高中数学复习课件5-5
合集下载
第5讲 三角函数、解三解形
2
1 cos 2 2
2 1 与升幂公式: cos 2 2 cos ,1
1 cos 2 , 2
cos 2 2 sin 2 ).
10.辅助角公式中辅助角的确定: sin x b cos x a
(其中 角所在的角限由a,b的 a 2 b 2 sin( x ) 符号确定, 角的值由 tan b 确定)在求最值、
5 36
线上) = +k (k∈Z). (3)终边与 终边关于x轴对称 =- +2k (k∈Z).
(4) 终边与 终边关于y轴对称= - +2k
(k∈Z).
(5) 终边与 终边关于原点对称 = + +2k (k∈Z). (6) 终边在x轴上的角可表示为 =k ,k∈Z; 终边 在y轴上的角可表示为 k , k∈Z; 终边在 坐标轴上的角可表示为 2. 与
2
2
坐标向左( >0)或向右( <0)平移||个单位得
y=sin(x+ )的图象;②函数y=sin(x+ )图象的纵 坐标不变,横坐标变为原来的
1
sin( x+ )的图象;③图象y=sin( x+ )图象 的横坐标不变,纵坐标变为原来的A倍,得到函数 y=sin ( x+ )的图象;④函数y=Asin( x+ ) 图象的横坐标不变,纵坐标向上(k>0)或向下(k < 0) 平移|k|个单位得到y=Asin( x+ )+k的图象.要 特别注意,若由y=sin x得到y=sin( x+ )的图 象,则应向左或向右平移 y=sin x的图象?
1 cos 2 2
2 1 与升幂公式: cos 2 2 cos ,1
1 cos 2 , 2
cos 2 2 sin 2 ).
10.辅助角公式中辅助角的确定: sin x b cos x a
(其中 角所在的角限由a,b的 a 2 b 2 sin( x ) 符号确定, 角的值由 tan b 确定)在求最值、
5 36
线上) = +k (k∈Z). (3)终边与 终边关于x轴对称 =- +2k (k∈Z).
(4) 终边与 终边关于y轴对称= - +2k
(k∈Z).
(5) 终边与 终边关于原点对称 = + +2k (k∈Z). (6) 终边在x轴上的角可表示为 =k ,k∈Z; 终边 在y轴上的角可表示为 k , k∈Z; 终边在 坐标轴上的角可表示为 2. 与
2
2
坐标向左( >0)或向右( <0)平移||个单位得
y=sin(x+ )的图象;②函数y=sin(x+ )图象的纵 坐标不变,横坐标变为原来的
1
sin( x+ )的图象;③图象y=sin( x+ )图象 的横坐标不变,纵坐标变为原来的A倍,得到函数 y=sin ( x+ )的图象;④函数y=Asin( x+ ) 图象的横坐标不变,纵坐标向上(k>0)或向下(k < 0) 平移|k|个单位得到y=Asin( x+ )+k的图象.要 特别注意,若由y=sin x得到y=sin( x+ )的图 象,则应向左或向右平移 y=sin x的图象?
2025届高中数学一轮复习课件《指数函数》PPT
第29页
求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性 等相关性质,其次要明确复合函数的构成,当涉及单调性问题时,要借助“同增异减”这一 性质分析判断.
高考一轮总复习•数学
第30页
对点练 4(1)(2024·山东莱芜模拟)已知函数 f(x)=|-2x-x+15|,,xx≤>22,, 若函数 g(x)=f(x)-
解析:∵y=35x 是 R 上的减函数,∴35-13 >35-14 >350,即 a>b>1,又 c=32-34 <320 =1,∴c<b<a.
高考一轮总复习•数学
第11页
4.(2024·四川成都模拟)若函数 f(x)=13-x2+4ax 在区间(1,2)上单调递增,则 a 的取值范 围为___-__∞__,__12_ _.
在(4,+∞)上单调递增.令12x≤4,得 x≥-2,令12x>4,得 x<-2, 代入外层函数的单调递减区间,得到自变量 x 的取值范围,这才是复合函数的单调递增 区间. 而函数 t=12x 在 R 上单调递减,所以函数 y=122x-8·12x+17 的单调递增区间为[-2, +∞).
高考一轮总复习•数学
所谓“底大图高”,反映指数函数的排列规律.
