系中: 观测者必须同 同时测 ′ x′
′ ′ ′ ′ t1 = t2 = t′ 得 l′ = x2 − x1 = ?
x2 =

x = 1
x′ + ut′ 1 1− β
2
′ x2 + ut′ 1− β 2
1− β 2
可见S认为 的钟慢了, 也认为S的钟慢了 的钟慢了. 可见 认为S’的钟慢了,而S’也认为 的钟慢了 认为
时间延缓在研究介子的寿命时,得到了直接的验证。 时间延缓在研究介子的寿命时,得到了直接的验证。
静止的介子平均寿命为 2.6×10−8 s , 在高能加速器中 过的距离, 过的距离,并不是 Lπ = 0.75c × 2.6 ×10−8 = 5.85m , 而是 8.5± 0.6m 。 介子获得了0.75c 的速度, 的速度, 介子获得了 实验测得 π 介子衰变前通 π
5.3 狭义相对论的时空观
一、同时性的相对性
S’系
′ ′ A(x1, t1)
′ ′ B(x2 , t2 )
′ ′ t2 = t1
′ ′ x2 ≠ x1

狭义相对论的时空观

狭义相对论的时空观

第3节 狭义相对论的时空观 一、 时空间隔变换事件1 事件2 时空间隔S :),,,(1111t z y x ),,,(2222t z y x x x x ∆=-12,y y y ∆=-12 z z z ∆=-12,t t t ∆=-12S ':),,,(1111t z y x '''' ),,,(2222t z y x '''' x x x '∆='-'12,y y y '∆='-'12z z z '∆='-'12,t t t '∆='-'1222111/1c u t u x x -'+'= 22222/1c u t u x x -'+'=11y y '= 22y y '= 11z z '= 22z z '=221211/1c u x c u t t -'+'= 222222/1cu x c u t t -'+'= 时空间隔变换:22/1c u t u x x -'∆+'∆=∆ 22/1cu tu x x -∆-∆='∆y y '∆=∆ y y ∆='∆ z z '∆=∆ z z ∆='∆222/1c u x c u t t -'∆+'∆=∆ 222/1cu xc u t t -∆-∆='∆ 例:地面观察者测得地面上甲已两地相距m 6100.8⨯一列火车从甲→已历时s 0.2,一飞船相对地面以匀速c u 6.0=的速度 甲 m 100.8⨯ 已 x 飞行,飞行方向与火车运动方向相同求:飞船上观察者测得火车从甲→已运行的路程、时间及速度 解:地面:S ,飞船:S ',c u 6.0=从甲出发:事件1,到达已地:事件2 S :m x 6100.8⨯=∆,s t 0.2=∆速度:s m t x V /100.40.2100.866⨯=⨯=∆∆= S ':22/1c u t u x x -∆-∆='∆=m 8286104.46.010.21036.0100.8⨯-=-⨯⨯⨯-⨯ 222/1c u x c u t t -∆-∆='∆=s 48.26.01100.81036.00.2268=-⨯⨯⨯- c s m t x V 59.0/10774.18-≈⨯-='∆'∆='0<问题:在飞船上观测0<'V ,为什么火车能从甲→已?二、速度变换,S :dt r d V =,dt dx V x =,dt dy V y =,dt dzV z =S ':t d r d V ''=' ,t d x d V x ''=',t d y d V y ''=',t d z d V z ''='22/1c u t u x x -'+'= 22/1cu t ud x d dx -'+'=y y '= y d dy '= z z '= z d dz '=222/1c u x c u t t -'+'= 222/1c u x d c u t d dt -'+'= xxx V c u uV x d c u t d t ud x d dt dx V '++'='+''+'==221 x y y V cu V c u x d c u t d y d c u dt dy V '+'-='+''-==2222221/1/1x z z V cu V c u x d c u t d z d c u dt dz V '+'-='+''-==2222221/1/1 逆变换:x x x V c u u V V 21--=',x y y V c u V c u V 2221/1--=',xzz V cu V c u V 2221/1--='说明:(1)c u <<,0/2→c u ,0/22→c uu V V x x +'≈,y y V V '≈,z z V V '≈(2)伽利略空间坐标变换及速度变换满足矢量加法的 平行四边形法则洛仑兹空间坐标变换及速度变换不满足矢量加法 的平行四边形法则(3)与光速不变原理自动相符合 yc V x ='z c c cu uc V c u u V V x x x =++='++'=2211例:两火箭相向飞行地面上测得c 9.0c V A 9.0= c V B 9.0-= 求:A 上观察者测得 B 的速度 解:地面:S ,火箭A :S ',c V u A 9.0==,B 为研究对象 S :B 的速度c V V B x 9.0-==S ':B 的速度c cc ccc c V c u u V V x x x 995.081.18.1)9.0(9.019.09.0122-=-=----=--='按伽利略变换,c u V V x x 8.1-=-='三、 同时的相对性, 222/1cu x c u t t -'∆+'∆=∆ (1) 如果两事件在S '系同时同地发生,即0='∆t ,0='∆x则0=∆t ,即在S 系两事件同时发生(2)如果两事件在S '系同时不同地发生,即0='∆t ,0≠'∆x 则0≠∆t ,即在S 系两事件不同时发生“异地”的同时是相对的 y SO x x 'z A B 0='∆t ,222/1c u x c u t t -'∆+'∆=∆=222/1)(cu x x c uA B -'-' 例:北京、上海相距1000km 从两地同时各发一列火车 一飞船对地以c u 6.0=的 速度飞行,方向由北京→上海 x 求:飞船上测得两地发车的时间差,哪一列火车先发出? 