河北省衡水中学2018届高三上学期七调考试数学(理)含答案
2018衡水中学高三七调理科数学试题及答案
2019-2018学年度上学期高三年级七调考试数学(理科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|||2}A x x =<,{|}B x x a =>,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 2.若复数z 满意341z i +-=(i 为虚数单位),则z 的虚部是( ) A .-2 B .4 C .4i D .-43.已知1,1a ,2a ,4成等差数列,1,1b ,2b ,3b ,4成等比数列,则122a ab +的值是( )A .52B .52- C . 52或52- D .124.如图,5个(,)x y 数据,去掉(3,10)D 后,下列说法错误的是( ) A .相关系数r 变大 B .残差平方和变大C.相关指数2R 变大 D .说明变量x 与预报变量y 的相关性变强5.已知1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,若椭圆上存在点P ,使1290F PF ︒∠=,则该椭圆的离心率e 的取值范围为( ) A.(0,2B.2C. D. 6.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0),(1,0,1),(0,1,1),1(,1,0)2,绘制该四面体的三视图时,依据如下图所示的方向画正视图,则得到的侧(左)视图可以为( )A .B . C.D .7.函数1()sin(ln)1x f x x -=+的图像大致为( ) A . B .C. D .8.更相减损术是中国古代数学专著《九章算术》中的一种算法,其内容如下:“可半者半之,不行半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”下图是该算法的程序框图,若输入102a =,238b =,则输出a 的值是( ) A . 68 B .17 C.34 D .369.已知e 为自然对数的底数,若对随意的1[,1]x e∈,总存在唯一的(0,)y ∈+∞,使得ln ln 1y yx x a y+++=成立,则实数a 的取值范围是( )A .(,0)-∞B .(,0]-∞ C. 2(,]e eD .(,1]-∞- 10.电视台播放甲、乙两套连续剧,每次播放连续剧时,须要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:电视台每周支配的甲、乙连续剧的总播放时长不多于600min ,广告的总播放时长不少于30min ,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用x ,y 表示每周支配播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为( )A .6,3B .5,2 C. 4,5 D .2,7 11.已知在正四面体ABCD 中,M 是棱AD 的中点,O 是点A 在底面BCD 内的射影,则异面直线BM 与AO 所成角的余弦值为( )A .6B .3C.4D .512.已知(sin ,sin )2a x x ωω=,1(sin ,)22b x ω=,其中0ω>,若函数1()2f x a b =⋅-在区间(,2)ππ内没有零点,则ω的取值范围是( ) A .1(0,]8 B . 5(0,]8 C. 15(0,][,1]88⋃D .115(0,][,]848⋃二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.如图,在半径为2的扇形AOB 中,90AOB ︒∠=,P 为弧AB 上的一点,若2OP OA ⋅=,则OP AB ⋅的值为 .14.若从区间(0,)e (e 为自然对数的底数, 2.71828e =)内随机选取两个数,则这两个数之积小于e 的概率为 .15.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列四个论断中正确的是 .(把你认为是正确论断的序号都写上) ①若sin cos A B a b =,则4B π=; ②若4B π=,2b =,a =③若a ,b ,c 成等差数列,sin A ,sin B ,sin C 成等比数列,则ABC 为正三角形;④若5a =,2c =,ABC 的面积4ABCS=,则3cos 5B =. 16.设椭圆C 的两个焦点是1F ,2F ,过点1F 的直线与椭圆C 交于P ,Q 两点,若212||||PF F F =,且115||6||PF FQ =,则椭圆C 的离心率为 .三、解答题 (本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 的前n 项和n S 满意*231()n n S a n N =-∈. (1)求数列{}n a 的通项公式; (2)求数列21{}nn a -的前n 项和n T . 18.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,//AD BC ,侧面11ABB A 为菱形,1DAB DAA ∠=∠. (1)求证:1A B AD ⊥.(2)若2AD AB BC ==,160A AB ︒∠=,D 在平面11ABB A 内的射影恰为线段1A B 的中点,求平面11DCC D 与平面11ABB A 所成锐二面角的余弦值.19.某保险公司针对企业职工推出一款意外保险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元. 保险公司把职工从事的全部岗位共分为A ,B ,C 三类工种,依据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率).(1)依据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每份保单保费的上限;(2)某企业共有职工20000人,从事三类工种的人数分布比例如图所示,老板打算为全体职工购置此种保险,并以(1)中计算的各类保险上限购置,试估计保险公司在这宗交易中的期望利润.20.,以该椭圆上的点和椭圆的左、右焦点1F ,2F 为顶点的三角形的周长为1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P 为该双曲线上异于顶点的随意一点,直线1PF 和2PF 与椭圆的交点分别为A ,B 和C ,D ,且点,A C 在x 轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P ,使得3||||||||4AB CD AB CD +=⋅若存在,求出点P 的坐标;若不存在,请说明理由.21. 已知函数1()x f x e a -=+,函数()ln g x ax x =+,a R ∈. (1)求函数()y g x =的单调区间;(2)若不等式()()1f x g x ≥+在区间[1,)+∞内恒成立,务实数a 的取值范围;(3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+成立.请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为(1,0),若直线l 的极坐标方程为cos()104πθ+-=,曲线C 的参数方程是244x m y m⎧=⎨=⎩,(m 为参数). (1)求直线l 的直角坐标方程和曲线C 的一般方程; (2)设直线l 与曲线C 交于,A B 两点,求11||||MA MB +. 23.选修4-5:不等式选讲已知函数2()4f x x ax =++,()|1||1|g x x x =++-. (1)求不等式()3g x ≥的解集;(2)若2[2,2]x ∀∈-,1[2,2]x ∃∈-,使得不等式12()()f x g x ≤成立,务实数a 的取值范围.试卷答案一、选择题1-5: CBABB 6-10:BBCBA 11、12:BD 二、填空题 13.2-+ 14.2e15. ①③ 16.911三、解答题17.解:(1)当1n =时,11231S a =-,所以11a =; 当2n ≥时,11231n n S a --=-,则1122233n n n n n a S S a a --=-=-,即13n n a a -=.又因为11a =,所以数列{}n a 是以1为首项,3为公比的等比数列,所以1*3()n n a n N -=∈. (2)由(1)得121213n n n n a ---=,所以122135232113333n n n n n T ----=+++++, ① ②-①,得221222212323333n n n n T ---=+++++-111112122332613313n n n n n -----+=+⨯-=--, 所以*113()3n n n T n N -+=-∈. 18.(1)证明:如图,连接1AB ,1A D ,BD ,设1AB 交1A B 于点O ,连接OD .由AD AD =,1AA AB =,1DAB DAA ∠=∠,得1AA D ABD ≅,所以1A D BD =.又O 是线段1A B 的中点,所以1OD A B ⊥,又依据菱形的性质得1AO A B ⊥,且AO OD O ⋂=,所以1A B ⊥平面ADO ,从而1A B AD ⊥.(2)解:由题意知DO ⊥平面11ABB A ,又11AO A B ⊥,即1OB OB ⊥,所以OB ,1OB ,OD 两两垂直. 以OB ,1OB ,OD 所在直线为,,x y z 轴建立空间直角坐标系O xyz -,如图所示.设22AD AB BC a ===,由160A AB ︒∠=,可知OB a =,1OA OB ==, 所以OD a ==,从而(0,,0)A,(,0,0)B a ,1,0)B ,(0,0,)D a .所以11(,0)CC BB a ==-.由12BC AD =,得1(,)2C a a ,所以1(,)2DC a a =-.设平面11DCC D 的法向量为000(,,)m x y z =,由100m CC m DC ⎧⋅=⎪⎨⋅=⎪⎩,得000000102ax ax az ⎧-+=⎪⎨+-=⎪⎩, 令01y =,则0x =,0z =(3,1,3m =.又平面11ABB A 的一个法向量为(0,0,)OD a =,所以33cos ,31||||31OD m a OD m OD m a⋅〈〉===.故平面11DCC D 与平面11ABB A 所成锐二面角的余弦值为31. 19.解:(1)设工种A 的每份保单保费为a 元,保险公司每单的收益为随机变量X 元,则X 的分布列为 保险公司的期望收益为45511()(1)(5010)51010E X a a a =-+-⨯⨯=-(元). 由题意得50.2a a -≤,解得 6.25a ≤(元).设工种B 的每份保单保费为b 元,赔付金期望值为45501021010⨯⨯=(元),则保险公司的期望利润为(10)b -元. 由题意得100.2b b -≤,解得12.5b ≤(元).设工种C 的每份保单保费为c 元,赔付金期望值为4450105010⨯=(元), 则保险公司的期望利润为(50)c -元. 由题意得500.2c c -≤,解得62.5c ≤(元).综上,工种,,A B C 的每份保单保费的上限分别为6.25元,12.5元,62.5元.(2)购置A类产品的份数为2000060%12000⨯=(份),购置B类产品的份数为2000030%6000⨯=(份),购置C类产品的份数为2000010%2000⨯=(份),企业支付的总保费为12000 6.25600012.5200062.5275000⨯+⨯+⨯=(元),保险公司在这宗交易中的期望利润为27500020%55000⨯=(元).20.解:(1)由题意知,椭圆离心率2cea==,即a=,又221)a c+=,所以a=2c=,所以2224b a c=-=,所以椭圆的标准方程为22184x y+=.所以椭圆的焦点坐标为(2,0)±,又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为22144x y-=.(2)设000(,)(2)P x y x≠±,则102PFykx=+,22PFykx=-,因为点P在双曲线22144x y-=上,所以121PF PFk k⋅=.设11(,)A x y,22(,)B x y,直线1PF的方程为(2)y k x=+,所以直线2PF的方程为1(2)y xk=-,联立22184(2)x yy k x⎧+=⎪⎨⎪=+⎩,得2222(21)8880k x k x k+++-=,所以2122821kx xk+=-+,21228821kx xk-⋅=-+,所以||AB ===.同理可得221()]||12()1k CD k +=+221)2k k +=+. 由题知124||||||||cos ()3AB CD AB CD F PF θθ+=⋅⋅=∠,即411cos ()3||||CD AB θ=+=2432=. 因为1212||||cos PF PF PF PF θ⋅=, 即0000(2)(2)()()x x yy ---+--=2,又因为22004x y -=,所以202(4)2x-==2=208x =,204y =.即存在满意题意的点P ,且点P 的坐标为(2)±±.21.(1)解:函数()g x 的定义域为(0,)+∞, 因为()ln g x ax x =+,a R ∈,所以11()ax g x a xx+'=+=. 当0a ≥时,()0g x '>在区间(0,)+∞内恒成立,所以函数()g x 的单调递增区间为(0,)+∞,无单调递减区间; 当0a <时,令()0g x '>,得10x a<<-,令()0g x '<,得1x a>-,所以函数()g x 的单调递增区间为1(0,)a-,单调递减区间为1(,)a-+∞. (2)解:()()1f x g x ≥+在区间[1,)+∞内恒成立,即1ln 10x e x a ax --+--≤在区间[1,)+∞内恒成立. 设1()ln 1x F x e x a ax -=-+--,则(1)0F =,11x F e a x-'=--在区间[1,)+∞内单调递增,所以()(1)F x F a '≥'=-. 当0a ≤时,()0F x '≥,()F x 在区间[1,)+∞内为增函数,所以()(1)0F x F ≥=恒成立;当0a >时,(1)0F '<,因为()F x '在区间[1,)+∞内单调递增,所以0(1,)x ∃∈+∞,在区间0(1,)x 内,有()0F x '<,所以()F x 在区间0(1,)x 内单调递减,所以()(1)0F x F <=,这时不合题意. 综上所述,实数a 的取值范围为(,0]-∞.(3)证明:要证明在区间(1,)+∞内,12ln 1x e x x -->-+,只需证明1(ln 1)(ln )0x e x x x ---+->,由(2)知,当0a =时,在区间(1,)+∞内,有1ln 10x e x --->恒成立. 令()ln G x x x =-,在区间(1,)+∞内,11()10x G x x x-'=-=>, 所以函数()G x 在区间(1,)+∞内单调递增,所以()(1)10G x G >=>,即ln 0x x ->.所以1(ln 1)(ln )0x e x x x ---+->,所以原不等式成立.22.解:(1cos()104πθ+-=,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =,所以直线l 的直角坐标方程为10x y --=,曲线C 的一般方程为24y x =.(2)点M 的直角坐标为(1,0),点M 在直线l 上.设直线l的参数方程为12xy⎧=+⎪⎪⎨⎪=⎪⎩,(t为参数),代入24y x=,得280t--=.设点,A B对应的参数分别为1t,2t,则12t t+=128t t=-,所以1212||11||||||t tMA MB t t-+==2218==.23.解:(1)()3g x≥,即|1||1|3x x++-≥,此不等式等价于1(1)(1)3xx x≤-⎧⎨-+--≥⎩或11(1)(1)3xx x-<<⎧⎨+--≥⎩或1113xx x≥⎧⎨++-≥⎩,解得32x≤-或32x≥,所以()3g x≥的解集为3{|2x x≤-或3}2x≥.(2)因为2[2,2]x∀∈-,1[2,2]x∃∈-,使得12()()f xg x≤成立,所以()()([2,2])min minf xg x x≤∈-.又()2ming x=,所以()2([2,2])minf x x≤∈-.当22a-≤-,即4a≥时,()(2)424822minf x f a a=-=-+=-≤,解得3a≥,所以4a≥;当22a-≥,即4a≤-时,()(2)424822minf x f a a==++=+≤,解得3a≤-,所以4a≤-;当222a-<-<,即44a-<<时,22()()42242mina a af x f=-=-+≤,解得a≥或a≤-,所以4a-<≤-4a≤<.综上,实数a的取值范围为(,)-∞-⋃+∞.。