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)函数 y=a-x(a>0,且 a≠1)是 R 上的增函数.( ) (2)函数 y=ax(a>0,且 a≠1)与 x 轴有且只有一个交点.( ) (3)若 am>an,则 m>n.( ) (4)函数 y=ax 与 y=a-x(a>0,且 a≠1)的图象关于 y 轴对称.( √ )
人教课标版(B版)高中数学必修5《数列求和》复习课件
∴bn=-34·23n-1。 ∴an2-1=-34·23n-1。 ∴an2=1-43·32n-1。 又 a1=12>0,an·an+1<0,
∴an=(-1)n-1
1-34·23n-1。
对应训练 3 已知数列{an}中,a1=1,an+1=52-a1n,bn=an-1 2(n∈ N*),则数列{bn}的通项公式 bn=____-__13_×__4_n-_1_-__32___。
【规律·方法】 利用恒等式 an=a1·aa21·aa32…aan-n1(an≠0)求通项公式的方 法称为累乘法。累乘法是求型如 an+1=g(n)an 的递推数列通项公式的基 本方法,其中 g(n)可求前 n 项积。
对应训练 2 设{an}是首项为 1 的正项数列,且(n+1)an2+1-nan2+ 1
考点二 累乘法求通项公式
【例 2】
若
a1=1,Sn=n+3 2an(n∈N*),则通项
nn+1 an=____2____。
【解析】 由题设知,a1=1。 当 n>1 时,an=Sn-Sn-1=n+3 2an-n+3 1an-1,∴aan-n 1=nn+-11。 ∴aan-n 1=nn+-11,…,aa34=35,aa23=24,aa12=3。 以上 n-1 个式子的等号两端分别相乘, 得到aan1=nn+2 1,又∵a1=1,∴an=nn+2 1。
数列 求和
学习目标
• 1.掌握等差数列、等比数列的前n项和公式. • 2.掌握一般数列求和的几种常见的方法.
知识梳理
• 一、公式法 • 1.直接利用等差数列、等比数列的前n项公式求和
• (1)等差数列的前n项和公式Sn=__n_(__a_12+__a_n_)__ • =__n_a_1+__n_(__n_-2__1)d. (其中a1为首项,d为公差) • (2)等比数列的前n项和公式
高中数学5-5三角恒等变换5-5-2简单的三角恒等变换课件新人教A版必修第一册
半角公式
正弦 sinα2= ±
1-cos α 2
余弦 cosα2= ±
1+cos α 2
续表
正切 tan α2=±
1-cos 1+cos
αα,tanα2=1+sincoαs
= α
1-cos sin α
α
2.常见的三角恒等变换: (1)asin x+bcos x= a2+b2sin(x+φ)(ab≠0),其中 tan φ=ba,φ 所在象限由 a 和 b 的符号确定. (2)sin2x=1-c2os 2x,cos2x=1+c2os 2x,sin xcos x=12sin 2x.
α2,cos
α2,tan
α 2
的值;
1-sin (2)化简:
α-2c-os2αcossiαnα2+cosα2(-π<α<0).
[解] (1)∵sin α=-187,π<α<32π,∴cos α=-1157.
∵cos2α=1-2sin2α2=2cos2α2-1,又π2<α2<34π,
∴sin α2=
1-cos 2
(2)左边=2sinx2cosx2-2s2isni2nx2xc2ossinxx2cosx2+2sin2x2
=4sin22x2sicnosx2cx2o-s xsin2x2=2ssiinn2xx2=csionsx2x2=2s2incox2sc2ox2sx2=1+sincoxs x=右边.
[方法技巧] 三角恒等式证明的五种常用方法
4.和差化积公式:
(1)sin θ+sin φ=2sin
θ+φ 2 cos
θ-2 φ;
(2)sin θ-sin φ=2cos
θ+φ 2 sin
θ-2 φ;
(3)cos θ+cos φ=2cos
2025届高中数学一轮复习课件《 集合》ppt
高考一轮总复习•数学
第15页
解析:(1)方法一(列举法):A=…,-12,12,32,52,72,…, 列举法形象、直观.
B=…,-12,0,12,1,32,2,52,3,72,…. 显然 A B.
