谐波齿轮与摆线针轮
工业机器人基础复习题知识讲解
![工业机器人基础复习题知识讲解](https://img.taocdn.com/s3/m/3d8ab13bb307e87100f6962c.png)
1、机器人安应用类型可以分为工业机器人、极限作业机器人和娱乐机器人。
2﹑机器人按照控制方式可分为点位控制方式、连续轨迹控制方式、力(力矩)控制方式和智能控制方式。
3、工业机器人的坐标形式主要有直角坐标型、圆柱坐标型、球坐标型、关节坐标型和平面关节型。
4、直角坐标机器人的工作范围是长方形形状;圆柱坐标机器人的工作范围是圆柱体形状;球坐标机器人的工作范围是球面一部分状。
5、工业机器人的参考坐标系主要有关节坐标系、工具参考坐标系、全局参考系坐标系。
6、工业机器人的传动机构是向手指传递运动和动力,该机构根据手指的开合动作特点可以分为回转型和移动型。
7、吸附式取料手靠吸附力取料,根据吸附力的不同分为磁吸附和气吸附两种。
8、气吸附式取料手是利用吸盘内的压力和大气压之间的压力差而工作。
按形成压力差的方法,可分为真空吸盘吸附、气流负压气吸附、挤压排气负压气吸附几种。
9、手臂是机器人执行机构的重要部件,它的作用是支待手腕并将被抓取的工件运送到指定位置上,一般机器人的手臂有3个自由度,即手臂的伸缩升降及横向移动、回转运动和复合运动。
10、机器人的底座可分为固定式和移动式两种。
11、谐波齿轮传动机构主要有柔轮、刚轮和波发生器三个主要零件构成。
12、谐波齿轮通常将刚轮装在输入轴上,把柔轮装在输出轴上,以获得较大的齿轮减速比。
13、机器人的触觉可以分为接触觉、接近觉、压觉、滑觉和力觉五种。
14、机器人接触觉传感器一般由微动开关组成,根据用途和配置不同,一般用于探测物体位置,路径和安全保护。
二、选择题1、世界上第一台工业机器人是(B )A、VersatranB、UnimateC、RoombaD、AIBO2、通常用来定义机器人相对于其它物体的运动、与机器人通信的其它部件以及运动部件的参考坐标系是( C )A、全局参考坐标系B、关节参考坐标系C、工具参考坐标系D、工件参考坐标系3、用来描述机器人每一个独立关节运动参考坐标系是( B )A、全局参考坐标系B、关节参考坐标系C、工具参考坐标系D、工件参考坐标系4、夹钳式取料手用来加持方形工件,一般选择(A )指端。
摆线轮减速机与谐波减速机
![摆线轮减速机与谐波减速机](https://img.taocdn.com/s3/m/e4e8c1eaa98271fe900ef960.png)
摆线轮减速机与谐波减速机英文名称:harmonic gear drive 定义:主要由谐波发生器、柔性齿轮和刚性齿轮三个基本构件组成,谐波传动减速器,是一种靠谐波发生器使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力的齿轮传动。
齿轮传动(三级学科)谐波齿轮传动减速器是利用行星齿轮传动原理发展起来的一种新型减速器。
右图1示出一种最简单的谐波传动减速器基本结构,图2表示谐波传动工作原理图。
最简单的谐波减速器(2张)它主要由三个基本构件组成:(1)带有内齿圈的刚性齿轮(刚轮),它相当于行星系中的中心轮;(2)带有外齿圈的柔性齿轮(柔轮),它相当于行星齿轮;(3)波发生器H,它相当于行星架。
作为减速器使用,通常采用谐波发生器主动、刚轮固定、柔轮输出形式。
波发生器H是一个杆状部件,其两端装有滚动轴承构成滚轮,与柔轮1的内壁相互压紧。
4主要优点编辑(1)传动速比大。
单级谐波齿轮传动速比范围为70~320,在某些装置中可达到1000,多级传动速比可达30000以上。
它不仅可用于减速,也可用于增速的场合。
(2)承载能力高。
这是因为谐波齿轮传动中同时啮合的齿数多,双波传动同时啮合的齿数可达总齿数的30%以上,而且柔轮采用了高强度材料,齿与齿之间是面接触。
(3)传动精度高。
这是因为谐波齿轮传动中同时啮合的齿数多,误差平均化,即多齿啮合对误差有相互补偿作用,故传动精度高。
在齿轮精度等级相同的情况下,传动误差只有普通圆柱齿轮传动的1/4左右。
同时可采用微量改变波发生器的半径来增加柔轮的变形使齿隙很小,甚至能做到无侧隙啮合,故谐波齿轮减速机传动空程小,适用于反向转动。
(4)传动效率高、运动平稳。
由于柔轮轮齿在传动过程中作均匀的径向移动,因此,即使输入速度很高,轮齿的相对滑移速度仍是极低(故为普通渐开线齿轮传动的百分之—),所以,轮齿磨损小,效率高(可达69%~96%)。
又由于啮入和啮出时,齿轮的两侧都参加工作,因而无冲击现象,运动平稳。
摆线针轮减速机工作原理
![摆线针轮减速机工作原理](https://img.taocdn.com/s3/m/575af97c66ec102de2bd960590c69ec3d5bbdb01.png)
摆线针轮减速机工作原理知乎摆线针轮减速机是一种广泛应用于工业传动领域的减速设备,以其高效、稳定、低噪音等特点受到广大用户的青睐。
本文将对摆线针轮减速机的工作原理进行详细介绍,以期帮助读者更深入地理解其内在的运行机制,从而更好地应用和维护这一设备。
一、摆线针轮减速机的结构摆线针轮减速机主要由输入轴、输出轴、针齿壳、摆线轮、行星轮、轴承和箱体等部件组成。
其中,摆线轮和针齿壳是减速机的核心部件,通过它们的相互作用实现减速传动。
二、摆线针轮减速机的工作原理摆线针轮减速机的工作原理可以概括为“摆线运动与针齿啮合相结合”的传动方式。
具体过程如下:输入轴驱动:当输入轴旋转时,通过轴承和行星轮带动摆线轮进行旋转。
摆线运动:摆线轮在旋转过程中,其上的齿廓与针齿壳内的针齿相啮合。