解:地面S ,飞船S ',c u 6.0=北京发车:事件1,上海发车:事件2 S :m km x 6101000==∆,0=∆tS ':222/1c u x c u t t -∆-∆='∆=222/1c u x c u -∆-=s 0025.06.01101036.0268-=-⨯⨯- 012<'-'='∆t t t ,12t t '<',上海的车先发出四、长度收缩Sx12Lxx='-':静止长度(固有长度)运动物体的长度=同时测得物体两端的坐标差S:t,A:1x,B:2x,Lxx=-12(tx,1):事件1,(tx,2):事件22211/1cuutxx--=',2222/1cuutxx--=',221212/1cuxxxx--='-'22/1cuLL-=,22/1LcuLL<-=,静止长度最长说明:(1)相对效应(2)物体在其运动方向长度收缩在垂直运动方向长度不变0=V例:S mx'x求:S系中测得杆长及其与x轴夹角解:S':cosθLLx=',sinθLLy='S:2222/1cos/1cuLcuLLxx-=-'=θs i nθLLLyy='=22222222s i n)/1(c o sθθLcuLLLLyx+-=+==222cos)/(1θcuL-=)(791.0m2222/1/1c o ss i ncutgcuLLLLtgxy-=-==θθθθ, 4.63=θ五、时间膨胀定义:如果在某惯性系中同一地点上先后发生了两个事件,则在该惯性系中测得的这两个事件的时间间隔称为固有时间或原时,用τ表示设在S'系中,同一地点,先后发生两个事件,0='∆x在S:222/1cuxcutt-'∆+'∆=∆=22/1cut-'∆,22/1τττ>-=cu固有时间最短 说明:(1)相对效应(2)运动的时钟变慢粒子由产生到衰变经历的时间间隔:粒子的寿命τ 固有寿命0τ22/1cu -=ττ例:带电±π介子固有寿命s 80106.2-⨯=τ,某加速器射出的带电±π介子的速度c v 8.0=求:实验室中测得±π介子的寿命及其衰变前飞行的距离 解:实验室:S ,±π介子:S ',c v u 8.0==220/1c u -=ττ=s 81033.4-⨯)(4.101033.41038.088m v l =⨯⨯⨯⨯==-τ 六、 因果关系的绝对性两个独立事件,222/1cu x c u t t -'∆+'∆=∆,由于u 及x '∆的任意性 不能保证t ∆与t '∆同号两个独立事件的先后次序是相对的 因果关系是绝对的证明:S ':相互作用或信号传递速度t x V x '∆'∆='222/1c u x c u t t -'∆+'∆=∆=)1(/1222x V c u cu t '+-'∆ c u <,c V x ≤',12<'cV u x ,012>'+c V u xt ∆与t '∆同号如果在S ':012>'-'='∆t t t 则在S :012>-=∆t t t。

爱因斯坦狭义相对论时空观的主要内容

爱因斯坦狭义相对论时空观的主要内容

爱因斯坦狭义相对论时空观的主要内容相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。

相对论的基本假设是光速不变原理,相对性原理和等效原理。

相对论和量子力学是现代物理学的两大基本支柱。

奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。

相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。

相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

狭义相对论,是只限于讨论惯性系情况的相对论。

牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。

相对于一个惯性系来说,在不同的地点、同时发生的两个事件,相对于另一个与之作相对运动的惯性系来说,也是同时发生的。

狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。

同时性问题是相对的,不是绝对的。

在某个惯性系中在不同地点同时发生的两个事件,到了另一个惯性系中,就不一定是同时的了。

在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。

宇宙的概念: 宇宙是由空间、时间、物质和能量,所构成的统一体。

是一切空间和时间的综合。

宇宙的标准模型概念: 大爆炸模型,宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的,并经过不断的膨胀到达今天的状态。