方法二(描述法):集合
A = xx=k+12,k∈Z
=
xx=2k+2 1,k∈Z
,B=
xx=2k,k∈Z
高考一轮总复习•数学
第18页
对点练 1(1)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元素的个数为( )
A.9
B.8
C.5
D.4
(2)(2024·湖南长沙月考)如果集合 A={x|ax2+4x+1=0}中只有一个元素,则实数 a 的
值是( )
A.0
B.4
C.0 或 4
(2)解:①由 x2-8x+15=0, 得 x=3 或 x=5,∴A={3,5}. 若 a=15,由 ax-1=0,得15x-1=0,即 x=5. ∴B={5}.∴B A. ②∵A={3,5},又 B A, 故若 B=∅,则方程 ax-1=0 无解,有 a=0; 若 B≠∅,则 a≠0,由 ax-1=0,得 x=1a. ∴1a=3 或1a=5,即 a=13或 a=15. 故 C=0,13,15.
高考一轮总复习•数学
第23页
集合间的关系问题的注意点 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑是否存在空集的情况, 勤思考,多练习这一特殊情形. 否则易造成漏解. (2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系, 集合的包含关系,转化为区间端点的大小关系,这是一个难点,主要是对端点值的取舍, 尤其注意区别开区间和闭区间. 例如:[-1,2)⊆(2a-3,a+2]⇒a2+a-2≥3<2-. 1, 进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.求得参数 后,可以把端点值代入进行验证,以免增解或漏解.
高中数学必修五全册课件PPT(全册)人教版
答:此船可以继续一直沿正北方向航行
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
高中数学ppt课件必修5
空集
不含任何元素的集合称为空集 。
相等
如果两个集合A和B的元素完全 相同,则称集合A与集合B相等
。
5
集合的基本运算
01
02
03
04
并集
由所有属于集合A或属于集合 B的元素所组成的集合。
交集
由所有既属于集合A又属于集 合B的元素所组成的集合。
补集
对于一个集合A,由全集U中 所有不属于A的元素组成的集
23
06
数列与数学归纳法
2024/1/28
24
数列的概念及通项公式
数列的定义
按照一定顺序排列的一列数。
数列的通项公式
表示数列中任意一项与项数之间关系的公式。
常见数列类型
等差数列、等比数列、常数列等。
2024/1/28
25
等差数列与等比数列的性质
等差数列的性质
任意两项的差为常数;中项性质;前n项和公式等。
01
具有某种特定属性的事物的总体,称为集合。
集合的表示方法
Байду номын сангаас02
列举法和描述法。
集合中的元素
03
具有确定性、互异性和无序性。
4
集合间的基本关系
子集
对于两个集合A和B,如果集合 A的任何一个元素都是集合B的 元素,则称集合A是集合B的子
集。
2024/1/28
真子集
如果集合A是集合B的子集,且 A不等于B,则称集合A是集合B 的真子集。
02
余弦函数y=cosx的图像
也是一个以2π为周期的波动曲线,形状像波浪。在[0,π]区间内单调递
减,在[π,2π]区间内单调递增。
2024/1/28
版高中全程复习方略配套课件:5.5数列求和及通项(苏教版·数学理)
第五节 数列求和及通项
点击进入相应模块
…………三年4考 高考指数:★★★★★
内容 等差数列 等比数列
要求
A
B
C
√
√
数列求和的常用方法 1.公式法与分组求和法 (1)公式法 直接利用等差数列、等比数列的前n项和公式求和
①等差数列的前n项和公式: S nn a1 2 an_ n_ a1_ _ _ n_ _ n_ 2_ _ 1_ _ d_ _ .
②等比数列的前n项和公式:
Sn naa111,aqnqq1__a_1 _11__q_q_n ___q1.
(2)分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和 的数列组成,则求和时可用分组求和法,分别求和而后相加减.
【即时应用】
(1) 1 1 2 21 4 38 1 1 02 1 1 0_ _ _ _ _ _. (2)若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和
答案:(1)12 (2)1
3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互 抵消,从而求得其和.
【即时应用】
(1)数列 2 14,4 16,6 18, ,2n21 n2, 的前n项和为____.
(2)已知数列{an}的通项公式是 an
1 , 若Sn=10,则 n n1
n=_________.
【解析】(1) 2n21 n21 2(21n2n12),
Sn
1 2
4
1 46
1 68
1 2n(2n
2)
1[( 1 1 ) ( 1 1 ) ( 1 1 )]
224 46
2n 2n 2
1 (1 1 ) 2 2 2n 2
点击进入相应模块
…………三年4考 高考指数:★★★★★
内容 等差数列 等比数列
要求
A
B
C
√
√
数列求和的常用方法 1.公式法与分组求和法 (1)公式法 直接利用等差数列、等比数列的前n项和公式求和
①等差数列的前n项和公式: S nn a1 2 an_ n_ a1_ _ _ n_ _ n_ 2_ _ 1_ _ d_ _ .