由于摆线轮的齿廓形状特殊,使得摆线轮在绕自身轴线旋转的同时,还沿着针齿壳的内壁进行公转,形成摆线运动。
减速传动:摆线运动使得摆线轮上的齿廓不断与针齿壳内的针齿进行啮合和脱离,从而实现减速效果。
同时,行星轮与输出轴相连,通过摆线轮和行星轮的相互作用,将减速后的动力传递给输出轴。
输出轴输出:经过减速传动后,输出轴以较低的速度旋转,从而驱动负载进行工作。
三、摆线针轮减速机的优势分析。
摆线针轮减速机相较于其他类型的减速机,具有显著的优势,这些优势使得它在各种工业应用场景中脱颖而出。
以下是对摆线针轮减速机优势的详细分析:高效传动能力:高传动效率:摆线针轮减速机通过独特的摆线运动和针齿啮合设计,能够实现高达95%以上的传动效率,减少了能量的损失。
低摩擦损失:针齿和摆线轮之间的接触面积小,摩擦阻力小,从而减少了由于摩擦产生的热量和能量损失。
卓越的稳定性:精确控制:由于摆线运动的特性,减速机能够提供平稳且连续的动力输出,使得精确控制变得容易。
长寿命:摆线针轮减速机经过精密设计和制造,其关键部件如摆线轮和针齿壳经过特殊处理,具有长寿命和低维护要求。
低噪音和低振动:静音设计:摆线针轮减速机的结构设计和制造工艺都致力于降低噪音,使得它在需要低噪音环境的应用中表现出色。
行星齿轮传动比分析与计算
![行星齿轮传动比分析与计算](https://img.taocdn.com/s3/m/c0728a826294dd88d1d26b0f.png)
行星齿轮传动比分析与计算一、行星轮系传动比的计算 (一)行星轮系的分类若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。
行星轮系的组成:行星轮、行星架(系杆)、太阳轮 (二)行星轮系传动比的计算以差动轮系为例(反转法) 转化机构(定轴轮系) T 的机构1234差动轮系:2个运动行星轮系:,对于行量轮系:H H W W W -=111W H H W W W -=222W H H W W W -=333W 0=-=H H H H W W W H W 13313113)1(Z Z W W W W W W i H HH H H⋅'-=--==03=W 1310Z Z W W W H H-=--11311+==Z Z W W i H H )(z f W W W W W W iH B H A H BH A HAB=--==0=B W∴∴例12.2:图示为一大传动比的减速器,Z 1=100,Z 2=101,Z 2'=100,Z 3=99。
求:输入件H 对输出件1的传动比i H1解:1,3中心轮;2,2'行星轮;H 行星架 给整个机构(-W H )绕OO 轴转动∵W 3=0∴∴若Z 1=99行星轮系传动比是计算出来的,而不是判断出来的。
AHHA H H A H AB i W WW W W i -=-=--=110HAB AH i i -=1213223113)1('⋅⋅⋅-=--=Z Z Z Z W W W W i H HHH H Hi Z Z Z Z W W W 13213210'=--H H i Z Z Z Z W W 13213211'=+-HH i i 131100100991011⨯⨯-=100001001009910111111=⨯⨯-==HH i i 1001-=H i(三)复合轮系传动比的计算复合轮系:轮系中既含有定轴轮系又含有行星轮系,或是包含由几个基本行星轮系的复合轮系。
谐波齿轮——精密制造作业
![谐波齿轮——精密制造作业](https://img.taocdn.com/s3/m/6bd0ba016c85ec3a87c2c5e8.png)
一、简述谐波齿轮的原理及特点。
1、谐波齿轮的原理谐波齿轮传动的运动转换,是依靠挠性构件的弹性变形来实现的,这种运动转换原理为变形原理。
主要由波发生器、柔性齿轮和刚性齿轮三个基本构件组成,是一种靠波发生器使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力的齿轮传动。
柔轮是一个薄壁外齿圈,刚轮有内齿圈,刚轮比柔轮多2~4个齿(这又因波形发生器上触轮的多少而异,双波型的为2),波发生器的一对滚子将柔轮撑成椭圆形,当波发生器为主动轮时,柔轮和刚轮为从动轮,柔轮上的外轮齿与刚轮上的内轮齿在椭圆形柔轮的长轴方向完全啮合,则柔轮的短轴方向完全脱开,而中间区域为过渡状态。
波发生器在柔轮内转动时,迫使柔轮产生连续的弹性变形,此时波发生器的连续转动,就使柔轮齿的啮入—啮合—啮出—脱开这四种状态循环往复不断地改变各自原来的啮合状态。
这种现象称之错齿运动,正是这一错齿运动,作为减速器就可将输入的高速转动变为输出的低速转动。
当波发生器顺时针旋转一周时,柔轮相对固定的刚轮逆时针旋转2个齿,这样就把波发生器的快速转动变为刚轮的慢速转动,这时在柔轮的节圆的任一点,随着波发生器角位移的过程,形成一个上下左右相对称的和谐波,故称之为:“谐波”。
(1)谐波发生器(简称波发生器)(2)柔性齿轮(简称柔轮)(3)刚性齿轮(简称刚轮)图一谐波齿轮2、谐波齿轮特点(一)优点(1)结构简单,体积小,重量轻。
主要构件只有三个,与传动比相当的普通减速器比较,其零件减少50%,体积和重量均减少1/3左右或更多。
(2)传动比范围大。
一般单级传动比可在50~500范围内变化;当采用行星式波发生器时为150~4000;若采用双级传动或复式传动则可达2×106。
(3)同时啮合齿数多。
在承载情况下,双波传动的啮合齿数一般可达总齿数的30~40%左右,三波传动则更多。