上1 河北省衡水中学2018届高三上学期一调考试数学(理)
2017-2018学年度高三上学期一调考试数学(理)第I 卷(选择题 共60分)一、选择题(每小题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上){}1A B =,则D.{A .12-B .0C .12D .23. 执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2A.3B.C.D.66. 一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱长为( )A.3B.C.A.()1,2,2⎛⎫-∞+∞ ⎪⎝⎭B.[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦D.1,22⎛⎫ ⎪⎝⎭11. 已知函数()321f x x ax=++的对称中心的横坐标为x0(x0>0)且f(x)有三个零点,则实数a的取值范围是( )A.(),0-∞B.,⎛-∞⎝⎭C.()0,+∞ D.(),1-∞-第II卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 如图,正方形ABCD中,M,N分别是BC,CD的中点,若AC AM BNλμ=+,则λ+μ=___ .14. 已知定义在实数集R的函数f(x)满足f(1)=4且f(x)导函数f′(x)<3,则不等式f(ln x)>3ln x+1的解集为___.15. 已知数列{a n}的前n项和为S n , S1=6, S2=4, S n>0,且S2n , S2n−1 . S2n+2成等比数列,S2n−1.S2n+2,S2n+1成等差数列,则a2016等于___.5[f(x)]2−(5a+6)f(x)+6a=0(a∈R)有且仅有6个不同实数根,则实数a的取值范围是___.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或验算步骤)17.(本小题满分12分)在ABC∆中,角A,B,C,的对边分别是a,b,c()cos2cosC b A=.(1)求角A的大小;(2)求25cos2sin22CBπ⎛⎫--⎪⎝⎭得取值范围.18. (本小题满分12分)高三某班12月月考语文成绩服从正态分布N(100,17.52),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)若x~N(μ,σ2),则P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.11120. (本小题满分12分)已知曲线f(x)=ax+bx2ln x在点(1,f(1))处的切线是y=2x−1. (Ⅰ)求实数a、b的值。
河北省衡水第一中学2018届高三三轮复习系列七出神入化7数学(理)试题Word版含详细答案
河北衡水中学2018届高三数学理科三轮复习系列七-出神入化7第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}24,lg 2A x x B x y x =-<<==-,则()R A C B ⋂=( ) A .()2,4 B .()2,4- C.()2,2- D .(]2,2-2.若复数z 满足1zi i=-,其中i 为虚数单位,则共轭复数z =( ) A .1i + B .1i - C.1i -- D .1i -+ 3.拋物线22y x =的准线方程是( ) A .12x =B .12x =- C. 18y = D .18y =- 4.已知某厂的产品合格率为0.8,现抽出10件产品检查,则下列说法正确的是( ) A.合格产品少于8件 B.合格产品多于8件 C.合格产品正好是8件D.合格产品可能是8件5.在ABC ∆中,点D 在边AB 上,且12BD DA =,设,CB a CA b ==,则CD =( ) A .1233a b + B .2133a b + C. 3455a b + D .4355a b +6.当4n =时,执行如图所示的程序框图,则输出的S 值为( )A .9B .15 C. 31 D .637.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )A .B . C. D .8.已知定义在[)0,+∞上的函数()f x 满足()()12f x f x +=,当[)0,1x ∈时,()2f x x x =-+,设()f x 在[)1,1n -上的最大值为()*n a n N ∈,则345a a a ++=( ) A .7 B .78 C. 54D .14 9.已知函数()()21x f x e x =-+(e 为自然对数的底),则()f x 的大致图象是( )A .B . C.D .10.双曲线()22220,01x y a ba b -=>>的左、右焦点分别为12,F F ,过1F 作倾斜角为60︒的直线与y轴和双曲线的右支分别交于,A B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( )A .1 11.已知M 是函数()2133418cos 2x x f x e x π-+⎛⎫=-- ⎪⎝⎭在()0,x ∈+∞上的所有零点之和,则M 的值为( )A .3B .6 C. 9 D .1212.定义:如杲函数()y f x =在区间[],a b 上存在()1212,x x a x x b <<<,满足()()()1f b f a f x b a-'=-,()()()2f b f a f x b a-'=-,则称函数()y f x =是在区间[],a b 上的一个双中值函数,己知函数()3265f x x x =-是区间[]0,t 上的双中值函数,则实数t 的取值范围是( )A .36,55⎛⎫ ⎪⎝⎭B .26,55⎛⎫ ⎪⎝⎭ C.23,55⎛⎫ ⎪⎝⎭ D .61,5⎛⎫ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.函数()ln a x f x x =的图象在点()()22,e f e 处的切线与直线41y x e=-平行,则()f x 的极值点是 .14.如图,在正方体1111ABCD A B C D -中,2AB =,过直线11B D 的平面α⊥平面1A BD ,则平面α截该正方体所得截面的面积为 .15.已知定义在R 上的偶函数()f x 满足()()4f x f x +=,且当02x ≤≤时,(){}2min 2,2f x x x x =-+-,若方程()0f x mx -=恰有两个根,则m 的取值范围是 .16.如图所示,平面四边形ABCD 的对角线交点位于四边形的内部,1,,AB BC AC CD AC CD ==⊥,当ABC ∠变化时,对角线BD 的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 满足:11111,2n n n n n a a a n +++==+. (1)设nn a b n=,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S .18.某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:(1)求m 的值;并且计算这50名同学数学成绩的样本平均数x ;(2)该学校为制定下阶段的复习计划,从成绩在[]130,150的同学中选出3位作为代表进行座谈,记成绩在[]140,150的同学人数位ξ,写出ξ的分布列,并求出期望.19.已知四棱锥P ABCD -,底面ABCD 为正方形,且PA ⊥底面ABCD ,过AB 的平面与侧面PCD 的交线为EF ,且满足:1:3PEF CDEF S S ∆=四边形(PEF S ∆表示PEF ∆的面积).(1)证明://PB 平面ACE ;(2)当PA AB λ=时,二面角C AF D --,求λ的值.20.已知椭圆()2222:10x y C a b a b +=>>过点32⎛- ⎝⎭,顺次连接椭圆的四个顶点得到的四边形的面积为,点()1,0P . (1)求椭圆C 的方程;(2)已知点()()1122,,,A x y B x y ,是椭圆C 上的两点, (i )若12x x =,且PAB ∆为等边三角形,求PAB ∆的面积; (ii)若12x x ≠,证明:PAB ∆不可能是等边三角形. 21.已知函数()()2x f x xe ax x =++. (1)若0a ≥,试讨论函数()f x 的单调性;(2)设()()()()3ln 20x f x x e x a g x x x --+=>,当()1e f x e+≥-对任意的x R ∈恒成立时,求函数()g x 的最大值的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 的参数方程是2x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为22sin 30ρρθ+-=. (1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于,A B 两点,求AB . 23.选修4-5:不等式选讲 已知函数()()12f x ax a x =---.(1)当3a =时,求不等式()0f x >的解集;(2)若函数()f x 的图像与x 轴没有交点,求实数a 的取值范围. 附加:1.甲题型:给出如图数阵表格形式,表格内是按某种规律排列成的有限个正整数.(1)记第一行的自左至右构成数列(){}1,n a ,n S 是(){}1,n a 的前n 项和,试求;(2)记(),m n a 为第n 列第m 行交点的数字,观察数阵请写出(),m n a 表达式,若(),2017m n a =,试求出,m n 的值.2.已知()()12,0,,0F c F c -为双曲线()222:10y C x b b-=>的左、右焦点,过2F 作垂直于x 轴的直线,并在x 轴上方交双曲线于点M ,且1230MF F ∠=︒. (1)求双曲线C 的方程;(2)过双曲线C 上一点P 作两条渐近线的垂线,垂足分别是1P 和2P ,试求12PP PP ⋅的值; (3)过圆222:O x y b +=上任意一点()00,Q x y 作切线交双曲线C 于,A B 两个不同点,AB 中点为N ,证明:2AB ON =.试卷答案一、选择题1-5: DBDDB 6-10: CCACB 11、12:BA 二、填空题13. e15. 112,,233⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭1三、解答题17. 解:(1)由1112n n n n n a a n +++=+可得1112n n n a a n n +=++ 又∵n n a b n =,∴112n n n b b +-=,由11a =,得11b =, 累加法可得:()()()21321121111222n n n b b b b b b ---+-++-=+++ 化简并代入11b =得:1122n n b -=-; (2)由(1)可知122n n n a n -=-,设数列12n n -⎧⎫⎨⎬⎩⎭的前n 项和n T则01211232222n n nT -=++++ ① 123112322222n nnT =++++② ① -②001211111111221222222212n n n n n n nT --=++++-=--222nn +=-∴1242n n n T -+=-又∵{}2n 的前n 项和为()1n n +,∴()12142n n n S n n -+=+-+18.解:(1)由题()0.0040.0120.0240.040.012101m +++++⨯= 解得0.008m =950.004101050.012101150.024101250.04101350.012101450.00810121.8x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2)成绩在[)130,140的同学人数为6,在[]140,150的同学人数为4,从而ξ的可能取值为 0,1,2,3,()0346310106C C P C ξ===,()1246310112C C P C ξ===,()21463103210C C P C ξ===,()30463101330C C P C ξ===所以ξ的分布列为1131601236210305E ξ=⨯+⨯+⨯+⨯=.19. (1)证明:由题知四边形ABCD 为正方形 ∴//AB CD ,又CD ⊂平面PCD ,AB ⊄平面PCD ∴//AB 平面PCD又AB ⊂平面ABFE ,平面ABFE ⋂平面PCD EF = ∴//EF AB ,又//AB CD ∴//EF CD ,由:1:3PEF CDEF S S ∆=四边形知,E F 分别为,PC PD 的中点 连接BD 交AC 与G ,则G 为BD 中点, 在PBD ∆中FG 为中位线,∴//EG FB ∵//EG FB ,EG ⊂平面ACE ,PB ⊄平面ACE ∴//PB 平面ACE .(2)∵底面ABCD 为正方形,且PA ⊥底面ABCD .∴,,PA AB AD 两两垂直,建立如图所示空间直角坐标系A xyz -.设2,2AB AD a AP b ===,则()()()()()()0,0,0,0,2,0,2,2,0,,,0,0,0,2,,,A D a C a a G a a P b F a a b , ∵PA ⊥底面ABCD ,DG ⊂底面ABCD ,∴DG PA ⊥,∵四边形ABCD 为正方形∴AC BD ⊥,即,DG AC AC PA A ⊥⋂= ∴DG ⊥平面CAF ,∴平面CAF 的一个法向量为(),,0DG a a =-.设平面AFD 的一个法向量为(),,m x y z =,而()()0,2,0,,,AD a AF a a b ==由00m AD m AF ⎧⋅=⎪⎨⋅=⎪⎩得02000x ay z ax ay bz ⋅+⋅+⋅=⎧⎨++=⎩ 取z a =-可得(),0,m b a =-为平面AED 的一个法向量, 设二面角C AF D --的大小为θ则cos DG m DG ma θ⋅===⋅得b a =又2,2PA b AB a ==,∴λ=∴当二面角C AF D --时λ=20.