赫罗图的概念: 这张图是研究恒星演化的重要工具,赫罗图是恒星的光谱类型与光度之关系图,赫罗图的纵轴是光度与绝对星等,而横轴则是光谱类型及恒星的表面温度,从左向右递减。

黑洞的概念: 黑洞是一种引力极强的天体,就连光也不能逃脱。

当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。

这时恒星就变成了黑洞。

虫洞的概念:“虫洞”就是连接宇宙遥远区域间的时空细管。

4.3 狭义相对论基本原理 相对时空观

4.3 狭义相对论基本原理 相对时空观
在一切惯性系中,光在真空中的速率恒为c ,与 光源的运动状态无关
Guangxi university
S
y S' O
u y' O' c c c x' c x
在S系中, 若按伽利略变换: 往左:v=c-u 往右:v=c+u
Guangxi university
讨论:
1 Einstein 的相对性理论 是 Newton理论的发展 一切物理规律 力学规律
解1:以地面为参照系 介子寿命延长。 用经典时空观 介子所走路程
y 0.998c 0 8 6 y 0.998 3 10 2.15 10 644(m )
还没到达地面,就已经衰变了。但实际探测 仪器不仅在地面,甚至在地下 3km 深的矿井 中也测到了 介子。
Guangxi university
S
S
u
弟 a. e f 弟 0 .
x
x
x
) 花开事件:( x, t1 S 系x处发生两个事件 ) ( x, t 2 花谢事件:
t1 (寿命) t t2
在S系中观察者测量花的寿命是多少?
Guangxi university
S
第三节
狭义相对论基本原理 相对时空观
Guangxi university
返回
一、 狭义相对论的两条基本原理
爱因斯坦在1905年发表的《论动体的电动力学》 论文中提出了狭义相对论两条基本原理 1.相对性原理
所有物理规律在一切惯性系中都具有相同形式。 (所有惯性系都是平权的,在它们之中所有物理规 律都一样) 2.光速不变原理
2 光速不变与伽利略变换 与伽利略的速度相加原理不相容

大学物理2 -5-第1章-狭义相对论时空观

大学物理2 -5-第1章-狭义相对论时空观




第 1 章 狭义相对论时空观
本章主要讲解四个方面问题:
1)伽利略坐标变换、力学相对性原理及牛顿力 学的时空观 。 2)狭义相对论基本原理。 3)洛仑兹坐标变换和速度变换。 4)狭义相对论时空观。 第 1 章 狭义相对论时空观
狭义相对论时空观 (相对论运动学)
t 与运动状态无关, 时空独立。 牛顿时空观: r 、 空 间 r、 时 间t 相对论时空观 : r 、 t 与运动状态有关, 时空统一。
2、长度收缩(长度的相对性,运动尺度缩短)
Y
O
O Y
u
x 2 t
X
t x1
x1
x2
X
棒的长度: 测量两端坐标来确定
(i ) 棒相对于 K 参考系静止 K系测量: 无论同时或不同时l0 x2 x1 本征长度( 静长 ) (ii) 棒相对于 K 参考系运动 t1 t ) K系测量: 必须同时测量两端坐标 ( t2
空间间隔测量的相对性的反映。
③ 在与相对运动垂直的方向上,无相对运动,故不发
生长度收缩。
第 1 章 狭义相对论时空观
l l0
u 1 c
2
【例题】 马路边竖立着一块正方形广告牌,其面积为 100 m2,以 0.80C 的速度行驶的“爱因斯坦”牌摩托
车的驾驶员测得该广告牌的面积为多少?
dx
dx udt
2

vx u
2
dt
第 1 章 狭义相对论时空观
所以得:
vx u v x uv x 1 2 c 2 u vy 1 c v y uv x 1 2 c 2 u vz 1 c v z uv x 1 c2

狭义相对论的时空观

狭义相对论的时空观

测量为两个事件
( x1 , t1 ), ( x2 , t 2 ) 要求 t1 t2
x'1
x1 vt1 1
2
x' 2
x2 vt2 1
2
x'2 x'1
x2 x1 1
2
11 - 3 狭义相对论的时空观
第十一章 狭义相对论
s
z
y
y' s ' v l0
x '1
l0 x '2 x '1 l '
x '2 x'
l x2 x1
o
z'
o' x1
x2
x
x'2 x'1
固有长度
x2 x1 1
2
l l ' 1 l0
2
固有长度:物体相对静止时所测得的长度 .(最长)
11 - 3 狭义相对论的时空观
注意
第十一章 狭义相对论
飞船上的这段时间用地面上的钟测量

0
1
2

1 9 10

5
3
3 10
8
2
5.000000002(s)
11 - 3 狭义相对论的时空观
第十一章 狭义相对论
注意 1)时间延缓是一种相对效应 .
2)时间的流逝不是绝对的,运动将改变时间的 进程 .(例如新陈代谢、放射性的衰变、寿命等 . )
9 6 3
o o'
B
12
x' x
( x ' , t '1 ) 接受一光信号 ( x ' , t '2 )