②等比数列的前n项和公式:
Sn naa111,aqnqq1__a_1 _11__q_q_n ___q1.
(2)分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和 的数列组成,则求和时可用分组求和法,分别求和而后相加减.
【即时应用】
(1) 1 1 2 21 4 38 1 1 02 1 1 0_ _ _ _ _ _. (2)若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和
答案:(1)12 (2)1
3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互 抵消,从而求得其和.
【即时应用】
(1)数列 2 14,4 16,6 18, ,2n21 n2, 的前n项和为____.
(2)已知数列{an}的通项公式是 an
1 , 若Sn=10,则 n n1
n=_________.
【解析】(1) 2n21 n21 2(21n2n12),
Sn
1 2
4
1 46
1 68
1 2n(2n
2)
1[( 1 1 ) ( 1 1 ) ( 1 1 )]
224 46
2n 2n 2
1 (1 1 ) 2 2 2n 2
2025届高中数学一轮复习课件《等比数列》ppt
高考一轮总复习•数学
第13页
题型
等比数列基本量的计算
典例 1(1)(2023·全国甲卷,理)已知正项等比数列{an}中,a1=1,Sn 为{an}的前 n 项和,
S5=5S3-4,则 S4=( )
A.7
B.9
C.15
D.30
(2)(2023·全国甲卷,文)记 Sn 为等比数列{an}的前 n 项和.若 8S6=7S3,则{an}的公 转化为基本量 a1,q 的方程.高考试题的设计也常以基本量的计算为主.
第26页
对点练 2(1)在等比数列{an}中,a1,a17 是方程 x2-14x+9=0 的两根,则a2aa916的值为 ()
A. 14
B.3
C.± 14
D.±3
(2)在各项都为正数的等比数列{an}中,已知 0<a1<1,其前 n 项之积为 Tn,且 T12=T6, 则 Tn 取得最小值时,n 的值是____9____.
率之比相等,且最后一个音的频率是最初那个音的 2 倍.设第二个音的频率为 f1,第八个
音的频率为 f2,则ff21等于(
)
A.11 26
B.8 2
12 C. 2
D.412 2
答案
高考一轮总复习•数学
第18页
(2)在 1 和 2 之间插入 11 个数使包含 1 和 2 的这 13 个数依次成递增的等比数列,记插 入的 11 个数之和为 M,插入 11 个数后这 13 个数之和为 N,则依此规则,下列说法错误的 是( )
高考一轮总复习•数学
第24页
解析:(1)a11+a12+…+a18=a1a+1aa8 8+aa2+2a7a7+a3a+3aa6 6+a4a+4aa5 5. 巧妙应用积的对称性,把两个条件代入求值,此法只适用于偶数项的情形.若奇数项呢?
(人教版)高中数学必修5课件:第1章 解三角形1.1.2
高效测评 知能提升
[问题3] 你会利用向量求边AC吗? [提示] 会.|B→A|=3,|B→C|=2,〈B→A,B→C〉=60°. A→C2=(B→C-B→A)2 =B→C2-2B→C·B→A+B→A2 =22-2×2×3×cos 60°+32 =7. ∴|A→C|= 7,即边AC为 7.
数学 必修5
1.利用余弦定理解三角形的步骤: (1) 两边和它们的夹角 余―弦――定→理 另一边 余―正 弦―弦 定――定 理―理 推→论 另两角
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.利用余弦定理解三角形的注意事项: (1)余弦定理的每个等式中包含四个不同的量,它们分别是 三角形的三边和一个角,要充分利用方程思想“知三求一”. (2)已知三边及一角求另两角时,可利用余弦定理的推论也 可利用正弦定理求解.利用余弦定理的推论求解运算较复杂, 但较直接;利用正弦定理求解比较方便,但需注意角的范围, 这时可结合“大边对大角,大角对大边”的法则或图形帮助判 断,尽可能减少出错的机会.
6- 2
2,
故A=60°时,C=75°,c=
6+ 2
2或A=120°时,
C=15°,c=
6- 2
2 .