(1)解:依题意,2293142a b +=,2ab =292a =,23b =, 故椭圆C 的方程为222193x y +=.(2)(ⅰ)由12x x =,且PAB ∆为等边三角形及椭圆的对称性可知,直线PA 和直线PB 与x 轴的夹角均为30︒.由)222391x y y x ⎧+=⎪⎨=-⎪⎩可得23280x x --=. 即43x =-或2x =当43x =-时,PAB ∆241⎛⎫-- ⎪= 当2x =时,PAB ∆221-=(ⅱ)因为12x x ≠,故直线AB 斜率存在.设直线:AB y kx m =+,AB 中点为()00,Q x y , 联立22239x y y kx m⎧+=⎨=+⎩,消去y 得()222236390k x kmx m +++-=.由0∆>得到222960m k --<.① 所以122623km x x k +=-+,()121224223m y y k x x m k +=++=+,所以2232,2323kmm Q k k ⎛⎫- ⎪++⎝⎭又()1,0P ,若PAB ∆为等边三角形,则有PQ AB ⊥.即1PQ ABk k ⨯=-,即2222313123mk k km k +⨯=---+,化简得232k km +=-.② 由②得点Q 横坐标为233323km km k km -=-=+-. 故PAB ∆不可能为等边三角形. (用点差法求Q 点坐标也可)21.解:(1)()()()()()12112x x f x x e a x x e a '=+++=++ 因为0a ≥,则1x <-时()0f x '<,1x >-时,()0f x '>, ∴()f x 在(),1-∞-上递减,在()1,-+∞上递增.(2)当0a <时,若2min ,3x a ⎧⎫<-⎨⎬⎩⎭,则()()()1222x e f x xe ax x ax x ax e +=++<+<-<-<-. 所以()1e f x e+≥-对任意的x R ∈恒成立时,0a ≥. 由(1)知,当0a ≥时,()f x 在(),1-∞-上递减,在()1,-+∞上递增.依题意,有()()min 0111a e f x f a e e ≥⎧⎪+⎨=-=--≥-⎪⎩,∴[]0,1a ∈.()()()()33ln 2ln 0x f x x e x a x axg x x x x --++==>, ∴()()32ln 10x ax g x x x +-'=->.设()()2ln 10h x x ax x =+->,则()2h x a x'=+. ∵[]0,1a ∈,∴()0h x '>,∴()h x 在()0,+∞上递增, ∵()110h a =-≤,0h=.因此,存在唯一0x ⎡∈⎣,使得()0002ln 10h x x ax =+-=.当00x x <<时,()()()0,0,h x g x g x '<>单调递增; 当0x x >时,()()()0,0,h x g x g x '><单调递减. 因此()g x 在0x x =处取得最大值,最大值为12e. ∴()max 1,2g x e ⎡⎫∈+∞⎪⎢⎣⎭.22.(1)由2x ty t =⎧⎨=⎩消去t 得:2y x =,把cos sin x y ρθρθ=⎧⎨=⎩代入2y x =,得sin 2cos ρθρθ=,所以曲线C 的极坐标方程为sin 2cos θθ= (2)∵222,sin x y y ρρθ=+=∴曲线C 可化为:22230x y y ++-=,即()2214x y ++= 圆C 的圆心()0,1C -到直线l的距离d =所以AB ==. 23.解:(1)3a =时,不等式可化为310x x -->,即31x x -> ∴31x x -<-或31x x ->,即14x <或12x >. (2)当0a >时,()()121,1211,x x a f x a x x a ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,要使函数()f x 与x 轴无交点, 只需()210210a a ⎧->⎪⎨⎪-≤⎩即12a ≤<当0a =时,()21f x x =+,函数()f x 与x 轴有交点.当0a <时,()()121,1211,x x a f x a x x a ⎧-≤⎪⎪=⎨⎪-+>⎪⎩,要使函数()f x 与x 轴无交点, 只需()210210a a ⎧-<⎪⎨⎪-≤⎩此时a 无解.综上可知,当12a ≤<时,函数()f x 与x 轴无交点. 附加:1.(1)根据上述分析,数列{}n a 其实就是第n 族的首项记(),1n n a a =,观察知: ()()()221,11,211,22222a a a ====-+,()2331,33333141422a a --==+=+=, ()241,444172a a -==+=归纳得:()21,12n n n n a a -==+. ()222221234112342n n S a a a a a n =+++++=+++++()112342n n -++++++ ()()()()21111121152626n n n n n n n n =⨯++-++=+ (2)由(1)知,第k 族第一个数(首项)()()1,1=122n a n n -+⎡⎤⎣⎦.通过观察表格知: []151542112a ⋅=⨯+=,()()2251251251172a ⋅⎡⎤=+-+-+=⎣⎦,,()()()24,4,1441441252a ⎡⎤=+-+-+=⎣⎦. 于是观察归纳得:()()()()()()22,1111211122m n a n m n m m n m m n ⎡⎤⎡⎤=+--+-++-=+-+-+⎣⎦⎣⎦ (其中m 为行数,n 表示列数设)设(),2017m n a =,∵*,m n N ∈,现对m 可能取值进行赋值试探,然后确定n .取1m =,则()()()1,1122017140322n a n n n n =-+=⇒-=⎡⎤⎣⎦,∵*n N ∈ 易知63644032⋅=,故必然64n =,于是2017必在第64族的位置上,故2017是第64族中的第一行数.∴164m n =⎧⎨=⎩. 2.解:(1)根据已知条件1a =得c =())12,F F , ∵2MF x ⊥轴,∴)2M b在直角三角形12MF F中,22112tan 302MF b F F c ︒====,解得22b =, 于是所求双曲线方程为2212y x -=. (2)根据(1)易得两条双曲线渐近线方程分別为1:20x y -=,2:20x y +=,设点()00,P x y,则11PP d =,22PP d ==又()00,P x y 在双曲线上,所以220022x y -= 于是()2212120012233PP PP d d x y ⋅==-=. (3)①当直线的斜率不存在时,则12AB F F ⊥,于是AB ON =此时2AB ON =,即命题成立.②当直线的斜率存在时,设的^方程为y kx m =+切线与C 的交点坐标为()()1122,,,A x y B x y ,于是有22220y kx m x y =+⎧⎨--=⎩消去y 化成关于x 的二次为()2222220k x kmx m --++=.12221222222N N km x x k m x x k y kx m ⎧+=⎪-⎪+⎪=⎨-⎪⎪=+⎪⎩∵N 为AB 的中点,∴122N x x x += 即N 坐标为222,22km m k k ⎛⎫ ⎪--⎝⎭则ON ,AB 又点O到直线的距离为d m ==()2221m k =+.代入得:AB,ON =2AB ON =.。
河北省衡水中学2018届高三上学期七调考试数学(理)试题(含答案解析)
2017-2018学年度上学期高三年级七调考试数学(理科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|||2}A x x =<,{|}B x x a =>,全集U =R ,若UA B ⊆,则有( )A. 0a =B. 2a ≤C. 2a ≥D. 2a <【答案】C 【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.2. 若复数z 满足341z i +-=(i 为虚数单位),则z 的虚部是( ) A. -2B. 4C. 4iD. -4【答案】B 【解析】24i z =-+,虚部为4,故选B.3. 已知1,1a ,2a ,4成等差数列,1,1b ,2b ,3b ,4成等比数列,则122a ab +的值是( ) A .52B. 52-C.52或52- D.12【答案】A 【解析】依题意可知21222145,144,2a a b b +=+==⨯==,所以12252a ab +=. 4. 如图所示,5组数据(),x y 中去掉()3,10D 后,下列说法错误的是( )A. 残差平方和变大B. 相关系数r 变大C. 相关指数2R 变大D. 解释变量x 与预报变量y 的相关性变强【答案】A 【解析】 【分析】由散点图知,去掉(3,10)D 后,y 与x 的线性相关加强,由相关系数r ,相关指数2R 及残差平方和与相关性的关系得出选项.【详解】解:由散点图知,去掉(3,10)D 后,y 与x 的线性相关加强,且为正相关, 所以r 变大,2R 变大,残差平方和变小. 故选A .【点睛】本题考查刻画两个变量相关性强弱的量:相关系数r ,相关指数2R 及残差平方和,属于基础题.5. 已知12,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,若椭圆上存在点P ,使1290F PF ∠=,则椭圆的离心率e 的取值范围为A. B. C. D. 【答案】B 【解析】由椭圆上存在点P ,使1290F PF ∠=可得以原点为圆心,以c 为半径的圆与椭圆有公共点, ∴c b ≥,∴2222c b a c ≥=-,∴2212c a ≥∴2c e a =≥. 由01e <<,∴12e ≤<,即椭圆离心率e 的取值范围为⎫⎪⎪⎣⎭.选B . 点睛:求椭圆离心率或其范围的方法(1)求出a ,b ,c 的值,由222222221c a b b e a a a-===-直接求.(2)列出含有a ,b ,c 的方程(或不等式),借助于222b a c =-消去b ,然后转化成关于e 的方程(或不等式)求解.6. 一个四面体的顶点在空间直角坐标系中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )A. B. C. D.【答案】B 【解析】将四面体放在如图正方体中,得到如图四面体,得到如图的左视图,故选B.7. 函数()1ln1x f x sin x -⎛⎫= ⎪+⎝⎭的图象大致为 A.B.C.D.【答案】B 【解析】由于0x ≠,故排除A 选项.()()1sin ln1x f x f x x --⎛⎫-==- ⎪-+⎝⎭,所以函数为奇函数,图象关于原点对称,排除C选项.()()12sin ln sin ln 303f ⎛⎫==-< ⎪⎝⎭,排除D 选项,故选B.8. 更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A. 17B. 34C. 36D. 68【答案】B 【解析】 【分析】根据程序框图进行模拟运算即可得出.【详解】根据程序框图,输入的102a =,238b =,因为ab ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B .【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用. 9. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的(0,)∈+∞y ,使得ln ln 1+++=y yx x a y成立,则实数a 的取值范围是( ) A. (,0)-∞ B. (,0]-∞C. 2(,]e eD. (,1]-∞-【答案】B 【解析】【详解】ln 1x x a ++,()'1ln g x x =+,故函数在区间1,1e ⎡⎤⎢⎥⎣⎦上递增,()()111g g x g a e ⎛⎫<<=+ ⎪⎝⎭()ln 1y f y y =+,()21ln yf y y -'=, ()f y 在()0,e 上递增时,上递减,在上()1f y >任意的1[,1]x e∈,总存在唯一的(0,)∈+∞y ,使得ln ln 1+++=y yx x a y成立故选B.10.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:电视台每周安排的甲、乙连续剧的总播放时长不多于600min ,广告的总播放时长不少于30min ,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为( ) A. 6,3B. 5,2C. 4,5D. 2,7【答案】A 【解析】依题意得7060600553000x y x y x yx y +≤⎧⎪+≥⎪⎪≤⎨⎪≥⎪≥⎪⎩,目标函数为6025z x y =+,画出可行域如下图所示,由图可知,目标函数在点()6,3处取得最大值.故选A.11. 正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为()A. 2B.2C.2D.2【答案】B 【解析】如图,设正四面体的棱长是1,则2BM =,高3AO ==,设点M 在底面内的射影是N ,则126MN AO ==,所以BMN ∠即为所求异面直线所成角,则cos 3NM BMN BM ∠==,应选答案B .点睛:解答本题的关键是依据异面直线所成角的定义,先找出异面直线BM 与AO 所成的角BMN ∠,再运用解直角三角形的知识求出cos NM BMN BM ∠==,从而使得问题巧妙获解. 12. 已知(sin,sin )2a x x ωω=,1(sin,)22b x ω=,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内没有零点,则ω的取值范围是( ) A. 1(0,]8B. 5(0,]8C. 15(0,][,1]88⋃ D. 115(0,][,]848⋃【答案】D 【解析】 【详解】(sin,sin )2a x x ωω=,1(sin,)22b x ω=,其中0>ω,2111111sin sin cos sin ),2222222(241)f x a b x x x x x ωπωωωω=⋅-+-=-+-=-=2π2π,01T ωω=≥<≤,当(,2)x ππ∈时,(,2),444x πππωωπωπ-∈--故()ππ4π2π1π4k k ωπω⎧-≥⎪⎪⎨⎪-≤+⎪⎩()k Z ∈,解得15428k k ω+≤≤+()k Z ∈,01ω<≤,k=0时,解得1548ω≤≤,当k=-1时解得108ω<≤. 故选:D.【点睛】本小题主要考查数量积的坐标运算,考查利用辅助角公式进行三角函数式子的化简合并,考查函数零点个数的问题,考查运算求解能力.首先利用两个向量数量积的坐标运算,将题目所给向量的数量积表达式求解出来,用辅助角公式合并后结合函数的周期和零点列出不等式,求解得ω的取值范围.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 如图,在半径为2的扇形AOB 中,AOB 90∠=,P 为AB 上的一点,若2OP OA ⋅=,则OP AB ⋅的值为______.