相对论时空观

相对论时空观

四、速度变换法则
在S系中
dx
dy
dz
ux dt , uy dt , uz dt
在S 系中
ux
dx dt
,
uy
d y dt
,
uz
dz dt
7
对洛伦兹变换求微分,得
dx
dx v dt 1 v2 / c2
d y d y
dz dz
dt
dt
v dx
/
c2
1 v 2 / c 2
8
S系到S 系的速度变换公式 速度变换公式的逆变换
例5:试讨论静止参照系中介子的平均寿命。
解:从静止参照系看来,实验室的运动速率为u= 0.99c,实验室中测得的距离l =52m ,为原长,在介 子参照系中测量此距离应为:
13
l l
1
v2 c2
7.3m
而实验室飞过此距离所用时间为:
Δ t l 7.3m 2.5108 s v 0.99c
系)观测, 介子的寿命为:
0
2.603 108
s
1 v 2 / c2 1 (0.9200 )2
6
= 2.603 108 2.552 s = 6.642 108 s
在衰变前可以通过的路程为
s = v = ( 0.9200c 6.642 108 ) m
= 18.32 m >17 m
即 介子在衰变前可以通过17 m的路程。
S 系两个不同地点同时发生的事件,在S系看也不是
同时发生的。
二、时间延缓效应
如果在S 系的同一地点先后发生了两个事件,时间
是t1 和t2 ,时间间隔为
t = t2 t1
2

Δ

狭义相对论的三个时空观

狭义相对论的三个时空观

狭义相对论的三个时空观
狭义相对论是爱因斯坦于1905年提出的一种物理学理论,它涉及到了时间和空间的观念。

狭义相对论的三个时空观如下:
1. 相对性原理:狭义相对论的第一个时空观是相对性原理,它认为物理定律在所有惯性参考系中都是相同的。

换句话说,物理定律在不同的观察者之间是不变的,无论他们的运动状态如何。

这意味着没有一个特定的参考系是绝对的,而是都是相对的。

2. 光速不变原理:狭义相对论的第二个时空观是光速不变原理,它指出光速在真空中是恒定不变的,无论观察者自身的运动状态如何。

这意味着光在不同的参考系中传播的速度始终是相同的。

这个原理对于理解狭义相对论中的时间和空间的变化至关重要。

3. 时空的相对性:狭义相对论的第三个时空观是时空的相对性。

根据狭义相对论,时间和空间是相互关联的,构成了一个四维时空的连续体。

观察者的运动状态会导致时间和空间的相对变化,即时间的流逝速度和空间的长度会随着观察者的运动状态而发生变化。

这个时空观对于理解相对论中的时间膨胀和长度收缩等效应至关重要。

狭义相对论的时空观

狭义相对论的时空观
延缓 三. 长度收缩
一. 同时性的相对性
1. 地面观测者观测
v


甲接受的信号
乙接受的信号
甲乙接受的信号

• 同时接受到前后灯信号,两灯同时亮

• 灯同时亮,火车运动使乙首先接受到前灯信号
2. 车上观测者观测
v


甲接受的信号
乙接受的信号
甲乙接受的信号

• 先接到前灯信号,所以前灯先亮

• 地面的运动抵消了发光的时间差,使甲同时接受到前后灯信号
总结:
先接到前灯信号 前灯先亮
v
同时接受两 灯信号
两灯同时亮
两个异地事件,在一个惯性系中是同时的,在另 一个惯性系中观察,则二者不是同时发生的。
二. 时间延缓
h
u
火车系
车上测者测量
二. 时间延缓
火车系 地面系


面 系
车的长度= 车 走过的路程 = 火车速度u 时间0



车的长度= 地面 走过的路程 = 地面速度u 时间
静止长度
(原长)
塔的路程
v





车的长度= 地面 走过的路程 = 地面速度 时间
静止长度
(原长)
三 长度收缩
经开历始了计0时时间
经历了 时间
u


车厢前端和塔相遇——A 事件 后端和塔相遇——B 事件
lh
h
ut
u
在火车上,信号的发出 和接收属同地事件,测
得时间间隔称为原时
• 一对事件,在不同的惯性系中,时间间隔不同;
• 同地事件时间间隔—— 原时t‘ 最短。