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知两边及一边对角解三角形的方法及注意 事项
(1)解三角形时往往同时用到正弦定理与余弦定理,此时要 根据题目条件优先选择使用哪个定理.
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这 两边与它们的夹角的余弦的积的两倍.
人教版高中总复习一轮数学精品课件 第5章 数列 5.1 数列的概念
知的n用n-1代替,两式作差,转化为项之间的关系再求解;若求和,则直接利
用an=Sn-Sn-1(n≥2,n∈N*)将已知转化为和之间的关系再求解.
对点训练2
(1)已知数列{an}的前n项和为Sn=n2-2n+2,则数列{an}的通项公式
1, = 1,
an= 2-3, ≥ 2.
当n=1时,a1=S1=1;
解析法
列出表格来表示数列{an}的第 n 项与序号 n 之间的关系
在平面直角坐标系中,数列的图象是一系列横坐标为正整数的
孤立的点(n,an)
将数列用一个数学式子表示出来的方法叫做解析法,可用通项
公式或其他式子表示数列
5.数列的通项公式
如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子来
1 021
2 042
2 042
A.-1 022
B.1 022
C.2 043
D.-2 043
由题意,记该数列为{an},显然,正负项间隔出现,偶数项为负;每项都是分数,分
子比分母小 1,分子是偶数构成的数列,即分子是 2n,所以分母是 2n+1,故该
2
数列的通项公式为 an=(-1)
,
2+1
2×1 021
来表示,那么这个式子叫做这个数列的前n项和公式.
1 , = 1,
显然 S1=a1,而 Sn-1=a1+a2+…+an-1(n≥2),于是我们有 an= - , ≥ 2.
-1
【知识巩固】
1.下列说法正确的画“√”,错误的画“×”.
(1)所有数列的第n项都能使用通项公式表示.( × )
(2)数列{an}和集合{a1,a2,a3,…,an}是一回事.( × )
用an=Sn-Sn-1(n≥2,n∈N*)将已知转化为和之间的关系再求解.
对点训练2
(1)已知数列{an}的前n项和为Sn=n2-2n+2,则数列{an}的通项公式
1, = 1,
an= 2-3, ≥ 2.
当n=1时,a1=S1=1;
解析法
列出表格来表示数列{an}的第 n 项与序号 n 之间的关系
在平面直角坐标系中,数列的图象是一系列横坐标为正整数的
孤立的点(n,an)
将数列用一个数学式子表示出来的方法叫做解析法,可用通项
公式或其他式子表示数列
5.数列的通项公式
如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子来
1 021
2 042
2 042
A.-1 022
B.1 022
C.2 043
D.-2 043
由题意,记该数列为{an},显然,正负项间隔出现,偶数项为负;每项都是分数,分
子比分母小 1,分子是偶数构成的数列,即分子是 2n,所以分母是 2n+1,故该
2
数列的通项公式为 an=(-1)
,
2+1
2×1 021
来表示,那么这个式子叫做这个数列的前n项和公式.
1 , = 1,
显然 S1=a1,而 Sn-1=a1+a2+…+an-1(n≥2),于是我们有 an= - , ≥ 2.
-1
【知识巩固】
1.下列说法正确的画“√”,错误的画“×”.
(1)所有数列的第n项都能使用通项公式表示.( × )
(2)数列{an}和集合{a1,a2,a3,…,an}是一回事.( × )
高中数学新课标一轮复习上册5-5市公开课获奖课件省名师示范课获奖课件
(2)[答案] × [解析] 函数在自变量离散的地方不存在导 数,必然先把函数的定义域拓展到连续的实数区间才能求导.
(3)[答案] × [解析] 经过 5 次分裂后的细胞总数应为 32.
基础回扣·思维辨析 试题调研·考点突破 好题演练·智能提升
课时提升演练
一轮复习 ·新课标数学 ·理(上册)
(4)[答案] √ [解析] 在横坐标依次成等比数列的条件 下,由 yn+1-yn=lgxn+1-lg xn=lg xxn+n 1.而设横坐标构成的等比数 列的公比为 q,即xxn+n 1=q.∴yn+1-yn=lg q 为常数(n∈N*).因此 {yn}为等差数列.