【答案】223-+【解析】【详解】因为•2OP OA =,所以21cos 2223AOP AOP π∠==∴∠=⨯ 以O 为坐标原点,OA 为x 轴建系,则(2,0),(0,2),3)(1,3)(2,2)223A B P OP AB ∴⋅=⋅-=-+14. 若从区间[0]e ,(e 为自然对数的底数, 2.71828e =)内随机选取两个数,则这两个数之积不.小于..e 的概率为_____________.【答案】2 【解析】设[],0,x y e ∈,由xy e ≥,得ey x≥,所以所求概率()211222ln 221ee e e dx ex e x e e x P e e e e⎛⎫- ⎪--⎝⎭====-⎰. 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.15. 已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列四个论断中正确的是__________.(把你认为是正确论断的序号都写上) ①若sin cos A B a b=,则4B π=;②若4B π=,2b =,3a =③若a ,b ,c 成等差数列,sin A ,sin B ,sin C 成等比数列,则ABC 为正三角形;④若5a =,2c =,ABC 的面积4ABCS =,则3cos 5B =. 【答案】①③ 【解析】①由正弦定理可得tan 1B =,又(0,)B π∈,所以4B π=,正确.②由于b a >,所以钝角三角形,只有一种.错.③由等差数列,可得22a c b ac +=≥,得2b ac ≥,sinAsinB=sin 2B ,得,2ac b =,所以a b c ==,等边三角形,对.④14sin 5sin 4,sin ,25S ac B B B ====2435<<,所以2334B ππ<<或43B ππ<<,3cos 5B =或35,错.综上所述,选①③. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化 第三步:求结果,判定是否符合条件,或有多解情况.16. 设椭圆C 的两个焦点是12F F 、,过1F 的直线与椭圆C 交于P Q 、,若212||||PF F F =,且1156PF FQ =,则椭圆的离心率为__________. 【答案】911【解析】设椭圆22121122 100056x y a b F c F c PF FQ a b+-==(>>),(,),(,),,设 1165PF m FQ m ==,, 由椭圆的定义可得21225QF a QF a m =-=- ,2122PF F F c ==, 可得2263c a m a c m =-∴-=.,① 取1PF 的中点K ,连接2KF ,则2KF PQ ,⊥由勾股定理可得222222||PF PKQF QK -=-, 即为2222492564c m a m m (),-=-- 化简即为222210()5()22101533a a c a c a c am m ---=+=+,可得:6a+6c=15a-5c 即911a c = 则离心率911c e a .== 即答案为911. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 的前n 项和n S 满足*231()n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T .【答案】(1)1*3()n n a n N -=∈.(2)*113()3n n n T n N -+=-∈. 【解析】【试题分析】(1)利用11,1,2n n n a n a S S n -=⎧=⎨-≥⎩求得数列的通项公式.(2)利用错位相减求和法求得数列的前n 项和.【试题解析】(1)当1n =时,11231S a =-,所以11a =;当2n ≥时,11231n n S a --=-,则1122233n n n n n a S S a a --=-=-,即13n n a a -=.又因为11a =,所以数列{}n a 是以1为首项,3为公比的等比数列, 所以()1*3n n a n N -=∈.(2)由(1)得121213n n n n a ---=,所以122135232113333n n n n n T ----=+++++, ① 3252321333333n n n n n T ----=+++++, ② ②-①,得221222212323333n n n n T ---=+++++-111112122332613313n n n n n -----+=+⨯-=--,所以()*1133n n n T n N -+=-∈. 【点睛】本小题主要考查数列通项公式的求法,考查错位相减法求数列的前n 项和.对于已知n S 求n a 的题目,首先要求出1a 的值,然后利用11,1,2n nn a n a S S n -=⎧=⎨-≥⎩可求得数列的通项公式,最后要验证当1n =时是否成立.若一个数列是由一个等差数列乘以一个等比数列所得,那么可以利用错位相减法求其前n 项和.18. 如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,AD BC ∥,侧面11ABB A 为菱形,1DAB DAA ∠=∠.(Ⅰ)求证:1A B AD ⊥;(Ⅱ)若2AD AB BC ==,160A AB ∠=︒,直线AD 与平面11ABB A 所成的角为30,求平面11DCC D 与平面11ABB A 所成锐二面角的余弦值. 【答案】(1)见解析(2)39331【解析】试题分析:(1)考虑用向量法来证明,即计算来证明.具体方法是将转化为同起点的向量,即,利用,1DAB DAA ∠=∠可求得;(2)设线段1A B 的中点为O 以射线OB 、射线1OB 、射线OD 为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O xyz -,利用向量法求得二面角的余弦值为39331. 试题解析:(1)解一:因为侧面11ABB A 为菱形,所以,又1DAB DAA ∠=∠,所以,,1A B AD ⊥.(2)设线段1A B 的中点为O ,连接1DO AB 、,由题意知DO ⊥平面 11ABB A ,因为侧面11ABB A 为菱形,所以11AB A B ⊥,故可分别以射线OB 、射线1OB 、射线OD 为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O xyz -.设22AD AB BC a ===,由0160A AB ∠=可知1,3OB a OA OB a ===,所以22OD AD OA a =-=,从而()()()()10,3,0,,0,0,0,3,0,0,0,A a B a B a D a -,所以.由可得31,,22C a a a ⎛⎫ ⎪ ⎪⎝⎭,所以.设平面11DCC D 的一个法向量为,由,得0000030{3102ax ay ax ay az -+=+-=取01y =,则003,33x z ==,所以.又平面11ABB A 的法向量为,所以.考点:空间向量证明垂直与求二面角.19. 某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为A 、B 、C 三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.【答案】(Ⅰ)见解析;(Ⅱ)55000元. 【解析】试题分析:(I )设工种A 每份保单的保费,则需赔付时,收入为450100a -⨯<,根据概率分布可计算出保费的期望值为5a -,令50.2a a -≤解得 6.25a ≤.同理可求得工种,B C 保费的期望值;(II )按照每个工种的人数计算出份数然后乘以(1)得到的期望值,即为总的利润. 试题解析:(Ⅰ)设工种A 的每份保单保费为a 元,设保险公司每单的收益为随机变量X ,则X 的分布列为保险公司期望收益为51110EX a ⎛⎫=-+ ⎪⎝⎭ ()451501010a -⨯⨯ 5a =- 根据规则50.2a a -≤ 解得 6.25a ≤元,设工种B 的每份保单保费为b 元,赔付金期望值为45501021010⨯⨯=元,则保险公司期望利润为10b -元,根据规则100.2b b -≤,解得12.5b ≤元,设工种C 的每份保单保费为c 元,赔付金期望值为4450105010⨯=元,则保险公司期望利润为50c -元,根据规则500.2c c -≤,解得62.5c ≤元.(Ⅱ)购买A 类产品的份数为2000060%12000⨯=份, 购买B 类产品的份数为2000030%6000⨯=份, 购买C 类产品的份数为2000010%2000⨯=份,企业支付的总保费为12000 6.25⨯+ 600012.5⨯+ 200062.5275000⨯=元, 保险公司在这宗交易中的期望利润为27500020%55000⨯=元.20. 如图,已知椭圆的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为()421,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为,A B 和,C D ,其中,A C 在x 轴的同一侧. (1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P,使得34AB CD AB CD +=⋅?若存在, 求出点P 的坐标;若不存在,请说明理由.【答案】(1)22144x y -=(2)(22,2)±±【解析】试题分析:(1)由椭圆定义可得22a c += ()421+,再结合离心率为c a = 2,解出22a =,24b =,由双曲线的顶点是该椭圆的焦点,得12a =,再根据实轴长等于虚轴长得12b =(2)设P 点坐标,利用点斜式表示直线AB,CD 方程,利用韦达定理及弦长公式求AB CD ,;根据椭圆性质确定直线AB,CD 斜率关系,根据焦点三角形求向量夹角,综合条件可解得P 点坐标 试题解析:解:(1)由题意知,椭圆离心率为c a = 22,得2a c =,又22a c += ()421+,所以可解得22a =, 2c =,所以2224b a c =-=,所以椭圆的标准方程为22184x y +=;所以椭圆的焦点坐标为(2±,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为22144x y -=(2)设(),P x y ,则,在双曲线上,,设方程为,2PF 的方程为,设,则()()2222221218880842x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩,22121222888,2121k k x x x x k k -+=-⋅=++,同理,, 由题知,,.,()()()()22222222222242424242424x x x x x x x x x x x ∴-=++-⋅-+-⋅=+⋅-⋅=- ,.点睛:直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.21. 已知函数1()x f x e a -=+,函数(x)ln g ax x =+,a R ∈. (1)求函数()y g x =的单调区间;(2)若不等式()()1f x g x ≥+在区间[1,)+∞内恒成立,求实数a 的取值范围; (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+成立. 【答案】(1)见解析.(2)(,0]-∞.(3)见解析.【解析】试题分析:对函数求导,讨论a ,确定单调区间和单调性;作差构造新函数,利用导数 判断函数的单调性,根据不等式恒成立条件,求出a 的范围;借助第二步的结论,证明不等式. 试题解析: (Ⅰ)()ln ,g x ax x a R =+∈,()11ax g x a x x'+∴=+= 当0a ≥时,增区间()0,+∞,无减区间 当0a <时,增区间10,a -⎛⎫ ⎪⎝⎭,减区间1,a ⎛⎫-+∞ ⎪⎝⎭(Ⅱ)()()1f x g x ≥+即1ln 10x e x a ax --+--≥在[)1,+∞上恒成立 设()1ln 1x F x ex a ax -=-+--,考虑到()10F =()11x F x e a x --'=-,在[)1,+∞上为增函数111,0x x e x-≥-≥,∴当0a ≤时,()0F x '≥()F x 在[)1,+∞上为增函数,()0F x ≥恒成立当0a >时,()10F '<, ()'F x '在[)1,+∞上为增函数()01,x ∃∈+∞,在()01,x 上,()0F x '<,()F x 递减, ()0F x <,这时不合题意,综上所述,0a ≤(Ⅲ)要证明在[)1,+∞上,12ln 1x e x x -->-+ 只需证明()()1ln 1ln 0x ex x x ---+->由(Ⅱ)当a=0时,在[)1,+∞上,1ln 10x e x ---≥恒成立 再令()ln G x x x =- 在[)1,+∞上,()1110x G x x x='-=-≥,()G x 递增,所以()()110G x G ≥=> 即1100x e lnx x lnx -⎧--≥⎨->⎩,相加,得()()1ln 1ln 0x e x x x ---+->所以原不等式成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线lcos 104θπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m⎧=⎨=⎩,(m 为参数). (1)求直线l 的直角坐标方程和曲线C 的普通方程; (2)设直线l 与曲线C 交于,A B 两点,求11MA MB+. 【答案】(1)10x y --=,24y x =;(2)1 【解析】【试题分析】(1)cos 104πθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】 (1cos 104πθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =,所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =. (2)点M 的直角坐标为()1,0,点M 在直线l 上.设直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得280t --=.设点,A B 对应的参数分别为1t ,2t,则12t t +=128t t =-,所以121211t t MA MB t t -+==1==. 23. 选修4-5:不等式选讲已知函数2()4f x x ax =++,()|1||1|g x x x =++-. (1)求不等式()3g x ≥的解集;(2)若2[2,2]x ∀∈-,1[2,2]x ∃∈-,使得不等式12()()f x g x ≤成立,求实数a 的取值范围.【答案】(1)3{|2x x 或3}2x ≥.(2)(,)-∞-⋃+∞.【解析】【试题分析】(1)利用零点分段法去绝对值,将()g x 转化为分段函数来求得不等式的解集.(2)依题意有()()[]()2,2min min f x g x x ≤∈-,对a 分类讨论函数()f x 的最小值,由此得到a 的取值范围.【试题解析】(1)()3g x ≥,即113x x ++-≥,此不等式等价于()()1113x x x ≤-⎧⎨-+--≥⎩或()()11113x x x -<<⎧⎨+--≥⎩或1113x x x ≥⎧⎨++-≥⎩,解得32x ≤-或32x ≥,所以()3g x ≥的解集为3{|2x x ≤-或3}2x ≥. (2)因为[]22,2x ∀∈-,[]12,2x ∃∈-,使得()()12f x g x ≤成立,所以()()[]()2,2min min f x g x x ≤∈-.又()2min g x =,所以()[]()22,2min f x x ≤∈-. 当22a-≤-,即4a ≥时,()()2424822min f x f a a =-=-+=-≤,解得3a ≥,所以4a ≥; 当22a-≥,即4a ≤-时,()()2424822min f x f a a ==++=+≤,解得3a ≤-,所以4a ≤-;当222a -<-<,即44a -<<时,()2242242min a aa f x f ⎛⎫=-=-+≤ ⎪⎝⎭,解得a ≥a ≤-,所以4a -<≤-4a ≤<.综上,实数a的取值范围为[(),-∞-⋃+∞.。