狭义相对论时空观的三个结论

狭义相对论时空观的三个结论

狭义相对论时空观的三个结论
牛顿的力学和相对论可以统一描述宇宙中的物理现象,并提出了一系列有关宇宙时空
运动规律的重要结论。

狭义相对论时空观结合了特殊相对论的共性,是现代物理学的重要
组成部分。

一般相对论提出了三个重要的时空叙述:
一、宇宙无中心。

狭义相对论认为,宇宙没有中心,任何两点之间的距离都是相等的。

宇宙中的每个点,包括太阳、地球、银河等,都是宇宙的中心,每一点都是宇宙的无限小
中心。

二、宇宙是相对的。

宇宙的存在是相对的,每一点都是相对的,它们相互影响,互相
依赖,一个点的状态取决于另一个点。

这证明了宇宙自身具有变化性,它不仅受到物理实
体的影响,还受到周围空间的影响。

宇宙不仅存在于物质状态之中,而且存在于时空状态
之中。

三、宇宙是有限的。

宇宙是有限的,它有起点和终点,但由于存在宇宙无中心这一概念,宇宙没有明确的起点终点,宇宙就像一个无限的圆圈,有没有边界?是的,宇宙边界
是时间的界限,它是一个有限的空间。

由此可见,狭义相对论时空观提出了宇宙无中心、有限性、相对性的三个重要的时空
观念,从而形成了狭义相对论时空统一论的核心思想,为宇宙中各种物理现象提供了一个
统一的理论模型,解决了以前力学中存在的疑难问题,引领着现代科学的发展。

5-4狭义相对论的时空观

5-4狭义相对论的时空观

b.不同惯性系各有自己的时间坐标,并相互发现 不同惯性系各有自己的时间坐标,
对方的钟走慢了。 对方的钟走慢了。
两种时空观对照
c.不同惯性系各有自己的空间坐标,并相互发现 不同惯性系各有自己的空间坐标, 不同惯性系各有自己的空间坐标 对方的“ 缩短了。 对方的“尺”缩短了。 d.作相对运动的两个惯性系中所测得的运动物体 作相对运动的两个惯性系中所测得的运动物体 的速度,不仅在相对运动的方向上的分量不同, 的速度,不仅在相对运动的方向上的分量不同, 而且在垂直于相对运动方向上的分量也不同。 而且在垂直于相对运动方向上的分量也不同。 e.光在任何惯性系中传播速度都等于 C ,并且是 光在任何惯性系中传播速度都等于 任何物体运动速度的最高极限。 任何物体运动速度的最高极限。 f.在一个惯性系中同时发生的两事件,在另一惯 在一个惯性系中同时发生的两事件, 在一个惯性系中同时发生的两事件 性系中可能是不同时的。 性系中可能是不同时的。
两种时空观对照
c.不同惯性系各有自己的空间坐标,并相互发现 不同惯性系各有自己的空间坐标, 不同惯性系各有自己的空间坐标 对方的“ 缩短了。 对方的“尺”缩短了。 d.作相对运动的两个惯性系中所测得的运动物体 作相对运动的两个惯性系中所测得的运动物体 的速度,不仅在相对运动的方向上的分量不同, 的速度,不仅在相对运动的方向上的分量不同, 而且在垂直于相对运动方向上的分量也不同。 而且在垂直于相对运动方向上的分量也不同。 e.光在任何惯性系中传播速度都等于 C ,并且是 光在任何惯性系中传播速度都等于 任何物体运动速度的最高极限。 任何物体运动速度的最高极限。 f.在一个惯性系中同时发生的两事件,在另一惯 在一个惯性系中同时发生的两事件, 在一个惯性系中同时发生的两事件 性系中可能是不同时的。 性系中可能是不同时的。

狭义相对论的时空观

狭义相对论的时空观

如: 父母从甲地迁到乙地生下自已的儿子就必须 有一迁移速度u
投球,就有球从出手到进球的速度…..
所有这些都称为信号传递速度。
或者说:因果关系不能颠倒,导至
v c2 u 1
vc uc即因果关系不
能颠倒导至信
结论:有因果关系的问题的 号传递速度不
时序是不能颠倒的。尽管时 能超过光速C。
空是相对的,但相对论中也 光速C是最大
与实2021/验8/17 情况吻合得很好!
18
注意:时间的延缓是时空的自身的一种特性,与过 程是生物的,化学的还是机械的无关!包括人的生 命.为此介绍双生子佯谬.(Twin paradox)
一对双生兄弟:“明明”和“亮亮”,在他们20 岁生曰的时候 ,明明坐宇宙飞船去作一次星际 旅游,飞船一去一回作匀速直线运动,速度为 0.9998C.明明在天上过了一年,回到地球时,亮 亮已多大年龄?
O’ O
t t0
t
' 1
Y’
X’
t O’
t
' 1
t0
X’
X
如果换成K’系来观测K系的钟呢?
2021/8/17
15
Y’
v
K’
K
Y’ 你的钟 慢了!
O’
Y O
2021/8/17
X’
v
K’ X’ X
16
我们看一雷达钟,
t00
结果 一样!
2021/8/17
17
时间延缓的实验验证:
1966---1967年欧洲原子核研究中心(CERN)对 粒子进行了研究。粒子是一种基本粒子,在静 系中测得的寿命为0=2.210-6秒.当其加速到v= 0.9966C时,它漂移了九公里.