课时提升演练
一轮复习 ·新课标数学 ·理(上册)
命题规律透视
随着新课标高考的推进,数列在高考中的位置逐步前移,考查的 难度也逐步降低,以等差数列与等比数列这两个模型为重点.数 列多与函数、方程、三角、排列与组合等有关知识相结合,进行 综合命题. 2013·江苏·解答题 2013·上海·解答题 2013·安徽·解答题 2013·课标全国Ⅰ·选择题
基础回扣·思维辨析 试题调研·考点突破 好题演练·智能提升
课时提升演练
一轮复习 ·新课标数学 ·理(上册)
[思路点拨] (1)根据函数思想,结合条件 an+1=f(an),a2= f(a1)源自a3=f(a2)可求得 a2,a3.
(2)利用综合分析法及 an+1=f(an)的关系对 an+1-an≥c 变 形.即为 f(an)-an≥c,再结合函数 f(x)的解析式去证明 f(x)≥x +c 即可.
基础回扣·思维辨析 试题调研·考点突破 好题演练·智能提升
课时提升演练
一轮复习 ·新课标数学 ·理(上册) 具体解题步骤用框图表示如下:
(3)[答案] × [解析] 经过 5 次分裂后的细胞总数应为 32.
基础回扣·思维辨析 试题调研·考点突破 好题演练·智能提升
课时提升演练
一轮复习 ·新课标数学 ·理(上册)
(4)[答案] √ [解析] 在横坐标依次成等比数列的条件 下,由 yn+1-yn=lgxn+1-lg xn=lg xxn+n 1.而设横坐标构成的等比数 列的公比为 q,即xxn+n 1=q.∴yn+1-yn=lg q 为常数(n∈N*).因此 {yn}为等差数列.
课时提升演练
一轮复习 ·新课标数学 ·理(上册)
命题规律透视
随着新课标高考的推进,数列在高考中的位置逐步前移,考查的 难度也逐步降低,以等差数列与等比数列这两个模型为重点.数 列多与函数、方程、三角、排列与组合等有关知识相结合,进行 综合命题. 2013·江苏·解答题 2013·上海·解答题 2013·安徽·解答题 2013·课标全国Ⅰ·选择题
基础回扣·思维辨析 试题调研·考点突破 好题演练·智能提升
课时提升演练
一轮复习 ·新课标数学 ·理(上册)
[思路点拨] (1)根据函数思想,结合条件 an+1=f(an),a2= f(a1)源自a3=f(a2)可求得 a2,a3.
(2)利用综合分析法及 an+1=f(an)的关系对 an+1-an≥c 变 形.即为 f(an)-an≥c,再结合函数 f(x)的解析式去证明 f(x)≥x +c 即可.
基础回扣·思维辨析 试题调研·考点突破 好题演练·智能提升
课时提升演练
一轮复习 ·新课标数学 ·理(上册) 具体解题步骤用框图表示如下:
人教A版高中数学必修第一册第5章5-4-2第1课时周期性与奇偶性课件
1234
3.你能归纳一下正弦函数与余弦函数的奇偶性和对称性吗? [提示] 正弦函数为奇函数,其图象关于原点对称;余弦函数为偶 函数,其图象关于y轴对称. 正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.
√
√
[跟进训练] 3.(1)设函数f (x)(x∈R)满足f (-x)=f (x),f (x+2)=f (x),则函数y =f (x)的图象是( )
A
√B
C
D
B 由f (-x)=f (x),则f (x)是偶函数,图象关于y轴对称. 由f (x+2)=f (x),则f (x)的周期为2.故选B.
【例1】 求下列函数的周期: (2)f (x)=|sin x|. [解] 法一(定义法):∵f (x)=|sin x|, ∴f (x+π)=|sin (x+π)|=|sin x|=f (x), ∴f (x)的最小正周期为π. 法二(图象法): 作出函数y=|sin x|的图象如图所示. 由图象可知T=π.
第五章 三角函数
5.4 三角函数的图象与性质 5.4.2 正弦函数、余弦函数的性质
第1课时 周期性与奇偶性
学 1.理解周期函数的概念,能熟练地求出简单三角函数的周 习 期.(数学抽象、逻辑推理) 任 2.会根据之前所学结合函数的图象研究三角函数的奇偶性,能 务 正确判断一些三角函数的变式的奇偶性.(直观想象)
1.求下列函数的最小正周期: (3)y=|cos x|,x∈R. [解] y=|cos x|的图象如图(实线部分)所示.
由图象可知,y=|cos x|的周期为π.