河北省衡水第一中学2018届高三数学上学期分科综合考试试题理
2017~2018学年度高三分科综合测试卷理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合3{0}1x M xx -=≤+,{3,1,1,3,5}N =--,则M N =( )A .{1,3}B .{1,1,3}-C .{3,1}-D .{3,1,1}-- 2.已知复数4()1biz b R i+=∈-的实部为1-,则复数z b -在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若2cos()2πα-=cos(2)πα-=( ) A .29-B .29C .59-D .594.已知实数,x y 满足约束条件332434120y x y x x y ≥-⎧⎪≤+⎨⎪++≥⎩,则2z x y =-的最大值为( )A .2B .3C . 4D .55.一直线l 与平行四边形ABCD 中的两边,AB AD 分别交于点,E F ,且交其对角线AC 于点M ,若2AB AE =,3AD AF =,(,)AM AB AC R λμλμ=-∈,则52μλ-=( )A .12-B . 1C . 32D .3- 6.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布(1,1)N -的密度曲线)的点的个数的估计值为( )附:若2(,)XN μσ,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=.A .906B .1359C . 2718D .34137.二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入121,2,0.01x x d ===,则输出n 的值为( )A .6B .7C . 8D .98.已知函数()lg([])f x x x =-,其中[]x 表示不超过x 的最大整数,则关于函数()f x 的性质表述正确的是( ) A .定义域为(,0)(0,)-∞+∞ B .偶函数C .周期函数D .在定义域内为减函数9.已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则()E ξ=( ) A . 3 B .72 C . 185D .4 10.已知函数sin()(0,0)y x ωϕωϕπ=+><<的图像与坐标轴的所有交点中,距离原点最近的两个点的坐标分别为2(0,)2和(1,0),则该函数图像距离y 轴最近的一条对称轴方程是( )A .3x =-B .1x =-C .1x =D .3x = 11.某棱锥的三视图如图所示,则该棱锥的外接球的表面积为( )A .11πB .12πC . 13πD .14π 12.已知0x 是方程222ln 0xx ex +=的实根,则关于实数0x 的判断正确的是( )A .0ln 2x ≥B .01x e<C . 002ln 0x x +=D .002ln 0xe x += 二、填空题:本题共4小题,每小题5分, 共20分.133的正ABC ∆的三个顶点都在球O 的表面上,且OA 与平面ABC 所成的角为60︒,则球O 的表面积为 . 14.若36(2)(n x x x x-+的展开式中含有常数项,则n 的最小值等于 .15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为3S =,则c 的最小值为 . 16.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过l 上一点P 作抛物线C 的两条切线,切点分别为,A B ,若3,4PA PB ==,则PF = .三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知等比数列{}n a满足21523572,2a a a a--=⋅⋅=,数列{}n b满足111,n n nb b b a+=+=()n N*∈,2nnnbca=,nS为数列{}n c的前n项和.(1)求数列{}n b的前11项和;(2)求32nn nS b-⋅.18.如图所示,在四棱锥A BCDE-中,平面BCDE⊥平面ABC,BE EC⊥,6,43BC AB==,30ABC∠=︒.(1)求证:AC BE⊥;(2)若二面角为B AC E--为45︒,求直线AB与平面ACE所成的角的正弦值.19.某市为了制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百千瓦时),将数据按[0,1),[1,2),[2,3),[3,4),[4,5),[5,6),[6,7),[7,8),[8,9)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中m的值;(2)设该市有100万户居民,估计全市每户居民中月均用电量不低于6百千瓦时的人数及每户居民月均用电量的中位数;(3)政府计划对月均用电量在4百千瓦时以下的用户进行奖励,月均用电量在[0,1)内的用户奖励20元/月,月均用电量在[1,2)内的用户奖励10元/月,月均用电量在[2,4)内的用户奖励2元/月.若该市共有400万户居民,试估计政府执行此计划的年度预算.20.已知,A B 分别是椭圆2222:1(0)x y C a b a b+=>>的长轴与短轴的一个端点,,E F 是椭圆的左、右焦点,以E 点为圆心、3为半径的圆与以F 点为圆心、1为半径的圆的交点在椭圆C 上,且5AB = (1)求椭圆C 的方程;(2)设P 为椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:2AN BM OA ⋅=.21.已知函数2()(12)ln ()f x ax a x x a R =+--∈. (1)求函数()f x 在区间[1,2]上的最大值;(2)若112200(,),(,),(,)A x y B x y C x y 是函数()f x 图像上不同的三点,且1202x x x +=,试判断'0()f x 与1212y y x x --之间的大小关系,并证明.(二)选考题:共10分.请考生在第22/23题中任选一题作答.如果多做,则按所做的第一题计分.22.在极坐标系中,曲线1:2cos C ρθ==,曲线2:(cos 4)cos C ρρθθ=⋅+⋅.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系xOy ,曲线C 的参数方程为12232x t y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求12,C C 的直角坐标方程;(2)C 与12,C C 交于不同的四点,这四点在C 上排列顺次为,,,H I J K ,求||||||HI JK -的值.23.选修4-5:不等式选讲 已知,a b 为任意实数.(1)求证:42242264()a a b b ab a b ++≥+;(2)求函数()4224|2(16)|f x x a a b b =-+--332|(221)|x a b ab +-+-的最小值.试卷答案一、选择题1-5: ACCBA 6-10: BBCBB 11、12:AC 二、填空题13.16π 14.2 15.3 16.125三、解答题17.解:(1)设等比数列{}n a 的公比为q ,由153572a a a -⋅⋅=,得552a -=, 因为222a -=,所以332q -=,即12q =. 故212n n n n b b a a q -++==⋅22112()()22n n --=⋅=.所以1231011b b b b b +++++1231011()()b b b b b =+++++24101111()()()222=++++ 5511414133414-==-⨯-140951365310241024=⨯=. (2)由(1)可知122n nn n nb c b a -==⋅. 则3222n n n n n n n S b S S b -⋅=+-21123222n nb b b b -=++++23112312222n n b b b b --+++++2112232()2()+b b b b b =++++313412)+2()n n n b b b b --+++(.因为11a =,12()1nn n b b ++=,所以()32111n n n S b n n -=+-⨯=.18.(1)证明:在ACB 中,应用余弦定理得2223cos 2AB BC AC ABC AB BC +-∠==⋅,解得23AC =222AC BC AB +=,所以AC BC ⊥.因为平面BCDE ⊥平面ABC ,平面BCDE ⋂平面ABC BC =,BC AC ⊥, 所以AC ⊥平面BCDE .又因为BE ⊂平面BCDE ,所以AC BE ⊥.(2)解:因为AC ⊥平面BCDE ,CE ⊂平面BCDE ,所以AC CE ⊥. 又BC AC ⊥,平面ACE ⋂平面ABC AC =,所以BCE ∠是平面EAC 与平面BAC 所成的二面角的平面角,即45BCE ∠=. 因为,,BE EC AC BE EC AC C ⊥⊥⋂=,所以BE ⊥平面ACE . 所以BAE ∠是直线AB 与平面ACE 所成的角. 因为在Rt BCE 中,sin 4532BE BC == 所以在Rt BAE 中,6sin BE BAE AB ∠==. 19.解(1)由题得11(0.040.080.210.25-⨯+++0.060.040.02)2m +++=,所以0.15m =.(2)200户居民月均用电量不低于6百千瓦时的频率为0.060.040.020.12++=,100万户居民中月均用电量不低于6百千瓦时的户数有10000000.12120000⨯=; 设中位数是x 百千瓦时,因为前5组的频率之和0.040.080.150.210.250.730.5++++=>,而前4组的频率之和0.040.080.150.210.480.5+++=<,所以45x <<. 由0.50.4840.25x --=,解得 4.08x =.(3)该市月均用电量在[0,1),[1.2),[2,4)内的用户数分别为200008.2000016.2000072⨯⨯⨯,所以每月预算为()20000820161072220000464⨯⨯+⨯+⨯=⨯元,故估计政府执行此计划的年度预算为200004641211136⨯⨯=万元 1.1136=亿元.20.解:(1)由题意得2223145aa b=+=⎧⎨+=⎪⎩,解得2,1a b==,所以椭圆C的方程为2214xy+=.(2)由(1)及题意可画图,如图,不妨令()()2,0,0,1A B.设00(,)P x y,则220044x y+=.令0x=,得022Myyx=--,从而02|||1||1|2MyBM yx=-=+-;直线PB的方程为11yy xx-=+,令0y=,得01Nxxy=-,从而0|||2||2|1NxAN xy=-=+-.所以00002|||||2||1|12x yAN BMy x⋅=+⋅+--22000000000044484||22x y x y x yx y x y++--+=--+000000004488||422x y x yx y x y--+==--+.当x=时,1,||2,||2y BM AN=-==,所以||||4AN BM⋅=,综上可知2||||||AN BM OA⋅=.21.解:(1)()()1212f x ax ax'=+--=()22121ax a xx+--()()211ax xx+-=.当[]0,1,2a x=∈时,()10xf xx-'=>,()()max22ln2f x f==-;当[]0,1,2a x >∈时,()()()2110ax x f x x+-'=>,()()max 22ln 2f x f ==-; 当0a <时,由()0f x '=,得121,12x x a=-=,又[]1,2x ∈,则有如下分类: ①当122a -≥,即104a -≤<时,()f x 在[]1,2上是增函数,所以()()max 222ln 2f x f ===-.②当1122a <-<,即1124a -<<-时,()2f 在1[1,]2a -上是增函数,在1(,2]2a-上是减函数,所以()()max 11()1ln 224f x f a a a=-=-+-. ③当112a -≤,即12a ≤-时,()f x 在[]1,2上是减函数,所以()()max 11f x f a ==-.综上,函数()f x 在[]1,2上的最大值为()()max12ln 2,41111ln 2,42411,2a f x a a aa a ⎧-≥-⎪⎪⎪=-+--<<-⎨⎪⎪-≤-⎪⎩.(2)由题意得1112121y y x x x x -=--2212[()(12)a x x a -+-1221()ln ln ]x x x x -+- 12()(12)a x x a =++-+2112ln ln x x x x --,()()0001212f x ax a x '=+--=12122()(12)a x x a x x ++--+, ()122101212ln ln y y x x f x x x x x --'-=--121221x x x x +=+-,1221122()[(ln ln )]x x x x x x --++221212112(1)1(ln )1x x x x x x x x -=--+.令21x t x =,()()21ln 1t g t t t -=-+, ()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()0,+∞内是增函数,又()10g =, 当12x x <时,1t >,1210x x <-,()()10g t g >=,故12012()y y f x x x -'<-;当12x x >时,01t <<,1210x x >-,()()10g t g <=,故12012()y y f x x x -'<-.综上知:12012()y y f x x x -'<-.22.解:(1)因为cos x ρθ=,cos y ρθ=,22x y ρ=+,由2cos ρθ=,得22cos ρθ=, 所以曲线1C 的直角坐标方程为()2211x y -+=. 由(cos 4)cos ρρθθ=⋅+⋅,得22sin 4cos ρθρθ=, 所以曲线2C 的直角坐标方程为24y x =.(2)不妨设四点在C 上的排列顺序由下而上依次为,,,H I J K ,它们对应的参数分别为1234,,,t t t t ,如图,连接1C J ,则1C IJ 为正三角形,所以||1IJ =,故||||||||||||||HI JK HI IK IJ -=-+1414|||||1||()1|t t t t =-+=-++.把12232x t y ⎧=-⎪⎪⎨⎪=⎪⎩代入24y x =,得23824t t =-,即238320t t +-=,故1483t t +=-,所以百度文库 - 让每个人平等地提升自我11 11||||||3HI JK -=. 23.(1)证明:42242264()a a b b ab a b ++-+2222222()4()4a b ab a b a b =+-++2224(2)()a b ab a b =+-=-.因为()40a b -≥,所以42242264()a a b b ab a b ++≥+. (2)解:()4224|2(16)|f x x a a b b =-+--332|(221)|x a b ab +-+-=4224|2(16)|x a a b b -+--+33|22(221)|x a b ab -+-≥33|[22(221)]x a b ab -+--4224[2(16)]|x a a b b -+--4|()1|1a b =-+≥,即()min 1f x =.。