而普通渐开线圆柱齿轮同时啮合的齿数一般为两对左右,即重叠系数小于2。
(4)运动精度高。
谐波齿轮介绍
![谐波齿轮介绍](https://img.taocdn.com/s3/m/10b43f7d83d049649a66589b.png)
d f 2 d f 2 d a2 2.3m d f 2 d a2 2.05m
0
当 hn
1.6m
时,与
* 0
1.1 ~
0.85 相对应
刚轮的齿顶圆和齿根圆 直径是根据在齿轮啮入 深度处保证有必要的径 向间隙以及消除过度曲 线干涉的条件下确定的
采用 0 30 压力角
的柔轮之节圆压力角应为19 ~ 31
inv M 2
inv 0
2 z2
dp db2
2z2
在远上的渐
开线压力角
测量柔轮时 用的量柱测
量距
M1
M
1
M1
d1
cos 0 cos M1
d1
cos 0 cos M 1
cos
d p (偶数齿)
90 z1
d p (奇数齿)
inv20 0.014904 inv30 0.053751
测量刚轮时 用的量柱测
代号
计算公式
0 20
0 30
备注
齿顶高系数 ha* ha* 1.0
ha* 0.8
顶隙系数
c* c* 0.25
c* 0.2
柔轮变位 系数
x1 对于柔性轴承已按标准选定的,
x1
0.5(Db
2 )
r1 m
(ha*
c* )m
x1 2.15 0.009z1
x1 0.15
Db --柔性轴承的外径;
柔轮基圆 直径
db1 db1 mz1 cos 0
柔轮分度圆 d1 d1 mz1
直径
柔轮分度圆 s1 s1 0.5m 2x1m tan 0
齿厚
时,柔轮中应力有所减 小
刚轮基圆 直径
研究性学习报告(模板)1
![研究性学习报告(模板)1](https://img.taocdn.com/s3/m/7ca30a8502d276a200292e91.png)
金陵科技学院《机械设计基础》研究性学习报告学院:机电工程学院班级: 09机械(3)班指导教师:姜小菁得分:研究性学习报告研究课题名称研究小组成员结构姓名学号项目分工小组评分组长组员研究报告由一对齿轮组成的机构是齿轮传动的最简单形式。
在工程实际中,为了满足各种不同的工作要求,经常采用若干个彼此啮合的齿轮进行传动。
这种由一系列齿轮组成的传动系统称为轮系。
它通常介于原动机和执行机构之间,把原动机的运动和动力传给执行机构。
其应用功用也非常显著。
主要的有以下几个方面:(1)可以获得较大的传动比,而且结构紧凑;(2)可以做较远距离的传动;(3)可以实现变速传动要求;(4)可以改变从动轴的回转方向;(5)可以实现运动的合成与分解;(6)在尺寸及重量较小时,实现大功率传动。
轮系的研究与制造不仅在现代得到了广泛的应用,早在远古时期就被人们所制造及使用,众所周知的便是记里鼓车与指南车。
记里鼓车发明于西汉初年,外形为一辆车子,车上设两个木人及一鼓一钟,木人一个司击鼓,一个司敲钟。
车上装有一组减速齿轮,与轮轴相连。
车行一里时,控制击鼓木人的中平轮正好转动一周,木人便击鼓一次;车行10里时,控制敲钟木人的上平轮正好转动一周,木人便敲钟一次。
坐在车上的人只要聆听这钟鼓声,就可知道车已行了多少路程。
这种机械装置的科学原理与现代汽车上的里程表基本相同。
燕肃的指南车是一辆双轮独辕车,车上立一木人,伸臂指南。
车中,除两个沿地面滚动的车轮外,尚有大小不同的7个齿轮。
由齿数、转动数,并保证木人指南的目的,可见古人掌握了关于齿轮匹配的力学知识和控制齿轮离合的方法。
车轮转动,带动附于其上的垂直齿轮,该附轮又使与其啮合的小平轮转动,小平轮带动中心大平轮。
指南木人的立轴就装在大平轮中心。
当车转弯时,车辕会自动控制车上的离合装置,即竹绳、滑轮和铁坠子,就可以控制大平轮的转动,从而使木人指向不变。
按照自动控制系统来分析就是车辆转弯时,齿轮系就要补偿车辆转弯带来的方向转动,按照自动控制系统的术语来讲指南车系统就是一个前馈控制。
世界上最精密的减速器制造商——日本Nabtesco和HarmonicDrive
![世界上最精密的减速器制造商——日本Nabtesco和HarmonicDrive](https://img.taocdn.com/s3/m/4715ea2f30126edb6f1aff00bed5b9f3f90f726b.png)
世界上最精密的减速器制造商——日本Nabtesco和HarmonicDrive减速器,大家可能都不太清楚是什么东西,说简单点,就是让转子的转动速度变慢的机器。
这种机器应用很广泛,例如汽车的变速箱、数码相机镜头、船舶推进螺旋桨、高精度加工机床等等,最近火起来的应用是工业机器人,其关节处需要大量使用到减速器。
今天咱们就来聊聊世界上最精密的减速器制造商——日本Nabtesco和HarmonicDrive。
变速箱目前主流的减速器分为RV(Rotate Vector旋转矢量)减速器和谐波齿轮减速器两种。
前者被日本ナブテスコ株式会社 - Nabtesco纳博特斯克垄断,后者被日本HarmonicDrive哈默纳科垄断,包括ABB、FANUC、KUKA等国际主流机器人厂商的减速器均由上述两家公司提供。
其中HarmonicDrive哈默纳科在工业机器人关节领域拥有15%的市场占有率,Nabtesco纳博特斯克拥有60%。
也就是说,目前全球机器人行业75%的精密减速机被日本垄断,剩余25%被德国、意大利、美国等瓜分。
Nabtesco纳博特斯克HarmonicDrive哈默纳科RV减速器由摆线针轮和行星支架组成,其体积小、抗冲击力强、扭矩大、定位精度高、振动小、减速比大,被广泛应用于工业机器人、机床、医疗检测设备、卫星接收系统等领域。