反思领悟 1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称. 二看f (x)与f (-x)的关系. 2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式 化简后再判断. 提醒:研究函数性质应遵循“定义域优先”的原则.
3.你能归纳一下正弦函数与余弦函数的奇偶性和对称性吗? [提示] 正弦函数为奇函数,其图象关于原点对称;余弦函数为偶 函数,其图象关于y轴对称. 正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.
√
√
[跟进训练] 3.(1)设函数f (x)(x∈R)满足f (-x)=f (x),f (x+2)=f (x),则函数y =f (x)的图象是( )
A
√B
C
D
B 由f (-x)=f (x),则f (x)是偶函数,图象关于y轴对称. 由f (x+2)=f (x),则f (x)的周期为2.故选B.
【例1】 求下列函数的周期: (2)f (x)=|sin x|. [解] 法一(定义法):∵f (x)=|sin x|, ∴f (x+π)=|sin (x+π)|=|sin x|=f (x), ∴f (x)的最小正周期为π. 法二(图象法): 作出函数y=|sin x|的图象如图所示. 由图象可知T=π.
第五章 三角函数
5.4 三角函数的图象与性质 5.4.2 正弦函数、余弦函数的性质
第1课时 周期性与奇偶性
学 1.理解周期函数的概念,能熟练地求出简单三角函数的周 习 期.(数学抽象、逻辑推理) 任 2.会根据之前所学结合函数的图象研究三角函数的奇偶性,能 务 正确判断一些三角函数的变式的奇偶性.(直观想象)
1.求下列函数的最小正周期: (3)y=|cos x|,x∈R. [解] y=|cos x|的图象如图(实线部分)所示.
由图象可知,y=|cos x|的周期为π.
反思领悟 1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称. 二看f (x)与f (-x)的关系. 2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式 化简后再判断. 提醒:研究函数性质应遵循“定义域优先”的原则.
高中数学(人教版)第5章导数和微积分求导法则课件
cos 2 x sin2 x 1 2 sec x. 2 2 cos x cos x
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .
2025届高中数学一轮复习课件《函数的图象》PPT
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 利用描点法作函数的图象
高考一轮总复习•数学
第6页
二 利用图象变换法作函数的图象
1.平移变换
y=f(x)―a―a<>0―0,,―左右―移―移|―aa个|个―单―单位―位→y=f(x-a);
y=f(x)―b―b<>0―0,,―下上―移―移|―bb个|个―单―单位―位→y=
高考一轮总复习•数学
第22页
题型
有关函数图象识别的多维研讨
维度 1 知式识图问题
典例 2(2024·天津模拟)函数 f(x)=xl2n+|x|2的图象大致为(
)
此类题目,主要通过解析式反映出的特殊信息,去伪存真,而非真的作图象.如:本
例为①偶函数;②特殊信息,f(2)>0. 仅从此两点即可判断各选项.
函数的零点、最值等信息也很重要.
第29页
高考一轮总复习•数学
第30页
对点练 3(2024·天津静海一中调研)已知函数 f(x)的部分图象如图所示,则 f(x)的解析式 可能为( )
A.f(x)=14++12lcno|xs |x B.f(x)=x2ceo|xs| x C.f(x)=c2o+s xs·ilnn|xx| D.f(x)=x22++clno|sx|x
高考一轮总复习•数学
第9页
5.函数 y=f(x)与 y=f(2a-x)的图象关于直线 x=a 对称. 6.函数 y=f(x)与 y=2b-f(-x)的图象关于点(0,b)对称. 7.函数 y=f(x)与 y=2b-f(2a-x)的图象关于点(a,b)对称. 可以理解为用“2a-x”和“2b-y”替换 y=f(x)中的 x,y,得 2b-y=f(2a-x),从而 得 y=2b-f(2a-x).
人教高中数学必修一A版《弧度制》三角函数研讨说课复习课件
∠就是1弧度的角
B
O
1rad
r
A
l =r
4.弧度的计算公式:|
l (弧度的绝对值等于弧长除以半径)
|
r
注意:α的正负由角α的终边的旋转方向决定
一般地,我们规定:正角的弧度数为正数,负角的弧度数为负数,
零角的弧度数为零。
思考:半圆与整圆所对的圆心角是多少度?是多少弧度?
r
.
①半圆所对的圆心角为:
3
3
3
- 5 [若 x =-5,则 x= -5
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
3
=- 5.]