河北省衡水中学2018届高三上学期七调考试数学(文)试题含解析
河北省衡水中学2018届高三上学期七调考试数学(文科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则集合()A. B.C. D.【答案】D【解析】,所以.故选.2. 若复数满足(为虚数单位),则的虚部是()A. -2B. 4C.D. -4【答案】B【解析】,虚部为,故选B.3. 已知向量,,若与垂直,则实数的值为()A. B. C. D.【答案】B【解析】,由于两个向量垂直,所以,解得,故选B.4. 已知数列为等比数列,若,则()A. 有最小值12B. 有最大值12C. 有最小值4D. 有最大值4【答案】A【解析】,所以,故选A.5. 如图,中心均为原点的双曲线和椭圆有公共焦点,,是双曲线的两个顶点,若,,三点将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是()A. 3B. 2C.D.【答案】B【解析】是双曲线的两顶点,将椭圆长轴四等分椭圆的长轴长是双曲线实轴长的倍双曲线与椭圆有公共焦点,的离心率的比值是故答案选6. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图是一枚8圆形金质纪念币,直径是22,面额为100元.为了测算图中军旗部分的面积,现将1粒芝麻向纪念币内投掷100次(假设每次都能落在纪念币内),其中恰有30次落在军旗内,据此可估计军旗的面积大约是()A. B. C. D.【答案】B则圆形金质纪念币的面积为πr2=π×112=121π,∴估计军旗的面积大约是.故选:B.7. 函数的部分图像大致为()A. B. C. D.【答案】D【解析】,构造函数,,故当时,即,排除两个选项.而,故排除选项.所以选D.8. 已知曲线,,曲线经过怎样的变换可以得到,下列说法正确的是()A. 把曲线上所有点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度B. 把曲线上所有点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度C. 把曲线向右平移个单位长度,再把所有点的横坐标缩短到原来的,纵坐标不变D. 把曲线向右平移个单位长度,再把所有点的横坐标缩短到原来的,纵坐标不变【答案】B【解析】对于,,所以先所有点的横坐标伸长到原来的2倍,纵坐标不变,得到,再向右平移个单位长度得到.故选B.9. 更相减损术是中国古代数学专著《九章算术》中的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”下图是该算法的程序框图,若输入,,则输出的值是()A. 68B. 17C. 34D. 36【答案】C【解析】依据题设中提供的算法流程图可知:当时,,此时,则;这时,,此时,,这时,输出,运算程序结束,应选答案C。
河北省衡水市衡水中学2018届高三上学期七调考试理科综合物理试题(解析卷)
河北省衡水中学2018届高三上学期七调考试理科综合物理试题二、选择题1. 下列各叙述中正确的是( )A. 牛顿总结出了万有引力定律并用实验测出了引力常量B. 伽利略首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来C. 理想化模型是把实际问题理想化,略去次要因素突出主要因素,例如质点、位移等D. 用比值定义的物理概念在物理学中占有相当大的比例,例如速度v=s t、加速度a=Fm 都是采用了比值法定义的 【答案】B 【解析】牛顿总结出了万有引力定律,卡文迪许用实验测出了引力常量,选项A 错误;伽利略首先将实验事实和逻辑推理(包括数学推理)和谐地结合起来,选项B 正确;理想化模型是把实际问题理想化,略去次要因素,突出主要因素,例如质点,点电荷等,选项C 错误;用比值定义的物理概念在物理学中占有相当大的比例,例如速度s v t =;加速度Fa m=不是采用了比值法定义的,选项D 错误;故选B. 2. 某重型气垫船,自重达55.010kg ⨯,最高时速为108km/h ,装有额定输出功率为9000kW 的燃气轮机。
假设该重型气垫船在海面航行过程所受的阻力f F 与速度v 满足f F kv =,下列说法正确的是( )A. 该重型气垫船的最大牵引力为53.010N ⨯B. 由题中给出的数据可算出41.010N s/m k =⨯C. 当以最高时速一半的速度匀速航行时,气垫船所受的阻力大小为53.010N ⨯D. 当以最高时速一半的速度匀速航行时,气垫船发动机的输出功率为4500kW 【答案】B【解析】 【分析】【详解】A .气垫船的最高速度为108km/h 30m/s v ==在额定输出功率下以最高时速匀速行驶时牵引力最小,与阻力相等,根据P =Fv 得:气垫船的最小牵引力65910 3.010N 30P F v ⨯===⨯故在速度达到最大前,牵引力 53.010N F >⨯故A 错误; B .气垫船以最高时速匀速运动时,气垫船所受的阻力为5 3.010N f F ==⨯根据f =kv 得 543.010 1.010N s/m 30k ⨯==⨯故B 正确CD .以最高时速一半的速度匀速航行时,气垫船所受的阻力为511.510N 22v f kf =⨯'== 此时气垫船发动机的输出功率为 51.510152250kW 22v vP F f ''==⨯⨯='=故CD 错误. 故选B 。
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷及答案
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
2021届河北省衡水中学2018级高三上学期七调考试数学(理)试卷
河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)
2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}A B =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=, 即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D 解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( ) A . 5 B .3C.5D.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,5d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3 B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( ) A .3 B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0 B.CD.27.答案:B解析:解法1:123410,0a a a a a ======,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=-⎪⎝⎭在,32ππ⎛⎫⎪⎝⎭内单调递减,则ω的取值范围是( ) A .110,3⎛⎤⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦ C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B 解析:当,32x ππ⎛⎫∈⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D 解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( ) A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞ B.,2⎛-∞- ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x cf x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1 B .2±C .12或3 D .1或212.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= .13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 .14.答案:(0,)e解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 .15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0nS >,所以222n S +所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a 的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因2(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫--⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA =(2)25cos 2sin sin cos 1sin cos()122πC B B C B A B ⎛⎫--=+-=-+-⎪⎝⎭33sin coscos sinsin 1sin cos 13sin 166226πππB B B B B B ⎛⎫=-+-=--=-- ⎪⎝⎭ 由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,因此323sin 1,316πB ⎛⎤+⎛⎫--∈-- ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是32,31⎛⎤+-- ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B 1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OC OA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,11111300AB m x AC my ⎧⋅=-=⎪∴⎨⋅=-=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA =-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B的法向量(1,0,1)n =, 于是cos ,55m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值. 20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令 2ln ()(0)1x x g x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==,所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >). (1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围; (3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分) (2)()21a f x x a ax '=+-+,依题意,1101212a f a a ⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分) (3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭. 问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+-⎪⎝⎭恒成立, 设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭, 则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤. 当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭. 于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立. 综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的非负半轴重合,直线l 的参数方程为1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4cos ρθ=化为24cos ρρθ=,由222,cos ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l的普通方程为10x +=……………………(5分)(2)把1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t t t +==,所以12PQ t t =-==10分) 方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。
河北省衡水中学2018届高三上学期一调考试理数试题 含解析
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】A考点:集合的运算.2.已知错误!未找到引用源。
为虚数单位,复数错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】C【解析】试题分析:由题意得,错误!未找到引用源。
,故选C.考点:复数的运算.3.如图,网格纸上小正方形的边长为错误!未找到引用源。
,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】B【解析】试题分析:由题意得,根据给定的三视图可知,该几何体为如图所示的几何体,是一个三棱锥与三棱柱的组合体,其中三棱锥的体积为错误!未找到引用源。
,三棱柱的体积为错误!未找到引用源。
,所以该几何体的体积为错误!未找到引用源。