大学物理:14-4 狭义相对论的时空观

大学物理:14-4  狭义相对论的时空观

B
x
s'系同一地点 B 发生两事件
发射光信号 (x',t'1 ) 接受光信号 (x',t'2 ) 时间间隔 Δt t2 t1 2d c
第十四章 相对论
16
大学 物理
y
s
x1
o 12
9
3
6
14-4 狭义相对论的时空观
12
9
3
6
d
x2
t1 (t1
vx c2
)
t2
(t2
vx c2
)
9
12 6
------不同时
2 Δx 0 Δt 0
同地不同时 ------不同时
第十四章 相对论
4
大学 物理
讨论
14-4 狭义相对论的时空观
Δt'
Δt
v c2
Δx
1 2
S系
S′系
3 Δx 0 Δt 0 ------同时
同时同地
4 Δx 0 Δt 0 ------不同时
不同时不同地
t
v c2
x
x
3
Δt
(Δt'
vΔx c2
)
在 S 系中观测两事件
x 0
Δt t2 t1 Δt'
(x1, t1), ( x2 , t2 )
t t
1 2
第十四章 相对论
17
大学
14-4 狭义相对论的时空观
物理
s ys' y'v
t t
d
12
1 2
o o'
9
B
6
3
x'
x 固有时间 :同一地点

狭义相对论的三个时空观

狭义相对论的三个时空观

狭义相对论的三个时空观
狭义相对论是爱因斯坦在1905年提出的一种新的时空观,它颠覆了牛顿力学的时空观,提出了三个新的时空观,分别是相对性原理、光速不变原理和等效原理。

相对性原理是狭义相对论的核心,它指出物理规律在所有惯性系中都是相同的。

也就是说,无论在哪个惯性系中观察,物理规律都是一样的。

这个原理的提出,打破了牛顿力学中绝对时空的观念,强调了时空的相对性。

光速不变原理是狭义相对论的另一个重要原理,它指出光速在任何惯性系中都是不变的。

也就是说,无论在哪个惯性系中观察,光速都是不变的。

这个原理的提出,引发了对时空的重新认识,强调了时空的相对性和不可分割性。

等效原理是狭义相对论的第三个重要原理,它指出惯性质量和引力质量是等效的。

也就是说,任何物体在重力场中的运动状态,都可以等效地看作在惯性系中匀速直线运动。

这个原理的提出,揭示了引力与惯性的本质联系,强调了物理规律的普适性和等效性。

总之,狭义相对论的三个时空观,相对性原理、光速不变原理和等效
原理,都是对时空的重新认识和理解,它们打破了牛顿力学中绝对时空的观念,强调了时空的相对性和不可分割性,揭示了物理规律的普适性和等效性。

这些时空观的提出,不仅推动了物理学的发展,也深刻影响了人们对世界的认识和理解。

狭义相对论的时空观

狭义相对论的时空观
平均距离为8km。试说明这一现象。
解: 按经典力学:L u 3 1 0 8 2 .2 1 0 6 6 6 0 m
按相对论力学,地面系上测:
tg1u 2c21 2 .2 0 .9 1 9 0 6 6 6 22 .7 1 0 5s
L g u t g 3 1 0 8 2 .7 1 0 5 8 1 0 3 m
t2
t1

u c2
( x 2 x1 )
1
u2 c2
则在其他惯性系中必定不是同时发生的,这就是同时性的
相对性.
2. 在一个惯性系中同时同地发生的事件,即
t2 t1 0 x2 x1 0
在其它惯性系也必同时同地发生,因此同时性的相对性只 是对两个同时事件发生在不同地点而言,当两个同时事件 发生于同一地点时,同时性是绝对的.
§4狭义相对论的时空观
一、“ 同时” 的相对性 u
S'
A A`

c cM

ut
B B`

S
爱因斯坦火车(Einstein train)
实验装置
在火车上 A、B 分别放置信号接收器
中点 M 放置光信号发生器
M 发一光信号
事件1 A 接收到闪光
事件2 B 接收到闪光
·飞船上看, 若u = 0.6c可得t 2 - t 1 =0,
甲乙同时出生不分哥弟 若u = 0.8c可得t 2 - t 1 <0,甲后乙先
甲---弟 乙---哥
时序颠倒了!
·由相对论变换,会不会得到如此情况: 子弹先打到靶上而后出枪口? 儿子先出生而爸爸后出生?
•(3)因果关系的绝对性 • 若两事件有因果关系,时序是不会颠倒的