栏目导航
合 作 探 究
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
提 素 养
栏目导航
课件
6
(2)± 2 019
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
(3)[-3,+∞)
[(1)27 的立方根是 3.
6
(2)因为 x =2 019,所以 x=± 2 019.
6
4
(3)要使 x+3有意义,则需要 x+3≥0,即 x≥-3.
B
O
1rad
r
A
l =r
4.弧度的计算公式:|
l (弧度的绝对值等于弧长除以半径)
|
r
注意:α的正负由角α的终边的旋转方向决定
一般地,我们规定:正角的弧度数为正数,负角的弧度数为负数,
零角的弧度数为零。
思考:半圆与整圆所对的圆心角是多少度?是多少弧度?
r
.
①半圆所对的圆心角为:
3
3
3
- 5 [若 x =-5,则 x= -5
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
3
=- 5.]
栏目导航
合 作 探 究
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
提 素 养
栏目导航
课件
6
(2)± 2 019
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
(3)[-3,+∞)
[(1)27 的立方根是 3.
6
(2)因为 x =2 019,所以 x=± 2 019.
6
4
(3)要使 x+3有意义,则需要 x+3≥0,即 x≥-3.
高中数学必修5(必修五)全套课件(最新整理)
[提示] ∠C=90°,∠B=30°,a=2 3,b=2.
[问题 2] 试计算sina A,sinb B,sinc C的值,三者有何关系?
[提示]
a sin
A=
2 sin
630°=
4
,
b sin
B
=
sin230°=
4
,
c sin
C
=
sin490°=4,三者的值相等.
• 2.如图,△ABC为锐角三角形.作出BC边上的高AD.
• 答案: B
2.在△ABC中,下列式子与sina A的值相等的是( )
A.bc
B.ssiinn
B A
C.sinc C
D.sinc C
解析: 由正弦定理得sina A=sinc C,
所以sina A=sinc C,故选C.
答案: C
3.已知△ABC中,a= 2 ,b= 3 ,B=60°,那么角A等 于________.
2+ 4 2
6 =4(
3+1).
2
∴A=45°,b=4 6,c=4( 3+1).
已知两边及一边的对角解三角形
已知△ABC中,a=2 3 ,b=6,A=30°,求B,C 及c.
• [思路点拨] 由题目已知条件,选用正弦定理 求出另一边对角的正弦,然后求解其他边、角.
解析: (1)由正弦定理得sin C=c·sinb B=8sin430°=1.
∵30°<C<150°,∴C=90°,
从而A=180°-(B+C)=60°,
a= c2-b2=4 3.
(2)∵A+B+C=180°, ∴A=180°-(B+C) =180°-(75°+45°)=60°. 又∵sina A=sinb B, ∴a=bssiinn AB=2×ssiinn 6405°°= 6, 同理,c=ssiinn CBb=ssiinn 7455°°×2= 3+1.
[问题 2] 试计算sina A,sinb B,sinc C的值,三者有何关系?
[提示]
a sin
A=
2 sin
630°=
4
,
b sin
B
=
sin230°=
4
,
c sin
C
=
sin490°=4,三者的值相等.
• 2.如图,△ABC为锐角三角形.作出BC边上的高AD.
• 答案: B
2.在△ABC中,下列式子与sina A的值相等的是( )
A.bc
B.ssiinn
B A
C.sinc C
D.sinc C
解析: 由正弦定理得sina A=sinc C,
所以sina A=sinc C,故选C.
答案: C
3.已知△ABC中,a= 2 ,b= 3 ,B=60°,那么角A等 于________.
2+ 4 2
6 =4(
3+1).
2
∴A=45°,b=4 6,c=4( 3+1).
已知两边及一边的对角解三角形
已知△ABC中,a=2 3 ,b=6,A=30°,求B,C 及c.
• [思路点拨] 由题目已知条件,选用正弦定理 求出另一边对角的正弦,然后求解其他边、角.
解析: (1)由正弦定理得sin C=c·sinb B=8sin430°=1.
∵30°<C<150°,∴C=90°,
从而A=180°-(B+C)=60°,
a= c2-b2=4 3.
(2)∵A+B+C=180°, ∴A=180°-(B+C) =180°-(75°+45°)=60°. 又∵sina A=sinb B, ∴a=bssiinn AB=2×ssiinn 6405°°= 6, 同理,c=ssiinn CBb=ssiinn 7455°°×2= 3+1.