,故选B.考点:几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,根据给定的三视图,得出该几何体是一个三棱锥与三棱柱的组合体,即可求解该组合体的体积.4.已知命题错误!未找到引用源。
:方程错误!未找到引用源。
有两个实数根;命题错误!未找到引用源。
:函数错误!未找到引用源。
的最小值为错误!未找到引用源。
.给出下列命题:①错误!未找到引用源。
;②错误!未找到引用源。
;③错误!未找到引用源。
衡水中学2018届高三数学上学期周测一轮复习试卷理科有答案
衡水中学2018届高三数学上学期周测一轮复习试卷(理科有答案)2017-2018学年度高三一轮复习周测卷(一)理数一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.0与的意义相同B.高一(1)班个子比较高的同学可以形成一个集合C.集合是有限集D.方程的解集只有一个元素2.已知集合,则()A.B.C.D.3.设命题“”,则为()A.B.C.D.4.已知集合,则集合()A.B.C.D.5.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设,若是的充分不必要条件,则实数的取值范围是()A.B.C.D.7.已知命题有解,命题,则下列选项中是假命题的为()A.B.C.D.8.已知集合,则集合不可能是()A.B.C.D.9.设,若是的充分不必要条件,则实数的取值范围是()A.B.C.D.10.已知命题,命题.若命题且是真命题,则实数的取值范围为()A.B.C.D.11.对于任意两个正整数,定义某种运算“*”,法则如下:当都是正奇数时,;当不全为正奇数时,,则在此定义下,集合的真子集的个数是()A.B.C.D.12.用表示非空集合中的元素个数,定义,若,且,设实数的所有可能取值集合是,则()A.4B.3C.2D.1二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题纸上)13.已知含有三个实数的集合既可表示成,又可表示成,则等于.14.已知集合,若是的充分不必要条件,则实数的取值范围为.15.已知集合,若,则实数的所有可能取值的集合为.16.下列说法中错误的是(填序号).①命题“,有”的否定是“,有”;②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;③已知,若为真命题,则实数的取值范围是;④“”是“”成立的充分条件.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合.(1)分别求;(2)已知集合,若,求实数的取值范围.18.(1)已知关于的方程有实根;关于的函数在区间上是增函数,若“或”是真命题,“或”是真命题,“且”是假命题,求实数的取值范围;(2)已知,若是的必要不充分条件,求实数的取值范围.19.集合.(1)若集合只有一个元素,求实数的值;(2)若是的真子集,求实数的取值范围.20.已知函数的值域是集合,关于的不等式的解集为,集合,集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围.21.已知函数的定义域为,集合.(1)若,求实数的值;(2)若,使,求实数的取值范围.22.已知是定义域为的奇函数,且当时,,设“”.(1)若为真,求实数的取值范围;(2)设集合与集合的交集为,若为假,为真,求实数的取值范围.试卷答案一、选择题1-5:DDBCA6-10:BBDAA11、12:CB二、填空题13.-114.15.16.①③④三、解答题17.解:(1)∵,即,∴,∴,∵,即,∴,∴,∴,;(2)由(1)知,若,当为空集时,,当为非空集合时,可得,综上所述,实数的取值范围为.18.解:(1)若真,则,∴或,若真,则,∴,由“或”是真命题,“且”是假命题,知、一真一假,当真假时:;当假真时:.综上,实数的取值范围为;(2),∴,∴,∴实数的取值范围为.19.解:(1)根据题意知集合有两个相等的实数根,所以或-1;(2)根据条件,知,是的真子集,所以当时,,当时,根据(1)将分别代入集合检验,当时,,不满足条件,舍去;当时,,满足条件.综上,实数的取值范围是.20.解:(1)因为,所以在区间上单调递增,所以,所以. 由,可得,即,所以,所以.又因为,所以.所以,解得,所以实数的取值范围为.(2)由,解得,所以.因为,①当,即时,,满足;②当,即时,,所以,解得,又因为,所以,综上所述,实数的取值范围为.21.解:(1),因为,所以,且,所以.(2)由已知,得,所以或,解得或,所以实数的取值范围为.22.解:(1)∵函数是奇函数,∴,∵当时,,∴函数为内的增函数,∵,∴,∴.若为真,则,解得.∴实数的取值范围是. (2),若为真,则.∵为假,为真,∴一真一假. 若真假,则;若假真,则.综上,实数的取值范围是.。
河北省衡水中学2019届高三上学期七调考试数学(理)试卷(含答案)
2018-2019学年度高三年级上七调考试数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设为虚数单位,复数满足,则共轭复数的虚部为()A. B. C. D.【答案】C【解析】【分析】根据条件求出复数,然后再求出共轭复数,从而可得其虚部.【详解】∵,∴,∴,∴复数的虚部为.故选C.【点睛】本题考查复数的乘除法的运算及共轭复数的概念,其中正确求出复数是解题的关键,对于复数的运算,解题时一定要按照相关的运算法则求解,特别是在乘除运算中一定不要忘了.2.已知集合,若,则为()A. B. C. D.【答案】A【解析】,选A.3.已知,,,则a,b,c满足A. a<b<cB. b<a<cC. c<a<bD. c<b<a【答案】B【分析】根据对数的运算性质,化简得,,进而得,又由,即可得到答案. 【详解】由题意,可得,,又由为单调递增函数,且,所以,所以,又由,所以,故选B.【点睛】本题主要考查了对数函数的图象与性质的应用,其中解答中合理应用对数函数的单调性进行比较是解答的关键,着重考查了推理与运算能力,属于基础题.4.如图,在中,点在线段上,且,若,则()A. B. C. D.【答案】B【解析】分析:从A点开始沿着三角形的边转到D,则把要求的向量表示成两个向量的和,把写成的实数倍,从而得到,从而确定出,最后求得结果.详解:,所以,从而求得,故选B.点睛:该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,求得结果.5.已知定义在上的奇函数满足,若,,则实数的取值范围为()A. B. C. D.【答案】D试题分析:因为是奇函数且满足,所以函数的周期为,,又,所以,可得的取值范围.考点:1、函数的奇偶性;2、函数的对称性;3、函数的周期性;4、分式不等式.6.已知点是双曲线的右焦点,点是该双曲线的左顶点,过且垂直于轴的直线与双曲线交于两点,若是钝角,则该双曲线的离心率的取值范围是 ( )A. B. C. D.【答案】C【解析】试题分析:由题意,得为双曲线的通径,其长度为,因为,所以;则,即,即,即,解得.考点:双曲线的几何性质.7.如图,要测量底部不能到达的某铁塔的高度,在塔的同一侧选择,两观测点,且在,两点测得塔顶的仰角分别为,.在水平面上测得,,两地相距,则铁塔的高度是()A. B. C. D.【答案】D【解析】分析:由题意结合几何关系和余弦定理得到关于塔高的方程,解方程即可求得塔高.详解:设,则,,在中,由余弦定理知,解得米,(舍去).故铁塔的高度为600米.本题选择D选项.点睛:本题主要考查了余弦定理的应用.考查了学生空间观察能力和运用三角函数解决实际问题的能力.8.如果执行下面的程序框图,那么输出的( )A. 2550B. -2550C. 2548D. -2552【答案】C【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=-2+0+2+…+98+100,并输出S值.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=-2+0+2+…+98+100,∵S=-2+0+2+…+98+100=2548,故选C考点:流程图点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.如图,半径为的圆内有四个半径相等的小圆,其圆心分别为,这四个小圆都与圆内切,且相邻两小圆外切,则在圆内任取一点,该点恰好取自阴影部分的概率为A. B. C. D.【答案】D【解析】如图,易知四点在以为圆心,为半径的圆上,连接.设这四个小圆的半径为,则,.因为圆O内的这四个小圆都与圆内切,且相邻两小圆外切,所以,所以,即,解得,故所求事件的概率为.故选D.10.一个几何体的三视图如图所示,则该几何体的表面积为()正(主)视图侧(左)视图俯视图A. B. C. D.【答案】A【解析】【分析】该几何体为正方体ABCD﹣A′B′C′D′切去几何体AEF﹣A′B′D′得到的.【详解】由三视图可知该几何体为棱长为2正方体ABCD﹣A′B′C′D′切去几何体AEF﹣A′B′D′得到的.其中E,F分别是AB,AD的中点,如图,∴S2×22×2+2×2(2)20.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,作出直观图是关键.11.若函数的图象向左平移个单位后得到的图象对应的函数是奇函数,则直线的斜率为( )A. B. C. D.【答案】D【解析】【分析】利用辅助角公式将f(x)化为sin(x+∅),(tanφ),将此图象平移后得到的图象对应的函数解析式为g(x)sin(x∅),再由g(x)是奇函数可得kπ,k∈z,再根据tan∅=tan(kπ),求得的值,即可求得直线ax﹣by+c=0的斜率的值.【详解】∵函数f(x)=a sin x+b cos x sin(x+∅),(tanφ),把函数f(x)的图象向左平移个单位后得到的图象对应的函数是g(x)sin(x∅),再由g(x)是奇函数可得kπ,k∈z.∴tan∅=tan(kπ),即.故直线ax﹣by+c=0的斜率为,故选:D.【点睛】题主要考查辅助角公式,函数y=A sin(ωx+φ)的图象变换规律,函数的奇偶性,直线的斜率,属于中档题.12.设椭圆:的左,右顶点为,.是椭圆上不同于,的一点,设直线,的斜率分别为,,则当取得最小值时,椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】设出的坐标,得到(用,表示,求出,令,则.利用导数求得使取最小值的,可得,则椭圆离心率可求.【详解】解:,,设,,则,则,,,,令,则.,当时,函数取得最小值(2)..,故选:.【点睛】本题考查了椭圆的标准方程及其性质、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知的展开式中,含项的系数为,则实数的值为__________.【答案】【解析】【分析】根据展开式的通项公式,写出的展开式中含x2项的系数,列方程求出a的值.【详解】展开式的通项公式为T r+1•(﹣2x)r,∴(2+ax)(1﹣2x)5的展开式中,含x2项的系数为,解得a=1.故答案为:1.【点睛】本题考查了二项式展开式通项公式的应用问题,是基础题.14.某所学校计划招聘男教师名,女教师名,和须满足约束条件,则该校招聘的教师人数最多是__________名.【答案】【解析】【分析】由题意由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件,又不等式组画出可行域,又要求该校招聘的教师人数最多令z=x+y,则题意求解在可行域内使得z取得最大.【详解】由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件,画出可行域为:对于需要求该校招聘的教师人数最多,令z=x+y⇔y=﹣x+z则题意转化为,在可行域内任意去x,y 且为整数使得目标函数代表的斜率为定值﹣1,截距最大时的直线为过⇒(5,5)时使得目标函数取得最大值为:z=10.故答案为:10.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15.已知则________.【答案】【解析】【分析】对已知条件,两边平方再相加即可得到答案.【详解】∵,∴(cosα+cosβ)2=,(sinα+sinβ)2=.两式相加,得2+2cos(α﹣β)=1.∴cos(α﹣β)=.故答案为:【点睛】本题主要考查两角和与差的余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.16.正方体的棱长为,点,,分别是、、的中点,以为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高为__________.【答案】【解析】【分析】分别取过C点的三条面对角线的中点,则此三点为棱柱的另一个底面的三个顶点,利用中位线定理证明.于是三棱柱的高为正方体体对角线的一半.【详解】连结A1C,AC,B1C,D1C,分别取AC,B1C,D1C的中点E,F,G,连结EF,EG,FG.由中位线定理可得PE A1C,QF A1C,RG A1C.又A1C⊥平面PQR,∴三棱柱PQR﹣EFG是正三棱柱.∴三棱柱的高h=PE A1C.故答案为:.【点睛】本题考查了正棱柱的结构特征,作出三棱柱的底面是计算棱柱高的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列中,,前项和.(1)求数列的通向公式;(2)若从数列中依次取出第,,,,,项,按原来的顺序排列成一个新的数列,试求新数列的前项和.【答案】(1)(2),【解析】(1)由题意得,解得,所以.(2),则==18.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)配方的频数分配表:配方的频数分配表:(1)若从配方产品中有放回地随机抽取件,记“抽出的配方产品中至少件二级品”为事件,求事件发生的概率;(2)若两种新产品的利润率与质量指标满足如下关系:,其中,从长期来看,投资哪种配方的产品平均利润率较大?【答案】(1);(2)从长期来看,投资A配方产品的平均利润率较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北衡水中学2018届高三上学期七调考试数学(理科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|||2}A x x =<,{|}B x x a =>,全集U R =,若U A B ⊆ð,则有( ) A .0a = B .2a ≤ C .2a ≥ D .2a <2.若复数z 满足341z i +-=(i 为虚数单位),则z 的虚部是( ) A .-2 B .4 C .4i D .-43.已知1,1a ,2a ,4成等差数列,1,1b ,2b ,3b ,4成等比数列,则122a ab +的值是( ) A .52 B .52- C . 52或52- D . 124.如图,5个(,)x y 数据,去掉(3,10)D 后,下列说法错误的是( )A .相关系数r 变大B .残差平方和变大C.相关指数2R 变大 D .解释变量x 与预报变量y 的相关性变强5.已知1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,若椭圆上存在点P ,使1290F PF ︒∠=,则该椭圆的离心率e 的取值范围为( )A.(0,2B.[,1)2 C. (0,]2 D.2 6.