工业机器人RV减速器具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,包括我国在内的许多国家的机器人传动系统多采用RV减速器。
其可用于各种场景,可耐受高功率、长时间使用,一般将其放置在机座、大臂、肩部等重负载的位置。
RV减速器RV减速器谐波齿轮减速器是一种由固定的内齿刚轮、柔轮和使柔轮发生径向变形的谐波发生器组成。
这是一种新型传动结构,其利用柔性齿轮产生可控制的弹性变形波,引起刚轮与柔轮的齿间相对错齿来传递动力和运动。
谐波齿轮减速器谐波齿轮减速器谐波齿轮减速器这种传动与一般的齿轮传递具有本质上的差别,在啮合理论、集合计算和结构设计方面具有特殊性。
工业机器人直线和旋转传动机构的区别
![工业机器人直线和旋转传动机构的区别](https://img.taocdn.com/s3/m/d3eeacb1172ded630b1cb686.png)
工业机器人直线和旋转传动机构的区别
工业机器人的驱动源通过传动部件来驱动关节的移动或转动,从而实现机身、手臂和手腕的运动。
因此,传动部件是构成工业机器人的重要部件。
根据传动类型的不同,传动部件可以分为两大类:直线传动机构和旋转传动机构。
一、直线传动机构工业机器人常用的直线传动机构可以直接由汽缸或液压缸和活塞产生,也可以采用齿轮齿条、滚珠丝杠螺母等传动元件由旋转运动转换得到。
1.移动关节导轨
在运动过程中移动关节导轨可以起到保证位置精度和导向的作用。
移动关节导轨有五种:普通滑动导轨、液压动压滑动导轨、液压静压滑动导轨、气浮导轨和滚动导轨。
前两种导轨具有结构简单、成本低的优点,但是它必须留有间隙以便润滑,而机器人载荷的大小和方向变化很快,间隙的存在又将会引起坐标位置的变化和有效载荷的变化;另外,这种导轨的摩擦系数又随着速度的变化而变化,在低速时容易产生爬行现象等缺点。
第三种静压导轨结构能产生预载荷,能完全消除间隙,具有高刚度、低摩擦、高阻尼等优点,但是它需要单独的液压系统和回收润滑油的机构。
第四种气浮导轨的缺点是刚度和阻尼较低。
目前第五种滚动导轨在工业机器人中应用最为广泛,如图2-15所示为包容式滚动导轨的结构,用支承座支承,可以方便地与任何平面相连,此时套筒必须是开式的,嵌入在滑枕中,既增强刚度也方便了与其他元件的连接。
2. 齿轮齿条装置
齿轮齿条装置中(图2-16),如果齿条固定不动,当齿轮转动时,齿轮轴连同拖板沿齿条方向做直线运动。
这样,齿轮的旋转运动就转换成拖板的直线运动。
拖板是由导杆或导轨支承的,该装置的回差较大。
3. 滚珠丝杠与螺母。
摆线针轮减速机选型
![摆线针轮减速机选型](https://img.taocdn.com/s3/m/97fb9fcd690203d8ce2f0066f5335a8102d26631.png)
摆线针轮减速机选型1. 简介摆线针轮减速机是一种常见的减速机类型,广泛应用于工业机械领域。
它由摆线针轮传动机构和减速装置组成,通过减速装置将输入的高速转动转换成输出的低速高扭矩转动。
2. 工作原理摆线针轮减速机的工作原理主要是通过摆线针轮传动机构实现减速效果。
摆线针轮是由几个直径不同的圆弧组成,其中一个圆弧与输入轴相配合,另一个圆弧与输出轴相配合。
当输入轴旋转时,摆线针轮将输入轴的高速旋转通过圆弧的接触点传递给输出轴,使输出轴以较低的速度旋转。
通过不同圆弧的配合,可以实现不同的减速比。
3. 选型要点在选型摆线针轮减速机时,需要考虑以下几个要点:3.1 输入输出参数首先需要确定减速机的输入和输出参数。
输入参数包括输入轴的转速和扭矩,输出参数包括输出轴的转速和扭矩。
根据实际应用需求,确定减速比和输出扭矩。
3.2 减速比计算减速比是指输入轴的转速与输出轴的转速之比。
根据应用需求和输出功率计算减速比。
一般情况下,摆线针轮减速机的减速比范围较广,可以根据实际需要选择合适的减速比。
3.3 输出扭矩计算输出扭矩是指减速机输出轴所能提供的扭矩大小。
根据实际应用需求和负载特性计算输出扭矩。
选择减速机时,需确保输出轴的扭矩大于或等于负载所需扭矩。
3.4 效率和寿命除了输入输出参数和减速比外,还需考虑减速机的效率和寿命。
减速机的效率越高,能够更好地将输入功率转化为输出功率。
减速机的寿命则取决于材料和制造工艺等因素,应选择可靠耐用的减速机。
4. 选型示例为了更好地理解摆线针轮减速机的选型步骤,以下是一个选型示例:假设需求为:•输入轴转速:1500转/分钟•输入轴扭矩:100 Nm•输出轴转速:300转/分钟•输出轴扭矩:400 Nm•输出扭矩系数:1.5根据输入输出参数和减速比计算公式,可以得到减速比为:减速比 = 输入轴转速 / 输出轴转速减速比 = 1500 / 300 = 5根据输出扭矩系数,可以得到输出扭矩为:输出扭矩 = 输出轴扭矩 * 输出扭矩系数输出扭矩 = 400 * 1.5 = 600 Nm根据以上计算结果和实际应用需求,可以确定需要一个减速比为5,输出扭矩为600 Nm的摆线针轮减速机。
机械设计制造及其自动化毕业论文
![机械设计制造及其自动化毕业论文](https://img.taocdn.com/s3/m/67cb268fb90d6c85ed3ac69c.png)
毕业设计(论文)题目:自动上下料机械手及主要零部件设计姓名:管明亮学号: ************* 教育层次:本科专业:机械设计制造及其自动化分校:北京路指导教师:朱乾隆老师2016年05月30日摘要:机械手能代替人工操作,起到减轻工人的劳动强度,节约加工时间,提高生产效率,降低生产成本的特点。