4-3 狭义相对论的时空观

4-3 狭义相对论的时空观

tan30
2
0
o o'
0

l y l' y
2 2
3 1 v /c tan30 3
2
1 2 6 1 v /c v c c 3 3 3
问题 一火车以恒定速度通过隧道,火车和隧道 的静长是相等的。问:从地面与火车上分别看,当 火车的前端a到达隧道的A端的同时,火车的后端b 在隧道的B端之内还是之外。
解 在 S' 系
y
y'
l
' y'
v
' l' x ' x'x
' 30


o o'
S系

45
lx


ly tan 45
0
2
lx
2
l y tan30
y
0
l x l' x 1 v /c
y'
ly tan45
0

l y 1 v /c
2
2
l
' y'
v
' l' x ' x'x
S
S
u
弟 a. e f 弟 0
.
x
x
x
) ( x, t1 花开事件: ) ( x, t 2 花谢事件:
S 系x处发生两个事件
t1 (寿命) t t2
在S系中观察者测量花的寿命是多少?
考察
S 中的一只钟
x 0
t t0
两事件发生在同一地点
o
9
x1
12

狭义相对论的时间观

狭义相对论的时间观

一、同时的相对性(Relativity of Simultaneity ): 狭义1.概念相对论的时空观认为:同时是相对的。

即在一个惯性系中不同地点同时发生的两个事件,在另一个惯性系中不一定是同时的。

例如:在地球上不同地方同时出生的两个婴儿,在一个相对地球高速飞行的飞船上来看,他们不一定是同时出生的。

2.例子:Einstein 列车:以u 匀速直线运动,车厢中央有一闪光灯发出信号,光信号到车厢前壁为事件1,到后壁为事件2;地面为S 系,列车为S'系。

在S'系中,A 以速度v 向光接近;B 以速度v 离开光,事件1与事件2同时发生。

在S 系中,光信号相对车厢的速度v ’1=c-v ,v ’2=c+v ,事件1与事件2不是同时发生。

即S'系中同时发生的两个事件,在S 系中观察却不是同时发生的。

因此,“同时”具有相对性。

说明:Lorentz 速度变换式中,是求某质点相对于某参考系的速度,不可能超过光速。

而在同一参考系中,两质点的相对速度应该按矢量合成来计算。

2.解释:在S'系中,不同地点x 1'与x 2'同时发生两件事 t 1'= t 2',Δ t '= t 1'- t 2'=0,Δ x '=x 1' – x 2'在S 系中()221c v x c v t t -'∆+'∆=∆由于Δ t '=0。

Δ x '=x 1' – x 2'≠0,故Δ t ≠0。

可见,两个彼此间作匀速运动的惯性系中测得的时间间隔,一般来说是不相等的。

即不同地点发生的两件事,对S'来说是同时发生的,而在S 系中不一定是同时发生的。

若Δ x '=x 1' – x 2'=0,则Δ t =0,即是同一地点同时发生的两件事,则在不同的惯性中也是同时发生的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u c
x ut

1- u 2 c 2 1, ux c 2 0
x
1- u 2 c 2
x ut
t
t ux c 2为伽利略变换
洛伦兹变换:
x ut x 2 2 1u c y y z z t ux c 2 t 2 2 1u c
当杆儿静止在S’参考系时:
x1 L0 杆儿的长度 x2
当杆儿随S’参考系 相对S系 以速度u匀速运动时:
x1
x1 ut1 1- u 2 c2
, x2
x2 ut2 1- u 2 c2
x1 x2