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0),(1,0,1),(0,1,1),1(,1,0)2,绘制该四面体的三视图时,按照如下图所示的方向画正视图,则得到的侧(左)视图可以为( )A .B .C. D .7.函数1()sin(ln)1x f x x -=+的图像大致为( ) A . B .C. D .8.更相减损术是中国古代数学专著《九章算术》中的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等A . 68B .17 C.34 D .369.已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的(0,)y ∈+∞,使得ln ln 1y yx x a y+++=成立,则实数a 的取值范围是( ) A .(,0)-∞ B .(,0]-∞ C. 2(,]e eD .(,1]-∞-10.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:电视台每周安排的甲、乙连续剧的总播放时长不多于600min ,广告的总播放时长不少于30min ,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为( )A .6,3B .5,2 C. 4,5 D .2,711.已知在正四面体ABCD 中,M 是棱AD 的中点,O 是点A 在底面BCD 内的射影,则异面直线BM 与AO 所成角的余弦值为( )A12.已知(sin,sin )2a x x ωω=,1(sin,)22b x ω=,其中0ω>,若函数1()2f x a b =⋅-在区间(,2)ππ内没有零点,则ω的取值范围是( )A .1(0,]8B . 5(0,]8 C. 15(0,][,1]88⋃ D .115(0,][,]848⋃二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图,在半径为2的扇形AOB 中,90AOB ︒∠=,P 为弧AB 上的一点,若2OP OA ⋅=,则OP AB ⋅的值为 .14.若从区间(0,)e (e 为自然对数的底数, 2.71828e =)内随机选取两个数,则这两个数之积小于e 的概率为 .15.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列四个论断中正确的是 .(把你认为是正确论断的序号都写上) ①若sin cos A B a b =,则4B π=; ②若4B π=,2b =,a =③若a ,b ,c 成等差数列,sin A ,sin B ,sin C 成等比数列,则ABC 为正三角形; ④若5a =,2c =,ABC 的面积4ABCS=,则3cos 5B =. 16.设椭圆C 的两个焦点是1F ,2F ,过点1F 的直线与椭圆C 交于P ,Q 两点,若212||||PF F F =,且115||6||PF FQ =,则椭圆C 的离心率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 的前n 项和n S 满足*231()n n S a n N =-∈. (1)求数列{}n a 的通项公式; (2)求数列21{}nn a -的前n 项和n T . 18.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,//AD BC ,侧面11ABB A 为菱形,1DAB DAA ∠=∠.(1)求证:1A B AD ⊥.(2)若2AD AB BC ==,160A AB ︒∠=,D 在平面11ABB A 内的射影恰为线段1A B 的中点,求平面11DCC D 与平面11ABB A 所成锐二面角的余弦值.19.某保险公司针对企业职工推出一款意外保险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元. 保险公司把职工从事的所有岗位共分为A ,B ,C 三类工种,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率).(1)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每份保单保费的上限;(2)某企业共有职工20000人,从事三类工种的人数分布比例如图所示,老板准备为全体职工购买此种保险,并以(1)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润. 20.1F ,2F 为顶点的三角形的周长为1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P 为该双曲线上异于顶点的任意一点,直线1PF 和2PF 与椭圆的交点分别为A ,B 和C ,D ,且点,A C 在x 轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P ,使得3||||||||4AB CD AB CD +=⋅?若存在,求出点P 的坐标;若不存在,请说明理由.21. 已知函数1()x f x e a -=+,函数()ln g x ax x =+,a R ∈. (1)求函数()y g x =的单调区间;(2)若不等式()()1f x g x ≥+在区间[1,)+∞内恒成立,求实数a 的取值范围; (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为(1,0),若直线lcos()104πθ+-=,曲线C 的参数方程是244x m y m⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程; (2)设直线l 与曲线C 交于,A B 两点,求11||||MA MB +. 23.选修4-5:不等式选讲已知函数2()4f x x ax =++,()|1||1|g x x x =++-.(1)求不等式()3g x ≥的解集;(2)若2[2,2]x ∀∈-,1[2,2]x ∃∈-,使得不等式12()()f x g x ≤成立,求实数a 的取值范围.试卷答案一、选择题1-5: CBABB 6-10:BBCBA 11、12:BD13. 2-+ 14.2e 15. ①③ 16. 911三、解答题17.解:(1)当1n =时,11231S a =-,所以11a =;当2n ≥时,11231n n S a --=-,则1122233n n n n n a S S a a --=-=-,即13n n a a -=.又因为11a =,所以数列{}n a 是以1为首项,3为公比的等比数列, 所以1*3()n n a n N -=∈.(2)由(1)得121213n n n n a ---=,所以122135232113333n n n n n T ----=+++++, ① 3252321333333n n n n n T ----=+++++, ② ②-①,得221222212323333n n n n T ---=+++++-111112122332613313n n n n n -----+=+⨯-=--, 所以*113()3n n n T n N -+=-∈. 18.(1)证明:如图,连接1AB ,1A D ,BD ,设1AB 交1A B 于点O ,连接OD . 由AD AD =,1AA AB =,1DAB DAA ∠=∠,得1AA D ABD ≅,所以1A D BD =.又O 是线段1A B 的中点,所以1OD A B ⊥,又根据菱形的性质得1AO A B ⊥,且AO OD O ⋂=,所以1A B ⊥平面ADO ,从而1A B AD ⊥.(2)解:由题意知DO ⊥平面11ABB A ,又11AO A B ⊥,即1OB OB ⊥,所以OB ,1OB ,OD 两两垂直. 以OB ,1OB ,OD 所在直线为,,x y z 轴建立空间直角坐标系O xyz -,如图所示.设22AD AB BC a ===,由160A AB ︒∠=,可知OB a =,1OA OB ==,所以OD a =,从而(0,,0)A ,(,0,0)B a,1,0)B ,(0,0,)D a .所以11(,0)CC BB a ==-.由12BC AD =,得1(,,)22C a a a,所以1(,,)2DC a a =-. 设平面11DCC D 的法向量为000(,,)m x y z =,由100m CC m DC ⎧⋅=⎪⎨⋅=⎪⎩,得000000102ax ax az ⎧-+=⎪⎨+-=⎪⎩,令01y =,则0x =,0z =(3,1m =. 又平面11ABB A 的一个法向量为(0,0,)OD a =,所以33cos ,||||31OD m a OD m OD ma⋅〈〉===. 故平面11DCC D与平面11ABB A .19.解:(1)设工种A 的每份保单保费为a 元,保险公司每单的收益为随机变量X 元,保险公司的期望收益为45511()(1)(5010)51010E X a a a =-+-⨯⨯=-(元). 由题意得50.2a a -≤,解得 6.25a ≤(元).设工种B 的每份保单保费为b 元,赔付金期望值为45501021010⨯⨯=(元),则保险公司的期望利润为(10)b -元. 由题意得100.2b b -≤,解得12.5b ≤(元).设工种C 的每份保单保费为c 元,赔付金期望值为4450105010⨯=(元), 则保险公司的期望利润为(50)c -元. 由题意得500.2c c -≤,解得62.5c ≤(元). 综上,工种,,A B C 的每份保单保费的上限分别为6.25元,12.5元,62.5元. (2)购买A 类产品的份数为2000060%12000⨯=(份), 购买B 类产品的份数为2000030%6000⨯=(份), 购买C 类产品的份数为2000010%2000⨯=(份),企业支付的总保费为12000 6.25600012.5200062.5275000⨯+⨯+⨯=(元),保险公司在这宗交易中的期望利润为27500020%55000⨯=(元).20.解:(1)由题意知,椭圆离心率c e a ==a =,又221)a c +=, 所以a =2c =,所以2224b ac =-=,所以椭圆的标准方程为22184x y +=. 所以椭圆的焦点坐标为(2,0)±,又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为22144x y -=. (2)设000(,)(2)P x y x ≠±,则1002PF y k x =+,2002PF y k x =-, 因为点P 在双曲线22144x y -=上,所以121PF PF k k ⋅=. 设11(,)A x y ,22(,)B x y ,直线1PF 的方程为(2)y k x =+, 所以直线2PF 的方程为1(2)y x k=-, 联立22184(2)x y y k x ⎧+=⎪⎨⎪=+⎩,得2222(21)8880k x k x k +++-=, 所以2122821k x x k +=-+,21228821k x x k -⋅=-+,所以||AB ==22)21k k +=+.同理可得221()]||12()1k CD k +=+221)2k k +=+. 由题知124||||||||cos ()3AB CD AB CD F PF θθ+=⋅⋅=∠,即411cos ()3||||CD AB θ=+=243=. 因为1212||||cos PF PF PF PF θ⋅=,即0000(2)(2)()()x x yy ---+--=, 又因为22004x y -=,所以202(4)x-===208x =,204y =.即存在满足题意的点P ,且点P 的坐标为(2)±±. 21.(1)解:函数()g x 的定义域为(0,)+∞, 因为()ln g x ax x =+,a R ∈,所以11()ax g x a x x+'=+=. 当0a ≥时,()0g x '>在区间(0,)+∞内恒成立,所以函数()g x 的单调递增区间为(0,)+∞,无单调递减区间;当0a <时,令()0g x '>,得10x a <<-,令()0g x '<,得1x a >-, 所以函数()g x 的单调递增区间为1(0,)a -,单调递减区间为1(,)a-+∞.(2)解:()()1f x g x ≥+在区间[1,)+∞内恒成立, 即1ln 10x e x a ax --+--≤在区间[1,)+∞内恒成立. 设1()ln 1x F x e x a ax -=-+--,则(1)0F =,11x F e a x-'=--在区间[1,)+∞内单调递增,所以()(1)F x F a '≥'=-. 当0a ≤时,()0F x '≥,()F x 在区间[1,)+∞内为增函数,所以()(1)0F x F ≥=恒成立; 当0a >时,(1)0F '<,因为()F x '在区间[1,)+∞内单调递增,所以0(1,)x ∃∈+∞,在区间0(1,)x 内,有()0F x '<,所以()F x 在区间0(1,)x 内单调递减,所以()(1)0F x F <=,这时不合题意.综上所述,实数a 的取值范围为(,0]-∞.(3)证明:要证明在区间(1,)+∞内,12ln 1x e x x -->-+,只需证明1(ln 1)(ln )0x e x x x ---+->,由(2)知,当0a =时,在区间(1,)+∞内,有1ln 10x e x --->恒成立. 令()ln G x x x =-,在区间(1,)+∞内,11()10x G x x x-'=-=>, 所以函数()G x 在区间(1,)+∞内单调递增,所以()(1)10G x G >=>,即ln 0x x ->. 所以1(ln 1)(ln )0x e x x x ---+->,所以原不等式成立.22.解:(1cos()104πθ+-=,得cos sin 10ρθρθ--=,令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =,所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为(1,0),点M 在直线l 上.设直线l的参数方程为12x y ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得280t --=. 设点,A B 对应的参数分别为1t ,2t,则12t t +=128t t =-,所以1212||11||||||t t MA MB t t -+==2218==.23.解:(1)()3g x ≥,即|1||1|3x x ++-≥,此不等式等价于1(1)(1)3x x x ≤-⎧⎨-+--≥⎩或11(1)(1)3x x x -<<⎧⎨+--≥⎩或1113x x x ≥⎧⎨++-≥⎩,解得32x ≤-或32x ≥,所以()3g x ≥的解集为3{|2x x ≤-或3}2x ≥.(2)因为2[2,2]x ∀∈-,1[2,2]x ∃∈-,使得12()()f x g x ≤成立,所以()()([2,2])min min f x g x x ≤∈-.又()2min g x =,所以()2([2,2])min f x x ≤∈-. 当22a-≤-,即4a ≥时,()(2)424822min f x f a a =-=-+=-≤,解得3a ≥,所以4a ≥;当22a-≥,即4a ≤-时,()(2)424822min f x f a a ==++=+≤,解得3a ≤-,所以4a ≤-;当222a -<-<,即44a -<<时,22()()42242min a a a f x f =-=-+≤,解得a ≥a ≤-所以4a -<≤-或4a ≤<.综上,实数a的取值范围为(,)-∞-⋃+∞.。