在实用的基础上,对自动上下料机械手的设计,其中分为三个部分,手爪、手腕、直臂。
设计手爪为平移型夹持式手爪,传动结构为滑动丝杆。
手腕为回转型,转动角度为0-180°,传动结构为蜗轮蜗杆。
直臂传动结构为滚珠丝杆。
整体机械手为直角坐标型,驱动均为电机驱动,结构简单可靠,精度高。
关键词:机械手;直臂与夹持部件;Pro/e三维设计;CAD二维设计Abstract: Mechanical arm can replace manual operation, reduce the labor intensity of workers,save processing time,improve the production efficiency, reduce the production cost.On the basis of the practical,the design of automatic up-down material manipulator, which is divided into three parts, hand,wrist,arm straight.Design of clamping type hand claw gripper for translation,for sliding screw transmission structure.Wrist for transformation,rotation Angle of 0-180 °,for the worm gear and worm drive structure.Straight arm for the ball screw transmission structure. Integral type manipulator for rectangular coordinates, drive for motor drive,structure simple, reliable and high precision.Key Word:Mechanical arm; Straight arm and clamping parts; Pro/e 3 d design;2 d CAD design目录第一章绪论 (1)1.1前言和意义 (1)1.2 工业机械手的简史 (1)1.3 国内外研究现状和趋势 (3)1.4 本章小结 (4)第二章机械手直臂部分的总体设计 (5)2.1 执行机构的选择 (5)2.2 驱动机构的选择 (5)2.3传动结构的选择 (6)2.4 机械手的基本形式选择 (7)2.5 机械手直臂部分的主要部件及运动 (8)2.6 机械手的技术参数 (9)2.8 本章小结 (10)第三章机械手手爪的三维设计 (11)3.1 手部设计基本要求 (11)3.2 典型的手部结构 (11)3.3 机械手手爪的设计计算 (11)3.3.1选择手爪的类型及夹紧装置 (11)3.3.2 手爪夹持范围计算 (12)3.3.3 滑动丝杠设计 (13)3.3.4 直齿轮设计 (16)3.3.5电机选型 (16)3.4 机械手手爪的三维出图及其主要零部件出图 (18)3.5 本章小结 (20)第四章机械手手腕部分的三维设计 (21)4.1腕部设计的基本要求 (21)4.2 腕部的结构以及选择 (21)4.2.1 典型的腕部结构 (21)4.2.2 腕部结构和驱动机构的选择 (22)4.3 腕部的设计计算 (22)4.3.1 蜗轮轴的设计计算 (22)4.3.2 蜗轮齿轮设计 (24)4.3.3 步进电机选型 (26)4.4 手腕部分出图及主要零部件出图 (27)4.5本章小结 (33)第五章直臂部分的三维设计 (34)5.1 手臂的结构的选择及其驱动机构 (34)5.2 滚珠丝杠设计 (34)5.3 锥齿轮设计 (37)5.4 电机选型 (40)5.5 机械手直臂部分三维出图及主要零部件出图 (41)5.6 本章小结 (44)总结 (45)参考文献 (46)致谢 (48)第一章绪论1.1前言和意义机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
减速器的分类
![减速器的分类](https://img.taocdn.com/s3/m/9f544f3aa26925c52dc5bf36.png)
减速机是比较常用的一种传动设备。
减速机的种类多样、型号丰富,常见的种类有齿轮减速机、行星齿轮减速机、摆线针轮减速机、蜗轮蜗杆减速机等等。
一、齿轮减速机介绍1、齿轮减速机是新颖减速传动装置。
2、采用最优化,模块组合体系先进的设计理念,具有体积小、重量轻、传递转矩大、起动平稳、传动比分级精细,可根据用户要求进行任意连接和多种安装位置的选择。
3、齿轮采用优质高强度合金钢,表面渗碳硬化处理,承载能力强,经久耐用。
齿轮减速机分类1、圆柱齿轮减速机2、大功率齿轮减速机3、斜齿轮减速机4、平行轴斜齿轮减速机5、锥齿轮减速机6、圆锥圆柱齿轮减速机广泛应用于冶金、矿山、起重、运输、水泥、建筑、化工、纺织、印染、制药等各种通用机械设备的减速传动机构。
齿轮减速机系列产品齿轮减速机产品概述:R系列1、R系列同轴式斜齿轮减速机结合国际技术要求制造,具有很高的科技含量2、节省空间,可靠耐用,承受过载能力高,功率可达132KW;3、能耗低,性能优越,减速机效率高达95%以上;4、振动小,噪音低,节能高;5、选用优质锻钢材料,钢性铸铁箱体,齿轮表面经过高频热处理;6、经过精密加工,确保轴平行度和定位轴承要求,形成斜齿轮传动总成的减速机配置了各类电机,组合成机电一体化,完全保证了产品使用质量特性。