x2 ut2 1- u 2 c 2

x1 ut1 1- u 2 c 2
2

1 2 34 1 2 4 2 2 2c 8c 1 c
1 3 1 p m0 (1 ) m0 m0 2 4 2 2c 8c 2c
2 4

2
能量-动量关系
E p c m c
2 2 4
4 4 0
总结:
相对论的两条原理:1、相对性原理,2、光速不变原理
2
当 v c
v2 时, 2 0, 所以 c
1 E m0c 2 m0v 2 2
m0c 2 叫做静能量,
1 m0 v 2 牛顿力学中的动能 2
v c, E
静质量不等于零的物体不能以光速运动
狭义相对论中的动量与能量
动量 p m
1
m0 1 2 / c
c x
u x uc x u x uc 1 2 1 2 c c uc uc c c u cu 1 c
光速在任何参考系中的值都是常数 c
狭义相对论中的质量和能量
2 质能方程: E mc ,
能量和质量是等价的
m0 1 v c
2 2
相对论中的质量: m
可以得到在S系中
t1
c2 t1 + ux1 1- u 2 c 2
, t2
+ ux2 c2 t2 1- u 2 c 2
t t2 t1
t1 )+ u ( x2 x1 ) c 2 (t2 1- u 2 c 2 t 1- u 2 c 2
x+ut x 2 2 1u c y y z z t + ux c 2 t 2 2 1u c
t1) (t2 1- u 2 c 2
t t 1- u 2 c 2 t
运动的钟走的慢
讨论:
时钟延缓公式:
t t 1- u 2 c 2
只有当u可以跟光速c相比时,才有明显的效应
双生子佯谬
洛伦兹长度收缩
当杆儿静止在S参考系时: 杆儿的长度 x2 x1 L0
逆变换:
x+ut x 2 2 1u c y y z z t + ux c 2 t 2 2 1u c
作业:从洛伦兹变换式导出逆变换式
时钟延缓效应
两个事件
在S参考系中:
P ,P2 ( x2 , y2 , z2 , t2 ) 1 ( x1 , y1 , z1 , t1 )
在地面参考系:
L L tA , tB cu c u
设: L 30m, u 300km/h, c 3105 km/s
7 t A 1.0 10 s,
t A 0.9999997 10 s
7
7
t B 1.00000028 10 s t t B t A 6 1014 s
2
L L0 1- u c L0
相对论速度合成公式
S’系相对S系以速度 u 匀速运动
运动 质点相对于S’系以速度 x
质点相对于S系的速度x是多少? 牛顿力学给出的结果
x u x
相对论给出的结果:
u x x u x 1 2 c

x
x ut 1- u 2 c 2
洛伦兹变换:
一个事件 在S系中
P( x, y, z, t )
在S’系中 P( x, y, z, t ) 伽利略变换: 洛伦兹变换:
x ut x 2 2 1u c y y z z t ux c 2 t 2 2 1u c
在S’参考系中:
,P2( x2 , y2 , z2 , t2 ) P 1 ( x1 , y1 , z1 , t1 )
对于一只静止在S’系中的钟表,有
=x2 x1 =y2 y1 =z2 z1
t1 t =t2
根据洛伦兹变换的逆变换公式
2. 光速不变原理:光在所有惯性参考系中的速度都是相等的, 与光源的运动状态无关。
K: c K : c
同时性的相对性 在不同地点发生的两件事,在一个惯性系中看来是同时 发生的,在另一个惯性系中看来不是同时发生的。
在车厢参考系中:
L L , t , tB A c c t A tB
,
m0 叫做静质量
物体的质量与运动速度有关 相对论中的能量: E mc
2
m0 c 2 1 v2 c2
1 v2 3 v4 1 4 2 2 2 2c 8c 1 v c 1
1 v2 3 v4 1 3 v2 2 2 2 E m0c (1 4 ) m0c m0v m0 2 v 2 2c 8c 2 8 c
根据这两条原理,可以得到:同时性的相对性,洛伦兹变换
洛伦兹变换:时间间隔的相对性,空间间隔的相对性, 速度的合成公式,… 相对论的灵魂:相对性
在讨论时间、时间、运动等的时候,一定要指明是在哪个参考系中
时间是什么?—— 用时钟测量的就是时间 空间是什么?—— 用尺子测量的就是空间 空间、时间相互关联,并且跟物质的运动有关
在地面参考系中: 光线相对于地面的速度为 车厢相对于地面的速度为
u
c u
c
左边:站在地面上的观察者:光线和车厢接近的速度是 右边:站在地面上的观察者:光线和车厢接近的速度是
L L tA , tB , t A tB cu c u
c u
在车厢参考系:
L L t , tB A c c
x x ut y y z z t t
x x ut y y z z t t

x ut x 2 2 1u c y y z z t ux c 2 t 2 2 1u c
相对论时空观
相对论: 1. 狭义相对论,1905,爱因斯坦,惯性系 2. 广义相对论,1915,爱因斯坦,非惯性系
c
经典时空观 牛顿力学 伽利略变换
c
相对论时空观 相对论力学 洛仑兹变换
学习相对论的关键:尊重实验事实
狭义相对论的两条原理: 1. 相对性原理:对于一切自然现象的描述,所有惯性参考系 都是等价的。或者说:物理规律在所有惯性 参考系中都有相同的形式。
( x2 x1 ) u (t2 t1 ) 1- u 2 c 2
t2 =t1
时,
( x2 x1 ) 就是在S系中测得的杆儿的长度

2
x1 L0 x1 ) 是杆儿在S’系中的长度,且 x2 而 ( x2
L0 =
( x2 x1 ) 1- u 2 c2
L 1- u 2 c2
dx 1 dx dt x ( u ) 2 2 dt dt 1- u c dt dx dx dt dt x dt dt dt dt ux t 2 c t 1- u 2 c 2 dt 1 u dx (1 2 ) 2 2 dt c dt 1- u c
相关文档
最新文档