齿轮减速机产品概述:F系列1、F系列平行轴斜齿轮减速机结合国际技术要求制造,具有很高的科技含量。
2、节省空间,可靠耐用,承受过载能力高,功率可达90KW以上。
3、能耗低,性能优越,减速机效率高达95%以上。
4、振动小,噪音低,节能高,选用优质段钢材料,钢性铸铁箱体,齿轮表面经过高频热处理。
5、经过精密加工,确保轴平行度和定位的精度,这一切构成了齿轮传动总成的减速机配置了各类电机,形成了机电一体化,完全保证了产品使用质量特征。
S系列1、S系列斜齿轮蜗杆减速电机具有很高的科技含量,有斜齿轮与蜗轮蜗杆结合一体传动,提高该机力矩与效率。
该系列产品规格齐全,转速范围广,通用性好,适应各种安装方式,性能安全可靠寿命长,实施了国际标准要求。
机械设计基础(陈立德第三版)课后答案(1-18章全)
![机械设计基础(陈立德第三版)课后答案(1-18章全)](https://img.taocdn.com/s3/m/f34d4558be23482fb4da4c92.png)
第11章 蜗杆传动11.1 蜗杆传动的特点及使用条件是什么?答:蜗杆传动的特点是:结构紧凑,传动比大。
一般在传递动力时,10~80i =;分度传动时只传递运动,i 可达1 000;传动平稳,无噪声;传动效率低;蜗轮一般用青铜制造,造价高;蜗杆传动可实现自锁。
使用条件:蜗杆传动用于空间交错(90 )轴的传动。
用于传动比大,要求结构紧凑的传动,传递功率一般小于50kW 。
11.2 蜗杆传动的传动比如何计算?能否用分度圆直径之比表示传动比?为什么? 答:蜗杆传动的传动比可用齿数的反比来计算,即1221i n n z z ==;不能用分度圆直径之比表示传动比,因为蜗杆的分度圆直径11d mq mz =≠。
11.3 与齿轮传动相比较,蜗杆传动的失效形式有何特点?为什么?答:蜗杆传动的失效形式与齿轮传动类似,有点蚀、弯曲折断、磨损及胶合。
但蜗杆传动中蜗轮轮齿的胶合、磨损要比齿轮传动严重得多。
这是因为蜗杆传动啮合齿面间的相对滑动速度大,发热严重,润滑油易变稀。
当散热不良时,闭式传动易发生胶合。
在开式传动及润滑油不清洁的闭式传动中,轮齿磨损较快。
11.4 何谓蜗杆传动的中间平面?中间平面上的参数在蜗杆传动中有何重要意义? 答:蜗杆传动的中间平面是通过蜗杆轴线且垂直于蜗轮轴线的平面。
中间平面上的参数是标准值,蜗杆传动的几何尺寸计算是在中间平面计算的。
在设计、制造中,皆以中间平面上的参数和尺寸为基准。
11.5 试述蜗杆直径系数的意义,为何要引入蜗杆直径系数q ? 答:蜗杆直径系数的意义是:蜗杆的分度圆直径与模数的比值,即1q d m =。
引入蜗杆直径系数是为了减少滚刀的数量并有利于标准化。
对每个模数的蜗杆分度圆直径作了限制,规定了1~4个标准值,则蜗杆直径系数也就对应地有1~4个标准值。
11.6 何谓蜗杆传动的相对滑动速度?它对蜗杆传动有何影响?答:蜗杆传动的相对滑动速度是由于轴交角90∑=,蜗杆与蜗轮啮合传动时,在轮齿节点处,蜗杆的圆周速度1v 和蜗轮的圆周速度2v 也成90 夹角,所以蜗杆与蜗轮啮合传动时,齿廓间沿蜗杆齿面螺旋线方向有较大的相对滑动速度s v ,其大小为s 1cos v v λ==。
(完整版)工业机器人核心部件-谐波减速器
![(完整版)工业机器人核心部件-谐波减速器](https://img.taocdn.com/s3/m/5f68a6b8ee06eff9aff80738.png)
工业机器人核心部件-谐波减速器作者:csuzhm2009-03-24 00:18 星期二晴机器人驱动系统要求传动系统间隙小、刚度大、输出扭矩高以及减速比大,常用的减速机构有:1)RV减速机构;2)谐波减速机械;3)摆线针轮减速机构;4)行星齿轮减速机械;5)无侧隙减速机构;6)蜗轮减速机构;7)滚珠丝杠机构;8)金属带/齿形减速机构;9)球减速机构。
其中谐波减速器广泛应用于小型的六轴搬运及装配机械手中,下面介绍其工作原理。
以下内容摘自百度百科(稍有修改):谐波齿轮减速器是利用行星齿轮传动原理发展起来的一种新型减速器。
谐波齿轮传动(简称谐波传动),它是依靠柔性零件产生弹性机械波来传递动力和运动的一种行星齿轮传动。
(一)传动原理它主要由三个基本构件组成:(1)带有内齿圈的刚性齿轮(刚轮)2,它相当于行星系中的中心轮;(2)带有外齿圈的柔性齿轮(柔轮)1,它相当于行星齿轮;(3)波发生器H,它相当于行星架。
作为减速器使用,通常采用波发生器主动、刚轮固定、柔轮输出形式。
波发生器H是一个杆状部件,其两端装有滚动轴承构成滚轮,与柔轮1的内壁相互压紧。
柔轮为可产生较大弹性变形的薄壁齿轮,其内孔直径略小于波发生器的总长。
波发生器是使柔轮产生可控弹性变形的构件。
当波发生器装入柔轮后,迫使柔轮的剖面由原先的圆形变成椭圆形,其长轴两端附近的齿与刚轮的齿完全啮合,而短轴两端附近的齿则与刚轮完全脱开。
周长上其他区段的齿处于啮合和脱离的过渡状态。
当波发生器沿图示方向连续转动时,柔轮的变形不断改变,使柔轮与刚轮的啮合状态也不断改变,由啮入、啮合、啮出、脱开、再啮入……,周而复始地进行,从而实现柔轮相对刚轮沿波发生器H相反方向的缓慢旋转。
在传动过程中,波发生器转一周,柔轮上某点变形的循环次数称为波数,以n 表示。
常用的是双波和三波两种。
双波传动的柔轮应力较小,结构比较简单,易于获得大的传动比。
故为目前应用最广的一种。
谐波齿轮传动的柔轮和刚轮的周节相同,但齿数不等,通常采用刚轮与柔轮齿数差等于波数,即z2-z1=n式中z2、z2--分别为刚轮与柔轮的齿数。
机械课程设计说明书行星齿轮减速器传动装置设计(单级)
![机械课程设计说明书行星齿轮减速器传动装置设计(单级)](https://img.taocdn.com/s3/m/66fcbd08a9956bec0975f46527d3240c8447a101.png)
汇报人:
目录
添加目录标题
行星齿轮减速器 概述
行星齿轮减速器 设计参数
行星齿轮减速器 结构设计
行星齿轮减速器 强度分析
行星齿轮减速器 优化设计
添加章节标题
行星齿轮减速器概 述
行星齿轮减速器:由太阳轮、行星轮和内齿圈组成,具有体积小、重量轻、传动效率高 等特点。
蜗轮蜗杆减速器:由蜗轮和蜗杆组成,具有自锁功能,但传动效率较低。
齿轮比:决定减速比,影响输出扭矩和 转速
润滑系统:保证齿轮啮合顺畅,减少磨 损
密封系统:防止润滑油泄漏,保证齿轮 啮合环境清洁
太阳轮是行星齿轮减速器的核心部件之一 太阳轮的设计需要考虑到其尺寸、材料、加工工艺等因素 太阳轮的设计还需要考虑到其与行星轮、内齿圈的配合关系 太阳轮的设计还需要考虑到其与减速器的整体性能和寿命的关系
安全性:测试结果符合安 全标准
性能测试:包括扭矩、转速、效率、噪音等指标 评估方法:采用对比测试、数据分析等方法进行评估 改进建议:针对测试结果,提出改进措施,如优化齿轮设计、调整润滑油等 评估周期:定期进行性能评估,确保设备稳定运行
感谢您的观看
汇报人:
减速器强度分析的目的:确保减速 器在运行过程中能够承受各种载荷 和冲击
减速器强度分析的内容:包括齿轮、 轴承、壳体等部件的强度校核
添加标题
添加标题
添加标题
添加标题
减速器强度分析的方法:采用有限 元分析、疲劳寿命分析等方法进行 计算和校核
减速器强度分析的结果:根据校核 结果,对减速器进行优化设计,提 高其可靠性和寿命
尺寸:减速器的尺寸和重量
润滑方式:减速器的润滑方 式
工作环境:减速器的工作环 境温度、湿度等
常见机构的特点和应用
![常见机构的特点和应用](https://img.taocdn.com/s3/m/feae5b9c51e79b89680226db.png)
轴向距离较大,平均传动比为常数,链条元件间形成的油膜有吸振能力,对恶劣环境有较强的适应能力,工作可靠,轴上载荷较小;瞬时运转速度不均匀,高速时不如带传动平稳;链条工作时因磨损伸长后容易引起共振,一般需增设张紧和减振装置
用于传递较远距离的两轴的回转运动或动力
广泛应用于各种传动系统,传递回转运动,实现减速或增速、变速以及换向等
齿轮齿条机构
结构简单,成本低,传动效率高,易于实现较长的运动行程;当运动速度较高或为提高运动平稳性时,可采用斜齿或人字齿条机构
广泛应用于各种机器的传动系统,变速操纵装置,自动机的输送、转向、进给机构以及直动与转动的运动转换装置
圆锥齿轮机构
用来传递两相交轴的运动;直齿圆锥齿轮传递的圆周速度较低,曲齿用于圆周速度较高的场合
用于减速、转换轴线方向以及反向的场合,如汽车、拖拉机、机床等
螺旋齿轮机构
常用于传递既不平行又不相交的两轴之间的运动,但其齿面间为点啮合,且沿齿高和齿长方向均有滑动,容易磨损,因此只宜用于轻载传动
用于传递空间交错轴之间的运动
蜗轮蜗杆机构
传动平稳无噪声,结构紧凑,传动比大,可做成自锁蜗杆;自锁蜗杆传动的效率很低,低速传动时磨损严重,中高速传动的蜗轮齿圈需贵重的减摩材料(如青铜),制造精度要求较高,刀具费用昂贵
用于大传动比减速装置(但功率不宜过大)、增速装置、分度机构、起重装置、微调进给装置、省力的传动装置
行星齿轮机构
传动比大,结构紧凑,工作可靠,制造和安装精度要求高,其他特点同普通齿轮传动;主要有渐开线齿轮、摆线针轮、谐波齿轮3种齿形的行星传动
凸轮式间歇机构
结构较简单,传动平稳,动载荷较小,从动件可实现任何预期的单向间歇转动,但凸轮制造困难
用作高速分度机构或自动转位机构
《谐波齿轮传动》课件
![《谐波齿轮传动》课件](https://img.taocdn.com/s3/m/5b517177b80d6c85ec3a87c24028915f804d84d6.png)
具有结构紧凑、传 动比大、传动精度 高等优点
广泛应用于航空航 天、机器人、医疗 器械等领域
柔性齿轮:由薄壁金属材料 制成,具有弹性变形能力
基本原理:通过柔性齿轮的弹 性变形,实现两个齿轮的啮合
刚性齿Байду номын сангаас:与柔性齿轮啮合, 实现动力传递
传动比:通过改变柔性齿轮的 变形程度,实现不同的传动比
传动比大:可以实现大传动比,满足不同场合的需求 传动精度高:具有较高的传动精度,满足精密传动的要求 传动效率高:传动效率高,降低能耗,提高设备性能 结构紧凑:体积小,重量轻,便于安装和维护 寿命长:耐磨损,使用寿命长,降低维护成本 适应性强:适用于各种恶劣环境,如高温、低温、潮湿等
谐波齿轮传动的优 缺点
精度高:传动精度高,适合 精密传动场合
传动比大:可以实现大传动 比,满足不同场合的需求
体积小:结构紧凑,节省空 间
寿命长:使用寿命长,维护 成本低
制造成本高
传动效率低
容易磨损
噪音较大
谐波齿轮传动的未 来发展
提高传动效率: 通过优化设计、 材料选择等方 式提高传动效
率
降低噪音和振 动:通过改进 结构设计、优 化制造工艺等 方式降低噪音
优点:结构简单、体积小、重 量轻、传动精度高
特点:具有两 个波形,可以 传递更大的扭
矩
应用:广泛应 用于航空航天、 机器人、医疗
器械等领域
优点:结构紧 凑、传动比大、 精度高、寿命
长
缺点:制造难 度大、成本高、 需要专用的润 滑油和维护设
备
特点:具有多个波形,可以适应不同的传动比和扭矩需求 应用:广泛应用于航空航天、机器人、医疗器械等领域 优点:传动效率高,噪音低,寿命长 缺点:制造难度大,成本高,需要精确的加工和装配技术
行星轮介绍
![行星轮介绍](https://img.taocdn.com/s3/m/ae08f29133687e21ae45a918.png)
行星轮介绍一.轮系的类型和应用一、轮系的分类(Classification of Gear Trains)根据轮系运转中齿轮轴线的空间位置是否固定,将轮系分为定轴轮系和周转轮系两大类。
1、定轴轮系(Ordinary Gear Trains)轮系运转时,其中各齿轮的回转轴线位置固定不动,则称之为定轴轮系。
如下图所示。
图 6-82、周转轮系(Epicyclic Gear Trains)轮系运转时,至少有一个齿轮轴线的位置不固定,而是绕某一固定轴线回转,称该轮系为周转轮系。
如图6-2所示。
又可根据自由度数的不同,将周转轮系分为差动轮系和行星轮系两类。
当轮系的自由度数为2,即需要两个原动件机构运动才能确定时,该周转轮系称为差动轮系,如图6-2a所示;自由度为1的周转轮系称为行星轮系,如图6-2b所示。
图 6-2周转轮系还可根据基本构件的不同分类。
以K表示中心轮,以H表示系杆,则图6-2所示轮系可称为2K-H型周转轮系,图6-3所示轮系则称为3K型周转轮系。
图6-3所示的轮系中有3个中心轮(图中的齿轮1、3和4)故称为3K型周转轮系,该轮系的系杆H仅起支承行星轮2-2′的作用,不传递外力矩,因而不是基本件。
图 6-3由定轴轮系和周转轮系或者由两个以上的周转轮系所组成的轮系,称为混合轮系,如图6-4所示,该机构左部由齿轮1、2、2 ′和3组成定轴轮系,而其右部则为周转轮系。
图 6-4二、轮系的功用(Functions of Gear Trains)1、实现相距较远的两轴之间的传动如下图6-5所示,若用四个小齿轮a、b、c和d代替一对大齿轮1、2实现啮合传动,既节省材料,减少占用空间,又方便于制造和安装。
图 6-52、实现分路传动图6-6为滚齿机上实现滚刀与轮坯范成运动的传动简图。
图中由轴I来的运动和动力经锥齿轮1、2传给滚刀,同时又由与锥齿轮1同轴的齿轮3经齿轮4、5、6、7传给蜗杆8,再传给蜗轮9而至轮坯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、谐波齿轮传动
1.结构:
谐波齿轮传动是谐波齿轮行星传动的简称。是一 种少齿差行星传动。通常由刚性圆柱齿轮G、柔性圆 柱齿轮R、波发生器H和柔性轴承等零部件构成。
柔轮和刚轮的齿形有直线三角齿形和渐开线齿形 两种,以后者应用较多 。
谐波齿轮传动构成图例:
2.运动原理:
3.传动比计算:
n2 nH n2 nH Z1 i i2 H 1 n1 nH 0 nH Z2
H 21
i2 H
Z1 Z1 Z 2 1 Z2 Z2
1 i2 H Z2 Z1 Z 2
iHV iH 2
单齿差传动时,Z1 - Z 2 =1 故,iHV Z 2
5.单级谐波齿轮常见的传动形式
刚轮固定—柔轮输出
柔轮固定—刚轮输出 波发生器固定—刚轮输出
i
G HR
ZR ZG Z R
i
R HG
ZG ZG Z R
i
H RG
ZG ZR
6.波发生器种类
凸轮式
滚轮式
偏心盘式
7.谐波齿轮的典型结构
双波单级谐波齿轮减速器
二、摆线针轮传动
1.结构:
ZG ZR
谐波齿轮传动中,刚轮的齿数 zG 略大于柔轮的齿数 zR 。 谐波齿轮的齿数差应等于波数或波数的整数倍。 波发生器的长度比未变形的柔轮内圆直径大:当波发生 器装入柔轮内圆时,迫使柔轮产生弹性变形而呈椭圆状, 使其长轴处柔轮轮齿插入刚轮的轮齿槽内,成为完全啮合 状态;而其短轴处两轮轮齿完全不接触,处于脱开状态。 由啮合到脱开的过程之间则处于啮出或啮入状态。 当波发生器连续转动时:迫使柔轮不断产生变形,使两 轮轮齿在进行啮入、啮合、啮出、脱开的过程中不断改变 各自的工作状态,产生了所谓的错齿运动,从而实现了主 动波发生器与柔轮的运动传递。
由系杆H、行星轮2(摆 线齿轮)、中心轮1(内 齿针轮)和输出机构V组 成的K-H-V型行星轮系。
摆线针轮传动示意图
2.短幅摆线形成:
短幅外摆线
普通幅外摆线
长幅外摆线
对于给定的针轮 及中心距,一个摆线 轮与之正确啮合的必 要 条 件 为 : e=e′ , 即 针轮与摆线轮的中心 距必须等于短幅摆线 的偏心距。事实上, 该条件也是摆线针轮 正确啮合的充分条件。
4.摆线针轮的类型:
一齿差摆线针轮行星传动啮合图
二齿差摆线针轮行星传动啮合图
4.摆线针轮的类型:
三齿差摆线针轮行星传动啮合图
负一齿差摆线针轮行星传动啮合图
3.传动比:(以刚轮固定,柔轮输出为例)
Zg nr nH nr nH i irH 1 ng nH 0 nH Zr
H rg
irH 1
Zg Zr
Z g Zr Zr
实际上,运动是从波发生器输入的,减速器的传动比 为:
iHr
1
irH
Zr Z g Zr
iHr
1 irH
Zr Z g Zr
波发生器的旋转方 向与柔轮的转动方 向相反。
4.特点
谐波齿轮传动既可用做减速器,也可用做增速器。 柔轮、刚轮、波发生器三者任何一个均可固定,其余 二个一为主动,另一个为从动。 传动比大,且外形轮廓小,零件数目少,传动效率 高。效率高达92%~96%,单级传动比可达50~400。 承载能力较高:柔轮和刚轮之间为面接触多齿啮合, 且滑动速度小,齿面摩损均匀。 柔轮和刚轮的齿侧间隙是可调:当柔轮的扭转刚度 较高时,可实现无侧隙的高精度啮合。 谐波齿轮传动可用来由密封空间向外部或由外部向 密封空间传递运动。